互感器磁芯的种类及应用
常用磁芯与应用功率 对照表
常用磁芯与应用功率对照表是一种表格,其中列出了不同的磁芯类型和应用功率。
通过这个表格,人们可以快速了解不同磁芯的适用功率范围,从而更好地选择适合自己需求的磁芯。
在对照表中,常见的磁芯类型包括铁氧体磁芯、硅钢磁芯、坡莫合金磁芯等。
这些磁芯在不同的应用场合有不同的适用功率范围。
例如,铁氧体磁芯适用于较低功率的应用,如电源供应器、充电器等,其优点是成本较低、温度稳定性好,但缺点是饱和磁感应强度较低。
硅钢磁芯适用于中等功率的应用,如电机、发电机等,其优点是饱和磁感应强度高、磁导率高,但缺点是成本较高、温度稳定性较差。
坡莫合金磁芯适用于高功率的应用,如高频变压器、脉冲变压器等,其优点是饱和磁感应强度高、磁导率高、电阻率高,但缺点是成本极高、温度稳定性差、容易氧化。
除了磁芯类型和应用功率外,对照表还可以包括其他相关信息,如磁芯的材料、形状、尺寸等。
这些信息有助于人们更好地了解不同磁芯的特点和适用范围,从而更好地选择适合自己需求的磁芯。
总之,常用磁芯与应用功率对照表是一种方便实用的参考资料,可以帮助人们更好地了解不同磁芯的特点和适用范围,从而更好地选择适合自己需求的磁芯。
方形圆形矩型cd形超微晶磁环磁芯铁芯
方形圆形矩型cd形超微晶磁环磁芯铁芯1 磁芯类型磁芯是由磁材料和绕组的包装物质构成的,有多种类型,如正方形、圆形、矩形、CD形、超微晶磁环等。
各种磁芯具有它们各自的特点,每种类型都有一定的用途,有些用于家电产品,有些用于电动汽车、家用电器、电机和电力系统等等。
2 各种磁芯的用途正方形磁芯的使用范围很广,特别适合在高磁场和高温下应用,通常应用于家用电器,以及基于SMD技术的汽车整车产品。
圆形磁芯用于发电机,也用于家用电器,例如电动螺丝刀,空气净化器和滤网等。
矩形磁芯一般用于家用电器,汽车和电力电子等领域,也可以用于家庭IR快速干燥系统,它具有较好的稳定性和噪音低。
CD形磁芯适用于高压,具有体积小、强度高、气质稳定、可靠性高的优点。
超微晶磁环磁芯具有多种形状,精度高,机械可拆卸、重建性好等优点,一般用于家用电器、电动汽车、仪器仪表和通信设备等领域。
铁芯磁芯用于显示器,电机,压缩机,泵等,具有较好的电磁感应性,噪音低,寿命长等特点。
3 磁芯的制作工艺磁芯制作要求材料体积精度高,形状精度高,工艺也比较复杂,常见的磁芯生产工艺有精密铸造、冲压和复合等。
精密铸造技术适用于大批量生产中,不仅能保证生产效率,而且能得到较高的精度。
冲压技术是一种集热处理、机械加工和冷处理等多种技术在一体的综合加工工艺,能满足各种特殊形状磁芯的需求。
复合工艺整合了精密铸造和冲压技术,具有生产效率高、投产成本低等优点,是大规模磁芯制造中采用最多的工艺。
4 磁芯的保养磁芯应定期检查,清洁及涂抹防护润滑油,以保持良好的磁性性能。
当磁芯的绕组出现问题时,应及时进行修复,以避免不正常的电流、电压和功率的变化。
应使用耐高温、耐酸碱的绝缘材料保护绕组的完整性,防止电磁干扰产生。
磁分芯类型 -回复
磁分芯类型-回复磁分芯类型,简称磁芯,是磁性材料的一种形式,广泛应用于电力工程、电子设备、通信技术等领域。
磁芯的选择和设计对于电路的性能至关重要。
本文将详细介绍不同类型的磁芯及其特点,以及如何选择适合的磁芯。
一、铁氧体磁芯铁氧体磁芯是最常见的一种磁芯类型。
铁氧体由铁、氧和其他金属氧化物组成,具有高磁导率、低磁滞和低涡流损耗的特点,适用于高频应用。
其中,软磁铁氧体适用于高频变压器、电感和磁磁耦合器等领域,而硬磁铁氧体则适用于永磁装配和磁传感器等领域。
二、镍锌磁芯镍锌磁芯是另一种常见的磁芯类型。
镍锌磁芯由镍、锌和其他金属氧化物组成,具有高磁导率、高磁饱和和低磁滞的特点,适用于低频和高频应用。
镍锌磁芯适用于接收传感器、变压器和滤波器等领域。
三、铁矽磁芯铁矽磁芯是一种低成本的磁芯类型。
铁矽磁芯由铁和矽组成,具有高磁导率和低磁滞的特点,适用于低频应用。
铁矽磁芯适用于变压器、电感和电源转换器等领域。
四、铁氮磁芯铁氮磁芯是一种新兴的磁芯类型。
铁氮磁芯由铁和氮组成,具有高磁导率和低磁滞的特点,适用于高频和超高频应用。
铁氮磁芯适用于通信设备、微波设备和卫星通信等领域。
选择适合的磁芯是电路设计的重要一环。
当选择磁芯时,首先需要考虑应用的频率范围。
高频应用通常选择铁氧体磁芯,而低频应用则可选择其他类型的磁芯。
其次,还需要考虑磁芯材料的磁导率和磁滞特性。
磁导率越高,磁芯吸收的磁场越多,能量损失越小。
磁滞特性越低,磁芯在磁场变化时的能量损失越小。
因此,往往选择具有高磁导率和低磁滞的磁芯材料。
最后,还需要考虑磁芯的尺寸和形状。
不同的应用场景可能需要不同尺寸和形状的磁芯,因此需要根据具体情况进行设计和选择。
总之,磁分芯类型广泛应用于电子设备和通信技术领域。
不同类型的磁芯具有不同的特点和适用范围。
选择适合的磁芯需要考虑应用的频率范围、磁导率、磁滞特性以及尺寸和形状等因素。
通过合理选择和设计磁芯,可以提高电路的性能和效率。
磁芯种类和AP法选磁芯
