新人教数学七年级上册第1.3有理数的加减法测试题带答案

合集下载

人教新版七年级上《1.3有理数的加减法》同步试卷含答案解析

人教新版七年级上《1.3有理数的加减法》同步试卷含答案解析

2016年人教新版七年级数学上册同步试卷:1.3 有理数的加减法一、选择题(共13小题)1.计算﹣10﹣8所得的结果是()A.﹣2 B.2 C.18 D.﹣182.(2014•哈尔滨)哈市某天的最高气温为28℃,最低气温为21℃,则这一天的最高气温与最低气温的差为()A.5℃B.6℃C.7℃D.8℃3.某地某天的最高气温是8℃,最低气温是﹣2℃,则该地这一天的温差是()A.﹣10℃B.﹣6℃C.6℃D.10℃4.比1小2的数是()A.3 B.1 C.﹣1 D.﹣25.如果崇左市市区某中午的气温是37℃,到下午下降了3℃,那么下午的气温是()A.40℃ B.38℃ C.36℃ D.34℃6.计算,正确的结果为()A.B.C.D.7.计算:1﹣(﹣)=()A.B.﹣C.D.﹣8.﹣2﹣1的结果是()A.﹣1 B.﹣3 C.1 D.39.计算2﹣3的结果是()A.﹣5 B.﹣1 C.1 D.510.桂林冬季里某一天最高气温是7℃,最低气温是﹣1℃,这一天桂林的温差是()A.﹣8℃B.6℃C.7℃D.8℃11.如图,这是某用户银行存折中2012年11月到2013年5月间代扣电费的相关数据,从中可以看出扣缴电费最多的一次达到()A.147.40元 B.143.17元 C.144.23元 D.136.83元12.五个城市的国际标准时间(单位:时)在数轴上表示如图所示,我市2013年初中毕业学业检测与高中阶段学校招生考试于2015年6月16日上午9时开始,此时应是A.纽约时间2015年6月16日晚上22时B.多伦多时间2015年6月15日晚上21时C.伦敦时间2015年6月16日凌晨1时D.汉城时间2015年6月16日上午8时13.与﹣3的差为0的数是()A.3 B.﹣3 C.D.二、填空题(共5小题)14.计算:0﹣7=.15.)计算:3﹣(﹣1)=.16.计算:3﹣4=.17.计算:2000﹣2015=.18.|﹣7﹣3|=.2016年人教新版七年级数学上册同步试卷:1.3 有理数的加减法参考答案与试题解析一、选择题(共13小题)1.计算﹣10﹣8所得的结果是()A.﹣2 B.2 C.18 D.﹣18【考点】有理数的减法.【分析】根据有理数的减法运算法则进行计算即可得解.【解答】解:﹣10﹣8=﹣18.故选D.【点评】本题考查了有理数的减法,是基础题,熟记运算法则是解题的关键.2.哈市某天的最高气温为28℃,最低气温为21℃,则这一天的最高气温与最低气温的差为()A.5℃B.6℃C.7℃D.8℃【考点】有理数的减法.【专题】常规题型.【分析】根据有理数的减法,减去一个数等于加上这个数的相反数,可得答案.【解答】解:28﹣21=28+(﹣21)=7,故选:C.【点评】本题考查了有理数的减法,减去一个数等于加上这个数的相反数.3.某地某天的最高气温是8℃,最低气温是﹣2℃,则该地这一天的温差是()A.﹣10℃B.﹣6℃C.6℃D.10℃【考点】有理数的减法.【专题】计算题.【分析】用最高温度减去最低温度,然后根据有理数的减法运算法则,减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:8﹣(﹣2)=8+2=10(℃).故选D.【点评】本题考查了有理数的减法运算法则,熟记减去一个数等于加上这个数的相反数是解题的关键.4.比1小2的数是()A.3 B.1 C.﹣1 D.﹣2【考点】有理数的减法.【分析】根据有理数的减法运算法则进行计算即可得解.【解答】解:1﹣2=﹣1.故选C.【点评】本题考查了有理数的减法,是基础题.5.如果崇左市市区某中午的气温是37℃,到下午下降了3℃,那么下午的气温是()A.40℃ B.38℃ C.36℃ D.34℃【考点】有理数的减法.【专题】应用题.【分析】用中午的温度减去下降的温度,然后根据有理数的减法运算法则进行计算即可得解.【解答】解:37℃﹣3℃=34℃.故选:D.【点评】本题考查了有理数的减法,是基础题,熟记运算法则是解题的关键.6.计算,正确的结果为()A.B. C.D.【考点】有理数的减法.【分析】根据有理数的减法运算法则进行计算即可得解.【解答】解:﹣=﹣.故选D.【点评】本题考查了有理数的减法运算是基础题,熟记法则是解题的关键.7.计算:1﹣(﹣)=()A.B.﹣C.D.﹣【考点】有理数的减法.【分析】根据有理数的减法法则,即可解答.【解答】解:1﹣(﹣)=1+=.故选:C.【点评】本题考查了有理数的减法,解决本题的关键是熟记有理数的减法法则.8.﹣2﹣1的结果是()A.﹣1 B.﹣3 C.1 D.3【考点】有理数的减法.【分析】根据有理数的减法法则:减去一个数等于加上这个数的相反数把原式化为加法,根据有理数的加法法则计算即可.【解答】解:﹣2﹣1=﹣2+(﹣1)=﹣3,故选:B.【点评】有本题考查的是有理数的减法法则:减去一个数等于加上这个数的相反数,掌握法则是解题的关键.9.计算2﹣3的结果是()A.﹣5 B.﹣1 C.1 D.5【考点】有理数的减法.【分析】减去一个数等于加上这个数的相反数,再运用加法法则求和.【解答】解:2﹣3=2+(﹣3)=﹣1.故选B.【点评】考查了有理数的减法,解决此类问题的关键是将减法转换成加法.10.桂林冬季里某一天最高气温是7℃,最低气温是﹣1℃,这一天桂林的温差是()A.﹣8℃B.6℃C.7℃D.8℃【考点】有理数的减法.【专题】应用题.【分析】根据“温差”=最高气温﹣最低气温计算即可.【解答】解:7﹣(﹣1)=7+1=8℃.故选D.【点评】此题考查了有理数的减法,解题的关键是:明确“温差”=最高气温﹣最低气温.11.如图,这是某用户银行存折中2012年11月到2013年5月间代扣电费的相关数据,从中可以看出扣缴电费最多的一次达到()A.147.40元 B.143.17元 C.144.23元 D.136.83元【考点】有理数的加减混合运算;有理数大小比较.【专题】应用题.【分析】根据存折中的数据进行解答.【解答】解:根据存折中的数据得到:扣缴电费最多的一次是日期为121105,金额是147.40元.故选:A.【点评】本题考查了有理数大小比较的应用.解题的关键是学生具备一定的读图能力.12.五个城市的国际标准时间(单位:时)在数轴上表示如图所示,我市2013年初中毕业学业检测与高中阶段学校招生考试于2015年6月16日上午9时开始,此时应是(A.纽约时间2015年6月16日晚上22时B.多伦多时间2015年6月15日晚上21时C.伦敦时间2015年6月16日凌晨1时D.汉城时间2015年6月16日上午8时【考点】有理数的加减混合运算.【专题】应用题.【分析】求出两地的时差,根据北京时间求出每个地方的时间,再判断即可.【解答】解:A、∵纽约时间与北京差:8+5=13个小时,9﹣13=﹣4,∴当北京时间2015年6月16日9时,纽约时间是2015年6月15日21时,故本选项错误;B、∵多伦多时间与北京差:8+4=12个小时,9﹣12=﹣3,∴当北京时间2015年6月16日9时,纽约时间是2015年6月15日22时,故本选项错误;C、∵伦敦时间与北京差:8﹣0=8个小时,9﹣8=1,∴当北京时间2015年6月16日9时,伦敦时间是2015年6月16日1时,故本选项正确;D、∵汉城时间与北京差:9﹣8=1个小时,9+1=10,∴当北京时间2015年6月16日9时,首尔时间是2015年6月16日10时,故本选项错误;故选C.【点评】主要考查了数轴,要注意数轴上两点间的距离公式是|a﹣b|.把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.13.与﹣3的差为0的数是()A.3 B.﹣3 C.D.【考点】有理数的减法.【分析】与﹣3的差为0的数就是﹣3+0,据此即可求解.【解答】解:﹣3+0=﹣3.故选B.【点评】本题考查了有理数的减法运算,正确列出式子是关键.二、填空题(共5小题)14.计算:0﹣7=﹣7.【考点】有理数的减法.【分析】根据有理数的减法法则进行计算即可,减去一个数等于加上这个数的相反数.【解答】解:0﹣7=﹣7;故答案为:﹣7.【点评】此题考查了有理数的减法运算,熟练掌握减法法则是本题的关键,是一道基础题,较简单.15.计算:3﹣(﹣1)=4.【考点】有理数的减法.【分析】先根据有理数减法法则,把减法变成加法,再根据加法法则求出结果.【解答】解:3﹣(﹣1)=3+1=4,故答案为4.【点评】本题主要考查了有理数加减法则,能理解熟记法则是解题的关键.16.计算:3﹣4=﹣1.【考点】有理数的减法.【分析】本题是对有理数减法的考查,减去一个数等于加上这个数的相反数.【解答】解:3﹣4=3+(﹣4)=﹣1.故答案为:﹣1.【点评】有理数的减法法则:减去一个数等于加上这个数的相反数.17.计算:2000﹣2015=﹣15.【考点】有理数的减法.【专题】计算题.【分析】根据有理数的减法运算进行计算即可得解.【解答】解:2000﹣2015=﹣15.故答案为:﹣15.【点评】本题考查了有理数的减法,是基础题,熟记运算法则是解题的关键.18. |﹣7﹣3|=10.【考点】有理数的减法;绝对值.【专题】计算题.【分析】根据有理数的减法运算法则和绝对值的性质进行计算即可得解.【解答】解:|﹣7﹣3|=|﹣10|=10.故答案为:10.【点评】本题考查了有理数的减法运算法则和绝对值的性质,是基础题,熟记法则和性质是解题的关键.。

最新人教版七年级数学上册《有理数的加减法》同步测试题及答案.docx

最新人教版七年级数学上册《有理数的加减法》同步测试题及答案.docx

1.3有理数的加减法同步测试题一、选择题1.小马虎在下面计算中只做对了一道题,他做对的题目是( )A.(-3)+5=-2 B.(-7)+(-7)=0C.(-6)+(-3)=-9 D.9+(-9)=12. .用字母表示有理数的减法法则正确的是( )A.a-b=a+b B.a-b=a+(-b)C.a-b=-a+b D.a-b=a-(-b)3. 下列式子可读作“负10,负6,正3,负7的和”的是( )A.-10+(-6)+(+3)-(-7) B.-10-6+3-7C.-10-(-6)-3-(-7) D.-10-(-6)-(-3)-(-7)4. 某村有几块麦田,今年的收成与去年相比(增产为正,减产为负)的情况如下(单位为kg):+32,-17,-32,+13,+15,+4,-15,则今年小麦的总产量与去年相比( )A.增产2千克B.减产2千克C.增产12千克D.与去年的产量相同5. 冰箱冷冻室的温度为-6℃,此时房屋内的温度为20℃,则房屋内的温度比冰箱冷冻室的温度高( )A.26℃B.14℃C.-26℃D.-14℃6. 0减去一个数等于( )A.这个数B.0 C.这个数的相反数D.负数7. 在数1,2,3,4,…,405前分别加“+”或“-”,使所得数字之和为非负数,则所得非负数最小为( ) A.0 B.1 C.2 D.38. 已知a,b在数轴上的位置如图所示,则a-b的结果的符号为( )A .正B .负C .0D .无法确定9. 下列说法正确的是( )A .两个数之差一定小于被减数B .减去一个负数,差一定大于被减数C .减去一个正数,差不一定大于被减数D .0减去任何数,差都是负数10. 计算(-2.29)+8+(-7.71)时,下列简便运算正确的是( )A .[(-2.29)+8]+(-7.71)B .(-2.29)+[8+(-7.71)]C .(-8)+(2.29+7.71)D .[(-2.29)+(-7.71)]+811.把(-8)-(+4)+(-5)-(-2)写成省略括号的和的形式是( )A .-8+4-5+2B .-8-4-5+2C .-8-4+5+2D .8-4-5+212. 7-3-4+18-11=(7+18)+(-3-4-11)是应用了( )A .加法交换律B .加法结合律C .分配律D .加法的交换律和结合二、填空题13.计算(+1)+(-2)+(+3)+(-4)+…+(+9)+(-10)的结果是_______.14. 已知a +x =2015,b +y =-2020,则a +b +x +y =_______.15.绝对值大于1而小于6的所有整数的和是____.16. 已知有理数+3,-8,-10,+12,请你通过有理数的加减混合运算,使其运算结果最大,则列式为_______ __________________.17. 如果a =-14,b =-2,c =-34,则a +(-b)-|-c|的值为__ __. 18. 在( )里写出每一步变形过程的依据.(-4)+(+18)-(-3)-(+13)+(-2)=(-4)+(+18)+(+3)+(-13)+(-2)(________________)=[(-4)+(-13)+(-2)]+[(+18)+(+3)](_____________)=(-19)+(+21)(________________)=2.(______ __________)19. 若a -(-b)=0,则a 与 b 的关系是____________.20. 已知|x|=5,y =3,则 x -y 的值为________.三、解答题21. (1)20-(-7)-|-2|; (2)12-(-18)+(-7)-15;(3)-213-56-12+116; (4)|-212|-(-2.5)+1-|1-212|;(5)16+(-25)+24-35; (6)314+(-235)+534-825;(7)(-12)+|0-5|+|-4|+(-9); (8)312-(-214)+(-13)-0.25+(+16). 22.若a 、b 、c 是有理数,|a|=3,|b|=10,|c|=5,且a 、b 异号,b 、c 同号,求a -b -(-c)的值.23.某只股票上周末的收盘价格是10.00元,本周一到周五的收盘情况如下表:(“+”表示股票比前一天上涨,“-”表示股票比前一天下跌)上周末周一周二周三周四周五收盘价10.00 +0.28 -2.36 +1.80 -0.35 +0.08(1)周一至周五这只股票每天的收盘价各是多少元?(2)本周末的收盘价比上周末收盘价是上涨了,还是下跌了多少?(3)这五天的收盘价中哪天的最高?哪天的最低?相差多少?24.已知A,B两点在数轴上分别表示的数为m,n.(1)对照数轴填写下表:m 6 -6 -6 -6 2 -1.5n 4 0 4 -4 -8 -1.5A,B两点间的距离(2)若A,B两点间的距离记为d,试问d与m,n有何数量关系?并用文字描述出来;(3)已知A,B在数轴上分别表示的数为x和-1,则A,B两点间的距离d可表示为____________,如果d =3,求x的值.参考答案一、选择题1.小马虎在下面计算中只做对了一道题,他做对的题目是( C )A.(-3)+5=-2 B.(-7)+(-7)=0C.(-6)+(-3)=-9 D.9+(-9)=12. .用字母表示有理数的减法法则正确的是( B )A.a-b=a+b B.a-b=a+(-b)C.a-b=-a+b D.a-b=a-(-b)3. 下列式子可读作“负10,负6,正3,负7的和”的是( B )A.-10+(-6)+(+3)-(-7) B.-10-6+3-7C.-10-(-6)-3-(-7) D.-10-(-6)-(-3)-(-7)4. 某村有几块麦田,今年的收成与去年相比(增产为正,减产为负)的情况如下(单位为kg):+32,-17,-32,+13,+15,+4,-15,则今年小麦的总产量与去年相比( D )A.增产2千克B.减产2千克C.增产12千克D.与去年的产量相同5. 冰箱冷冻室的温度为-6℃,此时房屋内的温度为20℃,则房屋内的温度比冰箱冷冻室的温度高( A )A.26℃B.14℃C.-26℃D.-14℃6. 0减去一个数等于( C )A.这个数B.0 C.这个数的相反数D.负数7. 在数1,2,3,4,…,405前分别加“+”或“-”,使所得数字之和为非负数,则所得非负数最小为( B ) A.0 B.1 C.2 D.38. 已知a,b在数轴上的位置如图所示,则a-b的结果的符号为( B )A.正B.负C.0 D.无法确定9. 下列说法正确的是( B )A.两个数之差一定小于被减数B.减去一个负数,差一定大于被减数C.减去一个正数,差不一定大于被减数D.0减去任何数,差都是负数10. 计算(-2.29)+8+(-7.71)时,下列简便运算正确的是( D )A.[(-2.29)+8]+(-7.71) B.(-2.29)+[8+(-7.71)]C.(-8)+(2.29+7.71) D.[(-2.29)+(-7.71)]+811.把(-8)-(+4)+(-5)-(-2)写成省略括号的和的形式是( B )A.-8+4-5+2 B.-8-4-5+2C.-8-4+5+2 D.8-4-5+212. 7-3-4+18-11=(7+18)+(-3-4-11)是应用了( D )A .加法交换律B .加法结合律C .分配律D .加法的交换律和结合律二、填空题13.计算(+1)+(-2)+(+3)+(-4)+…+(+9)+(-10)的结果是__-5_____.14. 已知a +x =2015,b +y =-2020,则a +b +x +y =____-5___.15.绝对值大于1而小于6的所有整数的和是__0__.16. 已知有理数+3,-8,-10,+12,请你通过有理数的加减混合运算,使其运算结果最大,则列式为_________ (+12)+(+3)-(-8)-(-10) __________________.17. 如果a =-14,b =-2,c =-34,则a +(-b)-|-c|的值为__ 1 __. 18. 在( )里写出每一步变形过程的依据.(-4)+(+18)-(-3)-(+13)+(-2)=(-4)+(+18)+(+3)+(-13)+(-2)(____ 统一为加法____________)=[(-4)+(-13)+(-2)]+[(+18)+(+3)](_加法的交换律、结合律___)=(-19)+(+21)(____有理数加法法则__)=2.(______ 有理数加法法则______)19. 若a -(-b)=0,则a 与 b 的关系是___互为相反数_________.20. 已知|x|=5,y =3,则 x -y 的值为__2或-8______.三、解答题21. (1)20-(-7)-|-2|; (2)12-(-18)+(-7)-15;(3)-213-56-12+116; (4)|-212|-(-2.5)+1-|1-212|;(5)16+(-25)+24-35; (6)314+(-235)+534-825;(7)(-12)+|0-5|+|-4|+(-9); (8)312-(-214)+(-13)-0.25+(+16). 解:(1)原式=20+7-2=25.(2)原式=12+18-7-15=30-22=8.(3)原式=-213-12+(116-56)=-213-12+13=-2-12=-212. (4)原式=212+2.5+1-112=4.5. (5)原式=16+24+[(-25)+(-35)]=40+(-60)=-20.(6)原式=314+534+[(-235)+(-825)]=9+(-11)=-2. (7)原式=-12+5+4+(-9)=-12. (8)原式=(214-14)+(312-13+16)=2+(336-26+16)=2+313=513. 22.若a 、b 、c 是有理数,|a|=3,|b|=10,|c|=5,且a 、b 异号,b 、c 同号,求a -b -(-c)的值.解:由题 意,得当a =-3,b =10,c =5时,a -b -(-c)=-3-10-(-5)=-8;当a=3,b=-10,c=-5时,a-b-(-c)=3-(-10)-5=8.23.某只股票上周末的收盘价格是10.00元,本周一到周五的收盘情况如下表:(“+”表示股票比前一天上涨,“-”表示股票比前一天下跌)上周末周一周二周三周四周五收盘价10.00 +0.28 -2.36 +1.80 -0.35 +0.08(1)周一至周五这只股票每天的收盘价各是多少元?(2)本周末的收盘价比上周末收盘价是上涨了,还是下跌了多少?(3)这五天的收盘价中哪天的最高?哪天的最低?相差多少?解:(1)10+0.28=10.28(元);10.28-2.36=7.92(元);7.92+1.80=9.72(元);9.72-0.35=9.37(元);9.37+0.08=9.45(元).所以,周一至周五这只股票每天的收盘价分别为10.28元、7.92元、9.72元、9.37元、9.45元.(2)10.00-9.45=0.55(元),本周末收盘价比上周末的收盘价下跌了0.55元.(3)周一最高,周二最低,因为10.28-7.92=2.36(元),所以相差2.36元.24.已知A,B两点在数轴上分别表示的数为m,n.(1)对照数轴填写下表:m 6 -6 -6 -6 2 -1.5n 4 0 4 -4 -8 -1.5A,B两点间的距离 2 6 10 2 10 0(2)若A,B两点间的距离记为d,试问d与m,n有何数量关系?并用文字描述出来;(3)已知A,B在数轴上分别表示的数为x和-1,则A,B两点间的距离d可表示为___|x+1|__________,如果d=3,求x的值.解:(2)d=|m-n|,数轴上两个点之间的距离,等于这两个点表示的数的差的绝对值(3)|x+1| 当d=3时,|x-(-1)|=3,所以x=2或-4。

