七年级数学上册13有理数加减法时有理数加法新版新人教版

合集下载

[最新]人教版数学七年级上-有理数的加减法(基础)知识讲解

[最新]人教版数学七年级上-有理数的加减法(基础)知识讲解

197, 202, 197, 203, 200, 196,201, 198. 计算出售的粮食总共多少千克 ?
100 分,
【答案】 法一:以 200( 千克 ) 为基准,超过的千克数记作正数,不足的千克数记作负数,则 这 8 个数的差的累计是: (- 3) +( +2 ) +(- 3) +( +3 ) +0+(- 4 ) +( +1) +(- 2) = - 6
(2) 原式 =(2-1-4 ) +( 3 - 5 - 5 + 3 - 2 ) =-3+[ 6 - 5 + 3 +(- 5 - 4 )]=-3-1=-4
4 8 68 3
88 8 6 6
类型四、有理数的加减混合运算在实际中的应用
4.小虫从点 O 出发在一条直线上来回爬行,向右爬行的路程记为正,向左爬行的路 程记为负,爬行的各段路程依次为: +5, -3, +10 ,- 8, -6, +12, -10.(单位: cm)
21
1
1
1
( 3) -1 +1 + +7 + -2 + -8
ห้องสมุดไป่ตู้32
4
3
2
(4) 3.587 ( 5)
1 5 ( 7)
2
1 3 ( 1.587)
4
( 5) 2.25 3 1 2 3 1.875 84
( 6)
1 3
3 5
5 4
5 6
2 4 6 18
【答案与解析】
(1) 26-18+5-16
=(+26)+(-18)+5+(-16) →统一成加法

新人教版七上13有理数的加减法课时4

新人教版七上13有理数的加减法课时4

省略加号和括号的算式通常有两种读法,如 -9-12-3 按 式子所表示的意义读,读作“负 9、负 12、负 3 的和”, 按运算的意义读,读作“负 9 减 12 减 3 ”.
注意:写算式的读法时,运算符号“+”和 “ - ”分别用“加”和“减”表示,性质符 号“+”和“ - ”分别用“正”和“负”表示, 数字用原形式(阿拉伯数字)表示,不用汉字.
答:此时飞机比起飞点高了1千米.
新知探究 跟踪训练
例 把 (-6)-( -7)+( -9)-( -3)写成省略加号和括号的形式, 并写出它的读法. 解: (-6)-(-7)+(-9)-(-3)
=(-6) +(+7)+(-9)+(+3) =-6+7-9+3. 读作“负6、正7、负9、正3的和”, 或读作“负6加7减9加3”.
1.减法变加法:a+b-c=a+b+(-c);
2.按有理数加法法则计算.
加号及加数的括 号可以省略
拓展提升
1.根据图中提供的信息,回答下列问题.
(1) A,B 两点间的距离是多少?
(2) B,C 两点间的距离是多少?
解:点A表示数2,点B表示数− 43,点C表示数-3.
(1)
因为|2-(−
43)|=|2+43
新知探究 知识点 有理数的加减混合运算
例1 计算:(-20)+(+3)-(-5)-(+7)
分析:这个算式中有加法,也有减法.可以根据有理数 减法法则,把它改写为 (-20)+(+3)+(+5)+(-7). 解: (-20)+(+3)-(-5)-(+7)