磁芯分为铁氧体磁芯和合金类磁芯铁氧体磁芯(常用的):锰锌系列,镍锌系列合金类磁芯:铁粉芯,钼坡莫合金根据变压器用途选磁芯:PQ功率磁芯:功率传输变压器,开关电源变压器,滤波电感器,宽频及脉冲变压器,转换电源变压器主要材质:TP3, TP4EP型高导磁芯:主要用于滤波器波形整理,消除杂波,使视频清晰或音频保真根据工作频率,功率大小,电感量大小,安装空间选择磁芯:根据滤波器电感量大小:AL= (L/N2)*1000000 (辿)N2(准确的说法是叫电感系数,他是为了便于开关电源的匝数引入的,(N*N=Lp/Al 其中N为线圈的匝数,Lp为线圈的电感量,Al为电感系数)一般手册上给的是1匝线圈的电感量,有的给出的是1000的电感量.1mH=1000uH 1uH=1nH,nH(纳亨)(不常用)磁芯结构的选择:选择时要尽量降低漏磁和漏感,增加线圈散热面积,有利于屏蔽,线圈绕线容易,装配接线方便。
不同磁芯对变压器的工作影响:的输出功率,并且占用最小的PCB安装空间可以使用一付夹子进行安装固定这种有效的设计也使的磁芯的磁路截面积更加统一,因此这种磁芯结构也使得比其它的磁芯结构设计有更少的工作热点。
EP型磁芯EP型磁芯的圆形中心柱立体形结构,除了与PCB板接触的末端外,完全的把绕组包裹了起来,屏敝非常好这种独特的形状最小化了在两片磁芯装配时接触面形成的气隙的影响,并且提供了一个更大的体积和总的空间利用率的比例。
环形磁芯」:对于制造商来说,环型磁芯是最经济的,在与其可比较的各种磁芯中,它的花费是最低的;由于使用骨架,附加的和组装的费用等于零;适合时可以使用绕线机进行绕制;它的屏敝也是非常不错的。
常用的PQ和EP磁芯参数PQ型磁芯参数:特点:有10种形状构成系列供选用。
为高密度(定义)安装而设计的磁芯形状。
用途:开关电源用变压器,扼流圈等。
TYPE 类型Dimensions规模AP cm4AE mm2磁芯有效截面积AW mm2卷线截面积AL nH/N2 磁芯无气隙时的等效电感LE mm磁路长度VE mm2磁芯体积WT g磁芯重量PQ20/1620.5*8.1*140.291462.0047.003880.0037.402310.0013.00 PQ20/2020.5*10.1*140.408062.0065.803150.0045.702790.0015.00 PQ26/2026.5*10.0*190.7188117.0060.406170.0046.305490.0031.00 PQ26/2526.5*12.3*190.9971118.0084.505250.0055.506590.0036..00 PQ32/2 032*10.27*22 1.3736170.0080.807310.0055.509420.0042.00 PQ32/3 032*15.17*22 2.4086161.00149.605140.0074.6011970.0055.50PQ35/3535.1*17.37*264.3238196.00220.604860.0087.9019260.0073.00PQ40/4 040.5*19.87*286.5526201.00326.004300.00101.9020450.0095.00PQ50/5 050*24.97*3214.2024328.00433.006720.00113.0037238.00195.00 EP型磁芯参数:产品型号TYPE 类型Dimensions 规模AP cm4AE mm2 磁芯有 效截面 积AW mm2 卷线截面积AL nH/N2 磁芯无 气隙时 的等效 电感LE mm 磁路长 度VE mm2 磁芯体积WT g 磁芯重 量EP7 9.4*3.75*6.5 0.0102 10.70 9.50 1120.00 15.50 165.00 0.80 EP10 11.5*5.1*7.6 0.0255 11.30 22.57 1025.00 19.30 215.00 1.10 EP13 12,8*6.5*9.0 0.0456 19.50 23.40 1475.00 24.20 472.00 2.40 EP1718,0*8.4*11.0 0.1210 33.70 35.90 2230.00 29.50 999.00 5.00 EP2024*10.7*150.499778.7063.503950.0041.103230.0016.00AP 法选磁芯:令初次绕组的有效值电压为U 1,初次线圈的匝数为N °,所选磁芯的交流磁通密 度为%c ,磁通量为仍开关周期为T ,开关频率为f ,初次侧电流的波形系数是 勺,磁芯有效横截面积为4有关系式: U = N 皿=N "r/K/ x 10-41「dt 「 T=¥/x 10-4⑴考虑到勺=4k f 关系式之后 波形系数",:\= 4*k(2)k 工 krms 波形因数与:f U ave (3) U^s 采用有效值,采用整流平均值(均绝值)正弦波的有效值为峰值的近倍,整流平均值为峰值的2倍2 1可推导出:FBN s _ us-04(5)设绕组的电流密度为J (400A/cm 2),导线截面积为S=I/J ,高频变压器的窗口 利用系数为勺,初次绕组有效值电流分别为/1,12,绕组面积被完全利用时:(6)A _”x /1+^x /2W 5 J K w /将(4)(5)整理进(7)后得: A_一“1。