人教版七年级上册 1.3 有理数的加减法 同步练习(含答案)

人教版七年级上册  1.3 有理数的加减法 同步练习(含答案)

有理数的加减法同步练习一.选择题1.下列说法中,正确的有()①0是最小的整数;①若|a|=|b|,则a=b;①互为相反数的两数之和为零;①数轴上表示两个有理数的点,较大的数表示的点离原点较远.A.0个B.1个C.2个D.3个2.下列计算正确的是()A.7+(-5)=12B.0-2019=2019C.10-(-10)=0D.-2.1+(-2.9)=-53.下列各式计算结果为负数的是()A.-(-1)B.|-(+1)|C.-|-1|D.|1-2|4.在算式【】+(-12)=-5中,【】里应填()A.17B.7C.-17D.-75.一天早晨的气温是-3①,中午上升到15①,则这天中午比早晨的气温上升了()A.15°C B.18①C.-3①D.-18①6.如图,已知表格中竖直、水平、对角线上的三个数的和都相等,则m+n等于()A.7B.5C.-1D.-27.如果以海平面为基准,海平面以上记为正,海平面以下记为负.一艘潜艇从海平面开始下沉15m,再下沉10m,然后上升7m,此时潜艇的海拔高度可记为()A.15m B.7m C.-18m D.-25m8.已知|a|=4,|b|=7,且a-b>0,则a+b的值为()A.11B.-3或11C.-3或-11D.3或-119.有20个数排成一行,对于任意相邻的三个数,都有中间的数等于前后两数的和.如果第一个数是0,第二个数是2,这20个数的和是()A.2B.-2C.0D.410.某大楼地上共有16层,地下共有3层,某人从地上9层下降到地下2层,电梯一共下降的层数为()A.10B.11C.12D.1311.某市11月4日至7日天气预报的最高气温与最低气温如表:其中温差最大的一天是()A.11月4日B.11月5日C.11月6日D.11月7日12.如图,将-3,-2,-1,0,1,2,3,4,5分别填入九个空格内,使每行、每列、每条对角线上的三个数之和相等,现在a,b,c分别表示其中的一个数,则a-b+c的值为()A.-5B.-4C.0D.5二.填空题13.把(-3)-(-6)-(+7)+(-8)写成省略加号的和的形式为.14.计算:12-(-18)+(-7)= .15.计算:|π-3.14|+|π-3.15|= .16.若a是最小的正整数,b是绝对值最小的数,c是相反数等于它本身的数,d是到原点的距离等于2的负数,e是最大的负整数,则a+b+c+d+e= .17.如果|a|=2,|b|=3,且|a-b|=b-a,那么a-b= .三.解答题18.若|a|=8,|b|=5,且a+b>0,那么a-b的值是多少?19.下表是某中学七年级5名学生的体重情况,试完成下表(1)谁最重?谁最轻?(2)最重的与最轻的相差多少?20.某校举办秋季运动会,七年级(1)班和七年级(2)班进行拔河比赛,比赛规定标志物红绸向某班方向移动2m或2m以上,该班就获胜.红绸先向(2)班移动0.2m,后又向(1)班移动0.5m,相持几秒后,红绸向(2)班移动0.8m,随后又向(1)班移动1.4m,在一片欢呼声中,红绸再向(1)班移动1.3m,裁判员一声哨响,比赛结束,请你用计算的方法说明最终获胜的是几班?21.某登山队5名队员以二号高地为基地,开始向海拔距二号高地500米的顶峰冲击,设他们向上走为正,行程记录如下(单位:米):+150,-32,-43,+205,-30,+25,-20,-5,+30,-25,+75.(1)他们最终有没有登上顶峰?如果没有,那么他们离顶峰还差多少米?(2)登山时,5名队员在进行全程中都使用了氧气,且每人每米要消耗氧气0.04升.他们共使用了氧气多少升?22.某自行车厂一周计划生产1400辆自行车,平均每天生产自行车200辆,由于各种原因,实际每天生产量与计划每天生产量相比有出入.下表是某周的自行车生产情况(超计划生产量为正、不足计划生产量为负,单位:辆):(1)根据记录可知前三天共生产自行车辆;(2)产量最多的一天比产量最少的一天多生产辆;(3)若该厂实行按生产的自行车数量的多少计工资,即计件工资制.如果每生产一辆自行车可得人民币60 元,那么该厂工人这一周的工资总额是多少元?参考答案1-5:BDCBB 6-10:ACCAA 11-12:CA13、-3+6-7-814、2315、0.0116、-217、-1或-518、:∵|a|=8,|b|=5,∴a=±8,b=±5,∵a+b>0,∴a=8,b=±5,∴a-b=8-5=3,或a-b=8-(-5)=8+5=13,所以,a-b的值是3或13.19、:(1)由小颖体重为34千克,体重与平均体重的差为-7,得到平均体重为34-(-7)=34+7=41(千克),则小明的体重为41+3=44(千克);小刚的体重为45千克;小京的体重为41+(-4)=37(千克);小宁的体重为41千克,填表如下:∴小刚的体重最重;小颖的体重最轻;(2)最重与最轻相差为45-34=11(千克).20、:记向1班方向移动为正,向2班方向移动为负,根据题意:-0.2+0.5-0.8+1.4+1.3=-1+3.2=2.2米.∴说明红绸向1班方向移动2.2米,一班胜.21、:(1)根据题意得:150-32-43+205-30+25-20-5+30+75-25=330米,500-330=170米.(2)根据题意得:150+32+43+205+30+25+20+5+30+75+25=640米,640×0.04×5=128升.答:(1)他们没能最终登上顶峰,离顶峰害有170米;(2)他们共使用了氧气128升.22、:(1)200+5+(200-2)+(200-4)=599;(2)(200+16)-(200-10)=26;(3)[200×7+(5-2-4+13-10+16-9)]×60=84540元。