人教版数学七年级上册1.3有理数的加减法教案

人教版数学七年级上册1.3有理数的加减法教案

1.3有理数的加减法1.3.1有理数的加法(2课时)第1课时有理数的加法教学目标1.了解有理数加法的意义,会根据有理数的加法法则进行有理数的加法运算.2.能积极地参与探究有理数加法法则的活动,并学会与他人交流合作.3.能较为熟练地进行有理数的加法运算,并能解决简单的实际间问题.教学重难点重点:了解有理数加法的意义,会根据有理数加法法则进行有理数的加法运算.难点:有理数加法中的异号两数如何进行加法运算.教学过程活动1:创设情境,导入新课师:我们已学过正数的加法,但是在实际问题中还会遇到超出正数范围的加法情况,此时应该怎样进行计算呢?活动2:自主学习探究加法法则师:布置自学任务.自学教材16~18页的内容,归纳并识记有理数的加法法则.这一段大约用时15分钟,教师巡视指导,要关注学生能否正确理解加法法则的内容.有理数加法的法则是:1.同号两数相加,取相同的符号,并把绝对值相加;2.绝对值不同的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0.3.一个数与0相加,仍得这个数.活动3:运用法则试一试身手:口答下列算式的结果:(1)(+4)+(+3);(2)(-4)+(-3);(3)(+4)+(-3);(4)(+3)+(-4);(5)(+4)+(-4);(6)(-3)+0;(7)0+(+2);(8)0+0.学生逐题口答后,师生共同得出.进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法则.进行计算时,通常应该先确定“和”的符号,再计算“和”的绝对值.教师:出示教材例1,师生共同完成,教师规范写出解答,注意解答过程中讲解对法则的应用.解:(1)(-3)+(-9)(两个加数同号,用加法法则的第1条计算)=-(3+9)(和取负号,把绝对值相加)=-12.(2)(-4.7)+3.9(两个加数异号,用加法法则的第2条计算)=-(4.7-3.9)(和取负号,用大的绝对值减去小的绝对值)=-0.8.教师点评法则运用过程中的注意点:先定符号,再算绝对值.下面请同学们计算下列各题以及教材第18页练习.(1)(-0.9)+(+1.5);(2)(+2.7)+(-3);(3)(-1.1)+(-2.9).学生练习,四位学生板演,教师巡视指导,学生交流,师生评价.本节课教师可根据时间的情况,多安排一些练习,以求通过练习达到巩固掌握知识的目的.活动4:小结与作业小结:谈一谈你对加法法则的认识,在加法计算中都应该注意哪些问题?作业:必做题,习题1.3第1,11题;选做题,习题1.3第12题.ji数学思想方法的渗透不可能立即见效,也不可能靠一朝一夕让学生理解、掌握,所以,本节课在这一方面主要是让学生感知研究数学问题的一般方法(分类、辩析、归纳、化归等).如在探究加法法则时,有意识地把各种情况先分为三类(同号、异号、一个数同0相加);在运用法则时,当和的符号确定以后,有理数的加法就转化为算术的加减法.第2课时相关运算律教学目标1.正确理解加法交换律,结合律,能用字母表示运算律的内容.2.能运用运算律较熟悉地进行加法运算.教学重难点重点:加法交换律和结合律,及其合理、灵活的运用.难点:合理运用运算律教学过程一、创设情境,导入新课师投影出示练习,计算:①30+(-20);(-20)+30;②[8+(-5)]+(-4);8+[(-5)+(-4)].生独立完成后同学交流.二、推进新课(1)探索加法交换律,结合律师提出问题:观察比较第一组两题,比较它们有什么异同点.观察比较第二组两题,比较它们有什么异同点.学生讨论归纳,师生共同归纳得出加法交换律,结合律的内容,并用字母表示.(2)运用加法交换律,结合律解决问题师出示教材例2.先让学生按照从左到右的运算顺序进行计算.学生独立完成.师生共同分析运用加法交换律和结合律进行计算,教师要给出规范完整的过程,让学生看清楚听明白,从中体会认识运算律的作用.练习:教材20页练习.学生独立完成,然后进行交流.教师可安排学生板演,从中发现学生对运算律的理解和掌握程度.(3)运用有理数的加法解决问题师投影展示教材例3.学生独立解决.(一般来说学生会直接进行计算,不会想到第二种解法,在学生完成以后教师再提出以下问题)如果每袋小麦以90千克为标准,超过部分记为正,不足部分记为负数,那么10袋小麦对应的数分别为多少?它们的和是不是最终结果呢?学生讨论后解决.教师在这一过程中应当关注学生能否理解这种解法,学生在计算中能否自觉运用运算律解决问题.根据情况可对这一题和这种解法进行板书或讲解.三、课堂小结小结:1.谈谈你本节课的收获.2.在生活中你有没有遇到过类似例3中解法2解决问题的数学现象,你能举出一两个例子吗?四、布置作业习题1.3第2,8,9题.教学反思本节课在开始时先复习小学时学的加法运算律,然后提出问题:“我们如何知道加法的交换律在有理数范围内是否适用?”然后让学生通过一些实际例子来验证.尤其是鼓励学生多举一些数来验证,其意义首先是为了避免学生产生片面认识,以为从几个例子就可以得出普遍结论;其次也让学生了解结论的重要性.1.3.2有理数的减法(2课时)第1课时有理数的减法法则教学目标1.掌握有理的减法法则.2.能运用有理数的减法法则进行运算.教学重点难点重点:有理数的减法法则.难点:对有理数的减法法则的探究.教学过程一、创设情境,导入新课师:出示温度计,提出问题:1.你能从温度计上看出3℃比较-3℃高多少度吗?2.你能列式求这个结果吗?学生观察后先回答问题1得出结果,然后再列出算式3-(-3)=6.二、探究新知1.探究有理数的减法法则师:这里的计算用到了有理数的减法,通过观察我们知道了3-(-3)=6,而我们还知道3+(+3)=6.即3-(-3)=3+(+3).观察这个式子,你有什么发现?学生进行讨论,教师不必急于归纳.然后教师进一步提出问题.计算:9-8,9+(-8).15-7,15+(-7).观察比较计算的结果,你有什么发现?师生共同归纳有理数的减法法则.教师板书法则.2.尝试运用法则师出示教材例4.师生共同完成.在完成过程中教师示范前两题,给学生一个规范的过程,同时结合法则讲解法则的运用,剩下两题学生尝试完成,体验法则的运用.练习:教材23页练习.三.课堂小结小结:谈谈本节课的收获.思考:以前我们只能做被减数大于减数的减法运算,现在你能做被减数小于减数的减法运算吗?这时的差是一个什么数?四、布置作业作业:习题1.3第3,4,6题.教学反思本节在引入有理数减法时花了较多的时间,目的是让学生有充分的思考空间与时间进行探索。