磁芯材料类别
据这个电感的电感量量以及所通过的电流,由此计算出需要的漆包线的直径和绕制的圈数,大致估算出体积,然后再选购磁芯。
1、铁粉芯。
铁粉芯是工字电感磁芯中最常用的一种软磁铁粉芯,这种磁芯一般是通过采用纯铁粉,加入绝缘剂、粘结剂然后挤压成型而成的。
这类磁芯的表面电阻较小,初始导磁率为75以下,拥有很高的饱和磁通密度B,因此它主要用于功率型的磁环电感的各种开关电源上。
2、镍锌磁芯。
工字电感磁芯中应用的镍锌磁芯属于一种软磁铁氧体磁芯,它具有电阻高、导磁率偏低、初始导磁率范围在5~1500的特点。
另外,由于这类镍锌磁芯具有较高的表面电阻(100MΩ以上),因此一般用于中高频电路上。
3、锰锌磁芯。
锰锌磁芯与镍锌磁芯一样,也是一种软磁磁芯,具有表面电阻低、较高的初始导磁率、很高的饱和磁通密度,所以它是100KHz左右最理想的功率电感。
而且由于磁芯的初始导磁率越高,其表面电阻越低,因此它一般使用在1MHz以下电路。
4、铁氧体磁芯。
工字电感磁芯中常用的铁氧体磁芯是一种高频导磁材料,主要由铁(Fe),锰(Mn),和锌(Zn)3种金属元素组成。
这种铁氧体磁芯可以增大导磁率,提高电感品质因素的特点,但是它最大特点是高渗透性,良好的温度特性,和低衰减率。
因此它是制造宽带变压器,可调电感器及其他一些从10kHz到50MHz的高频电路等应用最理想的一种材料。
工字磁芯有镍锌也有锰锌。
镍锌u值低,抗饱和能力强、卷数多。
锰锌u值高抗饱和能力弱些需卷数少。
常见以扼流卷电感为主。
磁棒属1000u/2000u中波磁棒。
有扁有圆。
属锰锌材料。
现在工字磁芯里有高u值品种为贴片用工字磁芯,Dc/Dc较常见,材料为95/99锰锌料、u值在10000左右。
镍锌材料电阻率较大,外观粗糙些有颗粒状。
锰锌料电阻率低、表面光滑、有光泽。
以导磁率400为中线400u以下镍锌为主400u以上锰锌为主。
磁芯种类和AP法选磁芯
磁芯种类和AP法选磁芯1. 引言磁芯是电子器件中的重要组成部分,广泛应用于通信、计算机、电力等领域。
不同的磁芯种类具有不同的特性和应用场景,因此在选择磁芯时需要综合考虑各种因素,如频率特性、磁化特性、尺寸和成本等。
本文将介绍一些常见的磁芯种类,并详细介绍AP法选磁芯的方法和步骤。
2. 常见的磁芯种类2.1 粉末磁芯粉末磁芯是由细小的磁性粉末和有机粘结剂组成的。
其主要特点是体积小、重量轻,具有较高的磁导率和低的涡流损耗。
粉末磁芯适用于高频电路和宽频带应用,如变压器、电感器等。
2.2 磁性氧化铁磁芯磁性氧化铁磁芯是一种由氧化铁制成的磁芯,具有优良的磁导率和饱和磁感应强度。
它具有高温稳定性和低温漂移性能,适用于高频和高温环境下的应用,如高频变压器、滤波器等。
2.3 铁氧体磁芯铁氧体磁芯是由铁、氧和一种或多种添加剂混合制成的磁芯。
它具有较高的饱和磁感应强度和磁导率,广泛应用于电力输配电设备、电机、传感器等领域。
2.4 铁氧体磁钴磁芯铁氧体磁钴磁芯是在铁氧体磁芯中加入少量钴元素制成的。
它具有更高的饱和磁感应强度和导磁率,适用于高频和高温环境下的应用,如高频电感器、磁存储器等。
2.5 铁氧体软磁磁芯铁氧体软磁磁芯是一种具有较低磁导率和饱和磁感应强度的磁芯。
它适用于高精度、低能耗的应用,如传感器、音频设备等。
3. AP法选磁芯的方法和步骤AP法即Analytic Programming法,是一种通过数学建模和计算机仿真来设计磁芯参数的方法。
它可以帮助工程师准确选择合适的磁芯,并优化设计参数,以满足特定的需求。
3.1 建立仿真模型首先,需要建立磁芯的仿真模型。
根据具体的应用和需求,可以选择合适的仿真软件,如ANSYS、MAGNET等。
在建立模型时,需要考虑磁芯的几何尺寸、材料参数、磁场分布等因素。
3.2 选择仿真参数根据设计要求,选择合适的仿真参数。
例如,可以设置输入电流、频率、磁场强度等参数。
通过调整这些参数,可以得到不同条件下的磁芯性能曲线。
交流电流互感器磁心材料
交流电流互感器磁心材料交流电流互感器是一种常用的电力变压器,在电力系统中起着重要作用。
它的基本原理是利用磁感线通过磁心引导的方法,将高电压系统中的电流转换为低电压系统中的电流,从而实现电能的传输和测量。
而磁心作为交流电流互感器的核心部分,担负着传递和转换电能的任务。
磁心材料是指用于制造磁芯的材料,它的选择对于交流电流互感器的性能具有重要影响。
在实际应用中,磁心材料需要具备一定的磁导率、饱和磁通密度、磁化强度、热稳定性和低磁滞损耗等特性。
目前常见的磁心材料主要包括硅钢片、铁氧体和铂钴。
硅钢片是一种常见的磁心材料,它由铁和约3%~5%的硅组成,硅钢片具有较高的电导率和磁导率,能够有效抑制铁心中的涡流损耗和磁滞损耗,提高磁心的工作效率。
在实际应用中,硅钢片通常采用冷轧硅钢片或热轧硅钢片。
