最新生物化学复习资料重点试题第十一章代谢调节解读
11 脂代谢
11 脂代谢11脂代谢生物化学-第10单元脂代谢习题答案一、名词解释1、酮体:在肝脏中由乙酰辅酶a制备的燃料分子(β-羟基丁酸、乙酰乙酸、丙酮)。
在饥饿期间酮体就是包含脑在内的许多非政府的燃料,酮体过多将引致中毒。
2、脂肪动员:指脂肪组织中的脂肪被一系列脂肪酶水解为脂肪酸和甘油并释放入血液中供其他组织利用的过程。
3、酰基载体蛋白(acp):通过硫酯键融合脂肪酸制备的中间代谢物的蛋白质(原核生物)或蛋白质结构域(真核生物)。
4、β-氧化:脂肪酸的β-氧化作用是脂肪酸在一系列酶的作用下,在α碳原子和β碳原子之间断裂,β碳原子氧化成羧基,生成含2个碳原子的乙酰辅酶a和比原来少2个碳原子的脂肪酸。
5、肉碱穿行系统:脂酰辅酶a通过构成脂酰肉毒碱从细胞质中转至线粒体的一个穿行循环途径。
二、填空题1、在线粒体外膜脂辅酶a合成酶催化下,游离脂肪酸与(atp-mg2+)和coa-sh反应,生成脂肪酸的活化形式(脂酰coa),再经线粒体内膜肉毒碱-脂酰转移酶系统进人线粒体基质。
2、一个碳原子数为n偶数的脂肪酸在β-水解中需经(0.5n-1)次β-水解循环,分解成(0.5n)个乙酰辅酶a。
3、脂肪酸从头合成的c2供体是(乙酰辅酶a),活化的c2供体是(丙二酸单酰辅酶a)。
4、乙酰辅酶a羧化酶就是脂肪酸从头合成的速度限制酶,该酶以(生物素)辅以基为,消耗atp,催化剂乙酰辅酶a与(hco3-)分解成丙二酸单酰辅酶a。
5、肪酸从头合成中,缩合、两次还原和脱水反应时酰基都连接在(acp)上,它有一个与(辅酶a)一样的4'-磷酸泛酰巯基乙胺长臂。
6、脂肪酸制备酶复合物通常只制备(软脂酸),动物中脂肪酸碳链延长由(线粒体)或内质网酶系统催化剂。
生物化学-第10单元7、真核细胞中,不饱和脂肪酸都就是通过(水解过氧化氢)途径制备的;许多细菌的单烯脂肪酸则就是经由(厌氧)途径制备的。
8、甘油三酯是由(3-磷酸甘油)和(脂酰辅酶a)在磷酸甘油转酰酶的作用下先形成磷脂酸。
《生物化学》-第十一章
第一节 脂类概述
一、脂类的分类
想一想:
➢ 脂类是脂肪和类脂的总称。脂肪又称甘油三酯(triglyceride,TG) 或三脂酰甘油,由1分子甘油与3分子脂肪酸通过酯键结合而生成, 它是体内能量的主要来源。类脂是某些物理性质与脂肪相似的化合 物,包括磷脂(phospholipid,PL)、糖脂(glycolipid,GL)、胆 固醇(cholesterol,Ch)和胆固醇酯(cholesteryl ester,CE),它 是细胞膜结构的重要组成成分,对维持细胞形态和细胞内外物质的 转运具有重要作用
第一节 脂类概述
四、脂类的生理功能
(二)类脂的生理功能
➢ 胆固醇是细胞膜的基本结构成分,它镶嵌在细胞膜的 磷脂双层之间,使细胞膜的结构富有流动性
➢ 胆固醇在体内还可转变为胆汁酸、维生素D3、性激素 和肾上腺皮质激素等具有重要生理功能的物质
➢ 脂类对促进脂溶性维生素的吸收也有重要的作用
第二节 甘油三酯的代谢
第二节 甘油三酯的代谢
一、甘油三酯的分解代谢
(一)脂肪动员
➢ 参与脂肪动员的酶有甘油三酯脂肪酶、甘油二酯脂肪酶 和甘油一酯脂肪酶
➢ 甘油三酯脂肪酶是脂肪动员的限速酶,其活性受多种激 素的调节,故甘油三酯又称激素敏感性甘油三酯脂肪酶
➢ 肾上腺素、去甲肾上腺素、胰高血糖素、肾上腺皮质激 素等能与脂肪细胞膜的表面受体作用,使甘油三酯脂肪 酶的活性增强,促使脂肪动员,这些激素称为脂解激素
➢ 线粒体内膜的外侧和内侧分别有肉碱脂酰转移酶Ⅰ(CATI)和肉碱脂酰转移酶Ⅱ(CATⅡ) ➢ CATI催化脂酰CoA转化为脂酰肉碱,脂酰肉碱通过线粒体内膜上的载体转移到线粒体内膜上 ➢ 脂酰肉碱在CATⅡ的催化下重新生成脂酰CoA并释放肉碱,脂酰CoA随后进入线粒体基质中进行
生物化学-第十一章-物质代谢调节控制
一、酶活性的调节
A
B
E1
C E2
D E3
催化反应速度最慢的酶:关键酶或限速酶
酶结构调节 酶数量调节 (快速调节) (迟缓调节)
1、变构调节
活性中心
代谢物
非共价键
E
别位
变构酶 E 酶结构发生改变
变构效应剂
变构激活剂 变构抑制剂
酶活性↑ 酶活性↓
变构调节的生理意义
① 代谢终产物反馈抑制 (feedback inhibition) 反应途径中的酶,使代谢物不致生成过多 。
呼吸链 蛋白质合成 尿素合成 三羧酸循环 氧化磷酸化 血红素合成 蛋白质降解 核酸合成
分布区域 线粒体 核糖体 胞浆、线粒体 线粒体 线粒体 胞浆、线粒体 溶酶体、蛋白酶体 细胞核
• 多酶体系的隔离分布:使物质代谢互不干扰
酶活性的调节方式: 1、快速调节,也叫酶活性调节。
2、迟缓调节,也叫酶含量调节。
• 受体分类
按受体在细胞的部位不同,分为:
Ι 膜受体 Ⅱ 细胞内受体
细胞膜受体和细胞内受体
细胞膜受体的类型 1. 离子通道偶联受体 2. G蛋白偶联受体 3. 酶偶联受体
离子通道偶联受体
G蛋白偶联受体
G蛋白
全称:鸟苷酸结合蛋白 特点: ① 由a、b、g亚基组成的异聚体; ②具有GTP酶(GTPase)的活性,能结合GTP或GDP; ③ 其本身的构象改变可活化效应蛋白。