2021-2022学年人教版七年级数学上册《1.3有理数的加减法》练习含答案

2021-2022学年人教版七年级数学上册《1.3有理数的加减法》练习含答案

2021年人教版七年级数学上册《1.3有理数的加减法》练习一.选择题(共12小题)1.计算(﹣5)﹣(﹣8)的结果等于()A.﹣13B.13C.﹣3D.32.设[m)表示大于m的最小整数,如[5.5)=6,[﹣1.2)=﹣1,则下列结论中正确的是()A.[2)﹣2=0B.若[m)﹣m=0.5,则m=0.5C.[m)﹣m的最大值是1D.[m)﹣m的最小值是03.某地一周内每天的最高气温与最低气温记录如表,其中温差是12℃的共有()星期一二三四五六日最高气温10℃12℃11℃9℃7℃5℃7℃最低气温2℃1℃0℃﹣1℃﹣4℃﹣5℃﹣5℃A.1天B.2天C.3天D.4天4.若|m|=5,|n|=2,且mn异号,则|m﹣n|的值为()A.7B.3或﹣3C.3D.7或35.大家都知道,七点五十可以说成差十分钟八点,有时这样表达更清楚,这也启发了人们设计了一种新的加减记数法.比如:8写成1,1=10﹣2;189写成29=200﹣20+9;7683写成13=10000﹣2320+3.按这个方法请计算52﹣31=()A.2408B.1990C.2410D.30246.郝炜同学在计算35+x时,误将“+”看成“﹣”,结果得10,则35+x的值应为()A.20B.60C.10D.707.若|x|=2,|y|=3,且xy异号,则|x+y|的值为()A.5B.5或1C.1D.1或﹣18.如图,将﹣3,﹣2,﹣1,0,1,2,3,4,5分别填入九个空格内,使每行、每列、每条对角线上的三个数之和相等,现在a,b,c分别表示其中的一个数,则a﹣b+c的值为()A.﹣5B.﹣4C.0D.59.运用加法的运算律计算(+6)+(﹣18)+(+4)+(﹣6.8)+18+(﹣3.2)最适当的是()A.[(+6)+(+4)+18]+[(﹣18)+(﹣6.8)+(﹣3.2)]B.[(+6)+(﹣6.8)+(+4)]+[(﹣18)+18+(﹣3.2)]C.[(+6)+(﹣18)]+[(+4)+(﹣6.8)]+[18+(﹣3.2)]D.[(+6)+(+4)]+[(﹣18)+18]+[(﹣3.2)+(﹣6.8)]10.计算:﹣1﹣3=()A.2B.﹣2C.4D.﹣411.已知|x|=4,|y|=5,且x>y,则x+y的值为()A.﹣1或﹣9B.+1或﹣9C.﹣9D.﹣112.现有a,b,c,d四个正整数,将它们随机抽取两个并相加,所得的和都是6,7,8,9中的一个,并且6,7,8,9这4个数都能取到,那么a,b,c,d这四个正整数()A.各不相等B.有且只有两个数相等C.有且只有三个数相等D.全部相等二.填空题(共9小题)13.如果A、B两地的高度分别为海拔70米、海拔﹣210米,那么A地比B地高米.14.标有1﹣25号的25个座位如图摆放.甲、乙、丙、丁四人玩选座位游戏,甲选2个座位,乙选3个座位,丙选4个座位,丁选5个座位.游戏规则如下:①每人只能选择同一横行或同一竖列的座位;②每人使自己所选的座位号数字之和最小;③座位不能重复选择.如果按“甲、乙、丙、丁”的先后顺序选座位,那么甲选1,2号座位,乙选3,4,5号座位,丙选7,8,9,10号座位,丁选13,14,15,16,17号座位,此时四人所选的座位号数字之和为124.如果按“丁、丙、乙、甲”的先后顺序选座位,那么四人所选的座位号数字之和为.15.2021年1月8日我市气温达到入冬以来的最低气温:﹣9℃~﹣3℃,这天的温差是℃.16.(多选)在数轴上表示有理数a,b,c的点如图所示,若ac<0,b+a<0,b+c>0,则下列结论一定正确的是.A.b<0;B.|b|<|c|;C.|a|>|b|;D.abc<0.17.如表,从左边第一个格子开始向右,在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则前2021个格子中所有整数的和为.18.如图,在3×3幻方中,填入9个数字,使得每行、每列、每条对角线上的三个数之和都相等.按以上规则填成的幻方中,x的值为.19.已知|x|=2,y2=9,且|x﹣y|=y﹣x,则x﹣y=.20.计算:=.21.取一个自然数,若它是奇数,则乘以3加上1,若它是偶数,则除以2,按此规则经过若干步的计算最终可得到1.这个结论在数学上还没有得到证明,但举例验证都是正确的.例如:取自然数5.经过下面5步运算可得1,即:5168421.如果自然数m经过7步运算可得到1,则所有符合条件的m的值为.三.解答题(共8小题)22.计算:.23.计算(1)9+(﹣7)+10+(﹣3)+(﹣9);(2)3﹣(﹣)﹣+(﹣).24.“疫情无情人有情”.在抗击新冠病毒疫情期间,一志愿小组某天早晨从A地出发沿南北方向运送抗疫物资,晚上最后到达B地.约定向北为正方向,当天志愿小组行驶记录如下(单位:千米):+18,﹣9,+7,﹣14,﹣6,+13,﹣6,﹣8,﹣27.(1)试问B地在A地的哪个方向,它们相距多少千米?(2)若汽车行驶每千米耗油0.07升,则志愿小组该天共耗油多少升?25.小李坚持跑步锻炼身体,他以30分钟为基准,将连续七天的跑步时间(单位:分钟)记录如下:10,﹣8,12,﹣6,11,14,﹣3(超过30分钟的部分记为“+”,不足30分钟的部分记为“﹣”).(1)小李跑步时间最长的一天比最短的一天多跑几分钟?(2)若小李跑步的平均速度为每分钟0.1千米,请你计算这七天他共跑了多少千米?26.某公司上半年每个月的盈亏情况如下表(盈余为正,单位:万元):月份1月2月3月4月5月6月盈亏(万元)+20+30﹣40﹣20+50+10(1)该公司收入最高的月份比最低的月份多多少万元?(2)该公司上半年是盈还是亏?盈亏是多少?27.根据市场情况,某公司决定用一周时间大量收购小麦.计划收购48000千克,公司将工作人员分为6个收购小组,每组收购任务是8000千克.一周后,6个小组完成的情况分别为:8200千克,7800千克,9000千克,7200千克,8200千克,8000千克.(1)通过计算说明6个小组完成的总数量是否达到计划数量?(2)若每小组一周后均各奖500元,超额完成的每100千克再奖10元,少完成每100千克从奖金中扣8元,本次收购后,该公司要支付多少奖金?28.(1)已知a<b<0<c,化简|a﹣b|+|a+b|﹣|c﹣a|.(2)若|a|=21,|b|=27,且|a+b|=a+b,求a﹣b的值.29.【提出问题】两个有理数a,b满足a,b同号,求的值.【解决问题】解:由a,b同号可知a,b有以下两种可能:a,b都是正数;a,b都是负数.①若a,b都是正数,即a>0,b>0,有|a|=a,|b|=b,则=1+1=2;②若a,b都是负数,即a<0,b<0,有|a|=﹣a,|b|=﹣b,则=(﹣1)+(﹣1)=﹣2.综上,的值为2或﹣2.【探究问题】请根据上面的解题思路解答下面的问题:(1)两个有理数a,b满足a,b异号,求的值;(2)已知|a|=3,|b|=7,且a<b,求a+b的值.参考答案与试题解析一.选择题(共12小题)1.计算(﹣5)﹣(﹣8)的结果等于()A.﹣13B.13C.﹣3D.3【分析】根据有理数减法法则,求出计算(﹣5)﹣(﹣8)的结果等于多少即可.【解答】解:(﹣5)﹣(﹣8)=(﹣5)+8=3.故选:D.【点评】此题主要考查了有理数的减法的运算方法,解答此题的关键是要明确有理数减法法则:减去一个数,等于加上这个数的相反数.2.设[m)表示大于m的最小整数,如[5.5)=6,[﹣1.2)=﹣1,则下列结论中正确的是()A.[2)﹣2=0B.若[m)﹣m=0.5,则m=0.5C.[m)﹣m的最大值是1D.[m)﹣m的最小值是0【分析】根据题意[m)表示大于m的最小整数,结合各项进行判断即可得出答案.【解答】解:A、[2)﹣2=3﹣2=1,故本选项不合题意;B、若[m)﹣m=0.5,则m不一定等于0.5,故本选项不合题意;C、[m)﹣m的最大值是1,故本项符合题意;D、[m)﹣m>0,但是取不到0,故本选项不合题意;故选:C.【点评】此题主要考查了有理数的减法,仔细审题,理解[m)表示大于m的最小整数是解答本题的关键.3.某地一周内每天的最高气温与最低气温记录如表,其中温差是12℃的共有()星期一二三四五六日最高气温10℃12℃11℃9℃7℃5℃7℃最低气温2℃1℃0℃﹣1℃﹣4℃﹣5℃﹣5℃A.1天B.2天C.3天D.4天【分析】求出一周内每天的温差,找出温差为12℃的个数即可.【解答】解:根据表格得:10﹣2=8;12﹣1=11;11﹣0=11;9﹣(﹣1)=10;7﹣(﹣4)=11;5﹣(﹣5)=10;7﹣(﹣5)=12,则温差是12℃的共有1天.故选:A.【点评】此题考查了有理数的减法,以及正数与负数,熟练掌握减法法则是解本题的关键.4.若|m|=5,|n|=2,且mn异号,则|m﹣n|的值为()A.7B.3或﹣3C.3D.7或3【分析】先根据绝对值的性质得出m=±5,n=±2,再结合m、n异号知m=5、n=﹣2或m=﹣5、n=2,继而分别代入计算可得答案.【解答】解:∵|m|=5,|n|=2,∴m=±5,n=±2,又∵m、n异号,∴m=5、n=﹣2或m=﹣5、n=2,当m=5、n=﹣2时,|m﹣n|=|5﹣(﹣2)|=7;当m=﹣5、n=2时,|m﹣n|=|﹣5﹣2|=7;综上|m﹣n|的值为7,故选:A.【点评】本题主要考查有理数的减法和绝对值,解题的关键是掌握根据绝对值的性质和有理数的乘方确定m、n的值.5.大家都知道,七点五十可以说成差十分钟八点,有时这样表达更清楚,这也启发了人们设计了一种新的加减记数法.比如:8写成1,1=10﹣2;189写成29=200﹣20+9;7683写成13=10000﹣2320+3.按这个方法请计算52﹣31=()A.2408B.1990C.2410D.3024【分析】根据“加减计数法”的意义,将52﹣31转化为(5200﹣31)﹣(3000﹣240+1)进行计算即可.【解答】解:根据“加减计数法”的意义可得,52﹣31=(5200﹣31)﹣(3000﹣240+1)=5200﹣31﹣3000+240﹣1=2408,故选:A.【点评】本题考查有理数的加减混合运算,理解“加减计数法”的意义是正确计算的关键.6.郝炜同学在计算35+x时,误将“+”看成“﹣”,结果得10,则35+x的值应为()A.20B.60C.10D.70【分析】首先用35减去10,求出x的值是多少;然后再求出35和x相加得到的和是多少即可.【解答】解:35+(35﹣10)=35+25=60.故选:B.【点评】此题主要考查了有理数的加减混合运算,要熟练掌握,解答此题的关键是求出x 的值是多少.7.若|x|=2,|y|=3,且xy异号,则|x+y|的值为()A.5B.5或1C.1D.1或﹣1【分析】利用绝对值的代数意义求出x与y的值,代入原式计算即可求出值.【解答】解:∵|x|=2,|y|=3.且xy异号,∴x=2,y=﹣3;x=﹣2,y=3,∴x+y=﹣1或1,则|x+y|=1.故选:C.【点评】此题考查了有理数的加法,以及绝对值,熟练掌握绝对值的代数意义是解本题的关键.8.如图,将﹣3,﹣2,﹣1,0,1,2,3,4,5分别填入九个空格内,使每行、每列、每条对角线上的三个数之和相等,现在a,b,c分别表示其中的一个数,则a﹣b+c的值为()A.﹣5B.﹣4C.0D.5【分析】(1)首先根据第3行和第1列的三个数之和相等,求出c的值是多少;然后根据第1行和第3列的三个数之和相等,求出a的值是多少;最后根据第1行和对角线上的三个数之和相等,求出b的值是多少;再根据有理数加减法的运算方法,求出a﹣b+c 的值是多少即可.(2)先由第二行得三数之和均为﹣1+1+3=3,然后利用减法分别求出a,b,c的值,进而求出a﹣b+c的值为多少即可.【解答】解:(1)解法一:c=4+(﹣1)﹣5=﹣2,a=3+(﹣2)﹣4=﹣3,b=4+(﹣3)+2﹣1﹣2=0,∴a﹣b+c=﹣3﹣0+(﹣2)=﹣5.(2)解法二:三数之和均为:﹣1+1+3=3,∴a=3﹣(4+2)=3﹣6=﹣3,b=3﹣[4+(﹣1)]=3﹣3=0,c=3﹣(2+3)=3﹣5=﹣2,∴a﹣b+c=﹣3﹣0+(﹣2)=﹣5.故选:A.【点评】此题主要考查了有理数的加减法的运算方法,要熟练掌握,解答此题的关键是求出a、b、c的值各是多少.9.运用加法的运算律计算(+6)+(﹣18)+(+4)+(﹣6.8)+18+(﹣3.2)最适当的是()A.[(+6)+(+4)+18]+[(﹣18)+(﹣6.8)+(﹣3.2)]B.[(+6)+(﹣6.8)+(+4)]+[(﹣18)+18+(﹣3.2)]C.[(+6)+(﹣18)]+[(+4)+(﹣6.8)]+[18+(﹣3.2)]D.[(+6)+(+4)]+[(﹣18)+18]+[(﹣3.2)+(﹣6.8)]【分析】根据互为相反数的两数的两数之和为0以及同分母的分数相加的原则进行计算即可.【解答】解:(+6)+(﹣18)+(+4)+(﹣6.8)+18+(﹣3.2)=[(+6)+(+4)]+[(﹣18)+18]+[(﹣3.2)+(﹣6.8)];故选:D.【点评】本题考查了有理数的加法,掌握加法法则和运算律是解题的关键.10.计算:﹣1﹣3=()A.2B.﹣2C.4D.﹣4【分析】根据有理数的加减法法则计算即可判断.【解答】解:﹣1﹣3=﹣1+(﹣3)=﹣4.故选:D.【点评】本题主要考查了有理数的减法法则,减去一个数,等于加上这个数的相反数.11.已知|x|=4,|y|=5,且x>y,则x+y的值为()A.﹣1或﹣9B.+1或﹣9C.﹣9D.﹣1【分析】因为|x|=4,|y|=5,所以x=±4,y=±5,因为x>y,所以x=4,y=﹣5或x =﹣4,y=﹣5.然后分两种情况分别计算x+y的值.【解答】解:因为|x|=4,|y|=5,所以x=±4,y=±5,因为x>y,所以x=4,y=﹣5或x=﹣4,y=﹣5.4+(﹣5)=﹣1,﹣4+(﹣5)=﹣9,所以x+y=﹣1或﹣9.故选:A.【点评】本题主要考查了绝对值的定义,有理数的加法法则,体现了分类讨论的数学思想,解题时主要分类要不重不漏.12.现有a,b,c,d四个正整数,将它们随机抽取两个并相加,所得的和都是6,7,8,9中的一个,并且6,7,8,9这4个数都能取到,那么a,b,c,d这四个正整数()A.各不相等B.有且只有两个数相等C.有且只有三个数相等D.全部相等【分析】设a≤b≤c≤d,得到a+b=6,c+d=9,分别求得a,b,c,d的值,即可判断求解.【解答】解:∵正整数a,b,c,d具有同等不确定性,∴设a≤b≤c≤d,∴a+b=6,c+d=9,当a=1时,得b=5,∴c,d为5或6不合题意,舍去,∴a≠1;当a=2时,得b=4,∴c,d为4或5,符合题意了,∴a≠2;当a=3时,得b=3,∴c=4,d=5,符合题意了.综上所述,a,b,c,d这四个正整数只能是2,4,4,5和3,3,4,5.故选:B.【点评】本题主要考查了有理数的加法,属于以代数为背景的推理与论证.二.填空题(共9小题)13.如果A、B两地的高度分别为海拔70米、海拔﹣210米,那么A地比B地高280米.【分析】根据题意列出算式,计算即可求出值.【解答】解:根据题意得:70﹣(﹣210)=70+210=280,则A地比B地高280米,故答案为:280.【点评】此题考查了有理数的减法,熟练掌握运算法则是解本题的关键.14.标有1﹣25号的25个座位如图摆放.甲、乙、丙、丁四人玩选座位游戏,甲选2个座位,乙选3个座位,丙选4个座位,丁选5个座位.游戏规则如下:①每人只能选择同一横行或同一竖列的座位;②每人使自己所选的座位号数字之和最小;③座位不能重复选择.如果按“甲、乙、丙、丁”的先后顺序选座位,那么甲选1,2号座位,乙选3,4,5号座位,丙选7,8,9,10号座位,丁选13,14,15,16,17号座位,此时四人所选的座位号数字之和为124.如果按“丁、丙、乙、甲”的先后顺序选座位,那么四人所选的座位号数字之和为114.【分析】根据游戏规则,按“同一竖列”或“同一横行”,分别得出丁、丙、乙、甲所选的数,再把它们相加即可.【解答】解:①利用选择“同一竖列”的原则,可得丁选择了:28、8、1、4、5、15;丙选择了:9、2、3、14;乙选择了:7、6、5;甲选择了:10、11;故四人所选的座位号数字之和为:28+8+1+4+5+15+9+2+3+14+7+6+5+10+11=118.②利用选择“同一横行”的原则,可得丁选择了:19、6、1、2、11;丙选择了:5、4、3、12;乙选择了:7、8、9;甲选择了:14、13;故四人所选的座位号数字之和为:19+6+1+2+11+5+4+3+12+7+8+9+14+13=114.故答案为:114.【点评】本题主要考查了有理数的加法,理清游戏规则是解答本题的关键.15.2021年1月8日我市气温达到入冬以来的最低气温:﹣9℃~﹣3℃,这天的温差是6℃.【分析】用最高温度减去最低温度,再根据减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:由题意可得:﹣3﹣(﹣9),=﹣3+9,=6(℃).故答案为:6.【点评】本题考查了有理数的减法,熟记减去一个数等于加上这个数的相反数是解题的关键.16.(多选)在数轴上表示有理数a,b,c的点如图所示,若ac<0,b+a<0,b+c>0,则下列结论一定正确的是B和C.A.b<0;B.|b|<|c|;C.|a|>|b|;D.abc<0.【分析】根据已知分析a、b、c的符号和绝对值再判断.【解答】解:∵ac<0,∴a、c异号,∵c在a右边,∴a<0,c>0,∵b+a<0,∴若b>0,b+a取a的符号,有|a|>|b|,若b<0,则原点在b右侧,而a在b左侧,有|a|>|b|,∴C正确;∵b+c>0,∴若b>0,则原点在b左侧,而c在b右侧,有|b|<|c|,若b<0,b+c取c得符号则|b|<|c|,∴B正确;而从已知不能得到b<0、abc<0,故答案为:B和C.【点评】本题考查有理数加法法则,关键是要理解掌握和的符号与加数符号的关系.17.如表,从左边第一个格子开始向右,在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则前2021个格子中所有整数的和为1344.【分析】根据任意三个相邻格子中所填整数之和都相等,可得出x、y、z所表示的数,进而得出这一列数,再求和即可.【解答】解:根据“任意三个相邻格子中所填整数之和都相等”可得这列数如下:因为2021÷3=673……2,所以前2021个格子中所有数的和为673×2﹣8+6=1344,故答案为:1344.【点评】本题考查有理数的加法,得出这列数据的排列规律是正确解答的关键.18.如图,在3×3幻方中,填入9个数字,使得每行、每列、每条对角线上的三个数之和都相等.按以上规则填成的幻方中,x的值为3.【分析】首先根据题意,可得:4x+(x+7)=x+19;然后根据解一元一次方程的方法,求出x的值为多少即可.【解答】解:根据题意,可得:4x+(x+7)=x+19,去括号,可得:4x+x+7=x+19,移项,可得:4x+x﹣x=19﹣7,合并同类项,可得:4x=12,系数化为1,可得:x=3.故答案为:3.【点评】此题主要考查了有理数的加法,以及解一元一次方程的方法,要熟练掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.19.已知|x|=2,y2=9,且|x﹣y|=y﹣x,则x﹣y=﹣5或﹣1.【分析】根据绝对值的性质和有理数的乘方求出x、y,再根据负数的绝对值等于它的相反数判断出x﹣y<0,然后求解即可.【解答】解:∵|x|=2,y2=9,∴x=±2,y=±3,∵|x﹣y|=y﹣x,∴x﹣y<0,∴x﹣y=﹣2﹣3=﹣5,或x﹣y=2﹣3=﹣1,所以x﹣y=﹣5或﹣1.故答案为:﹣5或﹣1.【点评】本题考查了有理数的减法,绝对值的性质,有理数的乘方,熟记运算法则和性质是解题的关键.20.计算:=.【分析】根据有理数的减法法则计算即可.【解答】解:=﹣5=﹣2.【点评】此题考查了有理数的减法,熟练掌握运算法则是解本题的关键.21.取一个自然数,若它是奇数,则乘以3加上1,若它是偶数,则除以2,按此规则经过若干步的计算最终可得到1.这个结论在数学上还没有得到证明,但举例验证都是正确的.例如:取自然数5.经过下面5步运算可得1,即:5168421.如果自然数m经过7步运算可得到1,则所有符合条件的m的值为128或21或20或3.【分析】根据m为奇数和偶数分别进行解答即可.【解答】解:如图,偶数64=3×21+1,16=3×5+1,(1)得数为64之前输入的数为偶数时,则m=64×2=128,得数为64之前输入的数为奇数时,则3m+1=64,即m=21,(2)当得数为16之前输入的数为奇数时,如图,则第一次计算的结果为10,于是,m=10×2=20,或3m+1=10,即m=3,综上所述m的值为128,21,20,3;故答案为:128或21或20或3.【点评】本题考查有理数的运算,掌握运算结果的奇偶性以及每次运算结果的规律性是正确解答的关键.三.解答题(共8小题)22.计算:.【分析】根据有理数的运算顺序计算即可.【解答】解:原式=3.73﹣2+(﹣2.63)﹣=1.1﹣3=﹣1.9.【点评】此题考查了有理数的减法,熟练掌握运算法则是解本题的关键.23.计算(1)9+(﹣7)+10+(﹣3)+(﹣9);(2)3﹣(﹣)﹣+(﹣).【分析】(1)利用加法的结合律和交换律,把互为相反数结合,正负数分别结合,然后进行计算即可;(2)利用加法的结合律和交换律,把同分母的结合在一起,然后计算即可.【解答】解:(1)原式=[9+(﹣9)]+[(﹣7)+(﹣3)]+10=0﹣10+10=0;(2)原式=[3+(﹣)]﹣[(﹣)+]=3﹣=2.【点评】此题考查了有理数的加减混合运算,熟练掌握运算法则是解本题的关键.24.“疫情无情人有情”.在抗击新冠病毒疫情期间,一志愿小组某天早晨从A地出发沿南北方向运送抗疫物资,晚上最后到达B地.约定向北为正方向,当天志愿小组行驶记录如下(单位:千米):+18,﹣9,+7,﹣14,﹣6,+13,﹣6,﹣8,﹣27.(1)试问B地在A地的哪个方向,它们相距多少千米?(2)若汽车行驶每千米耗油0.07升,则志愿小组该天共耗油多少升?【分析】(1)首先根据有理数的加减混合运算,把当天的行驶记录相加;然后根据正、负数的意义,判断出B地在A地的哪个方向,它们相距多少千米即可.(2)首先求出当天行驶记录的绝对值的和,再用汽车汽车行驶的路程乘以行驶每千米耗油量,求出该天共耗油多少升即可.【解答】解:(1)+18﹣9+7﹣14﹣6+13﹣6﹣8﹣27=18+7+13﹣9﹣14﹣6﹣6﹣8﹣27=38﹣70=﹣32,∴B地在A地的南方,它们相距32千米.(2)(|+18|+|﹣9|+|+7|+|﹣14|+|﹣6|+|+13|+|﹣6|+|﹣8|+|﹣27|)×0.07=(18+9+7+14+6+13+6+8+27)×0.07=108×0.07=7.56(升),∴汽车行驶每千米耗油0.07升,则志愿小组该天共耗油7.56升.【点评】本题主要考查有理数的加减混合运算,解题的关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.25.小李坚持跑步锻炼身体,他以30分钟为基准,将连续七天的跑步时间(单位:分钟)记录如下:10,﹣8,12,﹣6,11,14,﹣3(超过30分钟的部分记为“+”,不足30分钟的部分记为“﹣”).(1)小李跑步时间最长的一天比最短的一天多跑几分钟?(2)若小李跑步的平均速度为每分钟0.1千米,请你计算这七天他共跑了多少千米?【分析】(1)用最大数减去最小数即可求解;(2)求出这七天的跑步时间,再乘速度即可求解.【解答】解:(1)14﹣(﹣8)=22(分钟),∴小李跑步时间最长的一天比最短的一天多跑22分钟.(2)30×7+(10﹣8+12﹣6+11+14﹣3)=240(分钟),240×0.1=24(千米)∴若小李跑步的平均速度为每分钟0.1千米,则这七天他共跑了24千米.【点评】本题主要考查有理数的加减混合运算,解题的关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.26.某公司上半年每个月的盈亏情况如下表(盈余为正,单位:万元):月份1月2月3月4月5月6月盈亏(万元)+20+30﹣40﹣20+50+10(1)该公司收入最高的月份比最低的月份多多少万元?(2)该公司上半年是盈还是亏?盈亏是多少?【分析】(1)用最大的数减去最小的数即可;(2)把6个数相加即可求解.【解答】解:(1)+50﹣(﹣40)=50+40=90(万元),答:该公司收入最高的月份比最低的月份多90万元;(2)+20+(+30)+(﹣40)+(﹣20)+(+50)+(+10)=50(万元),答:该公司上半年盈利50万元.【点评】本题主要考查正数与负数,有理数的加减混合运算,读懂题意是解题的关键.27.根据市场情况,某公司决定用一周时间大量收购小麦.计划收购48000千克,公司将工作人员分为6个收购小组,每组收购任务是8000千克.一周后,6个小组完成的情况分别为:8200千克,7800千克,9000千克,7200千克,8200千克,8000千克.(1)通过计算说明6个小组完成的总数量是否达到计划数量?(2)若每小组一周后均各奖500元,超额完成的每100千克再奖10元,少完成每100千克从奖金中扣8元,本次收购后,该公司要支付多少奖金?【分析】(1)根据以8000kg为标准,超过标准记为正,低于标准记为负,可得每组的完成情况,根据有理数的加法,可得答案;(2)根据超额的奖金单价乘以超额的数量,可得超额奖金,根据有理数的加减法,可得答案.【解答】解:(1)以8000kg为标准,六个小组的完成情况200kg,﹣200kg,1000kg,﹣800kg,200kg,0kg,200+(﹣200)+1000+(﹣800)+200+0=400(kg),答:6个小组完成的总量达到了计划的数量;(2)由题意得500×6+10×(2+10+2)﹣8×(2+8)=3060(元).答:该公司将要支付3060元奖金.【点评】本题考查了正数和负数,利用了有理数的加法运算.28.(1)已知a<b<0<c,化简|a﹣b|+|a+b|﹣|c﹣a|.(2)若|a|=21,|b|=27,且|a+b|=a+b,求a﹣b的值.【分析】(1)首先根据a<b<0<c判断出a﹣b,a+b,c﹣a的正负,再去掉绝对值符号,合并同类项即可;(2)根据绝对值的性质可得a=±21,b=±27,然后进一步确定a+b≥0,从而可得①a =﹣21,b=27;②a=21,b=27,再计算即可.【解答】解:(1)∵a<b<0<c,∴a﹣b<0,a+b<0,c﹣a>0,|a﹣b|+|a+b|﹣|c﹣a|=b﹣a﹣a﹣b﹣c+a=﹣a﹣c;(2)∵|﹣a|=21,|+b|=27,∴a=±21,b=±27,∵|a+b|=a+b,∴a+b≥0,∴①a=﹣21,b=27,则a﹣b=﹣21﹣27=﹣48;②a=21,b=27,则a﹣b=21﹣27=﹣6.故a﹣b的值为﹣48或﹣6.【点评】此题主要考查了绝对值的性质,关键是掌握正数的绝对值等于它本身,负有理数的绝对值是它的相反数.29.【提出问题】两个有理数a,b满足a,b同号,求的值.【解决问题】解:由a,b同号可知a,b有以下两种可能:a,b都是正数;a,b都是负数.①若a,b都是正数,即a>0,b>0,有|a|=a,|b|=b,则=1+1=2;②若a,b都是负数,即a<0,b<0,有|a|=﹣a,|b|=﹣b,则=(﹣1)+(﹣1)=﹣2.综上,的值为2或﹣2.【探究问题】请根据上面的解题思路解答下面的问题:(1)两个有理数a,b满足a,b异号,求的值;(2)已知|a|=3,|b|=7,且a<b,求a+b的值.【分析】(1)直接利用①当a>0,b<0;②当b>0,a<0,进而得出答案;(2)利用绝对值的性质分类讨论得出答案.【解答】解:(1)∵两个有理数a、b满足a,b异号,∴有两种可能,①a是正数,b是负数;②b是正数,a是负数,①当a>0,b<0,则;②当b>0,a<0,则;综上的值为0;(2)∵|a|=3,|b|=7,且a<b,∴a=3 或﹣3,b=7 或﹣7,①当a=﹣3,则b=7,此时a+b=4;②当a=3,则b=7,此时a+b=10;综上可得:a+b的值为4或10.【点评】此题主要考查了绝对值,正确分类讨论是解题关键.21。