冷轧硅钢片具有高峰值磁密和低磁滞损耗,适用于需要高灵敏度和高频率的应用;而热轧硅钢片具有较高的饱和磁感应强度和低磁滞损耗,适用于需要高工作效率和低损耗的应用。
铁氧体是一种具有高磁导率和高饱和磁通密度的磁心材料,它由氧化铁和金属氧化物组成。
铁氧体磁心具有良好的磁化特性和稳定性,能够在较宽的频率范围内工作,并具有较低的涡流损耗和磁滞损耗。
在实际应用中,铁氧体磁心可分为软磁性铁氧体和硬磁性铁氧体两种类型。
软磁性铁氧体具有较高的磁导率和较低的磁滞损耗,适用于需要高精度和低损耗的应用;硬磁性铁氧体具有较高的饱和磁感应强度和较低的磁滞损耗,适用于需要高输出和高饱和特性的应用。
铂钴是一种具有极高磁导率和较高饱和磁通密度的磁心材料,它常用于高性能的交流电流互感器。
铂钴磁心具有良好的热稳定性和低磁导率损耗,能够在高温环境下工作,并具有较低的磁滞损耗和涡流损耗。
在实际应用中,铂钴磁心可根据具体需求选择不同的组成比例和制造工艺,以达到最佳的性能参数。
综上所述,交流电流互感器的磁心材料选择是一项复杂的工程任务,需要根据具体的应用需求和技术要求选择合适的材料。
磁芯的种类及应用
磁芯的种类及应用:1.磁性材料的磁化曲线磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H曲线)。
磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。
即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。
材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。
2.软磁材料的常用磁性能参数饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。
剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。
矩形比:Br⁄Bs矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。
磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。
初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。
居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。
它确定了磁性器件工作的上限温度。
损耗P:磁滞损耗Ph及涡流损耗 Pe P = Ph + Pe = af + bf2+ c Pe ∝ f2 t2 / ,ρ降低,磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe 的方法是减薄磁性材料的厚度t 及提高材料的电阻率ρ。
在自由静止空气中磁芯的损耗与磁芯的温升关系为:总功率耗散(mW)/表面积(cm2)3.软磁材料的磁性参数与器件的电气参数之间的转换在设计软磁器件时,首先要根据电路的要求确定器件的电压~电流特性。
器件的电压~电流特性与磁芯的几何形状及磁化状态密切相关。
设计者必须熟悉材料的磁化过程并拿握材料的磁性参数与器件电气参数的转换关系。
磁芯的设计及应用
磁芯的设计及应用磁芯是一种用于存储和转换磁能的装置。
它通常由磁性材料制成,如铁磁材料(如铁氧体和硅钢)或软磁材料(如铁镍合金)。
磁芯的设计和应用涉及到电磁学、材料科学和电子工程等多个学科。
磁芯的设计考虑到了磁场的强度、方向、偏转和损耗等因素。
根据具体的应用需求,磁芯可以采用不同的形状,如圆柱形、矩形、环形等。
常见的磁芯类型包括变压器磁芯、电感器磁芯和磁存储器磁芯等。
在变压器中,磁芯用于连接两个或多个线圈,以实现电能的传递和转换。
铁芯变压器是最常见的类型,其磁芯通常由硅钢叠片组成。
这种设计可以减小铁芯的磁滞回线和局部热点,提高能量传递效率。
在电感器中,磁芯用于提高电感器的感应磁场强度。
磁芯通过集中磁场线,提高电感器的磁感应强度。
这有助于减小电感器的体积和提高电感器的效率。
硅钢磁芯是通用的选择,因其具有良好的磁导率和低磁滞损耗。
磁存储器磁芯是一种特殊的磁芯,用于存储数字信息。
在过去,磁芯存储器是计算机主存储器的一种常见形式。
磁芯存储器由许多磁芯组成,每个磁芯代表一个二进制位。
根据磁芯的磁化状态(顺时针或逆时针),可以表示0或1。
虽然现在的计算机存储器主要采用半导体材料,但磁芯存储器仍然被用于某些特定领域,如军事应用和高可靠性系统。
磁芯的应用广泛,除了上述提到的变压器、电感器和磁存储器外,它还常用于电源和电路中的滤波器、隔离器和稳压器等。
磁芯的设计和材料选择直接影响电器设备的性能,如效率、频率响应和稳定性等。
随着科技的发展,磁芯的研究也在不断推进。
新材料和新加工技术的应用使得磁芯的性能得到了进一步提升。
一些新型磁性材料如铁氮化物和铁碳化物具有更高的饱和磁感应强度和更低的磁滞损耗,可以让磁芯在更高的频率下工作。