乙酰CoA
乙酰CoA羧化酶
丙二酰CoA
长链脂酰CoA
②变构调节使能量得以有效利用,不致浪费。
+ 糖原合酶
G-6-P –
糖原磷酸化酶
促进糖的储存
抑制糖的氧化
2、共价修饰
生物化学复习题.2
生物化学各章知识要点及复习参考题蛋白质的酶促降解、氨基酸代谢、核苷酸代谢知识要点蛋白质和核酸是生物体中有重要功能的含氮有机化合物,它们共同决定和参与多种多样的生命活动。
在自然界的氮素循环中,大气是氮的主要储库,微生物通过固氮酶的作用将大气中的分子态氮转化成氨,硝酸还原酶和亚硝酸还原酶也可以将硝态氮还原为氨,在生物体中氨通过同化作用和转氨基作用等方式转化成有机氮,进而参与蛋白质和核酸的合成。
(一)蛋白质和氨基酸的酶促降解在蛋白质分解过程中,蛋白质被蛋白酶和肽酶降解成氨基酸。
氨基酸用于合成新的蛋白质或转变成其它含氮化合物(如卟啉、激素等),也有部分氨基酸通过脱氨和脱羧作用产生其它活性物质或为机体提供能量,脱下的氨可被重新利用或经尿素循环转变成尿素排出体外。
(二)核酸的酶促降解核酸通过核酸酶降解成核苷酸,核苷酸在核苷酸酶的作用下可进一步降解为碱基、戊糖和磷酸。
戊糖参与糖代谢,嘌呤碱经脱氨、氧化生成尿酸,尿酸是人类和灵长类动物嘌呤代谢的终产物。
其它哺乳动物可将尿酸进一步氧化生成尿囊酸。
植物体内嘌呤代谢途径与动物相似,但产生的尿囊酸不是被排出体外,而是经运输并贮藏起来,被重新利用。
嘧啶的降解过程比较复杂。
胞嘧啶脱氨后转变成尿嘧啶,尿嘧啶和胸腺嘧啶经还原、水解、脱氨、脱羧分别产生β-丙氨酸和β-氨基异丁酸,两者经脱氨后转变成相应的酮酸,进入TCA循环进行分解和转化。
β-丙氨酸还参与辅酶A的合成。
(三)核苷酸的生物合成生物能利用一些简单的前体物质从头合成嘌呤核苷酸和嘧啶核苷酸。
嘌呤核苷酸的合成起始于5-磷酸核糖经磷酸化产生的5-磷酸核糖焦磷酸(PRPP)。
合成原料是二氧化碳、甲酸盐、甘氨酸、天冬氨酸和谷氨酰氨。
首先合成次黄嘌呤核苷酸,再转变成腺嘌呤核苷酸和鸟嘌呤核苷酸。
嘧啶核苷酸的合成原料是二氧化碳、氨、天冬氨酸和PRPP,首先合成尿苷酸,再转变成UDP、UTP和CTP。
在二磷酸核苷水平上,核糖核苷二磷酸(NDP)可转变成相应的脱氧核糖核苷二磷酸。
大学生物化学代谢途径知识点归纳总结
大学生物化学代谢途径知识点归纳总结在大学学习生物化学时,生物化学代谢途径是一个重要的知识点。
了解生物化学代谢途径不仅对于理解生物体内的化学反应非常有帮助,而且在许多实际应用中也非常重要。
本文将对生物化学代谢途径的知识点进行归纳总结。
一、代谢途径的定义与分类代谢途径是生物体内以特定方向和特定反应序列进行的化学变化的过程。
它可以分为两类:异化途径和同化途径。
1. 异化途径异化途径是指生物体内的一系列化学反应,将复杂的有机物转化为简单的无机物或有机物,并释放出能量。
典型的异化途径包括糖异化途径和脂肪异化途径。
2. 同化途径同化途径是指生物体内的一系列化学反应,将简单的无机物或有机物转化为复杂的有机物,并消耗能量。
典型的同化途径包括光合作用和细胞呼吸。
二、糖异化途径糖异化途径是指糖类物质在生物体内产生能量的过程。
它主要包括糖酵解和糖氧化两个阶段。
1. 糖酵解糖酵解是指葡萄糖分子通过一系列化学反应逐步分解为乳酸或乙醇,并释放出少量能量。
这个过程主要发生在无氧条件下。
2. 糖氧化糖氧化是指通过细胞呼吸将葡萄糖完全氧化为二氧化碳和水,同时释放出大量能量。
这个过程主要发生在有氧条件下。
三、脂肪异化途径脂肪异化途径是指脂肪酸在生物体内产生能量的过程。
它主要包括β氧化和三酰甘油解体两个阶段。
1. β氧化β氧化是指脂肪酸分子通过一系列化学反应逐步分解为乙酰辅酶A分子,并释放出少量能量。
这个过程主要发生在线粒体内。
2. 三酰甘油解体三酰甘油解体是指三酰甘油分子被分解为甘油和脂肪酸,并释放出大量能量。
这个过程主要发生在脂肪细胞内。
四、光合作用光合作用是指植物利用光能将二氧化碳和水转化为葡萄糖和氧气的过程。
它包括光反应和暗反应两个阶段。
1. 光反应光反应是指光能转化为化学能的过程,产生ATP和还原剂NADPH。
这个过程主要发生在叶绿体的光合作用单位中。
2. 暗反应暗反应是指利用ATP和NADPH将二氧化碳固定为有机物质的过程。
生物化学第11章 蛋白质的分解代谢
生物化学第11章蛋白质的分解代谢第十一章蛋白质的分解代谢课外练习题一、名词解释1、氮平衡;2、一碳单位;3、转氨基作用;4、联合脱氨基作用;5、必须氨基酸;6、生糖氨基酸;7、尿素循环。
二、符号辨识1、GPT;2、GOT;三、填空1、蛋白质消化吸收的主要部位是(),肠液中的肠激酶可激活()酶原。
2、体内主要的转氨酶是()转氨酶和()转氨酶,其辅酶是()。
3、体内氨的主要代谢去向是在()内合成尿素,经()排出。
4、肝脏通过()循环将有毒的氨转变为无毒的()。
5、谷氨酰胺是体内氨的()、()和()形式。
6、氨在血液中的运输形式是()和()。
7、胃液中胃蛋白酶可激活胃蛋白酶原,此过程称为()作用。
8、转氨酶的辅酶是(),它与接受底物脱下的氨基结合转变为()。
9、体内不能合成而需要从食物供应的氨基酸称为()氨基酸。