人教版七年级上册第一章 有理数 1.3 有理数的加减法 同步练习(含答案)

人教版七年级上册第一章 有理数 1.3 有理数的加减法 同步练习(含答案)

有理数的加减法同步练习一.选择题1.下列说法正确的是()A.两个数的和一定比这两个数的差大B.零减去一个数,仍得这个数C.两个数的差小于被减数D.正数减去负数,结果是正数2.下列各式中正确的是()A.+5-(-6)=11B.-7-|-7|=0C.-5+(+3)=2 D.(-2)+(-5)=7 3.已知月球表面的最高温度是127℃,最低温度是-183℃,则月球表面的温差是()A.56℃B.65℃C.300℃D.310℃4.已知A地的海拔高度为-53米,而B地比A地低30米,则B地的海拔高度为()A.-83米B.-23米C.30米D.23米5.某地一天早晨的气温是-7℃,中午上升了11℃,午夜又下降了9℃,则午夜的气温是()A.5℃B.-5℃C.-3℃D.-9℃6.若|x|=7,|y|=3,且x>y,则y-x等于()A.-4B.-10C.4或10D.-4或-107.已知a>b且a+b=0,则()A.a<0B.b>0C.b≤0D.a>08.计算:1+(-2)+(+3)+(-4)+(+5)+(-6)+…+(+99)+(-100)+(+101)的结果是()A.0B.-1C.-50D.519.设a是最小的自然数,b是最大的负整数,c是绝对值最小的有理数,a,b,c三个数的和为()A.-1B.0C.1D.不存在10.已知,判断下列叙述何者正确?()A.a=c,b=c B.a=c,b≠c C.a≠c,b=c D.a≠c,b≠c11.如图,现有3×3的方格,每个小方格内均有不同的数字,要求方格内每一行、每一列以及每一条对角线上的三个数字之和均相等,图中给出了部分数字,则P处对应的数字是()A.7B.5C.4D.112.小学时候大家喜欢玩的幻方游戏,老师稍加创新改成了“幻圆”游戏,现在将-1、2、-3、4、-5、6、-7、8分别填入图中的圆圈内,使横、竖以及内外两圈上的4个数字之和都相等,老师已经帮助同学们完成了部分填空,则图中a+b的值为()A.-6或-3B.-8或1C.-1或-4D.1或-1二.填空题13.计算:(-7)-(+5)+(+13)= .14.元旦后大雪纷飞而至,某日安徽有三个城市的最高气温分别是-10℃,1℃,-7℃,计算任意两城市的最高温度之差,其中最大温差(绝对值)是℃.15.若a是最小的正整数,b是绝对值最小的数,c是相反数等于它本身的数,d是到原点的距离等于2的负数,e是最大的负整数,则a+b+c+d+e= .16.已知|a|=1,|b|=2,如果a>b,那么a+b= .17.如图,在3×3的方阵图中,填写了一些数、式子和汉字(其中每个式子或汉字都表示一个数),若处于每一横行、每一竖列,以及两条斜对角线上的3个数之和都相等,则这个方阵图中x的值为.三.解答题18.计算:(1)(-21)-(-9)+(-8)-(-12)(2)19.已知|a|=4,|b|=6,若|a+b|=-(a+b),求a-b的值.20.若a<b<0<c<-b,化简:|a-b|+|c+b|21.小虫从某点A出发在一直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,爬行的各段路程依次为:(单位:厘米)+5,-3,+10,-8,-6,+12,-10.(1)小虫最后是否回到出发点A?(2)小虫离开原点最远是多少厘米?(3)在爬行过程中,如果每爬行1厘米奖励一粒芝麻,则小虫一共得到多少粒芝麻?22.王先生到市行政中心大楼办事,假定乘电梯向上一楼记作+1,向下一楼记作-1,王先生从1楼出发,电梯上下楼层依次记录如下(单位:层):+6,-3,+10,-8,+12,-7,-10.(1)请你通过计算说明王先生最后是否回到出发点1楼.(2)该中心大楼每层高3m,电梯每向上或下1m需要耗电0.2度,根据王先生现在所处位置,请你算算,他办事时电梯需要耗电多少度?23.淘宝网是购物综合网站,淘宝网的金币可以抵扣购物、抽奖活动、玩游戏等.获得金币的其中一个途径就是到淘金币网页去签到,规则如下:首日签到领5个金币,连续签到每日再递增5个,每日可领取的金币数量最高为30个,若中断,则下次签到作首日签到,金币个数从5个重新开始领取.(1)按淘金币规则,第1天签到领取5个,连续签到,则第2天领取10个,第3天领取15个,第6天领取个,第7天领取个;连续签到6天,一共领取金币个.(2)从1月1日开始签到,以后连续签到不中断,结果一共领取了255个,问连续签到了几天?(3)张阿姨从1月1日开始坚持每天签到,达到可以每天领取30个金币,后来因故有2天(不定连续)忘记签到,到1月16日签到完成时,发现自己一共领取了215个金币,请直接写出她没有签到日期的所有可能结果.参考答案1-5:DADAB 6-10:DDDAB 11-12:CA13、114、1115、-216、-1或-317、-518、(1)-8;(2)619、:∵|a|=4,|b|=6,|a+b|=-(a+b),∴a=4,b=-6或a=-4,b=-6,当a=4,b=-6时,a-b=4-(-6)=4+6=10,当a=-4,b=-6时,a-b=(-4)-(-6)=(-4)+6=2.20、:∵a<b<0<c<-b,∴a-b<0,c+b<0,|a-b|+|c+b|=-(a-b)-(c+b)=-a+b-c-b=-a-c21、:(1)+5-3+10-8-6+12-10=27-27=0,所以小虫最后回到出发点A;(2)第一次爬行距离原点是5cm,第二次爬行距离原点是5-3=2(cm),第三次爬行距离原点是2+10=12(cm),第四次爬行距离原点是12-8=4(cm),第五次爬行距离原点是|4-6|=2(cm),第六次爬行距离原点是-2+12=10(cm),第七次爬行距离原点是10-10=0(cm),从上面可以看出小虫离开原点最远是12cm;(3)小虫爬行的总路程为:|+5|+|-3|+|+10|+|-8|+|-6|+|+12|+|-10|=5+3+10+8+6+12+10=54(cm).54×1=54(粒)所以小虫一共得到54粒芝麻.22、:(1)(+6)+(-3)+(+10)+(-8)+(+12)+(-7)+(-10),=6-3+10-8+12-7-10,=28-28,=0,∴王先生最后能回到出发点1楼;(2)王先生走过的路程是3(|+6|+|-3|+|+10|+|-8|+|+12|+|-7|+|-10|),=3(6+3+10+8+12+7+10),=3×56,=168(m),∴他办事时电梯需要耗电168×0.2=33.6(度).23、:(1)∵第1天签到领取5个,连续签到,则第2天领取10个,第3天领取15个,第4天领取20个,第5天领取25个,∴第6天领取30个;∵每日可领取的金币数量最高为30个,∴第7天领取30个;连续签到6天,一共领取金币5+10+15+20+25+30=105(个);故答案为:30,30,105;(2)根据题意得:(255-105)÷30=5,5+6=11(天),答:连续签到了11天;(3)根据题意可得,所有可能结果是8号与12号,8号与13号未签。

人教版数学七年级上册第一章《有理数》1.3 有理数的加减法 寒假预习卷(含答案)

人教版数学七年级上册第一章《有理数》1.3 有理数的加减法 寒假预习卷(含答案)

人教版数学七年级上册第一章《有理数》1.3 有理数的加减法寒假预习卷学校:___________姓名:___________班级:___________得分:___________一、选择题(共36分) 1.把转化成几个有理数相加的形式,正确的为( ) A. B. C.D.2.有理数a ,b ,c 满足,且,则的值为( )A.2B.1C.0D.3.有理数a ,b ,c 的位置如图所示,则下列各式:( ),其中正确的有( )个。

A.1B.2C.3D.44.在有理数2,0,,中,任意取两个数相加,和最小是( )A.2B.C.D.5.已知a ,b 都是有理数,,则为( )A.5B.3C.D.6.比0小1的有理数是( )A.B.1C.0D.27.在,,0,,,,4,,这些数中,有理数有m 个,整数有n 个,分数有k 个,则的值为( )A.3 B.4C.5D.68.下列结论正确的有( )两个有理数相加,和一定大于每一个加数;一个正数与一个负数相加得正数;两个负数和的绝对值一定等于它们绝对值的和;两个正数相加,和为正数;正数加负数,和一定为0;一个正数减去一个负数结果是正数;零减去一个数一定得负数.A.0个B.2个C.3个D.4个9.用字母表示有理数的减法法则,正确的是()A. B.C. D.10.有理数a、b在数轴上的对应位置如图,则的值为()A.正数B.负数C.0D.非正数11.如果两个有理数相加的和小于每一个加数,那么这两个数()A.都为正数B.都为负数C.一个为零一个为负数D.一正一负12.在学习“有理数加法“时,我们利用“,,”抽象归纳推出了“同号两数相加,取相同的符号,并把绝对值相加”的加法法则.这种推导方法叫()A.排除法B.归纳法C.类比法D.数形结合法二、填空题(共15分)13.若有理数x,y满足,,且,则的值为______.14.对于一对有理数a,b,如果且那么这对有理数可以是______,______.15.两个有理数相加,和小于每一个加数,请写出满足条件的一个算式:.16.如图所示,数轴上A,B两点所表示的有理数的和是_________.17.a是最大的负整数,b是绝对值最小的有理数,则a、b两个数的和是______.三、计算题(共59分)18.有理数加减计算我可以:一定要有过程!19.张华记录了今年雨季钱塘江一周内水位变化的情况如下表正号表示比前一天高,负号表示比前一天低:星期一二三四五六日水位变化(1)本周星期______水位最高,星期______水位最低.(2)与上周末相比,本周日的水位是上升了还是下降了?写出计算过程20.在数字:1、2、3、4、5、6、7、8、9、10、11、12、13的前面添上“”或“”能使其和为0吗?若能,请写出一个符合的算式,若不能,请说明理由;能使和为吗?若能,请写出一个符合的算式,若不能,请说明理由.21.请认真观察如图给出的未来一周某市的每天的最高(温和最低气温,回答后面提出的问题)(1)这一周该市的最高气温和最低气温分别是多少?(2)这一周中,星期几的温差最大?是多少?22.某种植物成活的主要条件是该地区的四季温差不得超过,若不考虑其他因素,表中的四个地区中,哪个地区适合大面积栽培这种植物?地区温度A地区B地区C地区D地区四季最高气温213732四季最低气温1823.阅读第小题的计算方法,再计算第小题.解:原式上述这种方法叫做拆项法.灵活运用加法的交换律、结合律可使运算简便.仿照上面的方法计算:参考答案一、选择题(共36分)1.B2.B3.D4.D5.B6.A7.D8.C9.D10.A 11.B 12.B二、填空题(共15分)13.1或5 14.1 答案不唯一15.答案不唯一16.17.三、计算题(共59分)18.解:解:原式,,;原式,,。