总而言之,磁芯作为一种重要的磁性元件,在电磁学中扮演着重要角色。
通过合理的设计和应用,磁芯可以提高电器设备的性能,如提高传输效率、降低能量损耗和增强信号质量等。
随着科技的进步,我们有理由相信磁芯将在更广泛的领域得到应用和发展。
各型号磁芯形状与特点
功率型:EE、EEL、EF型功率磁芯特点:引线空间大,绕制接线方便。
适用范围广、工作频率高、工作电压范围宽、输出功率大、热稳定性能好。
用途:广泛应用于程控交换机电源、液晶显示屏电源、大功率UPS逆变器电源、计算机电源、节能灯等领域。
EI型功率磁芯特点:结构紧凑、体积小、工作频率高、工作电压范围广、气隙在线圈顶端耦合紧、损耗低。
损耗与温度成负相关,可防止温度的持续上升。
用途:电源转换变压器及扼流圈、DVD电源、照相机闪光灯、通讯设备及其它电子设备。
PEE、PEI功率磁芯ER功率磁芯特点:耦合位置好,中柱为圆形,便于绕线且绕线面积增大,可设计功率大而漏感小的变压器。
用途:开关电源变压器,脉冲变压器,电子镇流器等。
ETD型功率磁芯特点:中柱为圆形,绕制接线方便且绕线面积增大,可设计出功率大且漏感小的变压器。
其他如组装成本,安规成本,电磁屏蔽,标准化难易等各方面都很出色。
用途:开关电源,传输变压器,电子镇流器。
广泛应用于家电、通讯、照明、医疗设备、办公自动化、军品、OA设备、电子仪器、航空航天等领域。
EQ/EQI型功率磁芯EP型功率磁芯特点:具有磁屏蔽效果好、分布电容小、传输衰耗低、电感量高、漏感小、磁场分布均匀等优点,且骨架配有多路接头,易设计多路输出变压器。
用途:宽带变压器、电感器、隔离变压器、匹配变压器,广泛应用于程控交换机终端和精密电子设备等领域。
EFD型功率磁芯特点:具有热阻小、衰耗小、功率大、工作频率宽凳使用优点。
成品重量轻、结构合理、易表面贴装。
用途:广泛应用于体积小而功率大的变压器,如精密仪器、模块电源、计算机终端输出等。
EPC功率磁芯特点:具有热阻小、衰耗小、功率大、工作频率宽、重量轻、结构合理、易表面贴装、屏蔽效果好等优点,但散热性能稍差。
用途:广泛应用于体积小而功率大且有屏蔽和电磁兼容要求的变压器,如精密仪器、程控交换机模块电源、导航设备等。
特点:体积小、感抗高、绕线方便、磁屏蔽及散热效果均衡。
磁芯材质频率使用范围
磁芯材质频率使用范围
磁芯是一种用于电子设备中的重要材料,它可以用于制造电感器、变
压器、滤波器等电子元件。
磁芯的材质和频率使用范围是影响其性能
的重要因素。
磁芯的材质包括铁氧体、镍锌铁氧体、铁氧体钴等。
其中,铁氧体是
最常用的磁芯材料之一,它具有高磁导率、低损耗、稳定性好等优点。
铁氧体的制造成本较低,因此在大量生产中得到广泛应用。
镍锌铁氧
体的磁导率比铁氧体高,但损耗较大,适用于高频率应用。
铁氧体钴
具有高饱和磁感应强度和高频率特性,适用于高性能应用。
磁芯的频率使用范围是指磁芯能够正常工作的频率范围。
不同材质的
磁芯具有不同的频率使用范围。
一般来说,铁氧体磁芯的频率使用范
围为几十千赫兹到几百兆赫兹,镍锌铁氧体磁芯的频率使用范围为数
百千赫兹到几千兆赫兹,铁氧体钴磁芯的频率使用范围为几百千赫兹
到数十兆赫兹。
在实际应用中,选择合适的磁芯材质和频率使用范围非常重要。
如果
选择不当,可能会导致电子元件的性能下降或者无法正常工作。
因此,在选择磁芯时,需要根据具体的应用场景和要求,综合考虑磁芯的材质、频率使用范围、成本等因素,选择最合适的磁芯材料。
总之,磁芯是电子设备中不可或缺的材料之一,其材质和频率使用范围是影响其性能的重要因素。
选择合适的磁芯材质和频率使用范围,可以提高电子元件的性能和稳定性,从而更好地满足实际应用需求。
微型电流互感器常用铁芯材料的性能分析与应用
微型电流互感器常用铁芯材料的性能分析与应用微型电流互感器常用铁芯材料的性能分析与应用微型电流互感器是一种测量和监测电流的装置,它通过感应原理将被测电流转换为与之成比例的低电流输出。
在微型电流互感器中,铁芯是起到传导和集中磁通的作用,选择合适的铁芯材料对于互感器的性能非常重要。
常用的铁芯材料主要有硅钢、铁氧体和铁镍合金,下面将对这些材料的性能进行分析并介绍其在微型电流互感器中的应用。
1. 硅钢硅钢又称为电工钢,是一种含有硅的低碳钢。
硅钢的主要特点是高磁导率和低磁滞损耗。
它的高磁导率可以提高互感器的灵敏度和输出精度,而低磁滞损耗可以减小互感器的磁滞误差。
此外,硅钢还具有良好的抗磁辐射和抗腐蚀性能,适用于工作在较高频率范围内的互感器。
因此,硅钢广泛应用于微型电流互感器中,特别是用于测量和监测高频电流的微型互感器。
2. 铁氧体铁氧体是一种铁磁材料,其主要成分是氧化铁(Fe3O4)。
铁氧体的主要特点是具有极高的磁导率和低的磁滞损耗。
它的高磁导率可以提高互感器的灵敏度和输出精度,而低磁滞损耗可以减小互感器的磁滞误差。
此外,铁氧体还具有良好的抗腐蚀性和机械强度,适用于工作在高温和高湿环境中的互感器。
因此,铁氧体在微型电流互感器中的应用广泛,特别是用于测量和监测高温高湿环境下的电流。