10、人体先天性缺乏()羟化酶可引起苯丙酮酸尿症;而缺乏()酶可引起白化病。
四、判别正误1、蛋白质在人体内消化的主要器官是胃和小肠。
()2、蛋白质的生理价值主要取决于必须氨基酸的种类、数量和比例。
()3、L-谷氨酸脱氢酶不仅是L-谷氨酸脱氨的主要的酶,同时也是联合脱氨基作用不可缺少的重要的酶。
()4、尿素的合成和排出都是由肝脏来承担的。
()5、磷酸吡哆醛只作为转氨酶的辅酶。
()6、体内血氨升高的主要原因往往是肝功能障碍引起的。
()7、谷氨酸是联合脱氨基作用的重要中间代谢物,若食物中缺乏时可引起脱氨基作用障碍。
() 8、人体内若缺乏维生素B6、维生素PP、维生素B12和叶酸,均会引起氨基酸代谢障碍。
() 9、在体内,半胱氨酸除作为蛋白质组成成分外,仅是产生硫酸根的主要来源。
() 10、氨基酸的降解能导致糖的合成。
()五、单项选择1、食物蛋白质的互补作用是指()。
A、糖与蛋白质混合食用,提高营养价值;B、脂肪与蛋白质混合食用,提高营养价值;C、几种蛋白质混合食用,提供营养价值;D、糖、脂肪和蛋白质混合食用,提高营养价值; 2、必须氨基酸不包括()。
2022考研西医综合备考:【生物化学】物质代谢的调节
2022年西医综合考研复习已经开始,在此整理了2022考研西医综合备考:【生物化学】物质代谢的调节,希望能帮助大家!生物化学知识:物质代谢的调节一、代谢调节的方式和水平1. 细胞水平的调节通过改变关键酶的结构或含量以影响酶的活性,进而对代谢进行调节。
是生物最基本的调节方式。
关键酶催化的反应特点:在整条代谢通路中催化的反应速度最慢,又称限速酶;催化单向反应或非平衡反应;受多种效应物的调节。
2. 激素水平的调节是通过与靶细胞受体特异结合,将激素信号转化为细胞内一系列化学反应,最终表现出激素的生物效应。
3. 神经水平的调节是神经系统通过激素、酶或直接对组织、器官施加影响,进行整体调节。
二、细胞水平的调节(一)酶活性的调节通过改变酶结构快速调节酶活性,有2种调节方式。
1. 变构调节变构剂与酶的调节亚基或调节部位非共价结合,引起酶分子构象改变,从而改变酶活性。
受调节的酶称为变构酶或别构酶。
变构剂有底物、产物、代谢途径终产物及小分子核苷酸类物质。
变构效应有变构激活和变构抑制。
变构调节主要以反馈方式控制酶的活性,反馈抑制(负反馈)普遍存在。
2. 共价修饰调节酶分子的某些基团在另一种酶催化下发生化学共价修饰(如磷酸化/脱磷酸,乙酰化/脱乙酰,甲基化/脱甲基等),使酶的构象改变,从而改变酶活性。
具有放大效应。
以上两种调节相辅相成。
对某一具体的酶而言,可同时受到它们的调节。
(二)酶量的调节通过改变酶的合成或降解以调节细胞内酶的含量,从而调节代谢的速度和强度。
属迟缓调节。
酶合成是受基因表达调节的,可在转录和翻译水平进行。
1. 原核生物基因表达的调节1960~1961年Jacob和Monod对大肠杆菌乳糖发酵过程酶的诱导合成及各种突变型研究后,提出了操纵子模型。
操纵子是原核生物基因表达的协调单位,一般含2~6个基因。
操纵子模型的核心是对原核生物基因的划分,以后为基因结构分析证实并丰富该模型,还发现色氨酸操纵子、半乳糖操纵子等。
生物化学试题库及其答案-代谢调节
生物化学试题库及其答案-代谢调节一、填空题1.酶促化学修饰的特点有:(1)除黄嘌呤氧化酶外,属于这类调节方式的酶都有()两种形式。
(2)化学修饰会引起酶分子()的变化。
而且,其是酶促反应,故有()效应。
(3)()是最常见的酶促化学修饰反应,一般是耗能的。
2.1961年Monod和Jocob首次提出了大肠杆菌乳糖()模型。
3.细胞内酶的数量取决于()和()。
4.许多代谢途径的第一个酶是限速酶,终产物多是它的(),对它进行(),底物多为其()。
5.原核细胞酶的合成速率主要在()水平进行调节。
6.乳糖操纵子的诱导物是(),色氨酸操纵子的辅阻遏物是()。
7.分支代谢途径中的终产物分别抑制其分支上的限速酶,分支点共同的中间产物抑制前面的限速酶,称为()。
8.G蛋白具有()酶的活性;负责调节激素对()酶的影响9.作为信号跨膜传递的第二信使的物质有cAMP、()、()和()等10.调节酶类主要分为两大类()和()。
11.真核生物基因表达的调节有两种类型的调控,一种是()的调控;另一种是()。
12.真核细胞中酶的共价修饰是();原核细胞中酶的共价修饰主要形式是()。