七年级数学上有理数的加减法教案人教版

七年级数学上有理数的加减法教案人教版

有理数的加减法有理数的加法(1)【教学目标】1.理解有理数加法的实际意义;2.会作简单的加法计算;3.感受到原来用减法算的问题现在也可以用加法算.【对话探索设计】〖探索1〗(1)某仓库第一天运进300吨化肥,第二天又运进200吨化肥,两天一共运进多少吨?(2)某仓库第一天运进300吨化肥,第二天运出200吨化肥,两天总的结果一共运进多少吨?(3)某仓库第一天运进300吨化肥,第二天又运进-200吨化肥, 两天一共运进多少吨?(4)把第(3)题的算式列为300+(-200),有道理吗?(5)某仓库第一天运进a吨化肥,第二天又运进b吨化肥,两天一共运进多少吨?〖探索2〗如果物体先向右运动,再向右运动,那么两次运动后总的结果是什么?假设原点为运动起点,用下面的数轴检验你的答案.在足球比赛中,通常把进球数记为正数,失球数记为负数,它们的和叫做净胜球数...........若某场比赛红队胜黄队5:2(即红队进5个球,失2个球),红队净胜几个球?〖小游戏〗(请一位同学到黑板前)前进5步,又前进-3步, 那么两次运动后总的结果是什么?若是后退-1步,又后退3步呢?〖练习〗1.登山队员第一天向上攀登,第二天又向上攀登(天气恶劣!),两天一共向上攀登多少米?2.第一天营业赢利90元,第二天亏本80元,两天一共赢利多少元?〖补充作业〗1.分别用加法和减法的算式表示下面每小题的结果(能求出得数最好):(1)温度由下降; (2)仓库原有化肥200t,又运进-120t;(3)标准重量是,超过标准重量; (4)第一天盈利-300元, 第二天盈利100元.2.借助数轴用加法计算:(1)前进,又前进, 那么两次运动后总的结果是什么?(2)上午8时的气温是,下午5时的气温比上午8时下降, 下午5时的气温是多少?3.某潜水员先潜入水下,他的位置记为.然后又上升,这时他处在什么位置?有理数的加法(2)【教学目标】1.进一步理解有理数加法的实际意义;2.经历探索有理数加法法则的过程,理解有理数加法法则;3.感受数学模型的思想;4.养成认真计算的习惯.【对话探索设计】〖探索1〗1.第一天赢利,第二天还赢利,两天合起来算,是赢利还是亏本?2.第一天亏本,第二天还是亏本,两天合起来算,是赢利还是亏本?3.一个物体作左右方向的运动,规定向右为正.如果物体先向左运动,再向左运动, 那么两次运动后总的结果是什么?假设原点为运动起点,用数轴检验你的答案.〖法则理解〗有理数加法法则第1条是:同号两数相加,取___________,并把绝对值_________.这条法则包括两种情况:(1)两个正数相加,显然取正号,并把绝对值相加,例(+3)+(+5)=+8;(2)两个负数相加,取_____号,并把______相加.例如(-3)+(-5) = -(3+5) = -8.答案"-8"之所以取"-"号,是因为______________,"8"是由_____的绝对值和______的绝对值相______而得.〖练习〗1.上午6时的气温是,下午5时的气温比上午6时下降, 下午5时的气温是多少?2.第一场比赛红队胜黄队5:2,第二场比赛蓝队胜黄队3:1, 两场比赛黄队净胜几个球?3.第一天向北走,第二天又向北走,两天一共向北走多少km?4.仿照(-3)+(-5) = -(3+5)= -8的格式解答:(1)-10+(-30)=(2)(-100)+(-200) =(3)(-188)+(-309)=〖探索2〗1.第一天营业赢利90元,第二天亏本80元,两天一共赢利多少元?如果第二天亏本120元呢?2.第一天赢利,第二天亏本,两天合起来算,是赢利还是亏本?3.正数和负数相加,结果是正数还是负数?〖法则理解〗有理数加法法则第2条的前半部分是:绝对值不相等的异号两数相加,取_________________的符号,并用_______________减去_________________.例如(+6)+(-2) = +(6-2) = +4.答案"+4"之所以取"+"号,是因为两个加数(+6与-2)中________的绝对值较大;答案"+4"的绝对值4是由加数中较大的绝对值______减去较小的绝对值____得到.又例,计算(-8)+(+3)时,先取______号,这是因为两个加数中,______的绝对值较大.然后再用较大的绝对值____减去较小的绝对值____,得_____,于是最后得到答案是______.计算的过程可以写成(-8)+(+3) = -(8-3) = -5.〖议一议〗有人说,正数和负数相加时,实质就是把加法运算转化为”小学”的减法运算.他说的对不对?〖练习〗1.第一场比赛红队胜黄队5:2,第二场比赛黄队胜蓝队3:1, 两场比赛黄队净胜几个球?2.如果物体先向右运动,再向右运动,那么两次运动后总的结果是什么?3. 检查3包洗衣粉的重量(单位:克), 把其中超过标准重量的数量记为正数,不足的数量记作负数,结果如下:-3.5,+1.2,-2.7.这3包洗衣粉的重量一共超过标准重量多少?4.仿照(-8)+(+3) =-(8-3) = -5的格式解题:(1)(-3)+(+8)=(2)-5+(+4)=(3)(-100)+(+30)=(4)(-100)+(+109)=〖法则理解〗有理数加法法则第2条的后半部分是:互为相反数的两个数相加得_____.例如(+3)+(-3) = ______,(-108)+(+108) = ______.〖例题学习〗P21.例1,例2P22.练习2(按例1格式算.)〖作业〗P29.习题 1, P32.习题 8,9,10【备选素材】用一个□表示+1,用一个■表示-1.显然□+■=0,(1)■■+□□□=(■+□)+(■+□)+ □=_____.这表明-2+3=+(3-2)=1.想一想:答案为什么是正的?为什么转化为减法运算?(2)计算■■■■■+□□□□□=_____.(3)计算■■■■■+□□=(■■+□□)+ ■■■=______.这说明-5+(+2)=-(___-___)=_______.(4)计算■■■+□□□□□=?有理数的加法(3)【教学目标】1.理解有理数加法的运算律;2.能用运算律简化有理数加法的运算.【对话探索设计】〖复习导入〗1.小学时已学过的加法运算律有哪几条?2.猜一猜:在有理数的加法中,这两条运算律仍然适用吗?3.(1)计算30+(-20)=__________=______,-20+30=___________=_____;(2)[8+(-5)]+(-4)=_______=______, 8+[(-5)+(-4)]=_______=______.你猜对了吗?〖试一试〗你会用文字表述加法的两条运算律吗?你会用字母表示加法的这两条运算律吗?〖例题学习〗P22.例3〖例题探索〗P23.例4.你认为例4的两种解法哪一种比较好?〖练习〗P23.练习1〖作业〗P23.练习2,P30.习题2【备用素材】1.(1) 两个数都是负数,它们的和一定是负数吗?为什么?(2) 两个数的和是负数,这两个数一定都是负数吗?为什么?2.(1)在一场足球比赛中,红队以4:1胜黄队,这说明红队进_____球,失______球,净胜_______球;而黄队则进_____球,失______球,净胜_______球.(2)某赛季,申花足球队第一场比赛赢了2个球(5比3);第二场比赛输了3个球(1比4),两场比赛该队净胜几个球?3.某地,去年9月1日的平均气温是28℃,第二天平均气温比第一天上升了2℃,第三天平均气温比第二天上升了-5℃(下暴雨!),问第三天平均气温是多少,请画出(温度计)示意图.4.各举两个反例说明以下的说法是错误的:(1)两个有理数相加,和一定大于每一个加数.(2)两个数的和是0,这两个数都是0.*(3)若a>0,b<0,且|a|<|b|,则a+b=-(|a|-|b|).5.(1)小学所遇到的加法运算,两个加数的和会小于任何一个加数吗?(2)a+b会小于a吗?为什么?6.若用Δ表示+10,用▢表示-10,用◇表示+1,用◆表示-1.则ΔΔ◇◇◇表示_________;▢▢▢▢▢◆◆◆◆表示_______.ΔΔ◇◇◇+▢▢▢▢▢◆◆◆◆=(ΔΔ+▢▢)+( ◇◇◇+◆◆◆)+_____________=______________ ___.结果表示的数是_______.7.有一批食品罐头,标准质量为每听454克.现抽取10听样品进行检测,结果如下表(单位:克):听号 1 2 3 4 5 6 7 8 9 10质量444 459 454 459 454 454 449 454 459 464若把超过标准质量的克数y用正数表示,不足的用负数表示,依照上表的数据列出这10听罐头与标准质量的差值表(单位:克):听号 1 2 3 4 5 6 7 8 9 10y分别用上面两个表格的数据求出10听罐头的总质量,比较这两种方法.8.小钱上周五以收盘价买进股票1000股,每股20元.下表为本周每日股票的涨跌情况(按收盘价即交易结束时的价格计算):星期一二三四五每股涨价(元) +0.6 -1.3 +1 +0.7 -2(1)到本周三收盘时,小钱所持股票每股多少元?(2)本周内,股票最高价出现在星期几?是多少元?(3)已知小钱买进股票时付了4‰的手续费,卖出时又付成交额4‰的手续费和3‰的交易税,如果小钱在本周末以收盘价卖出全部股票,他的收益如何?9.小京同学在计算16+(-24)+22+(-17)+(-56)+56时, 利用加法交换律、结合律先把正负数分别相加,得16+22+56+[(-24)+(-17)+(-56)].你认为这样算能使运算简便吗?你认为还有其它方法吗?10.用简便方法计算:(1)1033.78+(-26)+(-39)+(-38);(2)12.7+(-24.6)+(-29.1)+6.8;(3)1.3+0.5+(-0.5)+0.3+(-0.7)+3.2+(-0.3)+0.7;(4)(-109)+(-267)+(+108)+268;。