3. 铁镍合金铁镍合金是一种含有镍元素的铁磁材料,常见的铁镍合金包括铁-镍-硅合金(Permalloy)和铁-镍-钴合金(Mu-metal)。
铁镍合金的主要特点是具有极高的磁导率和极低的磁滞损耗。
它的高磁导率可以提高互感器的灵敏度和输出精度,而低磁滞损耗可以减小互感器的磁滞误差。
此外,铁镍合金还具有良好的抗磁辐射和抗噪声性能,适用于工作在高磁场和强噪声环境中的互感器。
因此,铁镍合金在微型电流互感器中的应用广泛,特别是用于测量和监测磁场和噪声干扰较大的电流。
综上所述,微型电流互感器常用的铁芯材料包括硅钢、铁氧体和铁镍合金。
这些材料具有各自独特的优点,能够满足不同应用环境下的要求。
电感中磁芯的作用
电感中磁芯的作用电感中的磁芯是电感器的重要组成部分,起着关键的作用。
它能够增加电感器的感应电流和电感值,提高电感器的性能。
本文将从磁芯的材料选择、磁芯的工作原理以及磁芯对电感器性能的影响等方面进行介绍。
一、磁芯材料的选择磁芯材料的选择对电感器的性能影响很大。
常见的磁芯材料有铁氧体、软磁合金和氧化锌等。
铁氧体具有较高的导磁率和饱和磁感应强度,能够提高电感器的感应电流和电感值。
软磁合金具有较低的磁滞损耗和铁损,能够提高电感器的工作效率。
氧化锌则具有高频特性好的优点,适用于高频电感器。
二、磁芯的工作原理磁芯通过在电感线圈周围形成磁场,使得电感线圈中的磁感应强度增加,从而提高电感器的感应电流和电感值。
磁芯的工作原理是基于磁感线的闭合环路理论。
当电流通过电感线圈时,磁感线会沿着磁芯形成一个闭合的磁路,从而使得磁感应强度集中在磁芯内部,提高了电感器的性能。
三、磁芯对电感器性能的影响1. 提高感应电流:磁芯可以增加电感器线圈中的磁感应强度,使得感应电流增加。
这样可以提高电感器的灵敏度和响应速度,使其更好地适应不同的工作环境。
2. 提高电感值:磁芯可以增加电感器线圈的磁场强度,进而增加电感值。
这使得电感器能够存储更多的能量,提高了电感器的储能能力和工作效率。
3. 减小尺寸和重量:磁芯的引入可以使电感器在相同性能要求下尺寸更小、重量更轻。
这对于一些对体积和重量要求较高的应用来说尤为重要,如电子设备和通信设备等。
4. 提高抗干扰能力:磁芯可以起到屏蔽作用,减小外界电磁干扰对电感器的影响。
这使得电感器在高干扰环境下仍能正常工作,提高了电感器的可靠性和稳定性。
磁芯作为电感器的重要组成部分,在电感器的性能提升和应用领域扩展方面起着至关重要的作用。
通过合理选择磁芯材料、优化磁芯结构,可以进一步提高电感器的性能,满足不同领域对电感器的需求。
希望通过本文的介绍,读者们对电感中磁芯的作用有了更加深入的了解。
互感器的工作原理
互感器的工作原理引言概述:互感器是一种常见的电子元件,广泛应用于电力系统、电子设备和通信领域等。
它通过变换电磁场的方式,将电流或电压信号转化为可测量或可控制的电信号。
本文将详细介绍互感器的工作原理,包括电磁感应、磁芯材料、匝数比和互感系数等方面。
一、电磁感应1.1 磁场的产生和变化互感器中的磁场是通过电流在导线中产生的。
当电流通过导线时,会形成一个围绕导线的磁场。
这个磁场的强度与电流的大小成正比,方向则根据电流的方向来确定。
当电流大小或方向发生变化时,磁场也会相应地发生变化。
1.2 磁场的感应当一个导体处于磁场中时,磁场的变化会引起导体内感应电动势的产生。
这就是电磁感应现象。
互感器利用电磁感应原理,将电流或电压信号转化为可测量的电信号。
1.3 互感器的结构互感器通常由一个或多个线圈组成,线圈中绕有导线。
导线中的电流和磁场相互作用,产生感应电动势。
为了增强磁场的作用,互感器中常使用磁芯材料,如铁芯或软磁材料。
二、磁芯材料2.1 磁芯的作用磁芯是互感器中的重要组成部分,它能够集中和导引磁场,提高互感器的灵敏度和效率。
磁芯材料的选择对互感器的性能有重要影响。
2.2 磁芯材料的种类常见的磁芯材料有铁氧体、铁、镍铁合金等。
每种材料都有其特定的磁性能和应用范围。
铁氧体磁芯具有良好的磁导率和饱和磁感应强度,适用于高频应用。
铁磁材料对低频信号有较好的响应,而镍铁合金则适用于高精度要求的应用。
2.3 磁芯的设计和制造磁芯的设计需要考虑磁导率、磁饱和和损耗等因素。
合理选择磁芯材料和结构,可以提高互感器的性能和可靠性。
磁芯的制造通常采用粉末冶金、热压和注塑等工艺,以获得理想的磁性能和形状。
三、匝数比3.1 匝数比的定义匝数比是指互感器的主、副线圈匝数之比。
它决定了输入信号和输出信号之间的电压或电流关系。
匝数比可以根据应用需求进行设计和调整。
3.2 匝数比的影响匝数比的改变会导致输出信号的幅度和相位发生变化。
通常情况下,当主线圈匝数大于副线圈匝数时,互感器为升压变压器;当主线圈匝数小于副线圈匝数时,互感器为降压变压器。
磁芯的主要材料
磁芯的主要材料
磁芯的主要材料有:
1. 铁氧体磁芯:铁氧体磁芯是最常见的磁芯材料之一,是一种由铁氧化物和其他化合物组成的陶瓷材料。
具有良好的磁导性和磁饱和特性,普遍应用于电感器、变压器、电源等电子设备中。