二、选择题1.各种分解途径中,放能最多的途径是:A、糖酵解B、三羧酸循环C、—氧化D、氧化脱氨基2.操纵子调节系统属于哪一种水平的调节?A、复制水平的调节B、转录水平的调节C、转录后加工的调节D、翻译水平的调节3.下列关于操纵基因的论述哪个是正确的?A、能专一性地与阻遏蛋白结合B、是RNA聚合酶识别和结合的部位C、是诱导物和辅阻遏物的结合部位D、能于结构基因一起转录但未被翻译4.下列有关调节基因的论述,哪个是对的?A、调节基因是操纵子的组成部分B、是编码调节蛋白的基因C、各种操纵子的调节基因都与启动基因相邻D、调节基因的表达受操纵子的控制5.以下有关阻遏蛋白的论述哪个是正确的?A、阻遏蛋白是调节基因表达的产物B、阻遏蛋白妨碍RNA聚合酶与启动子结合C、阻遏蛋白RNA聚合酶结合而抑制转录D、阻遏蛋白与启动子结合而阻碍转录的启动6.下面关于共价修饰调节酶的说法哪个是错误的?A、共价修饰调节酶以活性和无活性两种形式存在B、两种形式之间由酶催化共价修饰反应相互转化C、经常受激素调节、伴有级联放大效应D、是高等生物独有的调节形式7.指出下列有关限速酶的论述哪个是错误的?A、催化代谢途径的第一步反应多为限速酶B、限速酶多是受代谢物调节的别构酶C、代谢途径中相对活性最高的酶是限速酶,对整个代谢途径的速度起关键作用D、分支代谢途径中的第一个酶经常是该分支的限速酶8.关于操纵子的论述哪个是错误的?A、操纵子不包括调节基因B、操纵子是由启动基因、操纵基因与其控制的一组功能上相关的结构基因组成的基因表达调控单位C、代谢物往往是该途径可诱导酶的诱导物,代谢终产物往往是可阻遏酶的辅阻遏物D、真核细胞的酶合成也存在诱导和阻遏现象,因此也是由操纵子进行调控的9.按照操纵子学说,对基因转录起调控作用的是:A、诱导酶B、阻遏蛋白C、RNA聚合酶D、DNA聚合酶10.胰岛素受体具有什么活性?A、腺苷酸环化酶B、蛋白激酶CC、酪氨酸激酶D、磷酸肌醇酶D11.反应步骤为:ABC单独E或D存在是,对酶1无作用,当EE、D同时过量存在时,对酶1有抑制作用,该抑制方式为反馈抑制方式的:A、累积反馈B、顺序反馈C、同工酶调节D、协同调节三、是非题1.蛋白激酶和蛋白磷酸酶对蛋白质进行磷酸化和去磷酸化的共价修饰是真核细胞代谢的重要方式。
生物化学复习资料重点试题第十一章代谢调节解读
第十一章代谢调节一、知识要点代谢调节是生物在长期进化过程中,为适应外界条件而形成的一种复杂的生理机能。
通过调节作用细胞内的各种物质及能量代谢得到协调和统一,使生物体能更好地利用环境条件来完成复杂的生命活动。
根据生物的进化程度不同,代谢调节作用可在不同水平上进行:低等的单细胞生物是通过细胞内酶的调节而起作用的;多细胞生物则有更复杂的激素调节和神经调节。
因为生物体内的各种代谢反应都是通过酶的催化作用完成的,所以,细胞内酶的调节是最基本的调节方式。
酶的调节是从酶的区域化、酶的数量和酶的活性三个方面对代谢进行调节的。
细胞是一个高效而复杂的代谢机器,每时每刻都在进行着物质代谢和能量的转化。
细胞内的四大类物质糖类、脂类、蛋白质和核酸,在功能上虽各不相同,但在代谢途径上却有明显的交叉和联系,它们共同构成了生命存在的物质基础。
代谢的复杂性要求细胞有数量庞大、功能各异和分工明确的酶系统,它们往往分布在细胞的不同区域。
例如参与糖酵解、磷酸戊糖途径和脂肪酸合成的酶主要存在胞浆中;参与三羧酸循环、脂肪酸β-氧化和氧化磷酸化的酶主要存在于线粒体中;与核酸生物合成有关的酶大多在细胞核中;与蛋白质生物合成有关的酶主要在颗粒型内质网膜上。
细胞内酶的区域化为酶水平的调节创造了有利条件。
生物体内酶数量的变化可以通过酶合成速度和酶降解速度进行调节。
酶合成主要来自转录和翻译过程,因此,可以分别在转录水平、转录后加工与运输和翻译水平上进行调节。
在转录水平上,调节基因感受外界刺激所产生的诱导物和辅阻遏物可以调节基因的开闭,这是一种负调控作用。
而分解代谢阻遏作用通过调节基因产生的降解物基因活化蛋白(CAP促进转录进行,是一种正调控作用,它们都可以用操纵子模型进行解释。
操纵子是在转录水平上控制基因表达的协调单位,由启动子(P、操纵基因(O和在功能上相关的几个结构基因组成;转录后的调节包括,真核生物mRNA 转录后的加工,转录产物的运输和在细胞中的定位等;翻译水平上的调节包括,mRNA 本身核苷酸组成和排列(如SD序列,反义RNA的调节,mRNA 的稳定性等方面。
生化-代谢调节考点整理
生化-代谢调节考点整理●代谢生物体代谢包括同化作用和异化作用。
代谢目的是消化吸收外界可利用的物质,同化生成自身所需要的物质,从而维持新生个体的生长、发育、繁殖●代谢策略●生物体代谢的目的在于利用外界物质产生自身所需要的物质。
再利用外界物质时,生物体通过酶的作用产生合成自身物质所需要的重要中间产物6-磷酸葡萄糖,丙酮酸,乙酰CoA等以及能量物质ATP和NADPH。
上述物质为生物体合成自身构件提供了重要的物质来源。
●丙酮酸在物质代谢中的作用●器官间代谢的协同●代谢的细胞区域化●生物体不同代谢途径在细胞中的不同部位进行。
同时细胞结构对代谢调节具有分隔控制的作用,具体表现为细胞的区域化使不同的代谢在不同区域进行,互不干扰、相互协调、相互制约;细胞的区域化使反应所需要的酶、第五等有关因子得到浓缩,有利于反应顺利进行;细胞膜可以通过调节物质运输进而调节代谢●代谢途径之间的联系●(1)糖代谢与脂类代谢之间相互关系。
●(2)糖代谢产物进入氨基酸(蛋白质构件分子)代谢。
●糖代谢中糖酵解途径中间产物3-磷酸甘油酸、磷酸烯醇式丙酮酸、丙酮酸和三羧酸循环的中间产物草酰乙酸、α-酮戊二酸,以及磷酸戊糖途径的中间产物4-磷酸赤藓糖、5-磷酸核糖为氨基酸合成提供碳骨架,并根据合成氨基酸的前体物质不同分成丝氨酸族(3-磷酸甘油酸)、丙氨酸族(丙酮酸)、天冬氨酸族(草酰乙酸)、谷氨酸族(α-酮戊二酸)、芳香氨基酸族(磷酸烯醇式丙酮酸和4-磷酸赤藓糖)、组氨酸族(5-磷酸核糖)6个族。