2021秋七年级数学上册1、3有理数的加减法第1课时有理数的加法目标一有理数加法的计算习题新人教版

2021秋七年级数学上册1、3有理数的加减法第1课时有理数的加法目标一有理数加法的计算习题新人教版
第1章 有理数
课1题. 2 有 理 数 的 加 减 法
3
第1课时 有理数的加法
目标一 有理数加法的计算
习题链接
温馨提示:点击 进入讲评
1 2C 3B 4B
5D 6B 7C 8
答案呈现
9
1 【原创题】在每题后面的横线上填上和的符号或 结果. (1)(+2)+(+3)=____+____(2+3)=____5____; (2)(-17)+(-8)=___-_____(17+8)=__-__2_5___; (3)(-16)+6=____-____(16-6)=___-__1_0__; (4)17+(-8)=____+____(17-8)=____9____; (5)0+(-2)=___-__2___.
5 对于两个有理数的和,下列说法中,正确的是( D ) A.一定比任何一个有理数大 B.至少比其中一个有理数大 C.一定比任何一个有理数小 D.以上说法都不正确
6 两数相加,如果和小于每个加数,那么这两个加数
( B) A.一个为0,一个为负数 B.都是负数 C.一个为正数,一个为负数且负数的绝对值较大 D.符号不能确定
(2)如图②,在圆圈内填上恰当的数,使每条线上的3个数 之和为0. 解:如图②所示,答案不唯一.
(3)将中心处的0改为-5,如图③,那么怎样填写才能使 每条线上的3个数之和为-15? 解:如图③所示,答案不唯一.
2 下列各式结果的符号为正的是( C ) A.(-3)+(-2) B.(-2)+0 C.(-5)+6 D.(-5)+5
3 【2020•西藏】20+(-20)的结果是( B ) A.-40 B.0 C.20 D.40
Hale Waihona Puke 4 【2020•新疆】有理数a,b在数轴上的位置如图所示, 下列结论中正确的是( B ) A.a>b B.|a|>|b| C.-a<b D.a+b>0

七年级数学上学期期中考点专题03有理数的加减法含解析新人教版

七年级数学上学期期中考点专题03有理数的加减法含解析新人教版

专题03 有理数的加减法重点突破知识点一 有理数的加法(基础)有理数的加法法则:(先确定符号,再算绝对值) 1.同号两数相加,取相同的符号,并把绝对值相加;2.异号两数相加,绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;3.互为相反数的两个数相加得0;(如果两个数的和为0,那么这两个数互为相反数)4.一个数同0相加,仍得这个数。