人教新版七年级上《1.3有理数的加减法》同步试卷含答案解析

人教新版七年级上《1.3有理数的加减法》同步试卷含答案解析

人教新版七年级上《1一、选择题(共13小题)1.运算﹣10﹣8所得的结果是()A.﹣2 B.2 C.18 D.﹣182.(2014•哈尔滨)哈市某天的最高气温为28℃,最低气温为21℃,则这一天的最高气温与最低气温的差为()A.5℃B.6℃C.7℃D.8℃3.某地某天的最高气温是8℃,最低气温是﹣2℃,则该地这一天的温差是()A.﹣10℃B.﹣6℃ C.6℃D.10℃4.比1小2的数是()A.3 B.1 C.﹣1 D.﹣25.如果崇左市市区某中午的气温是37℃,到下午下降了3℃,那么下午的气温是()A.40℃ B.38℃C.36℃D.34℃6.运算,正确的结果为()A.B.C.D.7.运算:1﹣(﹣)=()A.B.﹣C.D.﹣8.﹣2﹣1的结果是()A.﹣1 B.﹣3 C.1 D.39.运算2﹣3的结果是()A.﹣5 B.﹣1 C.1 D.510.桂林冬季里某一天最高气温是7℃,最低气温是﹣1℃,这一天桂林的温差是()A.﹣8℃B.6℃C.7℃D.8℃11.如图,这是某用户银行存折中2012年11月到2013年5月间代扣电费的有关数据,从中能够看出扣缴电费最多的一次达到()A.147.40元B.143.17元 C.144.23元 D.136.83元12.五个都市的国际标准时刻(单位:时)在数轴上表示如图所示,我市2013年初中毕业学业检测与高中时期学校招生考试于2015年6月16日上午9时开始,现在应是A.纽约时刻2015年6月16日晚上22时B.多伦多时刻2015年6月15日晚上21时C.伦敦时刻2015年6月16日凌晨1时D.汉城时刻2015年6月16日上午8时13.与﹣3的差为0的数是()A.3 B.﹣3 C.D.二、填空题(共5小题)14.运算:0﹣7=.15.)运算:3﹣(﹣1)=.16.运算:3﹣4=.17.运算:2000﹣2015=.18.|﹣7﹣3|=.2016年人教新版七年级数学上册同步试卷:1.3 有理数的加减法参考答案与试题解析一、选择题(共13小题)1.运算﹣10﹣8所得的结果是()A.﹣2 B.2 C.18 D.﹣18【考点】有理数的减法.【分析】按照有理数的减法运算法则进行运算即可得解.【解答】解:﹣10﹣8=﹣18.故选D.【点评】本题考查了有理数的减法,是基础题,熟记运算法则是解题的关键.2.哈市某天的最高气温为28℃,最低气温为21℃,则这一天的最高气温与最低气温的差为()A.5℃B.6℃C.7℃D.8℃【考点】有理数的减法.【专题】常规题型.【分析】按照有理数的减法,减去一个数等于加上那个数的相反数,可得答案.【解答】解:28﹣21=28+(﹣21)=7,故选:C.【点评】本题考查了有理数的减法,减去一个数等于加上那个数的相反数.3.某地某天的最高气温是8℃,最低气温是﹣2℃,则该地这一天的温差是()A.﹣10℃B.﹣6℃ C.6℃D.10℃【考点】有理数的减法.【专题】运算题.【分析】用最高温度减去最低温度,然后按照有理数的减法运算法则,减去一个数等于加上那个数的相反数进行运算即可得解.【解答】解:8﹣(﹣2)=8+2=10(℃).故选D.【点评】本题考查了有理数的减法运算法则,熟记减去一个数等于加上那个数的相反数是解题的关键.4.比1小2的数是()A.3 B.1 C.﹣1 D.﹣2【考点】有理数的减法.【分析】按照有理数的减法运算法则进行运算即可得解.【解答】解:1﹣2=﹣1.故选C.【点评】本题考查了有理数的减法,是基础题.5.如果崇左市市区某中午的气温是37℃,到下午下降了3℃,那么下午的气温是()A.40℃ B.38℃C.36℃D.34℃【考点】有理数的减法.【专题】应用题.【分析】用中午的温度减去下降的温度,然后按照有理数的减法运算法则进行运算即可得解.【解答】解:37℃﹣3℃=34℃.故选:D.【点评】本题考查了有理数的减法,是基础题,熟记运算法则是解题的关键.6.运算,正确的结果为()A.B.C.D.【考点】有理数的减法.【分析】按照有理数的减法运算法则进行运算即可得解.【解答】解:﹣=﹣.故选D.【点评】本题考查了有理数的减法运确实是基础题,熟记法则是解题的关键.7.运算:1﹣(﹣)=()A.B.﹣C.D.﹣【考点】有理数的减法.【分析】按照有理数的减法法则,即可解答.【解答】解:1﹣(﹣)=1+=.故选:C.【点评】本题考查了有理数的减法,解决本题的关键是熟记有理数的减法法则.8.﹣2﹣1的结果是()A.﹣1 B.﹣3 C.1 D.3【考点】有理数的减法.【分析】按照有理数的减法法则:减去一个数等于加上那个数的相反数把原式化为加法,按照有理数的加法法则运算即可.【解答】解:﹣2﹣1=﹣2+(﹣1)=﹣3,故选:B.【点评】有本题考查的是有理数的减法法则:减去一个数等于加上那个数的相反数,把握法则是解题的关键.9.运算2﹣3的结果是()A.﹣5 B.﹣1 C.1 D.5【考点】有理数的减法.【分析】减去一个数等于加上那个数的相反数,再运用加法法则求和.【解答】解:2﹣3=2+(﹣3)=﹣1.故选B.【点评】考查了有理数的减法,解决此类咨询题的关键是将减法转换成加法.10.桂林冬季里某一天最高气温是7℃,最低气温是﹣1℃,这一天桂林的温差是()A.﹣8℃B.6℃C.7℃D.8℃【考点】有理数的减法.【专题】应用题.【分析】按照“温差”=最高气温﹣最低气温运算即可.【解答】解:7﹣(﹣1)=7+1=8℃.故选D.【点评】此题考查了有理数的减法,解题的关键是:明确“温差”=最高气温﹣最低气温.11.如图,这是某用户银行存折中2012年11月到2013年5月间代扣电费的有关数据,从中能够看出扣缴电费最多的一次达到()A.147.40元B.143.17元 C.144.23元 D.136.83元【考点】有理数的加减混合运算;有理数大小比较.【专题】应用题.【分析】按照存折中的数据进行解答.【解答】解:按照存折中的数据得到:扣缴电费最多的一次是日期为1 21105,金额是147.40元.故选:A.【点评】本题考查了有理数大小比较的应用.解题的关键是学生具备一定的读图能力.12.五个都市的国际标准时刻(单位:时)在数轴上表示如图所示,我市2013年初中毕业学业检测与高中时期学校招生考试于2015年6月16日上午9时开始,现在应是(A.纽约时刻2015年6月16日晚上22时B.多伦多时刻2015年6月15日晚上21时C.伦敦时刻2015年6月16日凌晨1时D.汉城时刻2015年6月16日上午8时【考点】有理数的加减混合运算.【专题】应用题.【分析】求出两地的时差,按照北京时刻求出每个地点的时刻,再判定即可.【解答】解:A、∵纽约时刻与北京差:8+5=13个小时,9﹣13=﹣4,∴当北京时刻2015年6月16日9时,纽约时刻是2015年6月15日2 1时,故本选项错误;B、∵多伦多时刻与北京差:8+4=12个小时,9﹣12=﹣3,∴当北京时刻2015年6月16日9时,纽约时刻是2015年6月15日2 2时,故本选项错误;C、∵伦敦时刻与北京差:8﹣0=8个小时,9﹣8=1,∴当北京时刻2015年6月16日9时,伦敦时刻是2015年6月16日1时,故本选项正确;D、∵汉城时刻与北京差:9﹣8=1个小时,9+1=10,∴当北京时刻2015年6月16日9时,首尔时刻是2015年6月16日1 0时,故本选项错误;故选C.【点评】要紧考查了数轴,要注意数轴上两点间的距离公式是|a﹣b|.把数和点对应起来,也确实是把“数”和“形”结合起来,二者互相补充,相辅相成,把专门多复杂的咨询题转化为简单的咨询题,在学习中要注意培养数形结合的数学思想.13.与﹣3的差为0的数是()A.3 B.﹣3 C.D.【考点】有理数的减法.【分析】与﹣3的差为0的数确实是﹣3+0,据此即可求解.【解答】解:﹣3+0=﹣3.故选B.【点评】本题考查了有理数的减法运算,正确列出式子是关键.二、填空题(共5小题)14.运算:0﹣7=﹣7.【考点】有理数的减法.【分析】按照有理数的减法法则进行运算即可,减去一个数等于加上那个数的相反数.【解答】解:0﹣7=﹣7;故答案为:﹣7.【点评】此题考查了有理数的减法运算,熟练把握减法法则是本题的关键,是一道基础题,较简单.15.运算:3﹣(﹣1)=4.【考点】有理数的减法.【分析】先按照有理数减法法则,把减法变成加法,再按照加法法则求出结果.【解答】解:3﹣(﹣1)=3+1=4,故答案为4.【点评】本题要紧考查了有理数加减法则,能明白得熟记法则是解题的关键.16.运算:3﹣4=﹣1.【考点】有理数的减法.【分析】本题是对有理数减法的考查,减去一个数等于加上那个数的相反数.【解答】解:3﹣4=3+(﹣4)=﹣1.故答案为:﹣1.【点评】有理数的减法法则:减去一个数等于加上那个数的相反数.17.运算:2000﹣2015=﹣15.【考点】有理数的减法.【专题】运算题.【分析】按照有理数的减法运算进行运算即可得解.【解答】解:2000﹣2015=﹣15.故答案为:﹣15.【点评】本题考查了有理数的减法,是基础题,熟记运算法则是解题的关键.18.|﹣7﹣3|=10.【考点】有理数的减法;绝对值.【专题】运算题.【分析】按照有理数的减法运算法则和绝对值的性质进行运算即可得解.【解答】解:|﹣7﹣3|=|﹣10|=10.故答案为:10.【点评】本题考查了有理数的减法运算法则和绝对值的性质,是基础题,熟记法则和性质是解题的关键.。

2020-2021学年人教版七年级上学期《1.3 有理数的加减法》测试卷及答案解析

2020-2021学年人教版七年级上学期《1.3 有理数的加减法》测试卷及答案解析

2020-2021学年人教版七年级上学期《1.3 有理数的加减法》测试卷一.选择题(共28小题)1.武汉地区冬季日均最高气温5℃,最低﹣3℃,日均最高气温比最低气温高()A.2℃B.15℃C.8℃D.7℃2.将式子(﹣20)+(+3)﹣(﹣5)﹣(+7)省略括号和加号后变形正确的是()A.20﹣3+5﹣7B.﹣20﹣3+5+7C.﹣20+3+5﹣7D.﹣20﹣3+5﹣7 3.温度由﹣3℃上升8℃是()A.5℃B.﹣5℃C.11℃D.﹣11℃4.计算(﹣3)﹣1的结果是()A.﹣2B.2C.4D.﹣45.计算﹣5﹣(﹣5)=()A.10B.﹣10C.0D.156.在算式【】+(﹣12)=﹣5中,【】里应填()A.17B.7C.﹣17D.﹣77.计算(﹣6)﹣(﹣3)的结果等于()A.﹣9B.9C.﹣3D.38.计算:﹣8﹣3的结果是()A.﹣5B.5C.﹣11D.119.计算(+5)+(﹣8)的结果是()A.13B.﹣13C.3D.﹣310.计算1﹣3的结果是()A.2B.﹣2C.﹣4D.411.计算23+(﹣11)的结果是()A.12B.﹣12C.34D.﹣3412.(﹣3)﹣(﹣4)+7的计算结果是()A.0B.8C.﹣14D.﹣8313.下列各计算题中,结果是0的是()A.|+3|+|﹣3|B.﹣3﹣|﹣3|C.(+3)﹣|﹣3|D.+(﹣)14.计算(+2)+(﹣8)所得的结果是()A.10B.﹣10C.6D.﹣615.下列各式运算正确的是()A.(﹣7)+(﹣7)=0B.(﹣)+(﹣)=﹣C.0+(﹣101)=101D.(﹣)+(+)=016.下列运算正确的是()A.(﹣6)+(﹣2)=+(6+2)=+8B.(﹣5)﹣(+6)=+(6+5)=+11C.(﹣3)﹣(﹣2)=﹣(3﹣2)=﹣1D.(+8)﹣(﹣10)=﹣(10﹣8)=﹣217.下列计算正确的是()A.7+(﹣8)=﹣15B.4﹣(﹣4)=0C.0﹣3=3D.﹣1.3+(﹣1.7)=﹣318.计算:﹣4+6的结果为()A.﹣2B.2C.10D.﹣10 19.计算:﹣2﹣3=()A.﹣5B.5C.﹣1D.120.计算﹣5+2的结果是()A.3或﹣3B.3C.﹣3D.21.下列运算中正确的个数有()(1)(﹣5)+5=0;(2)﹣10+(+7)=﹣3;(3)0+(﹣4)=﹣4;(4)(﹣)﹣(+)=﹣.A.1个B.2个C.3个D.4个22.下列各式中,正确的是()A.﹣4﹣2=﹣2B.3﹣(﹣3)=0C.10+(﹣8)=﹣2D.﹣5﹣4﹣(﹣4)=﹣523.计算﹣1﹣1﹣1的结果是()A.﹣3B.3C.1D.﹣124.下列运算正确的是()A.﹣2+(﹣5)=﹣(5﹣2)=﹣3B.(+3)+(﹣8)=﹣(8﹣3)=﹣5 C.(﹣9)﹣(﹣2)=﹣(9+2)=﹣11D.(+6)+(﹣4)=+(6+4)=+10 25.计算:﹣2+5的结果是()A.3B.﹣3C.7D.﹣726.下列式子可读作:“负1,负3,正6,负8的和”的是()A.﹣1+(﹣3)+(+6)﹣(﹣8)B.﹣1﹣3+6﹣8C.﹣1﹣(﹣3)﹣(﹣6)﹣(﹣8)D.﹣1﹣(﹣3)﹣6﹣(﹣8)27.计算﹣2+(﹣6)的结果是()A.12B.C.﹣8D.﹣428.计算3﹣4,结果是()A.﹣1B.﹣7C.1D.7二.解答题(共13小题)29.计算:(﹣3)+12.5+(﹣16)﹣(﹣2.5)30.计算(1)11﹣18﹣12+19.(2).31.计算:(﹣1.75)﹣(﹣2)+(﹣3)﹣(﹣1)32.计算:(﹣5)+8﹣(﹣28)+(﹣10).33.计算(1)﹣(2)12﹣(﹣18)+(﹣7)(3)16﹣(﹣8)﹣4(4)34.计算:22+(﹣4)+(﹣2)35.计算:(﹣3)+(﹣2)+10﹣1.536.9﹣(﹣14)+(﹣7)﹣1537.①﹣5﹣(﹣4)+7﹣8②4﹣(+3.85)﹣(﹣3)+(﹣3.15)38.计算(1)(﹣4)+9(2)13+(﹣12)+17+(﹣18)39.计算:(1)(+11)﹣(﹣2)(2)(+26)+(﹣18)+5+(﹣26)40.计算:741.计算下列各题(1)5﹣(﹣2)(2)(3)5+(﹣1)+(﹣4)(4)0﹣(﹣28)+53(5)(﹣4)﹣(+13)+(﹣5)﹣(﹣9)+7(6)2020-2021学年人教版七年级上学期《1.3 有理数的加减法》测试卷参考答案与试题解析一.选择题(共28小题)1.武汉地区冬季日均最高气温5℃,最低﹣3℃,日均最高气温比最低气温高()A.2℃B.15℃C.8℃D.7℃【解答】解:5﹣(﹣3)=5+3=8(℃).故选:C.2.将式子(﹣20)+(+3)﹣(﹣5)﹣(+7)省略括号和加号后变形正确的是()A.20﹣3+5﹣7B.﹣20﹣3+5+7C.﹣20+3+5﹣7D.﹣20﹣3+5﹣7【解答】解:(﹣20)+(+3)﹣(﹣5)﹣(+7)=﹣20+3+5﹣7.故选:C.3.温度由﹣3℃上升8℃是()A.5℃B.﹣5℃C.11℃D.﹣11℃【解答】解:根据题意得:﹣3+8=5,则温度由﹣3℃上升8℃是5℃,故选:A.4.计算(﹣3)﹣1的结果是()A.﹣2B.2C.4D.﹣4【解答】解:(﹣3)﹣1=(﹣3)+(﹣1)=﹣4.故选:D.5.计算﹣5﹣(﹣5)=()A.10B.﹣10C.0D.15【解答】解:﹣5﹣(﹣5)=﹣5+5=0.故选:C.6.在算式【】+(﹣12)=﹣5中,【】里应填()A.17B.7C.﹣17D.﹣7【解答】解:∵﹣5﹣(﹣12)=﹣5+12=7,∴【】里应填7.故选:B.7.计算(﹣6)﹣(﹣3)的结果等于()A.﹣9B.9C.﹣3D.3【解答】解:(﹣6)﹣(﹣3)=﹣6+3=﹣3.故选:C.8.计算:﹣8﹣3的结果是()A.﹣5B.5C.﹣11D.11【解答】解:﹣8﹣3=﹣8+(﹣3)=﹣11.故选:C.9.计算(+5)+(﹣8)的结果是()A.13B.﹣13C.3D.﹣3【解答】解:原式=5﹣8=﹣3,故选:D.10.计算1﹣3的结果是()A.2B.﹣2C.﹣4D.4【解答】解:1﹣3=1+(﹣3)=﹣2.故选:B.11.计算23+(﹣11)的结果是()A.12B.﹣12C.34D.﹣34【解答】解:23+(﹣11)=23﹣11=12.故选:A.12.(﹣3)﹣(﹣4)+7的计算结果是()A.0B.8C.﹣14D.﹣83【解答】解:(﹣3)﹣(﹣4)+7=﹣3+4+7=8故选:B.13.下列各计算题中,结果是0的是()A.|+3|+|﹣3|B.﹣3﹣|﹣3|C.(+3)﹣|﹣3|D.+(﹣)【解答】解:A,原式=3+3=6,不符合题意;B,原式=﹣3﹣3=﹣6,不符合题意;C,原式=3﹣3=0,符合题意;D,原式=﹣=﹣.故选:C.14.计算(+2)+(﹣8)所得的结果是()A.10B.﹣10C.6D.﹣6【解答】解:原式=﹣(8﹣2)=﹣6,故选:D.15.下列各式运算正确的是()A.(﹣7)+(﹣7)=0B.(﹣)+(﹣)=﹣C.0+(﹣101)=101D.(﹣)+(+)=0【解答】解:A、原式=﹣14,不符合题意;B、原式=﹣,不符合题意;C、原式=﹣101,不符合题意;D、原式=0,符合题意,故选:D.16.下列运算正确的是()A.(﹣6)+(﹣2)=+(6+2)=+8B.(﹣5)﹣(+6)=+(6+5)=+11C.(﹣3)﹣(﹣2)=﹣(3﹣2)=﹣1D.(+8)﹣(﹣10)=﹣(10﹣8)=﹣2【解答】解:A、(﹣6)+(﹣2)=﹣(6+2)=﹣8,故不符合题意;B、(﹣5)﹣(+6)=﹣(6+5)=﹣11,故不符合题意;C、(﹣3)﹣(﹣2)=﹣(3﹣2)=﹣1;故符合题意;D、(+8)﹣(﹣10)=10+8=18,故不符合题意,故选:C.17.下列计算正确的是()A.7+(﹣8)=﹣15B.4﹣(﹣4)=0C.0﹣3=3D.﹣1.3+(﹣1.7)=﹣3【解答】解:7+(﹣8)=﹣1因此A选项不符合题意,4﹣(﹣4)=8因此B选项不符合题意,0﹣3=﹣3因此C选项不符合题意,﹣1.3+(﹣1.7)=﹣1.3﹣1.7=﹣3因此D选项符合题意,故选:D.18.计算:﹣4+6的结果为()A.﹣2B.2C.10D.﹣10【解答】解:原式=+(6﹣4)=2,故选:B.19.计算:﹣2﹣3=()A.﹣5B.5C.﹣1D.1【解答】解:﹣2﹣3=﹣2+(﹣3)=﹣(2+3)=﹣5.故选:A.20.计算﹣5+2的结果是()A.3或﹣3B.3C.﹣3D.【解答】解:﹣5+2=﹣(5﹣2)=﹣3,故选:C.21.下列运算中正确的个数有()(1)(﹣5)+5=0;(2)﹣10+(+7)=﹣3;(3)0+(﹣4)=﹣4;(4)(﹣)﹣(+)=﹣.A.1个B.2个C.3个D.4个【解答】解:(1)(﹣5)+5=0,正确;(2)﹣10+(+7)=﹣(10﹣7)=﹣3,正确;(3)0+(﹣4)=﹣4,正确;(4)(﹣)﹣(+)=.故原结论错误.∴运算中正确的有(1)(2)(3)共3个.故选:C.22.下列各式中,正确的是()A.﹣4﹣2=﹣2B.3﹣(﹣3)=0C.10+(﹣8)=﹣2D.﹣5﹣4﹣(﹣4)=﹣5【解答】解:A、﹣4﹣2=﹣6,故此选项不合题意;B、3﹣(﹣3)=6,故此选项不合题意;C、10+(﹣8)=2,故此选项不合题意;D、﹣5﹣4﹣(﹣4)=﹣5,正确,符合题意.故选:D.23.计算﹣1﹣1﹣1的结果是()A.﹣3B.3C.1D.﹣1【解答】解:原式=﹣(1+1+1)=﹣3,故选:A.24.下列运算正确的是()A.﹣2+(﹣5)=﹣(5﹣2)=﹣3B.(+3)+(﹣8)=﹣(8﹣3)=﹣5 C.(﹣9)﹣(﹣2)=﹣(9+2)=﹣11D.(+6)+(﹣4)=+(6+4)=+10【解答】解:A、﹣2+(﹣5)=﹣(2+5)=﹣7,故本选项不符合题意.B、(+3)+(﹣8)=﹣(8﹣3)=﹣5,本选项符合题意.C、(﹣9)﹣(﹣2)=(﹣9)+2=﹣(9﹣2)=﹣7,本选项不符合题意.D、(+6)+(﹣4)=+(6﹣4)=2,本选项不符合题意,故选:B.25.计算:﹣2+5的结果是()A.3B.﹣3C.7D.﹣7【解答】解:﹣2+5=+(5﹣2)=3,故选:A.26.下列式子可读作:“负1,负3,正6,负8的和”的是()A.﹣1+(﹣3)+(+6)﹣(﹣8)B.﹣1﹣3+6﹣8C.﹣1﹣(﹣3)﹣(﹣6)﹣(﹣8)D.﹣1﹣(﹣3)﹣6﹣(﹣8)【解答】解:读作“负1,负3,正6,负8的和”的是﹣1﹣3+6﹣8,故选:B.27.计算﹣2+(﹣6)的结果是()A.12B.C.﹣8D.﹣4【解答】解:﹣2+(﹣6)=﹣(2+6)=﹣8所以计算﹣2+(﹣6)的结果是﹣8.故选:C.28.计算3﹣4,结果是()A.﹣1B.﹣7C.1D.7【解答】解:3﹣4=﹣1.故选:A.二.解答题(共13小题)29.计算:(﹣3)+12.5+(﹣16)﹣(﹣2.5)【解答】解:原式=(﹣3﹣16)+(12.5+2.5)=﹣20+15=﹣5.30.计算(1)11﹣18﹣12+19.(2).【解答】解:(1)11﹣18﹣12+19=30﹣30=0.(2)=5﹣++3=5+4=9.31.计算:(﹣1.75)﹣(﹣2)+(﹣3)﹣(﹣1)【解答】解:(﹣1.75)﹣(﹣2)+(﹣3)﹣(﹣1)=[(﹣1.75)﹣(﹣2)]+[(﹣3)﹣(﹣1)]=1+(﹣2)=﹣132.计算:(﹣5)+8﹣(﹣28)+(﹣10).【解答】解:(﹣5)+8﹣(﹣28)+(﹣10)=8﹣5+28﹣10=3+28﹣10=2133.计算(1)﹣(2)12﹣(﹣18)+(﹣7)(3)16﹣(﹣8)﹣4(4)【解答】解:(1)原式==;(2)原式=12+18﹣7=23;(3)原式=16+()=16+=;(4)原式==﹣7+3=﹣4.34.计算:22+(﹣4)+(﹣2)【解答】解:原式=22+(﹣6)=16.35.计算:(﹣3)+(﹣2)+10﹣1.5【解答】解:(﹣3)+(﹣2)+10﹣1.5=﹣6+10﹣1.5=10﹣(6+1.5)=10﹣7.5=2.5.36.9﹣(﹣14)+(﹣7)﹣15【解答】解:9﹣(﹣14)+(﹣7)﹣15=9+14﹣(7+15)=23﹣22=1.37.①﹣5﹣(﹣4)+7﹣8②4﹣(+3.85)﹣(﹣3)+(﹣3.15)【解答】解:①﹣5﹣(﹣4)+7﹣8=﹣1+7﹣8=﹣2②4﹣(+3.85)﹣(﹣3)+(﹣3.15)=[4﹣(﹣3)]﹣(3.85+3.15)=8﹣7=138.计算(1)(﹣4)+9(2)13+(﹣12)+17+(﹣18)【解答】解:(1)(﹣4)+9=5;(2)13+(﹣12)+17+(﹣18)=13+17+(﹣12)+(﹣18)=30+(﹣30)=0.39.计算:(1)(+11)﹣(﹣2)(2)(+26)+(﹣18)+5+(﹣26)【解答】解:(1)原式=11+2=13(2)原式=(26+5)+(﹣18﹣26)=31﹣44=﹣1340.计算:7【解答】解:原式===2.41.计算下列各题(1)5﹣(﹣2)(2)(3)5+(﹣1)+(﹣4)(4)0﹣(﹣28)+53(5)(﹣4)﹣(+13)+(﹣5)﹣(﹣9)+7(6)【解答】解:(1)5﹣(﹣2)=7(2)=﹣=(3)5+(﹣1)+(﹣4)=4+(﹣4)=0(4)0﹣(﹣28)+53=28+53=81(5)(﹣4)﹣(+13)+(﹣5)﹣(﹣9)+7=﹣17﹣5+9+7=﹣6(6)=[6﹣(﹣3)]+(3.3﹣3.3)+[4﹣(﹣6)]=10+0+10=20。