●(3)氨基酸代谢产物进入糖代谢。
●氨基酸降解产生的主要碳水化合物为7种碳骨架,分别是丙酮酸、草酰乙酸、α-酮戊二酸、琥珀酰CoA、延胡索酸、乙酰CoA、乙酰乙酰CoA。
这7种碳骨架能够通过葡萄糖异生作用产生葡萄糖,或者通过酮体代谢途径生成酮体,因此氨基酸可以分成生糖氨基酸、生酮氨基酸、生糖生酮氨基酸。
●(4)脂类代谢与氨基酸代谢之间的关系。
●脂肪降解产生甘油和脂肪酸,甘油通过糖酵解途径、TCA循环能够产生形成氨基酸的前体物质,从而合成氨基酸;脂肪酸通过β-氧化产生乙酰CoA,进入乙醛酸循环,进而产生形成氨基酸的前体物质,从而合成氨基酸。
生物化学第十一章核酸降解与核苷酸生物合成
第二节
一.核苷酸的降解 二.嘌呤的降解 三.嘧啶的降解
核苷酸的降解
核苷酸的降解
• 核苷酸水解掉磷酸基就就会变成核苷,生 物体内广泛存在的磷酸单酯酶和核苷酸酶 可以催化这个反应。 • 核苷酸+水+核苷酸酶→ → →核苷+磷酸 • 核苷在核苷酶的作用下继续分解: 1. 核苷+磷酸(核苷磷酸化酶)←→碱基+戊 糖-1-磷酸; 2. 核苷+水*(核苷水解酶)→ → →碱基+戊 糖
第四节
小
结
1. 降解核酸的不同酶 2. 核苷酸的从头合成过程的要点(包括嘌呤 和嘧啶) 3. 嘌呤和嘧啶环中的原子来源 4. 补救途径的意义
第十章 核酸降解与核苷酸生物合 成
第一节 第二节 第三节 第四节 核酸的降解 核苷酸的降解 核苷酸的生物合成 小 结
第一节
一.概述 二.核酸酶的种类
核酸的降解
概
•
1. 2. 3. 4. 5. 6.
述
核酸酶促降解产物核苷酸及其衍生物,在代谢 上非常重要: 核苷酸是核酸生物合成的前体; 某些核苷酸及其衍生物是很多生物合成过程中 的重要中间物,比如UDPG等等; 腺苷酸是生物体中重要的辅因子,比如NAD+、 FAD等等; 某些核苷酸是重要的中间代谢调节物质,如 cAMP 等等; 肌苷酸和鸟苷酸是强力的助鲜剂; ATP是生物能量代谢中通用的高能化合物。
1. 嘌呤核苷酸的合成特点是首先直接形成次黄嘌 呤核苷酸,然后才能转变成为其他的嘌呤核苷 酸,而不是先形成游离的嘌呤,再生成核苷酸; 2. PRPP是核苷酸中磷酸核糖部分的供体; 3. 嘌呤的各原子是在PRPP的C-1位置上逐个加上 去的,关键步骤是PRPP和谷氨酰胺形成5-磷酸 核糖胺; 4. 由不同的化合物提供不同的原子,最终形成次 黄嘌呤核苷酸。
东北农业大学 生物化学 第十一章代谢的调控
例:脂肪酸的氧化酶系存在于线粒体内,而脂
肪酸的合成酶系主要存在于线粒体外,它们的 代谢是互相制约的 合成脂肪酸的原料乙酰CoA要由线粒体内转 移到线粒体外,脂肪酸氧化的原料脂酰CoA 要由线粒体外向线粒体内转运 酶的分布局限决定了代谢途径的区域化,这样 的区域化为代谢调节创造了有利条件,某些调 节因素可以较专一地影响某一细胞组分的酶活 性,而不影响其他组分中酶的活性
P
H2O
目前已知有六种共价修饰方式: 磷酸化/去磷酸化 乙酰化/去乙酰化 腺苷酰化/去腺苷酰化 尿苷酰化/去尿苷酰化 甲基化/去甲基化 氧化(S-S)/还原(2SH)
其中磷酸化/去磷酸化为最普遍、最重要,它反应 灵敏、节约能源、机制多样、生理效应显著,是 哺乳动物酶化学修饰的主要形式 细菌主要采取核苷酰化形式
第二信使学说-20世纪50年代E.W.Sutherland 提出
糖原分解的 激素调节
肾上腺素或胰高血糖素(第一信使)
受体 肾上腺素(第一 信使)一旦与靶 腺苷酸环化酶 腺苷酸环化酶 细胞膜相应受体 (无活性) (活性) 结合,即可促进 cAMP(第二信使) ATP AMP 胞内cAMP(第 蛋白激酶 二信使)的产生, 无活性 蛋白激酶(活性) 从而激活一系列 酶,导致糖原分 磷酸化酶激酶 (无活性) 解成葡萄糖,进 磷酸化酶激酶 (活性) 入血液引起血糖 升高。 磷酸化酶 a
在细胞内的反馈调节中,广泛地存在负反馈,而 正反馈的例子不多 例如,在三羧酸循环中,乙酰CoA必须先与草酰 乙酸结合才能被氧化,而草酰乙酸又是乙酰CoA 被氧化的最终产物。草酰乙酸的量若增多,则 乙酰CoA被氧化的量亦多;草酰乙酸的量减少, 则乙酰CoA的氧化量亦减少,这是草酰乙酸对乙 酰CoA氧化正反馈控制的例子。
物质代谢调节知识点总结
物质代谢调节知识点总结一、碳水化合物的代谢碳水化合物是生物体内主要的能量来源,其代谢主要分为糖原形成、糖解和糖异生三个过程。
1. 糖原形成糖原是一种由葡萄糖分子组成的多糖,以肝脏和肌肉为主要合成地点。
当血糖浓度升高时,胰岛素的分泌增加,促进肝脏和肌肉细胞内糖原的合成,从而将多余的葡萄糖转化为糖原储存起来。
2. 糖解糖解是指将碳水化合物分解为葡萄糖的过程,这一过程在细胞内进行。
葡萄糖在细胞内被氧化分解,生成能量和水,同时用于细胞代谢和功能活动。
3. 糖异生糖异生是指通过一系列代谢反应,利用非糖物质(如脂肪、蛋白质)合成葡萄糖的过程。
当机体葡萄糖储备不足时,糖异生能够维持血糖水平,保证机体正常的生理功能。
二、脂肪的代谢脂肪是储存能量的主要形式,其代谢包括脂质的消化吸收、脂类的分解和合成以及氧化等过程。
1. 脂类的消化吸收食物中摄入的脂类经过胃肠道消化酶的作用,分解成脂肪酶能够降解的小分子脂肪,然后被吸收到肠细胞内。