有理数的加法运算律:1.两个数相加,交换加数的位置,和不变。

即a b b a +=+;2.三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

即()()a b c a b c ++=++。

知识点二 有理数的减法(基础) 有理数的减法法则:减去一个数等于加上这个数的相反数。

即()a b a b -=+-。

【注意减法运算2个要素发生变化】:减号变成加号;减数变成它的相反数。

有理数减法步骤: 1.将减号变为加号。

2.将减数变为它的相反数。

3.按照加法法则进行计算。

考查题型考查题型一 有理数加法运算典例1.(2018·广东初一期中)计算-(-1)+|-1|,其结果为( ) A .-2 B .2 C .0 D .-1【答案】B 【解析】试题提示:由题可得:原式=1+1=2,故选B.a b的值()变式1-1.(2019·呼伦贝尔市期末)有理数a、b在数轴上的位置如图所示,则A.大于0B.小于0C.小于a D.大于b【答案】A【提示】先根据数轴的特点判断出a,b的符号,再根据其与原点的距离判断出其绝对值的大小,然后根据有理数的加法法则得出结果.【详解】根据a,b两点在数轴上的位置可知,a<0,b>0,且|b|>|a|,所以a+b>0.故选A.【名师点拨】此题考查数轴,绝对值,有理数的加法法则.解题关键在于用几何方法借助数轴来求解,非常直观,体现了数形结合的优点.变式1-2.(2019·庆阳市期中)若a=2,|b|=5,则a+b=( )A.-3 B.7 C.-7 D.-3或7【答案】D【提示】根据|b|=5,求出b=±5,再把a与b的值代入进行计算,即可得出答案.【详解】∵|b|=5,∴b=±5,∴a+b=2+5=7或a+b=2-5=-3;故选D.【名师点拨】此题考查了有理数的加法运算和绝对值的意义,解题的关键是根据绝对值的意义求出b的值.变式1-3.(2019·扬州市期中)若|m|=3,|n|=5,且m-n>0,则m+n的值是()A.-2 B.-8或8 C.-8或-2 D.8或-2【答案】C【详解】∵|m|=3,|n|=5,∴m=±3,n=±5,∵m-n>0,∴m=±3,n=-5,∴m+n=±3-5,∴m+n=-2或m+n=-8.故选C .变式1-4.(2018·上饶市期末)若m 是有理数,则m m +的值是( ) A .正数 B .负数C .0或正数D .0或负数【答案】C【提示】根据:如果m>0,则|m|=m; 如果m<0,则|m|=-m; 如果m=0,则|m|=0.【详解】如果m 是正数,则m m +是正数;如果m 是负数,则m m +是0;如果m 是0,则m m +是0. 故选C【名师点拨】本题考核知识点:有理数的绝对值.解题关键点:理解绝对值的意义. 考查题型二 有理数加法中的符号问题典例2.(2018·重庆市期末)将 6-(+3)+(-2) 改写成省略括号的和的形式是( ) A .6-3-2 B .-6-3-2C .6-3+2D .6+3-2【答案】A【提示】先把加减法统一成加法,再省略括号和加号.【详解】将6﹣(+3)+(﹣2)改写成省略括号的和的形式为6﹣3﹣2. 故选A .【名师点拨】本题考查了有理数的加减混合运算,将算式写成省略括号的形式必须统一成加法后,才能省略括号和加号.变式2-1.(2020·银川市期中)把(+3)﹣(+5)﹣(﹣1)+(﹣7)写成省略括号的和的形式是( ). A .﹣3﹣5+1﹣7 B .3﹣5﹣1﹣7 C .3﹣5+1﹣7 D .3+5+1﹣7 【答案】C【解析】(+3)﹣(+5)﹣(﹣1)+(﹣7)=(+3)+(-5)+(+1)+(﹣7)=3﹣5+1﹣7, 故选:C.变式2-2.(2020·邯郸市期末)若两个非零的有理数a,b 满足:|a|=-a,|b|=b,a +b <0,则在数轴上表示数a,b 的点正确的是( ) A .B .C .D .【答案】D【提示】根据|a|=-a 得出a 是负数,根据|b|=b 得出b 是正数,根据a+b <0得出a 的绝对值比b 大,在数轴上表示出来即可.【详解】解:∵a 、b 是两个非零的有理数满足:|a|=-a,|b|=b,a+b <0, ∴a <0,b >0, ∵a+b <0, ∴|a|>|b|, ∴在数轴上表示为:故选D.【名师点拨】本题考查数轴,绝对值,有理数的加法法则等知识点,解题关键是确定出a <0,b >0,|a|>|b|. 变式2-3.(2019·深圳市期中)如果a <0,b >0,a +b <0 ,那么下列关系式中正确的是( ) A .a b b a ->>-> B .a a b b >->>- C .a b b a >>->- D .b a b a >>->-【答案】A【提示】由于a <0,b >0,a+b <0,则|a|>b,于是有-a>b,-b>a,易得a,b,-a,-b 的大小关系. 【详解】∵a <0,b >0,a+b <0, ∴|a|>b, ∴-a>b,-b>a,∴a,b,-a,-b 的大小关系为:-a>b>-b>a, 故选A .【名师点拨】本题考查了有理数的加法法则,有理数的大小比较,异号两数的加法法则确定出|a|>b 是解题的关键. 考查题型三 有理数加法在实际生活中的应用典例3(2018·厦门市期末)下列温度是由-3℃上升5℃的是( ) A .2℃ B .-2℃ C .8℃ D .-8℃【答案】A【提示】物体温度升高时,用初始温度加上上升的温度就是上升之后的温度,即是所求 【详解】(-3℃)+5℃= 2℃ 故本题答案应为:A【名师点拨】此题考查了温度的有关计算,是一道基础题.熟练掌握其基础知识是解题的关键变式3-1.(2019·石家庄市期中)在学习“有理数的加法与减法运算”时,我们做过如下观察:“小亮操控遥控车模沿东西方向做定向行驶练习,规定初始位置为0,向东行驶为正,向西行驶为负.先向西行驶3m,在向东行驶lm,这时车模的位置表示什么数?”用算式表示以上过程和结果的是( ) A .(﹣3)﹣(+1)=﹣4 B .(﹣3)+(+1)=﹣2C.(+3)+(﹣1)=+2 D.(+3)+(+1)=+4【答案】B【详解】由题意可得:(﹣3)+(+1)=﹣2.故选B.变式3-2.(2019·石家庄市期中)一家快餐店一周中每天的盈亏情况如下(盈利为正):37元,-26元,-15元,27元,-7元,128元,98元,这家快餐店总的盈亏情况是()A.盈利了290元B.亏损了48元C.盈利了242元D.盈利了-242元【答案】C【提示】利用有理数的加法求出已知各数的和即可求出一周总的盈亏情况.【详解】∵37+(−26)+(−15)+27+(−7)+128+98=242(元),∴一周总的盈亏情况是盈利242元.故选择C.【名师点拨】本题考查正数和负数、有理数的加法,解题的关键是掌握正数和负数、有理数的加法.±kg,现随机选取10袋面粉进行质量变式3-3.(2020·沈阳市期末)面粉厂规定某种面粉每袋的标准质量为500.2检测,结果如下表所示:则不符合要求的有()A.1袋B.2袋C.3袋D.4袋【答案】A【提示】提示表格数据,找到符合标准的质量区间即可解题.±kg,即质量在49.8kg——50.2kg之间的都符合要求,【详解】解:∵每袋的标准质量为500.2根据统计表可知第5袋49.7kg不符合要求,故选A.【名师点拨】本题考查了有理数的实际应用,属于简单题,熟悉概念是解题关键.考查题型四有理数加法运算律典例4.(2019·忠县期中)计算1﹣3+5﹣7+9=(1+5+9)+(﹣3﹣7)是应用了()A.加法交换律 B.加法结合律C.分配律 D.