人教版七年级数学上册《1.3 有理数的加减法》同步能力提升训练(附答案)

人教版七年级数学上册《1.3 有理数的加减法》同步能力提升训练(附答案)

2021-2022学年人教版七年级数学上册《1.3有理数的加减法》同步能力提升训练(附答案)1.﹣20+21=()A.﹣1B.1C.﹣2021D.20212.下列计算正确的是()A.﹣5+(﹣3)=﹣(5﹣3)=﹣2B.2﹣(﹣5)=﹣(5﹣2)=﹣3C.(﹣3)﹣(﹣4)=﹣(3+4)=﹣7D.(﹣3)+(+2)=﹣(3﹣2)=﹣1 3.若|m|=5,|n|=2,且mn异号,则|m﹣n|的值为()A.7B.3或﹣3C.3D.7或34.昆明市某天的最高气温为12℃,最低气温为﹣2℃,这天的最高气温比最低气温高()A.﹣10℃B.10℃C.14℃D.﹣14℃5.下列说法中,正确的是()A.若|a|=|b|,则a=b B.互为相反数的两数之和为零C.0是最小的整数D.数轴上两个有理数,较大的数离原点较远6.温度﹣4℃比﹣9℃高()A.5℃B.﹣5℃C.13℃D.﹣13℃7.郝炜同学在计算35+x时,误将“+”看成“﹣”,结果得10,则35+x的值应为()A.20B.60C.10D.708.若a是最大的负整数,b是最小的正整数,c的相反数等于它本身,则a+b+c的值是()A.﹣2B.﹣1C.1D.09.2020年元月某一天的天气预报中,北京的最低温度是﹣12℃,哈尔滨的最低温度是﹣26℃,这一天北京的最低气温比哈尔滨的最低气温高()A.14℃B.﹣14℃C.38℃D.﹣38℃10.比﹣2大2的数是()A.﹣4B.0C.2D.411.计算:﹣3﹣(﹣2)+5=.12.已知a<b,且|a|=6,|b|=3,则a﹣b的值为.13.如表,从左边第一个格子开始向右,在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则前2021个格子中所有整数的和为.14.计算:﹣17+(﹣33)﹣10﹣(﹣24)=.15.我市某天上午的气温为﹣2℃,中午上升了6℃,下午受冷空气的影响,到夜间温度下降了9℃,则这天夜间的气温为.16.﹣5与3的和的绝对值是;﹣5的相反数与3的绝对值的差是.17.计算(﹣)+|0﹣5|+|﹣4|+(﹣9)的结果为.18.点A的海拔高度是﹣100米,表示点A比海平面低100米,点B比点A高30米,那么点B的海拔是.19.计算(1)9+(﹣7)+10+(﹣3)+(﹣9);(2)3﹣(﹣)﹣+(﹣).20.1+(﹣6.5)+3+(﹣1.25)﹣(﹣2).21.计算:(1)12﹣(﹣18)+(﹣7)﹣15;(2)﹣0.5+(﹣3)+(﹣2.75)+(+7).22.计算:(1)23﹣17﹣(﹣7)+(﹣16);(2)(﹣26.54)﹣(﹣6.4)+18.54﹣6.4;(3)(﹣0.5)﹣(﹣3)+2.75﹣(+7);(4)﹣|﹣1|﹣(+2)﹣(﹣2.75).23.一名足球守门员练习折返跑,从球门线出发,向前记为正数,返回记为负数,他的记录如下(单位:米):+5,﹣3,+10,﹣8,﹣6,+12,﹣10,(1)守门员最后是否回到了球门线的位置?(2)守门员全部练习结束后,共跑了多少米?(3)在练习过程中,守门员离开球门线的最远距离是多少米?24.出租车司机小王某天下午的一段时间内营运全是在东西走向的“抚顺”路上进行的.如果向东记作“+”,向西记作“﹣”,他这段时间内行车情况如下:﹣2,+5,﹣2,﹣3,﹣6,+6(单位:公里;每次行车都有乘客),请解答下列问题:(1)小王将最后一名乘客送到目的地时,小王在下午出车的出发地的什么方向?距下午出车的出发地多远?(2)若小王的出租车每公里耗油0.1升,每升汽油5.7元,不计汽车的损耗的情况下,请你帮小王计算一下这段时间所耗的汽油钱是多少元?25.某服装店购进10件羊毛衫,实际销售情况如表所示:(售价超出成本为正,不足记为负)件数(件)32212钱数(元)﹣10﹣20+20+30+40(1)这批羊毛衫销售中,最高售价的一件与最低售价的一件相差多少元?(2)通过计算求出这家服装店在这次销售中盈利或者亏损多少元?参考答案1.解:原式=+(21﹣20)=1.故选:B.2.解:A.﹣5+(﹣3)=﹣8,此选项错误;B.2﹣(﹣5)=2+5=7,此选项错误;C.(﹣3)﹣(﹣4)=﹣3+4=1,此选项错误;D.(﹣3)+(+2)=﹣(3﹣2)=﹣1,此选项正确;故选:D.3.解:∵|m|=5,|n|=2,∴m=±5,n=±2,又∵m、n异号,∴m=5、n=﹣2或m=﹣5、n=2,当m=5、n=﹣2时,|m﹣n|=|5﹣(﹣2)|=7;当m=﹣5、n=2时,|m﹣n|=|﹣5﹣2|=7;综上|m﹣n|的值为7,故选:A.4.解:12﹣(﹣2)=12+2=14(℃),即这天的最高气温比最低气温高14℃.故选:C.5.解:A、若|a|=|b|,则a=±b,故原说法错误,故本选项不符合题意;B、互为相反数的两数之和为零,说法正确,故本选项符合题意;C、没有最小的整数,故原说法错误,故本选项不符合题意;D、数轴上两个有理数,绝对值较大的数离原点较远,故原说法错误,故本选项不符合题意;故选:B.6.解:∵﹣4﹣(﹣9)=5(℃),∴温度﹣4℃比﹣9℃高5℃.故选:A.7.解:35+(35﹣10)=35+25=60.故选:B.8.解:∵a是最大的负整数,b是最小的正整数,c的相反数等于它本身,∴a=﹣1,b=1,c=0,∴a+b+c=﹣1+1+0=0,故选:D.9.解:﹣12﹣(﹣26)=﹣12+26=14(℃),故选:A.10.解:﹣2+2=0,即比﹣2大2的数是0,故选:B.11.解:﹣3﹣(﹣2)+5=﹣3+2+5=4;故答案为:4.12.解:∵|a|=6,|b|=3,∴a=±6,b=±3,∵a<b,∴a=﹣6,b=±3,∴a﹣b=﹣6﹣3=﹣9或a﹣b=﹣6﹣(﹣3)=﹣3.故答案为:﹣9或﹣3.13.解:根据“任意三个相邻格子中所填整数之和都相等”可得这列数如下:因为2021÷3=673……2,所以前2021个格子中所有数的和为673×2﹣8+6=1344,故答案为:1344.14.解:﹣17+(﹣33)﹣10﹣(﹣24)=﹣17﹣33﹣10+24=﹣60+24=﹣36.故答案为:﹣36.15.解:﹣2+6﹣9=4﹣9=﹣5(℃)答:这天夜间的气温为﹣5℃.故答案为:﹣5℃.16.解:|﹣5+3|=|﹣2|=2,﹣(﹣5)﹣|3|=5﹣3=2,故答案为:2,2.17.解:(﹣)+|0﹣5|+|﹣4|+(﹣9)=(﹣)+5+4+(﹣9)=(﹣﹣9)+(5+4)=﹣10+10=0.故答案为:0.18.解:点B的海拔高度为:﹣100+30=﹣70(米).故答案为:﹣70.19.解:(1)原式=[9+(﹣9)]+[(﹣7)+(﹣3)]+10=0﹣10+10=0;(2)原式=[3+(﹣)]﹣[(﹣)+]=3﹣=2.20.解:==0+6﹣6.5=﹣0.5.21.解:(1)12﹣(﹣18)+(﹣7)﹣15=30﹣7﹣15=8.(2)﹣0.5+(﹣3)+(﹣2.75)+(+7)=[﹣0.5+(+7)]+[(﹣3)+(﹣2.75)]=7+(﹣6)=1.22.解:(1)23﹣17﹣(﹣7)+(﹣16)=23﹣17+7﹣16=(23+7)+(﹣17﹣16)=30﹣33=﹣3;(2)(﹣26.54)﹣(﹣6.4)+18.54﹣6.4=(﹣26.54+18.54)+(6.4﹣6.4)=﹣8+0=﹣8;(3)(﹣0.5)﹣(﹣3)+2.75﹣(+7)=(﹣0.5﹣7)+(3+2.75)=﹣8+6=﹣2;(4)﹣|﹣1|﹣(+2)﹣(﹣2.75)=﹣1﹣2+2.75=+(﹣1﹣2+2.75)=﹣1=﹣.23.解:(1)(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+(+12)+(﹣10)=(5+10+12)﹣(3+8+6+10)=27﹣27=0,答:守门员最后回到了球门线的位置;(2)|+5|+|﹣3|+|+10|+|﹣8|+|﹣6|+|+12|+|﹣10|=5+3+10+8+6+12+10=54;答:守门员全部练习结束后,他共跑了54米;(3)第1次守门员离开球门线5米;第2次守门员离开球门线:5﹣3=2(米);第3次守门员离开球门线:2+10=12(米);第4次守门员离开球门线:12﹣8=4(米);第5次守门员离开球门线:|4﹣6|=2(米);第6次守门员离开球门线:|﹣2+12|=8(米);第7次守门员离开球门线:|8﹣10|=2(米);所以在练习过程中,守门员离开球门线的最远距离是12米.24.解:(1)﹣2+5﹣2﹣3﹣6+6=﹣2(公里).故小王在下午出车的出发地的正西方向,距下午出车的出发地2公里远;(2)2+5+2+3+6+6=24(公里),24×0.1×5.7=13.68(元).故这段时间所耗的汽油钱是13.68元.25.解:(1)40﹣(﹣20)=60(元),答:最高售价的一件与最低售价的一件相差60元;(2)3×(﹣10)+2×(﹣20)+2×20+1×30+2×40=80(元),答:该这家服装店在这次销售中是盈利了,盈利80元.。