在肠细胞内,这些小分子脂肪重新合成为三酸甘油酯,然后通过淋巴系统进入其他组织。
2. 脂肪的分解脂肪在体内被分解为甘油和脂肪酸,并经过代谢产生能量和合成其他脂质物质。
这一过程受到甲状腺激素和胰岛素的调节,其中甲状腺激素促进脂肪酸的分解,胰岛素则促进脂肪的合成。
3. 脂肪的合成脂肪的合成主要发生在肝脏和脂肪组织中,受到胰岛素和一氧化氮的调节。
胰岛素促进脂肪的合成,而一氧化氮则抑制脂肪酸的合成和脂肪的储存。
4. 脂肪的氧化脂肪氧化是维持机体内能量平衡的重要途径。
脂肪氧化主要在线粒体内进行,产生大量的三酰甘油和酮体,是维持机体正常生理功能的重要能量来源。
三、蛋白质的代谢蛋白质是生物体内各种酶、激素、血液蛋白等重要组成部分,其代谢主要包括蛋白质的降解、氨基酸的转运和利用以及蛋白质的合成等过程。
1. 蛋白降解蛋白质在体内被分解为氨基酸,其中主要受到一氧化氮的调节。
氨基酸经过一系列代谢反应,生成能量和其他物质,是维持机体内氮平衡的重要途径。
生物化学复习资料:代谢途径与分子生物学基础
生物化学复习资料:代谢途径与分子生物学基础生物化学是研究生物体内各种化学反应和代谢途径的科学。
代谢是生物体维持正常功能所必需的化学反应,并且在这些反应中产生所需的能量。
本文将重点介绍代谢途径与分子生物学基础的相关知识。
代谢途径代谢途径是生物体内一系列相互关联、相互作用的化学反应过程。
其中最重要的包括糖代谢、脂代谢、蛋白质代谢等。
这些代谢途径在生物体内相互协作,确保细胞正常运作。
其中,糖代谢包括糖异生和糖酵解两种反应。
糖异生是指生物体内通过某些途径合成葡萄糖,而糖酵解则是将葡萄糖在细胞内代谢成能量。
糖异生糖异生通过不同的途径将非糖有机物转化为葡萄糖,提供了细胞所需的能量。
糖异生的启动物质是丙酮酸和类胡萝卜素。
在糖异生过程中,需要通过一系列的酶促反应将非糖有机物转化为糖类。
糖酵解糖酵解是将糖类分解成乳酸和乙醇,同时释放出能量。
这是细胞内的一种常见代谢途径,可以为细胞提供所需的能量。
糖酵解的关键酶包括磷酸己糖激酶、己糖-6-磷酸激酶等。
脂代谢脂代谢是指在生物体内脂类分解成构成它的基本组成部分,提供细胞所需的能量。
脂类代谢包括脂异生和脂酸氧化两种过程。
其中,脂异生是指将脂肪酸和甘油合成三酸甘油酯的过程。
分子生物学基础分子生物学是研究生物领域中生命现象的分子机制和分子结构的学科。
分子生物学基础着重于研究生物体内的分子组成、结构及其功能,并且研究生物体内分子水平的调控机制。
分子生物学的发展对于理解生物体内各种生理过程起着重要作用。
分子生物学的重要概念分子生物学的重要概念包括DNA、RNA、蛋白质等生物大分子,以及基因表达、DNA复制、蛋白质合成、信使RNA的功能等。
DNA是生物体内贮存遗传信息的大分子,其中包含了细胞内的所有遗传信息。
RNA则是DNA的转录产物,参与了蛋白质的合成过程。
基因表达调控基因表达调控是指生物体内对基因进行表达的调节过程。
这包括转录、翻译、后转录修饰等过程。
此外,还包括表观遗传学、miRNA等机制对基因表达的调控。
生物化学-考试知识点_7物质代谢调节整理(1)
物质代谢调节1.细胞水平调节:细胞水平的调节主要是细胞内酶水平的调节。
方式:细胞内酶呈隔离分布、代谢调节作用点(限速酶、关键酶)、酶的别构调节、酶的化学修饰、同工酶对物质代谢的调节、酶含量的调节2.关键酶:催化代谢途径定向步骤的酶,往往是代谢途径反应的第一个酶。
在可逆反应中偏向一个方向,决定着多酶体系的催化方向。
限速酶:体内代谢是一系列酶促反应的总和。
整个代谢途径速度取决于多酶体系中催化活力最低、米氏常数最大、催化反应速度最慢的酶。
此酶起着限速作用,代谢调节的作用点。
生理意义:①限速酶的催化活力最低,Km最大,催化反应速度最慢,故它的速度决定了整个代谢途径的总速度。
②关键酶多为催化各代谢途径反应的第一个酶,在催化可逆反应中往往极度偏向一个方向,故它的定向决定着多酶体系催化代谢反应的方向。
③代谢调节主要是通过对限速酶与关键酶活性的调节而实现的,而关键酶大多同时又是限速酶,所以它们是代谢调节的作用点。
例:己糖激酶3.酶的别构调节:小分子化合物与酶分子活性中心以外的某一部位特异结合,引起酶蛋白分子构象的轻微改变,从而引起酶活性的改变,这种调节称为酶的别构调节。
方式:生理意义:①代谢终产物反馈抑制反应途径中的酶,使代谢物不致生成过多。
②别构调节使机体维持在相对恒定的生理状态。
例:HMG-CoA还原酶4.酶的化学修饰:酶蛋白肽链上某些残基在酶的催化下发生可逆的共价修饰,从而引起酶活性改变,这种调节称为酶的化学修饰。
生理意义:①催化的反应具有放大效应,比别构调节调节效率高。
②消耗的ATP少于酶蛋白合成所需。
③比酶蛋白合成的调节迅速。
④是体内酶活性经济、高效的调节方式。
例:磷酸化酶。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十一章代谢调节一、知识要点代谢调节是生物在长期进化过程中,为适应外界条件而形成的一种复杂的生理机能。
通过调节作用细胞内的各种物质及能量代谢得到协调和统一,使生物体能更好地利用环境条件来完成复杂的生命活动。