加法交换律与结合律【答案】D【提示】根据加法交换律与结合律即可求解.【详解】计算1-3+5-7+9=(1+5+9)+(-3-7)是应用了加法交换律与结合律.故选:D.【名师点拨】考查了有理数的加减混合运算,方法指引:①在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式.②转化成省略括号的代数和的形式,就可以应用加法的运算律,使计算简化.变式4-1.(2018·新蔡县期中)计算()+()+()+()等于()A.-1 B.1 C.0 D. 4【答案】A【提示】有理数的加减运算,适当运用加法交换律.【详解】解:故选:A.【名师点拨】本题考查有理数的加减运算,熟记有理数的加减运算法则,同时能够题目数字特点进行灵活计算.变式4-2.(2019淮南市期中)-1+2-3+4-5+6+…-2017+2018的值为( )A.1 B.-1 C.2018 D.1009【答案】D【提示】从左边开始,相邻的两项分成一组,组共分成1009组,每组的和是1,据此即可求解.【详解】原式=(−1+2)+(−3+4)+(−5+6)+…(−2015+2016)+(−2017+2018),=1+1+1+…+1=1×1009,=1009.故选D.【名师点拨】属于规律型:数字的变化类,考查有理数的加减混合运算,掌握运算法则是解题的关键.变式4-3.(2019·南阳市期中)下列交换加数的位置的变形中,正确的是A.1-4+5-4=1-4+4-5 B.13111311 34644436 -+--=+--C.1-2+3-4=2-1+4-3 D.4.5-1.7-2.5+1.8=4.5-2.5+1.8-1.7 【答案】D【详解】A. 1−4+5−4=1−4−4+5,故错误;B.13111311=-34644436-+--+--,故错误;C. 1-2+3-4=-2+1-4+3,故错误;D. 4.5−1.7−2.5+1.8=4.5−2.5+1.8−1.7,故正确. 故选D.考查题型五 有理数减法运算典例5.(2020·济南市期末)﹣3﹣(﹣2)的值是( ) A .﹣1 B .1 C .5 D .﹣5【答案】A【提示】利用有理数的减法的运算法则进行计算即可得出答案. 【详解】﹣3﹣(﹣2)=﹣3+2=﹣1,故选A .【名师点拨】本题主要考查了有理数的减法运算,正确掌握运算法则是解题关键. 变式5-1.(2019·郯城县期末)比﹣1小2的数是( ) A .3 B .1 C .﹣2 D .﹣3【答案】D【提示】根据题意可得算式,再计算即可. 【详解】-1-2=-3, 故选D .【名师点拨】此题主要考查了有理数的减法,关键是掌握减去一个数,等于加上这个数的相反数. 变式5-2.(2019·重庆市期末)若 |a |= 3, |b | =1 ,且 a > b ,那么 a -b 的值是( ) A .4 B .2 C .-4 D .4或2【答案】D根据绝对值的性质可得a =±3,b =±1,再根据a >b ,可得①a =3,b =1②a =3,b =﹣1,然后计算出a -b 即可. 【详解】∵|a |=3,|b |=1,∴a =±3,b =±1. ∵a >b ,∴有两种情况: ①a =3,b =1,则:a -b =2; ②a =3,b =﹣1,则a -b =4. 故选D .【名师点拨】本题考查了绝对值的性质,以及有理数的减法,关键是掌握绝对值的性质,绝对值等于一个正数的数有两个.变式5-3.(2018·自贡市期中)若x <0,则()x x --等于( ) A .-x B .0 C .2x D .-2x【答案】D【提示】根据有理数的加法法则和绝对值的代数意义进行提示解答即可.【详解】()2x x x x x --=+=, ∵0x <, ∴20x <,∴原式=22x x =-. 故选D.【名师点拨】“由已知条件0x <得到20x <,进而根据绝对值的代数意义得到:22x x =-”是解答本题的关键. 考查题型六 有理数减法在实际生活中的应用典例6.(2019临河区期末)某市有一天的最高气温为2℃,最低气温为﹣8℃,则这天的最高气温比最低气温高( ) A .10℃ B .6℃ C .﹣6℃ D .﹣10℃ 【答案】A【解析】提示:用最高温度减去最低温度,然后根据减去一个数等于加上这个数的相反数进行计算即可得解. 详解:2-(-8) =2+8 =10(℃). 故选:A .名师点拨:本题考查了有理数的减法,是基础题,熟记减去一个数等于加上这个数的相反数是解题的关键. 变式6-1.(2019·长兴县月考)某地一周前四天每天的最高气温与最低气温如右表,则这四天中温差最大的是( )A .星期一B .星期二C .星期三D .星期四【答案】C【提示】利用每天的最高温度减去最低温度求得每一天的温差,比较即可解答. 【详解】星期一温差:10﹣3=7℃; 星期二温差:12﹣0=12℃; 星期三温差:11﹣(﹣2)=13℃; 星期四温差:9﹣(﹣3)=12℃; 综上,周三的温差最大. 故选C .【名师点拨】本题考查了有理数的减法的应用,根据题意正确列出算式,准确计算有理数减法是解题的关键. 变式6-2.(2018·吕梁市期末)我市冬季里某一天的最低气温是-10℃,最高气温是5℃,这一天的温差为 A .-5℃ B .5℃C .10℃D .15℃【答案】D【详解】解:5−(−10) =5+10=15℃. 故选D.变式6-3.(2020·寿阳县期末)甲、乙、丙三地海拔分别为20m ,15m -,10m -,那么最高的地方比最低的地方高( ) A .10m B .25mC .35mD .5m【答案】C【提示】根据正数与负数在实际生活中的应用、有理数的减法即可得.【详解】由正数与负数的意义得:最高的地方的海拔为20m ,最低的地方的海拔为15m - 则最高的地方比最低的地方高20(15)201535()m --=+= 故选:C .【名师点拨】本题考查了正数与负数在实际生活中的应用、有理数的减法,理解负数的意义是解题关键. 考查题型七 有理数加减混合运算典例7(2018·南阳市期中)计算:①﹣13+(﹣20)﹣(﹣33);②(+12)﹣(﹣13)+(﹣14)﹣(+16) 【答案】①0;②512. 【解析】①﹣13+(﹣20)﹣(﹣33) =﹣33+33 =0;②(+12)﹣(﹣13)+(﹣14)﹣(+16) =12+13﹣14﹣16 =643212121212+-- =512. 变式7-1.(2019·河池市期中)计算:(1) 6789-+- (2) 2(5)(8)5---+-- 【答案】(1)-2;(2)-10-+-【详解】解:(1)6789-+-=189-=79=-2---+--(2)2(5)(8)5=-+--2585=--385=--55=-10【名师点拨】此题考查的是有理数的加减法混合运算,掌握有理数的加、减法法则是解决此题的关键.变式7-2.(2019·枣庄市期中)请根据如图所示的对话解答下列问题.求:(1)a,b,c的值;(2)8-a+b-c的值.【答案】(1)a=-3,b=±7,c=-1或-15; (2)33或5.【详解】解:(1)∵a的相反数是3,b的绝对值是7,∴a=-3,b=±7;∵a=-3,b=±7,c和b的和是-8,∴当b=7时,c= -15,当b= -7时,c= -1,(2)当a=-3,b=7,c=-15时,8-a+b-c=8-(-3)+7-(-15)=33;当a=-3,b=-7,c=-1时,8-a+b-c=8-(-3)+(-7)-(-1)=5.故答案为(1)a=-3,b=±7;c=-1或-15;(2)33或5.【名师点拨】本题考查有理数的加减混合运算,掌握相反数和绝对值的概念是解题关键.。