人教新版七年级上《1.3有理数的加减法》同步试卷含答案解析.doc

人教新版七年级上《1.3有理数的加减法》同步试卷含答案解析.doc

2016年人教新版七年级数学上册同步试卷:1.3 有理数的加减法一、选择题(共13小题)1.计算﹣10﹣8所得的结果是()A.﹣2 B.2 C.18 D.﹣182.(2014•哈尔滨)哈市某天的最高气温为28℃,最低气温为21℃,则这一天的最高气温与最低气温的差为()A.5℃B.6℃C.7℃D.8℃3.某地某天的最高气温是8℃,最低气温是﹣2℃,则该地这一天的温差是()A.﹣10℃B.﹣6℃C.6℃D.10℃4.比1小2的数是()A.3 B.1 C.﹣1 D.﹣25.如果崇左市市区某中午的气温是37℃,到下午下降了3℃,那么下午的气温是()A.40℃ B.38℃ C.36℃ D.34℃6.计算,正确的结果为()A.B.C.D.7.计算:1﹣(﹣)=()A.B.﹣C.D.﹣8.﹣2﹣1的结果是()A.﹣1 B.﹣3 C.1 D.39.计算2﹣3的结果是()A.﹣5 B.﹣1 C.1 D.510.桂林冬季里某一天最高气温是7℃,最低气温是﹣1℃,这一天桂林的温差是()A.﹣8℃B.6℃C.7℃D.8℃11.如图,这是某用户银行存折中2012年11月到2013年5月间代扣电费的相关数据,从中可以看出扣缴电费最多的一次达到()A.147.40元 B.143.17元 C.144.23元 D.136.83元12.五个城市的国际标准时间(单位:时)在数轴上表示如图所示,我市2013年初中毕业学业检测与高中阶段学校招生考试于2015年6月16日上午9时开始,此时应是A.纽约时间2015年6月16日晚上22时B.多伦多时间2015年6月15日晚上21时C.伦敦时间2015年6月16日凌晨1时D.汉城时间2015年6月16日上午8时13.与﹣3的差为0的数是()A.3 B.﹣3 C.D.二、填空题(共5小题)14.计算:0﹣7=.15.)计算:3﹣(﹣1)=.16.计算:3﹣4=.17.计算:2000﹣2015=.18.|﹣7﹣3|=.2016年人教新版七年级数学上册同步试卷:1.3 有理数的加减法参考答案与试题解析一、选择题(共13小题)1.计算﹣10﹣8所得的结果是()A.﹣2 B.2 C.18 D.﹣18【考点】有理数的减法.【分析】根据有理数的减法运算法则进行计算即可得解.【解答】解:﹣10﹣8=﹣18.故选D.【点评】本题考查了有理数的减法,是基础题,熟记运算法则是解题的关键.2.哈市某天的最高气温为28℃,最低气温为21℃,则这一天的最高气温与最低气温的差为()A.5℃B.6℃C.7℃D.8℃【考点】有理数的减法.【专题】常规题型.【分析】根据有理数的减法,减去一个数等于加上这个数的相反数,可得答案.【解答】解:28﹣21=28+(﹣21)=7,故选:C.【点评】本题考查了有理数的减法,减去一个数等于加上这个数的相反数.3.某地某天的最高气温是8℃,最低气温是﹣2℃,则该地这一天的温差是()A.﹣10℃B.﹣6℃C.6℃D.10℃【考点】有理数的减法.【专题】计算题.【分析】用最高温度减去最低温度,然后根据有理数的减法运算法则,减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:8﹣(﹣2)=8+2=10(℃).故选D.【点评】本题考查了有理数的减法运算法则,熟记减去一个数等于加上这个数的相反数是解题的关键.4.比1小2的数是()A.3 B.1 C.﹣1 D.﹣2【考点】有理数的减法.【分析】根据有理数的减法运算法则进行计算即可得解.【解答】解:1﹣2=﹣1.故选C.【点评】本题考查了有理数的减法,是基础题.5.如果崇左市市区某中午的气温是37℃,到下午下降了3℃,那么下午的气温是()A.40℃ B.38℃ C.36℃ D.34℃【考点】有理数的减法.【专题】应用题.【分析】用中午的温度减去下降的温度,然后根据有理数的减法运算法则进行计算即可得解.【解答】解:37℃﹣3℃=34℃.故选:D.【点评】本题考查了有理数的减法,是基础题,熟记运算法则是解题的关键.6.计算,正确的结果为()A.B.C.D.【考点】有理数的减法.【分析】根据有理数的减法运算法则进行计算即可得解.【解答】解:﹣=﹣.故选D.【点评】本题考查了有理数的减法运算是基础题,熟记法则是解题的关键.7.计算:1﹣(﹣)=()A.B.﹣C.D.﹣【考点】有理数的减法.【分析】根据有理数的减法法则,即可解答.【解答】解:1﹣(﹣)=1+=.故选:C.【点评】本题考查了有理数的减法,解决本题的关键是熟记有理数的减法法则.8.﹣2﹣1的结果是()A.﹣1 B.﹣3 C.1 D.3【考点】有理数的减法.【分析】根据有理数的减法法则:减去一个数等于加上这个数的相反数把原式化为加法,根据有理数的加法法则计算即可.【解答】解:﹣2﹣1=﹣2+(﹣1)=﹣3,故选:B.【点评】有本题考查的是有理数的减法法则:减去一个数等于加上这个数的相反数,掌握法则是解题的关键.9.计算2﹣3的结果是()A.﹣5 B.﹣1 C.1 D.5【考点】有理数的减法.【分析】减去一个数等于加上这个数的相反数,再运用加法法则求和.【解答】解:2﹣3=2+(﹣3)=﹣1.故选B.【点评】考查了有理数的减法,解决此类问题的关键是将减法转换成加法.10.桂林冬季里某一天最高气温是7℃,最低气温是﹣1℃,这一天桂林的温差是()A.﹣8℃B.6℃C.7℃D.8℃【考点】有理数的减法.【专题】应用题.【分析】根据“温差”=最高气温﹣最低气温计算即可.【解答】解:7﹣(﹣1)=7+1=8℃.故选D.【点评】此题考查了有理数的减法,解题的关键是:明确“温差”=最高气温﹣最低气温.11.如图,这是某用户银行存折中2012年11月到2013年5月间代扣电费的相关数据,从中可以看出扣缴电费最多的一次达到()A.147.40元 B.143.17元 C.144.23元 D.136.83元【考点】有理数的加减混合运算;有理数大小比较.【专题】应用题.【分析】根据存折中的数据进行解答.【解答】解:根据存折中的数据得到:扣缴电费最多的一次是日期为121105,金额是147.40元.故选:A.【点评】本题考查了有理数大小比较的应用.解题的关键是学生具备一定的读图能力.12.五个城市的国际标准时间(单位:时)在数轴上表示如图所示,我市2013年初中毕业学业检测与高中阶段学校招生考试于2015年6月16日上午9时开始,此时应是(A.纽约时间2015年6月16日晚上22时B.多伦多时间2015年6月15日晚上21时C.伦敦时间2015年6月16日凌晨1时D.汉城时间2015年6月16日上午8时【考点】有理数的加减混合运算.【专题】应用题.【分析】求出两地的时差,根据北京时间求出每个地方的时间,再判断即可.【解答】解:A、∵纽约时间与北京差:8+5=13个小时,9﹣13=﹣4,∴当北京时间2015年6月16日9时,纽约时间是2015年6月15日21时,故本选项错误;B、∵多伦多时间与北京差:8+4=12个小时,9﹣12=﹣3,∴当北京时间2015年6月16日9时,纽约时间是2015年6月15日22时,故本选项错误;C、∵伦敦时间与北京差:8﹣0=8个小时,9﹣8=1,∴当北京时间2015年6月16日9时,伦敦时间是2015年6月16日1时,故本选项正确;D、∵汉城时间与北京差:9﹣8=1个小时,9+1=10,∴当北京时间2015年6月16日9时,首尔时间是2015年6月16日10时,故本选项错误;故选C.【点评】主要考查了数轴,要注意数轴上两点间的距离公式是|a﹣b|.把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.13.与﹣3的差为0的数是()A.3 B.﹣3 C.D.【考点】有理数的减法.【分析】与﹣3的差为0的数就是﹣3+0,据此即可求解.【解答】解:﹣3+0=﹣3.故选B.【点评】本题考查了有理数的减法运算,正确列出式子是关键.二、填空题(共5小题)14.计算:0﹣7=﹣7.【考点】有理数的减法.【分析】根据有理数的减法法则进行计算即可,减去一个数等于加上这个数的相反数.【解答】解:0﹣7=﹣7;故答案为:﹣7.【点评】此题考查了有理数的减法运算,熟练掌握减法法则是本题的关键,是一道基础题,较简单.15.计算:3﹣(﹣1)=4.【考点】有理数的减法.【分析】先根据有理数减法法则,把减法变成加法,再根据加法法则求出结果.【解答】解:3﹣(﹣1)=3+1=4,故答案为4.【点评】本题主要考查了有理数加减法则,能理解熟记法则是解题的关键.16.计算:3﹣4=﹣1.【考点】有理数的减法.【分析】本题是对有理数减法的考查,减去一个数等于加上这个数的相反数.【解答】解:3﹣4=3+(﹣4)=﹣1.故答案为:﹣1.【点评】有理数的减法法则:减去一个数等于加上这个数的相反数.17.计算:2000﹣2015=﹣15.【考点】有理数的减法.【专题】计算题.【分析】根据有理数的减法运算进行计算即可得解.【解答】解:2000﹣2015=﹣15.故答案为:﹣15.【点评】本题考查了有理数的减法,是基础题,熟记运算法则是解题的关键.18. |﹣7﹣3|=10.【考点】有理数的减法;绝对值.【专题】计算题.【分析】根据有理数的减法运算法则和绝对值的性质进行计算即可得解.【解答】解:|﹣7﹣3|=|﹣10|=10.故答案为:10.【点评】本题考查了有理数的减法运算法则和绝对值的性质,是基础题,熟记法则和性质是解题的关键.。

人教版七年级上册 1.3 有理数加减混合运算复习(含答案)

人教版七年级上册   1.3 有理数加减混合运算复习(含答案)

小练: (–3)–(–5)
3 1 –(–1 3 )
4
4
(–3)–(+5)+(–4)–(–10)
3 1 –(+5)–(–1 3 )+(–5)
4
4
–2.4 + 3.5–4.6 + 3.5
3 1 –2 3 + 5 7 –8 2 85 8 5
2
小练:加法、减法统一成加法 1.将式子 3-5-7 写成和的形式,正确的是( ) A.3+5+7 B.-3+(-5)+(-7) C.3-(+5)-(+7) D.3+(-5)+(-7) 2.为计算简便,把(-2.4)-(-4.7)-(+0.5)+(+3.4)+(-3.5)写成省略加号的和的形式, 并按要求交换加数的位置正确的是( ) A.-2.4+3.4-4.7-0.5-3.5 B.-2.4+3.4+4.7+0.5-3.5 C.-2.4+3.4+4.7-0.5-3.5 D.-2.4+3.4+4.7-0.5+3.5 3.下列式子正确的是( ) A.-3+4-2=(-3)+(+4)-(-2) B.(+9)-(-10)-(+6)=9-10-6 C.(-8)-(-3)+(-5)=-8+3-5 D.-3+5+6=6-(3+5) 4.把(-8)+(-10)-(+9)-(-11)写成省略加号的和的形式是________________. 5.-8-3+1-7 读作________________或读作________________. 有理数加减混合运算 6.计算 0-(-5)-(+1.71)-(-4.71)的结果是( ) A.7 B.-7 C.8 D.-8 7.下列交换加数位置的变形中,正确的是( ) A.1-4+5-4=1-4+4-5
B.-13+34-16-14=14+34-13-16

人教版初中数学七年级上册第1章1.3《有理数的加减法》同步检测卷

人教版初中数学七年级上册第1章1.3《有理数的加减法》同步检测卷

人教版初中数学七年级上册第1章1.3《有理数的加减法》同步检测卷基础卷(时间:90分钟,满分:100分)一、选择题(每小题4分,共28分)1.两数相加,如果和不是正数,这两个数()A.都是负数B.都是正数C.一正一负D.至少有一为负2.若a为有理数,则∣a∣+a的结果为()A.正数B.负数C.不可能是负数D.正数、负数和零都有可能3.若∣x∣=∣y∣=1,则∣-x∣+∣-y∣的值是()A.0 B.1 C.2 D.±24.若a,b互为相反数,则a+b的值为()A.0 B.1 C.2 D.±25、绝对值大于2且小于5的所有整数的和是()A、7B、-7C、0D、46、下列说法中正确的是()A、最小的整数是0B、有理数分为正数和负数C、如果两个数的绝对值相等,那么这两个数相等D、互为相反数的两个数的绝对值相等7、校、家、书店依次坐落在一条南北走向的大街上,学校在家的南边20米,书店在家北边100米,张明同学从家里出发,向北走了50米,接着又向北走了-70米,此时张明的位置在()A、在家B、在学校C、在书店D、不在上述地方二、填空题(每空2分,共34分)8.(1);(2);(3);(4);(5);(6)。

9.已知两个数是15和-21,这两个数的和的绝对值是___,绝对值的和是__。

10.绝对值小于3的所有整数的和是___。

11、加法交换律用字母表示为:______;加法结合律用字母表示为:___。

12、如果a>0,b>0,那么a+b___0;如果a<0,b<0,那么a+b___0;如果a>0,b<0,且∣a∣>∣b∣,那么a+b___0;如果a<0,b>0,且∣a∣<∣b∣,那么a+b___0。

13、有理数的减法法则,用字母表示为:a-b=____。

14、若∣x∣=∣y∣=1,则∣-x∣+∣-y∣的值是____.三、解答题(共38分)15、(14分)计算(1)-17+23+(-16)-(-7);(2)1+(-21)+∣-2-3∣-25。

人教版七年级数学上册第一章第3节有理数的加减法达标测试题

人教版七年级数学上册第一章第3节有理数的加减法达标测试题

第一章第3节有理数的加减法达标测试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.计算:43-+=( ) A .-1B .1C .7D .-72.已知||6a =,||3b =,且||a b b a -=-,则a b +的值为( )A .9B .-9C .9或3D .-9或-3 3.计算:5+(﹣7)=( ) A .2 B .﹣2 C .12 D .﹣124.我国是最早认识负数,并进行相关运算的国家,在古代数学名著《九章算术》里,就记载了利用算筹实施“正负术”的方法,图(1)表示的是计算()34+-的过程.按照这种方法,图(2)表示的过程应是( )A .()()52-+-B .()52-+C .()52+-D .52+5.有理数a 、b 在数轴上对应的位置如图所示,则下列结论正确的是( )A .0a b +<B .0a b +>C .0a b -<D .0b a ->6.春节假期期间某一天早晨的气温是3C ︒-,中午上升了8C ︒,则中午的气温是( ) A .5C ︒- B .5C ︒ C .11C ︒ D .11C ︒-7.数轴上有A 、B 两点,点A 所表示的数是3,若点A 与点B 之间的距离是5,则点B 所表示的数是( ) A .2B .-8或2C .-2D .-2或88.今年3月份某市一天的最高气温是8℃,最低气温是6-℃,则这一天的温差是( ) A .14-℃ B .2℃ C .14℃ D .2-℃9.点A 在数轴上距原点4个单位长度,将点A 向左移4个单位长度,再向右移3个单位长度,此时该点所表示的数是( )10.下列运算正确的是()A.﹣2+(﹣5)=﹣(5﹣2)=﹣3 B.(+3)+(﹣8)=﹣(8﹣3)=﹣5C.(﹣9)﹣(﹣2)=﹣(9+2)=﹣11 D.(+6)+(﹣4)=+(6+4)=+10二、填空题11.点A在数轴上距原点4个单位长度,若一颗棋子从点A处沿着数轴向右移动3个单位长度到达点B,则数轴上点B表示的数是___________.12.绝对值大于1而小于5的所有正整数之和为______.13.如图数轴的单位长度为1,如果点A表示的数是﹣2,那么点B表示的数是________.14.某市为鼓励市民节约用水,特制定如下的收费标准:若每月每户用水不超过10立方米,则按3元/立方米的水价收费,并加收0.2元/立方米的污水处理费;若超过10立方米,则超过的部分按4元/立方米的水价收费,污水处理费不变.若小华家6月份的用水量为15立方米,那么小华家6月份的水费为__元;15.小王上周五在股市以收盘价(收市时的价格)每股25元买进某公司股票1000股,在接下来的一周交易日内,小王记下该股票每日收盘价格相比前一天的涨跌情况(单位:元),本周内该股票收盘时的最高价是_________元.星期一二三四五每股涨跌+2 -0.5 +1.5 -1.8 +0.8三、解答题16.某超市2021年在某小区新开了一家连锁店,经过半年的经营,其盈亏情况如表(盈月份一二三四五六盈亏情况+20.8 +17.5 ﹣13.3 ﹣14.5 +2.7 ﹣18.4(1)该连锁店半年来的盈亏情况如何?(2)通过对这半年经营情况的分析,你认为该店是继续经营呢?还是应停业整顿?17.一名快递员从快递公司出发负责在东西方向的路上送快递,向东走了4千米到达小明家,继续走了1千米到达小红家,从小红家调头向西走了10千米到达小刚家,最后回到快递公司.(1)以快递公司为原点,向东的方向为正方向,用1个单位长度表示1千米,请你画出数轴,并在数轴上分别表示出小明家、小红家、小刚家的位置.(2)小明家和小刚家相距多远?(3)快递员从出发到最后回到快递公司一共走了多少千米?参考答案:1.A2.D3.B4.C5.A6.B7.D8.C9.D10.B11.-1或7##-1或7解:∵点A在数轴上距离原点4个单位长度,∴A表示的数为-4或4当A表示的数为-4时,当点A表示的数是-4,将A向右移动3个单位长度,此时点B表示的数是-4+3=-1;当点A表示的数是4,将A向右移动3个单位长度,此时点B表示的数是4+3=7;故答案为-1或7.12.解:绝对值大于1而小于5的所有正整数有:2、3、4,它们的和为:2+3+4=9,故答案为:9.13.解:根据题意得:点B表示的数是-2+4=2.故答案为:214.解:由题意,得10(3+0.2)+(15﹣10)(4+0.2)=53(元).故答案是:53.15解:星期一收盘价格为25+2=27元,星期二收盘价格为27-0.5=26.5元,星期三收盘价格为26.5+1.5=28元,星期四收盘价格为28-1.8=26.2元,星期五收盘价格为26.2+0.8=27元,∵28>27=27>26.5>26.2,∴本周内该股票收盘时的最高价是28元.故答案为:2816.(1)解:(+20.8)+(+17.5)+(-13.3)+(-14.5)+(+2.7)+(-18.4)=20.8+17.5-13.3-14.5+2.7-18.4=-5.2(万)答:该连锁店半年来亏了5.2万元.(2)根据(1)的计算结果可知,该连锁店半年来亏了5.2万元,因此我认为应停业整顿.17。