根据生物的进化程度不同,代谢调节作用可在不同水平上进行:低等的单细胞生物是通过细胞内酶的调节而起作用的;多细胞生物则有更复杂的激素调节和神经调节。
因为生物体内的各种代谢反应都是通过酶的催化作用完成的,所以,细胞内酶的调节是最基本的调节方式。
酶的调节是从酶的区域化、酶的数量和酶的活性三个方面对代谢进行调节的。
细胞是一个高效而复杂的代谢机器,每时每刻都在进行着物质代谢和能量的转化。
细胞内的四大类物质糖类、脂类、蛋白质和核酸,在功能上虽各不相同,但在代谢途径上却有明显的交叉和联系,它们共同构成了生命存在的物质基础。
代谢的复杂性要求细胞有数量庞大、功能各异和分工明确的酶系统,它们往往分布在细胞的不同区域。
例如参与糖酵解、磷酸戊糖途径和脂肪酸合成的酶主要存在胞浆中;参与三羧酸循环、脂肪酸β-氧化和氧化磷酸化的酶主要存在于线粒体中;与核酸生物合成有关的酶大多在细胞核中;与蛋白质生物合成有关的酶主要在颗粒型内质网膜上。
细胞内酶的区域化为酶水平的调节创造了有利条件。
生物体内酶数量的变化可以通过酶合成速度和酶降解速度进行调节。
酶合成主要来自转录和翻译过程,因此,可以分别在转录水平、转录后加工与运输和翻译水平上进行调节。
在转录水平上,调节基因感受外界刺激所产生的诱导物和辅阻遏物可以调节基因的开闭,这是一种负调控作用。
而分解代谢阻遏作用通过调节基因产生的降解物基因活化蛋白(CAP促进转录进行,是一种正调控作用,它们都可以用操纵子模型进行解释。
操纵子是在转录水平上控制基因表达的协调单位,由启动子(P、操纵基因(O和在功能上相关的几个结构基因组成;转录后的调节包括,真核生物mRNA 转录后的加工,转录产物的运输和在细胞中的定位等;翻译水平上的调节包括,mRNA 本身核苷酸组成和排列(如SD序列,反义RNA的调节,mRNA 的稳定性等方面。
酶活性的调节是直接针对酶分子本身的催化活性所进行的调节,在代谢调节中是最灵敏、最迅速的调节方式。
主要包括酶原激活、酶的共价修饰、反馈调节、能荷调节及辅因子调节等。
二、习题(一名词解释1.诱导酶(Inducible enzyme2.标兵酶(Pacemaker enzyme3.操纵子(Operon4.衰减子(Attenuator5.阻遏物(Repressor6.辅阻遏物(Corepressor7.降解物基因活化蛋白(Catabolic gene activator protein8.腺苷酸环化酶(Adenylate cyclase9.共价修饰(Covalent modification10.级联系统(Cascade system11.反馈抑制(Feedback inhibition12.交叉调节(Cross regulation13.前馈激活(Feedforward activation14.钙调蛋白(Calmodulin(二英文缩写符号1. CAP(Catabolic gene activator protein:2. PKA(Protein kinase:3. CaM(Calmkdulin:4. ORF(Open reading frame:(三填空题1. 哺乳动物的代谢调节可以在、、和四个水平上进行。
2. 酶水平的调节包括、和。
其中最灵敏的调节方式是。
3. 酶合成的调节分别在、和三个方面进行。
4. 合成诱导酶的调节基因产物是,它通过与结合起调节作用。
5. 在分解代谢阻遏中调节基因的产物是,它能与结合而被活化,帮助与启动子结合,促进转录进行。
6. 色氨酸是一种,能激活,抑制转录过程。
7. 乳糖操纵子的结构基因包括、和。
8. 在代谢网络中最关键的三个中间代谢物是、和。
9. 酶活性的调节包括、、、、和。
10.共价调节酶是由对酶分子进行,使其构象在和之间相互转变。
11.真核细胞中酶的共价修饰形式主要是,原核细胞中酶共价修饰形式主要是。
(四选择题1. 利用操纵子控制酶的合成属于哪一种水平的调节:A.翻译后加工B.翻译水平C.转录后加工D.转录水平2. 色氨酸操纵子调节基因产物是:A.活性阻遏蛋白B.失活阻遏蛋白C.cAMP受体蛋白D.无基因产物3. 下述关于启动子的论述错误的是:A.能专一地与阻遏蛋白结合B.是RNA聚合酶识别部位C.没有基因产物D.是RNA聚合酶结合部位4. 在酶合成调节中阻遏蛋白作用于:A.结构基因B.调节基因C.操纵基因D.RNA聚合酶5. 酶合成的调节不包括下面哪一项:A.转录过程B.RNA加工过程C.mRNA翻译过程D.酶的激活作用6. 关于共价调节酶下面哪个说法是错误的:A.都以活性和无活性两种形式存在B.常受到激素调节C.能进行可逆的共价修饰D.是高等生物特有的调节方式7. 被称作第二信使的分子是:A.cDNAB.ACPC.cAMPD.AMP8.反馈调节作用中下列哪一个说法是错误的:A.有反馈调节的酶都是变构酶B.酶与效应物的结合是可逆的C.反馈作用都是使反速度变慢D.酶分子的构象与效应物浓度有关(五是非判断题(1.分解代谢和合成代谢是同一反应的逆转,所以它们的代谢反应是可逆的。
(2.启动子和操纵基因是没有基因产物的基因。
(3.酶合成的诱导和阻遏作用都是负调控。