2. 硅钢磁芯:硅钢磁芯是由硅钢片叠压而成的磁芯材料,主要用于电力变压器和电机中。
硅钢磁芯具有低磁滞损耗和高导磁性能,能有效地减少铁芯损耗。
3. 软磁合金磁芯:软磁合金磁芯是通过合金化处理的铁基材料,如镍铁合金、镍铁钴合金等。
软磁合金磁芯具有低磁滞损耗、高导磁性能和优良的磁饱和特性,广泛应用于高频电感器、磁头等领域。
4. 铁氧纳米晶磁芯:铁氧纳米晶是一种新型软磁合金材料,由铁、硅和氧等元素组成。
具有极高的导磁性能、低磁滞损耗和高饱和感应强度,能够适应高频和高功率密度的应用。
5. 铁氧硼磁芯:铁氧硼磁芯是一种强磁体材料,由铁、硼和氧等元素组成。
具有强磁性、高矫顽力和高温稳定性,广泛应用于电机、传感器、电磁开关等领域。
以上是常见的磁芯材料,不同类型的磁芯材料适用于不同的应用场景,根据具体需求选择合适的材料可以提高磁力和效率。
磁芯材质频率使用范围
磁芯材质频率使用范围磁芯材质是电器和电子设备中常见的一种材料,它们通常用于存储和处理电磁信号。
不同的磁芯材质对于不同频率的信号具有不同的响应特性。
本文将介绍几种常见的磁芯材质及其频率使用范围。
一、铁氧体磁芯材质铁氧体磁芯是一种常见的磁芯材质,它具有良好的磁导率和较高的饱和磁感应强度。
铁氧体磁芯的频率使用范围通常在几十kHz到几百MHz之间。
在这个频率范围内,铁氧体磁芯可以有效地存储和处理信号。
铁氧体磁芯广泛应用于电源滤波器、变压器、电感器等电子设备中。
二、软磁合金磁芯材质软磁合金磁芯是一种具有高导磁率和低磁滞损耗的磁芯材质。
软磁合金磁芯的频率使用范围通常在几百Hz到几十kHz之间。
在这个频率范围内,软磁合金磁芯可以有效地存储和处理信号。
软磁合金磁芯广泛应用于变压器、电感器、传感器等电子设备中。
三、铁氧体和软磁合金混合磁芯材质铁氧体和软磁合金混合磁芯是一种结合了铁氧体和软磁合金的特点的磁芯材质。
它既具有铁氧体磁芯的高磁导率和高饱和磁感应强度,又具有软磁合金磁芯的低磁滞损耗。
铁氧体和软磁合金混合磁芯的频率使用范围通常在几十kHz到几百MHz之间。
在这个频率范围内,铁氧体和软磁合金混合磁芯可以有效地存储和处理信号。
铁氧体和软磁合金混合磁芯广泛应用于射频滤波器、高频变压器等高频电子设备中。
四、氧化锌磁芯材质氧化锌磁芯是一种具有高电阻率和高磁导率的磁芯材质。
氧化锌磁芯的频率使用范围通常在几百MHz到几个GHz之间。
在这个频率范围内,氧化锌磁芯可以有效地存储和处理高频信号。
氧化锌磁芯广泛应用于微波滤波器、微波变压器等微波电子设备中。
五、氮化铝磁芯材质氮化铝磁芯是一种具有高电阻率和高磁导率的磁芯材质。
氮化铝磁芯的频率使用范围通常在几个GHz以上。
在这个频率范围内,氮化铝磁芯可以有效地存储和处理超高频信号。
氮化铝磁芯广泛应用于毫米波滤波器、毫米波变压器等毫米波电子设备中。
磁芯材质的频率使用范围与其导磁率、磁滞损耗等特性密切相关。
互感器磁芯的种类及应用
磁性材料一. 磁性材料的基本特性1. 磁性材料的磁化曲线磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H曲线)。
磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。
即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。
材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。
2. 软磁材料的常用磁性能参数饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。
剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。
矩形比:Br∕Bs矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。
磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。
初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。
来源:居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。
它确定了磁性器件工作的上限温度。
损耗P:磁滞损耗Ph及涡流损耗Pe P = Ph + Pe = af + bf2+ c Pe ∝ f2 t2 / ,ρ降低,磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe 的方法是减薄磁性材料的厚度t 及提高材料的电阻率ρ。
在自由静止空气中磁芯的损耗与磁芯的温升关系为:总功率耗散(mW)/表面积(cm2)3. 软磁材料的磁性参数与器件的电气参数之间的转换在设计软磁器件时,首先要根据电路的要求确定器件的电压~电流特性。
器件的电压~电流特性与磁芯的几何形状及磁化状态密切相关。
如何选择磁芯