人教版七年级数学上册随堂练习附答案1.3 有理数的加减法

人教版七年级数学上册随堂练习附答案1.3 有理数的加减法

1.3 有理数的加减法一、选择题(共10小题;共30分)1. 某天上午6:00柳江河水位为80.4米,到上午11:30水位上涨了5.3米,到下午6:00水位又跌了0.9米,下午6:00水位应为( )A. 76米B. 84.8米C. 85.8米D. 86.6米2. 如果三个数的和为零,那么这三个数一定是( )A. 两个正数,一个负数B. 两个负数,一个正数C. 三个都是零D. 其中两个数之和等于第三个数的相反数3. 若两个非零的有理数a,b,满足:∣a∣=a,∣b∣=−b,a+b<0,则在数轴上表示数a,b的点正确的是( )A. B.C. D.4. 在进行异号的两个有理数加法运算时,用到下面的一些操作:①将绝对值较大的有理数的符号作为结果的符号并记住②将记住的符号和绝对值的差一起作为最终的计算结果③用较大的绝对值减去较小的绝对值④求两个有理数的绝对值⑤比较两个绝对值的大小其中操作顺序正确的步骤是( )A. ①②③④⑤B. ④⑤③②①C. ①⑤③④②D. ④⑤①③②第5页(共7 页)第5页(共7 页) 5. 下列运算正确的个数为 ( )①(−2)+(−2)=0;②(−6)+(+4)=−10;③0+(−3)=+3;④(+56)+(−16)=23; ⑤−(−34)+(−734)=−7 A. 0 B. 1 C. 2D. 3 6. 计算 18−(−5) 的结果等于 ( ) A. 15 B. −13 C. 23 D. −40 7. 小明经常在一条南北方向的公路上散步.他每次从 A 点出发,两次记录自己散步的情况如下(向南走为正方向),如果第二次记录时停下,此时他离 A 点最近的是 ( )A. −225 米,510 米B. −152 米,−250 米C. 123 米,−151 米D. 150 米,300 米8. 如图,点 A ,B ,C 在一次函数 y =−2x +m 的图象上,它们的横坐标依次为 −1,1,2,分别过这些点作 x 轴与 y 轴的垂线,则图中阴影部分的面积之和是 ( )A. 1B. 3C. 3(m −1)D. 32(m −2) 9. 计算 ∣−5+3∣ 的结果是 ( )A. −2B. 2C. −8D. 8。

人教版七年级数学上册同步练习题 第一章有理数有理数的加减法(有答案)

人教版七年级数学上册同步练习题 第一章有理数有理数的加减法(有答案)

人教版七年级数学上册同步练习题 第一章有理数 1.3有理数的加减法一、选择题1.飞机原在3800米高空飞行,现先上升150米,又下降200米,这时飞机飞行的高度是( ) A .3 650米 B .3750米 C .3850米 D .3950米 2.某地区的气温在一段时间里,从-8 ℃先上升了5 ℃,然后又下降了7 ℃,那么此时的气温是( ).A .10 ℃B .-10 ℃C .4 ℃D .-4 ℃3.33+(-32)+7+(-8)的结果为( ).A .0B .2C .-1D .+54.如果0,0<>b a ,0<+b a ,则下列大小关系正确的是( ).A .a b a b <<-<-B .a b a b <-<-<C .b a b a -<<<-D .b a a b -<<-<5.下列说法正确的是( )。

A .两个数的和一定比两个数的差大B .两个数的差小于被减数C .相等的两个有理数之差为零D .绝对值相等的两个有理数之差为零6.某单位第一季度账面结余-1.3万元,第二季度每月收支情况为(收入为正):+4.1万元,+3.5万元,-2.4万元,则至第二季度末账面结余为( )A .-0.3万元B .3.9万元C .4.6万元D .5.7万元7.如果一个有理数与-7的和是正数,那么这个有理数一定是( )A .负数B .零C .7D .大于7的正数 8.下列四组数中,互为相反数的组合有( )①()3++与()3+-; ②()3--与()3-+;③3++与3--;④3+-与3-+; A .1组 B .2组 C .3组 D .4组9.如果a+b+c <0,那么( ).A .三个数中最少有两个负数B .三个数中有且只有一个负数C .三个数中两个是正数或者两个是负数D .三个数中最少有一个负数10.下列变化正确的是( )A .(-12)+(+18)+(-28)=[(-12)+(+28)]+(-18)B .(-12)+(+18)+(-28)=[(-18)+(+12)]+(-28)C .(-12)+(+18)+(-28)=[(-12)+(-28)]+(+18)D .以上变化都不对二、填空题11.甲、乙、丙三地的海拔高度分别为20m 、-15m 和-10m ,那么最高的地方比最低的地方高____ m .12.直接填得数:(1)()11.215⎛⎫-++ ⎪⎝⎭=_______;(2)13(3)(2)44-+-=_______; (3)13()34+-=_______;(4)25(3)(2)77+-=_______. 13.已知两个数556和283-,这两个数的相反数的和是____________. 14.101﹣102+103﹣104+…+199﹣200=______.15.已知从 1,2,…,9 中可以取出 m 个数,使得这 m 个数中任意两个数之 和不相等,则 m 的最大值为______.三、解答题16.某检修小组乘一辆汽车沿公路东西方向检修线路,约定向东为正.某天从A 地出发到收工时,行走记录为(单位:千米):+15,﹣2,+5,﹣1,+10,+3,﹣2,+12,+4,﹣2,+6.(1)计算收工时检修小组在A 地的哪一边?距A 地多远?(2)若每千米汽车耗油量为0.4升,求出发到收工汽车耗油多少升.17.一振子从点A 开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动的记录为(单位:mm):+10,-9,+8,-6,+7.5,-6,+8,-7.(1)求该振子停止时所在的位置距A 点多远?(2)如果每毫米需用时间0.02 s ,则完成8次振动共需要多少秒?18.计算:(1)-2-(+10);(2)0-(-3.6);(3)(-30)-(-6)-(+6)-(-15);(4)232(3)(2)(1)( 1.75)343-----+.19.计算(1)414)21(32)65(41-+-+-+-; (2)2111()()3642-+----; (3)74324.773276.3----; (4).25.032581413125.0-+-+ 20.已知|x +2|+|y -16|=0,求x ,y 的值.21.计算下列各题:(1)(-51)+(+12)+(-7)+(-11)+(+36)+(+17);(2)37.5+(+2857)+[(-4612)+(-2517)]. 22.计算:(1)2141232(0.2)13355⎡⎤⎛⎫-------- ⎪⎢⎥⎝⎭⎣⎦; (2)3311148824--+-. 23.某粮店有10袋玉米准备出售,称得的质量如下(单位:千克):182,178,177,182.5,183,184,181,185,178.5,180.(1)选一个数为基准数,用正、负数表示这10袋玉米的质量与它的差.(2)试计算这10袋玉米的总质量是多少千克?(3)若每千克玉米售价为0.9元,则这10袋玉米能卖多少元?【参考答案】1.B 2.B 3.A 4.D 5.C 6.B 7.D 8.D 9.D 10.C11.3512.0 6- 512-47 13.17614.-5015.516.(1)检修小组在A 地东边,距A 地48千米;(2)出发到收工检修小组耗油24.8升.17.(1) 该振子停止时距A 点右侧5.5 mm ;(2) 1.23 s. 18.(1)-12;(2)3.6(3)-15;(4)-1. 19.(1)615-; (2)1312- ; (3)-17 ; (4)283 20.x =-2,y =16.21.(1)-4(2)-53722.(1)4715;(2)1223.(1)+2,-2,-3,+2.5,+3,+4,+1,+5,-1.5,0; (2)1 811千克;(3)1 629.9元;。

人教版七年级上册 1.3 有理数的加减法 同步练习(含答案)

人教版七年级上册  1.3 有理数的加减法 同步练习(含答案)

有理数的加减法同步练习一.选择题1.下列说法中,正确的有()①0是最小的整数;①若|a|=|b|,则a=b;①互为相反数的两数之和为零;①数轴上表示两个有理数的点,较大的数表示的点离原点较远.A.0个B.1个C.2个D.3个2.下列计算正确的是()A.7+(-5)=12B.0-2019=2019C.10-(-10)=0D.-2.1+(-2.9)=-53.下列各式计算结果为负数的是()A.-(-1)B.|-(+1)|C.-|-1|D.|1-2|4.在算式【】+(-12)=-5中,【】里应填()A.17B.7C.-17D.-75.一天早晨的气温是-3①,中午上升到15①,则这天中午比早晨的气温上升了()A.15°C B.18①C.-3①D.-18①6.如图,已知表格中竖直、水平、对角线上的三个数的和都相等,则m+n等于()A.7B.5C.-1D.-27.如果以海平面为基准,海平面以上记为正,海平面以下记为负.一艘潜艇从海平面开始下沉15m,再下沉10m,然后上升7m,此时潜艇的海拔高度可记为()A.15m B.7m C.-18m D.-25m8.已知|a|=4,|b|=7,且a-b>0,则a+b的值为()A.11B.-3或11C.-3或-11D.3或-119.有20个数排成一行,对于任意相邻的三个数,都有中间的数等于前后两数的和.如果第一个数是0,第二个数是2,这20个数的和是()A.2B.-2C.0D.410.某大楼地上共有16层,地下共有3层,某人从地上9层下降到地下2层,电梯一共下降的层数为()A.10B.11C.12D.1311.某市11月4日至7日天气预报的最高气温与最低气温如表:其中温差最大的一天是()A.11月4日B.11月5日C.11月6日D.11月7日12.如图,将-3,-2,-1,0,1,2,3,4,5分别填入九个空格内,使每行、每列、每条对角线上的三个数之和相等,现在a,b,c分别表示其中的一个数,则a-b+c的值为()A.-5B.-4C.0D.5二.填空题13.把(-3)-(-6)-(+7)+(-8)写成省略加号的和的形式为.14.计算:12-(-18)+(-7)= .15.计算:|π-3.14|+|π-3.15|= .16.若a是最小的正整数,b是绝对值最小的数,c是相反数等于它本身的数,d是到原点的距离等于2的负数,e是最大的负整数,则a+b+c+d+e= .17.如果|a|=2,|b|=3,且|a-b|=b-a,那么a-b= .三.解答题18.若|a|=8,|b|=5,且a+b>0,那么a-b的值是多少?19.下表是某中学七年级5名学生的体重情况,试完成下表(1)谁最重?谁最轻?(2)最重的与最轻的相差多少?20.某校举办秋季运动会,七年级(1)班和七年级(2)班进行拔河比赛,比赛规定标志物红绸向某班方向移动2m或2m以上,该班就获胜.红绸先向(2)班移动0.2m,后又向(1)班移动0.5m,相持几秒后,红绸向(2)班移动0.8m,随后又向(1)班移动1.4m,在一片欢呼声中,红绸再向(1)班移动1.3m,裁判员一声哨响,比赛结束,请你用计算的方法说明最终获胜的是几班?21.某登山队5名队员以二号高地为基地,开始向海拔距二号高地500米的顶峰冲击,设他们向上走为正,行程记录如下(单位:米):+150,-32,-43,+205,-30,+25,-20,-5,+30,-25,+75.(1)他们最终有没有登上顶峰?如果没有,那么他们离顶峰还差多少米?(2)登山时,5名队员在进行全程中都使用了氧气,且每人每米要消耗氧气0.04升.他们共使用了氧气多少升?22.某自行车厂一周计划生产1400辆自行车,平均每天生产自行车200辆,由于各种原因,实际每天生产量与计划每天生产量相比有出入.下表是某周的自行车生产情况(超计划生产量为正、不足计划生产量为负,单位:辆):(1)根据记录可知前三天共生产自行车辆;(2)产量最多的一天比产量最少的一天多生产辆;(3)若该厂实行按生产的自行车数量的多少计工资,即计件工资制.如果每生产一辆自行车可得人民币60 元,那么该厂工人这一周的工资总额是多少元?参考答案1-5:BDCBB 6-10:ACCAA 11-12:CA13、-3+6-7-814、2315、0.0116、-217、-1或-518、:∵|a|=8,|b|=5,∴a=±8,b=±5,∵a+b>0,∴a=8,b=±5,∴a-b=8-5=3,或a-b=8-(-5)=8+5=13,所以,a-b的值是3或13.19、:(1)由小颖体重为34千克,体重与平均体重的差为-7,得到平均体重为34-(-7)=34+7=41(千克),则小明的体重为41+3=44(千克);小刚的体重为45千克;小京的体重为41+(-4)=37(千克);小宁的体重为41千克,填表如下:∴小刚的体重最重;小颖的体重最轻;(2)最重与最轻相差为45-34=11(千克).20、:记向1班方向移动为正,向2班方向移动为负,根据题意:-0.2+0.5-0.8+1.4+1.3=-1+3.2=2.2米.∴说明红绸向1班方向移动2.2米,一班胜.21、:(1)根据题意得:150-32-43+205-30+25-20-5+30+75-25=330米,500-330=170米.(2)根据题意得:150+32+43+205+30+25+20+5+30+75+25=640米,640×0.04×5=128升.答:(1)他们没能最终登上顶峰,离顶峰害有170米;(2)他们共使用了氧气128升.22、:(1)200+5+(200-2)+(200-4)=599;(2)(200+16)-(200-10)=26;(3)[200×7+(5-2-4+13-10+16-9)]×60=84540元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新人教数学七年级上册第1.3有理数的加减法测试题
一、填空题(每小题3分,共24分)
1、+8与-12的和取___号,+4与-3的和取___号。

2、小华记录了一天的温度是:早晨的气温是-5℃,中午又上升了10℃,半夜又下降了8℃,则半夜的温度是____℃。

3、3与-2的和的倒数是____,-1与-7差的绝对值是____。

4、小明存折中原有450元,取出260元,又存入150元,现在存折中还有____元。

5、-0.25比-0.52大____,比-5
21小2的数是____。

6、若b a ,b a -<>则0,0一定是____(填“正数”或“负数”)
7、已知2
1,43,32-=-==c b a ,则式子=--+-)()(c b a _____。

8、把下列算式写成省略括号的形式:)7()3()2()8()5(++---++-+=____。

二、选择题(每小题3分,共24分)
1、已知胜利企业第一季度盈利26000元,第二季度亏本3000元,该企业上半年盈利(或亏本)可用算式表示为( )
A 、)3000()26000(+++
B 、)3000()26000(++-
C 、)3000()26000(-+-
D 、)3000()26000(-++
2、下面是小华做的数学作业,其中算式中正确的是( ) ①74)74
(0=+-;②417)417(0=--;③510)51(-=-+;④5
10)51(-=+- A 、①② B 、①③ C 、①④ D 、②④
3、小明今年在银行中办理了7笔储蓄业务:取出9.5元,存进5元,取出8元,存进12无,存进25元,取出1.25元,取出2元,这时银行现款增加了( )
A 、12.25元
B 、-12.25元
C 、12元
D 、-12元
4、-2与414的和的相反数加上6
51-等于( ) A 、-1218 B 、1214- C 、125 D 、1254 5、一个数加上-12得-5,那么这个数为( )
A 、17
B 、7
C 、-17
D 、-7
6、甲、乙、丙三地的海拔高度分别为20米,-15米和-10米,那么最高的地方比最低的地方高( )
A 、10米
B 、15米
C 、35米
D 、5米
7、计算:2
1)7()9()3()5(+
---++--所得结果正确的是( ) A 、2110- B 、219- C 、218 D 、2123-
8、若031=++-b a ,则2
1-
-a b 的值为( ) A 、214- B 、212- C 、211- D 、211 三、解答题(共52分)
1、列式并计算:
(1)什么数与125-的和等于8
7-? (2)-1减去5232与-的和,所得的差是多少?
2、计算下列各式:
(1))8()13(2)6(0+---+--
(2))12
7(65)43(6513
--+-- (3)4122)75.0()218()25.6()4317(-+---+-+
3、下列是我校七年级5名学生的体重情况,
(1)试完成下表:
(2)谁最重?谁最轻?
(3)最重的与最轻的相差多少?
4、小红和小明在游戏中规定:长方形表示加,圆形表示减,
结果小者获。

列式计算,小明和小红谁为胜者?
5、某出租汽车从停车场出发沿着东西向的大街进行汽车出租,到晚上6时,一天行驶记录如下:(向东记为正,向西记为负,单位:千米)+10、-3、+4、+2、+8、+5、-2、-8、+12、-5、-7
(1)到晚上6时,出租车在什么位置。

(2)若汽车每千米耗0.2升,则从停车场出发到晚上6时,出租车共耗没多少升?
小红:小明: 4.5-6-7
-823.2 1.1 1.4
1.3有理数的加减法参考答案:
一、
1、+,-
2、-3
3、1,6
4、340
5、0.27,523-
6、正数
7、12
23- 8、+5-8-2+3+7
二、
1、A
2、D
3、A
4、B
5、B
6、C
7、B
8、A
三、
1、
解:(1)24
1112587)125(87-=+-=---
(2)15111541)5232(1-=+-=+--- 2、
解:(1)原式=0+6+2+13-8=13
(2)原式=3
11412765436513=+++
(3)原式=3)75.025.6(218)41224317(412275.021825.64317-=--++-=--+- 3、解:(1)小明44,小刚+4,小京37,小宁41
(2)小刚最重,小颖最轻
(3)11千克,17千克
4、解:小明:14.11.12.35.4-=+-+-,小红:11)7()6(28-=-+---- 所以小红胜
5、解:(+10)+(-3)+(+4)+(+2)+(+8)+(+5)+(-2)+(-8)+(+12)+(-5)+(-7)=16,所以到晚上6时,出租车在停车场以东16千米处。

(2)
)
(2.13162.0)
7512825824310(2.0千米=⨯=-+-+++-+-+++++++++-++⨯。

相关文档
最新文档