人教版数学七年级上册1.3《有理数的加减法》(有理数的加减混合运算)教学设计

人教版数学七年级上册1.3《有理数的加减法》(有理数的加减混合运算)教学设计

人教版数学七年级上册1.3《有理数的加减法》(有理数的加减混合运算)教学设计一. 教材分析《有理数的加减法》是人教版数学七年级上册的教学内容,本节课主要介绍了有理数的加减混合运算。

学生在学习了有理数的基础知识后,进一步学习有理数的加减法运算,这对于培养学生解决实际问题的能力具有重要意义。

教材通过例题和练习题,使学生掌握有理数加减法运算的规则和方法,并能灵活运用到实际问题中。

二. 学情分析七年级的学生已经掌握了有理数的基本概念,对数的大小比较也有了一定的了解。

但学生在进行有理数的加减法运算时,可能会对符号的判断和运算顺序产生困惑。

因此,在教学过程中,教师需要关注学生的学习需求,引导学生正确判断符号,掌握运算顺序,提高运算能力。

三. 教学目标1.知识与技能:使学生掌握有理数的加减法运算方法,能正确进行有理数的加减混合运算。

2.过程与方法:通过实例演示、小组讨论等方法,培养学生合作学习、解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自信心,使学生感受到数学在生活中的应用。

四. 教学重难点1.重点:有理数的加减法运算方法。

2.难点:符号的判断和运算顺序。

五. 教学方法1.实例演示法:通过具体的例子,让学生直观地理解有理数的加减法运算。

2.引导发现法:教师引导学生发现运算规律,培养学生的探究能力。

3.小组讨论法:学生分组讨论,共同解决问题,提高合作能力。

4.练习法:通过大量练习,巩固所学知识。

六. 教学准备1.教学课件:制作课件,展示例题和练习题。

2.教学素材:准备一些实际问题,用于引导学生运用有理数加减法解决实际问题。

3.练习题:设计一些有梯度的练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)教师通过一个实际问题,引导学生思考如何运用有理数加减法解决问题。

例如:小明买了3本书,每本书5元,又卖掉2本书,每本书3元,请问小明最后赚了多少钱?2.呈现(10分钟)教师展示教材中的例题,引导学生观察和分析,让学生发现有理数加减法运算的规律。

(完整版)最新人教版七年级数学上册目录及知识点汇总

(完整版)最新人教版七年级数学上册目录及知识点汇总

人教版新课标七年级上册数学教材目录第一章有理数1.1 正数和负数1.2 有理数1.3 有理数的加减法1.4 有理数的乘除法1.5 有理数的乘方第二章整式的加减2.1 整式2.2 整式的加减第三章一元一次方程3.1 从算式到方程3.2 解一元一次方程(一)——合并同类项与移项3.3 解一元一次方程(二)——去括号与去分母3.4 实际问题与一元一次方程第四章几何图形初步4.1 几何图形4.2 直线、射线、线段4.3 角4.4 课题学习设计制作长方体形状的包装纸盒第一章有理数1.1 正数与负数①正数:大于0的数叫正数。

(根据需要,有时在正数前面也加上“+”)②负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。

与正数具有相反意义。

③0既不是正数也不是负数。

0是正数和负数的分界,是唯一的中性数。

注意:搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等1.2 有理数1、有理数(1)整数:正整数、0、负整数统称整数;(2)分数;正分数和负分数统称分数;(3)有理数:整数和分数统称有理数。

2、数轴(1)定义:通常用一条直线上的点表示数,这条直线叫数轴;(2)数轴三要素:原点、正方向、单位长度;(3)原点:在直线上任取一个点表示数0,这个点叫做原点;(4)数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。

3、相反数:只有符号不同的两个数叫做互为相反数。

(例:2的相反数是-2;0的相反数是0)4、绝对值:(1)数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。

从几何意义上讲,数的绝对值是两点间的距离。

(2)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

两个负数,绝对值大的反而小。

1.3 有理数的加减法①有理数加法法则:1、同号两数相加,取相同的符号,并把绝对值相加。

2、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

2022_2022学年七年级数学上册第一章有理数13有理数的加减法同步课堂练习含解析新版新人教版

2022_2022学年七年级数学上册第一章有理数13有理数的加减法同步课堂练习含解析新版新人教版

第一章有理数
第三节有理数的加减法
一、单项选择题(共10小题)
1.〔2022·重庆市渝北中学校初一期末〕假设 |a |= 3, |b|=1 ,且a > b ,那么a -b 的值是〔〕A.4 B.2 C.-4 D.4或2
【答案】D
【解析】根据绝对值的性质可得a=±3,b=±1,再根据a>b,可得①a=3,b=1②a=3,b=﹣1,然后计算出a-b即可.
【详解】∵|a|=3,|b|=1,∴a=±3,b=±1.
∵a>b,∴有两种情况:
①a=3,b=1,那么:a-b=2;
②a=3,b=﹣1,那么a-b=4.
应选D.
【点睛】此题考查了绝对值的性质,以及有理数的减法,关键是掌握绝对值的性质,绝对值等于一个正数的数有两个.
2.〔2022·靖宇县第四中学初一期末〕某地一天的最高气温是12℃,最低气温是-2℃,那么该地这天的温差是( )
A.−10℃B.10℃C.14℃D.−14℃
【答案】C
【解析】根据题意用最高气温12℃减去最低气温-2℃,根据减去一个数等于加上这个数的相反数即可得到答案.
【详解】12-〔-2〕=14〔℃〕.应选:C.
【点睛】此题考查了有理数的减法运算,关键在于理解题意的列式计算.
3.在2、﹣4、0、﹣3四个数中,最大的数比最小的数大( )
A.﹣6 B.﹣2 C.2 D.6
【答案】D
【解析】用最大的数2减去最小的数-4,再根据减去一个数等于加上这个数的相反数进行计算即可得解. 【详解】解:2-〔-4〕,
=2+4,
=6.。

人教版七年级上册数学 第一章 有理数 有理数的加减法 有理数的加法 有理数的加法(第二课时)

人教版七年级上册数学 第一章 有理数  有理数的加减法  有理数的加法  有理数的加法(第二课时)

巩固练习
解:(1) 9+(–3)+(–5)+(+4)+(–8)+(+6)+(–3)+(–6)+(–4)+(+10) = 9+10+(–3)+(–5)+(–8)+(–3)+6+(–6)+4+(–4) = 19 + (–19) = 0 (千米) 即又回到了出发地. (2)|+9|+|–3|+|–5|+|+4|+|–8|+|+6|+|–3|+|–6|+|–4|+|+10| = 9+3+5+4+8+6+3+6+4+10 = 58(千米) 所以营业额为 58×2.4=139.2(元).
素养目标
3.会用有理数的加法解决实际问题. 2.灵活运用运算律进行有理数的加法运算. 1.掌握有理数加法的运算律.
探究新知
知识点
加法运算律
填一填:
(1) 3 ﹢ –5 ﹦ _–2_ –5 ﹢ 3 ﹦ _–_2
(2) 13