如何选择磁芯MAGNETICS :能提供最⼤的选择余地。
铁氧体磁芯:⽤于功率变压器和电感器的⾼频材料(10kHz - 2Mhz),⽤于电磁⼲扰滤波器、ISDN变压器和宽带变压器的⾼磁导率材料(⾼达15,000µ);以及⽤于电信应⽤的温度稳定材料。
磁粉芯:(钼坡莫合⾦、⾼磁通材料和铁硅铝(Kool Mµ?)):⽤于串联滤波器、输出扼流圈和反激变压器。
带绕磁芯:(带绕磁芯、切割 c 型磁芯、⾻架磁芯和叠⽚式磁芯)⽤于⼤功率变压器、⾳频变压器、磁放⼤器、接地故障断路器和电流互感器。
频率范围内阻抗很⾼,所以可抑制⾼频开关电源产⽣的⾼频噪声。
开关电源会产⽣以下两类噪声:共模和差模。
差模噪声(图1a)的传播途径和输⼊电流相同。
共模噪声(1b)表现为彼此相等且同相的噪声,其传播途径经绕组与地线相连。
为抑制电磁⼲扰,典型滤波器应包含共模电感器、差模电感器和X及Y电容器。
Y电容器和共模电感器⽤于衰减共模噪声。
电感器对⾼频噪声显⽰⾼阻抗,并反射或吸收噪声,同时,电容器成为到地的低阻抗路径,使噪声从主电路中分流出去(图2)。
为了实现以上功能,共模电感器必须在开关频率范围内提供合适的阻抗。
共模电感器由两组匝数相同的绕组构成。
这两个绕组使每个绕组中的线路电流所产⽣的磁通⼤⼩相等,⽽相位相反。
所以这两组绕组产⽣的磁通相互抵消使磁芯处于未偏置状态。
差模电感器仅有⼀个绕组,磁芯需要承受全部线路电流,并且在⼯作状态下不能饱和。
所以共模电感器和差模电感器有很⼤差异。
为防⽌磁芯饱和,差模电感器磁芯的有效磁导率必须低(间隙铁氧体或磁粉芯)。
但是共模电感器可使⽤⾼磁导率材料,并可⽤较⼩的磁芯获得⾮常⼤的电感。
选择材料开关电源产⽣的噪声主要位于装置基频处,并包括⾼次谐波。
也就是说,噪声频谱⼀般包括10kHz到50MHz之间的部分。
为了提供合适的衰减,电感器阻抗在此频带内必须⾜够⾼。
共模电感器的总阻抗有两部分构成,⼀部分是串联感抗(Xs),另⼀部分是串联电感(Rs)。
互感器磁芯的种类及应用
磁性材料一. 磁性材料的基本特性1. 磁性材料的磁化曲线磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H曲线)。
磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。
即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。
材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。
2. 软磁材料的常用磁性能参数饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。
剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。
矩形比:Br∕Bs矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。
磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。
初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。
来源:居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。
它确定了磁性器件工作的上限温度。
损耗P:磁滞损耗Ph及涡流损耗Pe P = Ph + Pe = af + bf2+ c Pe ∝ f2 t2 / ,ρ降低,磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe 的方法是减薄磁性材料的厚度t 及提高材料的电阻率ρ。
在自由静止空气中磁芯的损耗与磁芯的温升关系为:总功率耗散(mW)/表面积(cm2)3. 软磁材料的磁性参数与器件的电气参数之间的转换在设计软磁器件时,首先要根据电路的要求确定器件的电压~电流特性。
器件的电压~电流特性与磁芯的几何形状及磁化状态密切相关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
互感器磁芯的种类及应用
1、磁钢磁芯
磁钢磁芯也称为矩形磁芯,由一种特殊的磁性合金制成,例如铁-钛-钒的磁性合金组成。
它主要用于各种音频电子部件,包括电流变压器、电压变压器、磁感应耦合器、射频耦合器等。
它的特点是具有良好的磁性、耐热性、耐腐蚀性、抗强电磁干扰能力和耐冲击性等优点。
2、塑料磁芯
塑料磁芯也称为热塑性磁芯,是以冷压铁氧体磁芯为基础,配合热塑性材料加以制作的磁芯。
它主要用于电视机、磁链、转子、风扇等电器电子设备中,具有耐温性、耐压强度、抗热老化性、耐电磁干扰、耐冲击性等优点。
3、铁氧体磁芯
铁氧体磁芯是根据它的特殊特性以及磁芯的形状分为两种。
一种是铁氧体冷压磁芯,主要用于制造发动机的磁滞电机,用于电子铃、电台和录音仪等设备,以及电视机、冰箱、洗衣机等家用电器中。