(4.衰减作用是在转录水平上对基因表达进行调节的一种方式。
(5.与酶数量调节相比,对酶活性的调节是更灵敏的调节方式。
(6.果糖1,6二磷酸对丙酮酸激酶具有反馈抑制作用。
(7.序列反应中几个终产物同时过多时的调节作用叫累积调节。
(8.酶的共价修饰能引起酶分子构象的变化。
(9.脱甲基化作用能使基因活化。
(10.连锁反应中,每次共价修饰都是对原始信号的放大.(六问答题1.糖代谢与脂类代谢的相互关系?2.糖代谢与蛋白质代谢的相互关系?3.蛋白质代谢与脂类代谢的相互关系?4.简述酶合成调节的主要内容?5.以乳糖操纵子为例说明酶诱导合成的调控过程?6.以糖原磷酸化酶激活为例,说明级联系统是怎样实现反应信号放大的?7.二价反馈抑制作用有哪些主要类型?8.代谢的区域化有何意义?三、答案(一、名词解释:1. 诱导酶:由于诱导物的存在,使原来关闭的基因开放,从而引起某些酶的合成数量明显增加,这样的酶称为诱导酶2. 标兵酶:在多酶促系列反应中,受控制的部位通常是系列反应开头的酶,这个酶一般是变构酶,也称标兵酶。
3. 操纵子:在转录水平上控制基因表达的协调单位,包括启动子(P、操纵基因(O 和在功能上相关的几个结构基因。
4. 衰减子:位于结构基因上游前导区调节基因表达的功能单位,前导区转录的前导RNA通过构象变化终止或减弱转录。
5. 阻遏物:由调节基因产生的一种变构蛋白,当它与操纵基因结合时,能够抑制转录的进行。
6. 辅阻遏物:能够与失活的阻碣蛋白结合,并恢复阻遏蛋白与操纵基因结合能力的物质。
辅阻遏物一般是酶反应的产物。
7. 降解物基因活化蛋白:由调节基因产生的一种cAMP受体蛋白,当它与cAMP 结合时被激活,并结合到启动子上促进转录进行。
是一种正调节作用。
8. 腺苷酸环化酶:催化ATP焦磷酸裂解产生环腺苷酸(cAMP的酶。
9. 共价修饰:某种小分子基团可以共价结合到被修饰酶的特定氨基酸残基上,引起酶分子构象变化,从而调节代谢的方向和速度。
10. 级联系统:在连锁代谢反应中一个酶被激活后,连续地发生其它酶被激活,导致原始调节信号的逐级放大,这样的连锁代谢反应系统称为级联系统。
11. 反馈抑制:在代谢反应中,反应产物对反应过程中起作用的酶产生的抑制作用。
12. 交叉调节:代谢产物不仅对本身的反应过程有反馈抑制作用,而且可以控制另一代谢物在不同途径中的合成。
13. 前馈激活:在反应序列中,前身物质对后面的酶起激活作用,使反应向前进行。
14. 钙调蛋白:一种依赖于钙的蛋白激酶,酶蛋白与钙结合引起酶分子构象变化,调解酶的活性。
如磷酸化酶激酶是一种依赖于钙的蛋白激酶。
(二英文缩写符号1. CAP(Catabolic gene activator protein:降解物基因活化蛋白2. PKA(Protein kinase:蛋白激酶A3. CaM(Calmkdulin:钙调蛋白4. ORF(Open reading frame:开放阅读框架(三填空题1. 细胞内酶水平;细胞水平;激素水平;神经水平2. 酶的区域化;酶数量的调节;酶活性的调节3. 转录水平;转录后加工和运输;翻译水平4. 阻遏蛋白;操纵基因5. 降解物基因活化蛋白(CAP;环腺苷酸(cAMP;RNA聚合酶6. 辅阻遏物;阻遏蛋白7. LacZ;LacY;LacA8. 6-磷酸葡萄糖;丙酮酸;乙酰辅酶A9. 酶原激活;酶共价修饰;变构调节;反馈调节;辅因子调节;能荷调节10. 小分子基团;共价修饰;有活性;无活性11. 磷酸化和脱磷酸化;核苷酰化和脱核苷酰化(四选择题1. D:操纵子在酶合成的调节中是通过操纵基因的开闭来控制结构基因表达的,所以是转录水平的调节。
细胞中酶的数量也可以通过其它三种途径进行调节。
2. B:色氨酸操纵子控制合成色氨酸五种酶的转录,色氨酸是蛋白质氨基酸,正常情况下调节基因产生的是无活性阻遏蛋白,转录正常进行。
但当细胞中色氨酸的含量超过蛋白质合成的需求时,色氨酸变成辅阻遏物来激活阻遏蛋白,使转录过程终止;诱导酶的操纵子调节基因产生的是活性阻遏物;组成酶的操纵子调节基因不产生阻遏蛋白;有分解代谢阻遏作用的操纵子调节基因产物是cAMP受体蛋白(降解物基因活化蛋白。
3. A:操纵基因是阻遏蛋白的结合部位。
4. C:活性阻遏蛋白与操纵基因结合使转录终止。
5. D:酶的激活作用是对酶活性的调节,与酶合成的调节无关。
6.D:共价调节酶是高等生物和低等生物都具有的一种酶活性调节方式。
7.C:cDNA 为互补DNA,ACP为酰基载体蛋白,AMP为腺苷酸。
cAMP由腺苷酸环化酶催化ATP焦磷酸裂解环化生成,腺苷酸环化酶可感受激素信号而被激活,所以,一般把激素称为“第一信使”,把cAMP称为“第二信使”。
8.C:反馈作用包括正反馈(反馈激活和负反馈(反馈抑制,正反馈对酶起激活作用,负反馈对酶起抑制作用。
(五是非判断题1.错:分解代谢和合成代谢虽然是同一反应的逆转,但它们各自的代谢途径不完全相同,如在糖酵解途径中,葡萄糖被降解成丙酮酸的过程有三步反应是不可逆的,在糖异生过程中需要由其它的途径或酶来代替。
2.对:操纵子包括启动子、操纵基因和结构基因,启动子是RNA聚合酶识别和结合部位,操纵基因可以与阻遏蛋白结合控制基因表达,两者都没有基因产物。