–9
﹦ _4_
–9 ﹢ 13 ﹦ _4_
【思考】(1)比较以上各组两个算式的结果,每组两个算式有什
分数的符号,再把两部分的结果相加.
巩固练习
计算: (1)(–83)+(+26)+(–17)+(–26)+(+15).
(2)
(3)
4.1
(
1) 2
(
1) 4
10.1
7.
(12 5) (27 1).
6
6
解:(1) (–83)+(+26)+(–17)+(–26)+(+15)
=[(–83)+(–17)]+[(+26)+(–26)]+15

2022秋七年级数学上册第1章有理数1.3有理数的加减法第4课时有理数的加减混合运算习题课件新人教版

2022秋七年级数学上册第1章有理数1.3有理数的加减法第4课时有理数的加减混合运算习题课件新人教版
解:因为a的相反数是3, b<a,b的绝对值是6,c +b=-8,所以a=-3, b=-6,c=-2.
(2)求8-a+b-c的值.
解:因为a=-3,b=-6,c=-2, 所以8-a+b-c=8-(-3)+(-6)-(-2) =8+3-6+2=7.
19.(中考•黄石)观察下列等式:
1×12=1-12=12; 1×12+2×13=1-12+12-13=23; 1×12+2×13+3×14=1-12+12-13+13-14=34; …
16.阅读下面的解题过程并填空: 计算:53.27-(-18)+(-21)+46.73-15+21. 解:原式=53.27+18-21+46.73-15+21(第一步) =(53.27+46.73)+(-21+21)+(18-15)(第二步) =100+0+3=103.(第三步) 计算过程中,第一步把原式化成______省__略_算结果(n为正整数): ____________(写出最简计算结果即可).
【思路点拨】类比前三个等式中的裂项法进行裂项,即将加数1×12, 2×13,…转化为 1-12,12-13,…,再进行求和运算.
【点拨】第 n 个式子为:1×12+2×13+…+n(n1+1) =1-12+12-13+…+n1-n+1 1=1-n+1 1=n+n 1.
如:把(-2)+(+3)-(-5)+(-4)改写成省略括号和加号 的形式为______-__2_+__3_+__5_-__4___.
5.算式-3-5不能读作( C )
A.-3与5的差
B.-3与-5的和
C.-3与-5的差
D.-3减5
6.将6-(+3)-(-7)+(-2)写成省略括号和加号的形式 是( C )
A.-6-3+7-2 B.6-3-7-2 C.6-3+7-2 D.6+3-7-2

人教版七年级数学上册 1.3有理数的加减法 知识点归纳

人教版七年级数学上册 1.3有理数的加减法 知识点归纳

人教版七年级数学上册1.3有理数的加减法知识点归纳有理数加法法则:①同号两数相加,取相同的符号,并把绝对值相加。

例1、计算(-3)+(-5)分析:两数的符号都是“-”号,所以得数的符号是“-”号。

-3的绝对值是3,-5的绝对值是5 。

3+5=8所以(-3)+(-5)=-8 。

②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

例2、计算(-3)+5分析:-3的绝对值是3,5的绝对值是5 。

5>3所以得数的符号是“+”号,“+”号可以省略。

5-3=2所以(-3)+5=2 。

③互为相反数的两个数相加得0 。

例3、(-6)+6=0④一个数与0相加,仍得这个数。

例4、6+0=6,-10+0=-10 。

计算有理数的加减法时,要先定符号,再算绝对值。

小学所学的加法运算定律对有理数仍然适用。

加法运算定律:①加法交换律:两个数相加,交换加数的位置,和不变。

字母表示:a+b=b+a②加法结合律:三个数相加,先把前面两个数相加,或者先把后面两个数相加,和不变。

字母表示:a+b+c=a+(b+c)③如果一个算式中只有加法运算,则加数的顺序可以任意交换。

有理数减法法则:减去一个数,等于加上这个数的相反数。

字母表示:a-b=a+(-b)运用有理数减法法则,可以把减法转化为加法,之后就可以用有理数加法法则来计算。

例5、5-8-7=5+(-8)+(-7)=(-3)+(-7)=-10拆括号法则:①a+(-b)=a-b②a-(-b)=a+b例6、10+(-8)-(-7) =10-8+7=2+7=9。

七年级数学上册第一章有理数1-3有理数的加减法1-3-1第2课时有理数的加法运算律复习练习新版新人教版(1)

七年级数学上册第一章有理数1-3有理数的加减法1-3-1第2课时有理数的加法运算律复习练习新版新人教版(1)
七年级数学上册第一章有理数1-3有理数的加减法1-3-1第2课时有理数的加法运算律复习练习新版新人教版(1)
1.计算-23++(-1.234)++(+23)的结果是()
A.0B.-12.34
C.-1.234D.1.234
2.运用加法的运算律计算+(-18)++(-6.8)+18+(-3.2),最适当的是()
6.计算:
(1)(-0.8)+(+1.2)+(-0.6)+(-2.4);
(2)(-0.5)+++(+9.75);
(3)+(-2.16)+8+3+(-3.84)+(-0.25)+.
7.用简便方法计算:
(1)-4+17+(-36)+73;
(2)-+++.
8.[2017·××区校级月考]有一架直升飞机从海拔1 000米的高原上起飞,第一次上升了1 500米,第二次上升了-1 200米,第三次上升了2 100米,第四次上升了-1 700米,求此时这架飞机离海平面多少米?
9.阅读下面的解题方法.
计算:-5++17+.
解:原式=+++
=[(-5)+(-9)+17+(-3)]+

=0+
=-.
上述解题方法叫做拆项法,按此方法计算:
++4 036+1.
参考答案
第2课时 有理数的加法运算律
【分层作业】
1.C2.D3.7+2+
2+04.-25.06.(1)-2.6(2)2(3)27.(1)50(2)8.1 700米9.-
A.+[(-18)+(-6.8)+(-3.2)]
B.+[(-18)+18+(-3.2)]
[(-6.8)+(-3.2)]
3.根据加法运算律填空:7++2+=+
=2+ =.
4.计算:(-20.75)+3+(-4.25)+19=.

新人教版七年级上册数学1.3有理数的加减法2

新人教版七年级上册数学1.3有理数的加减法2

人教版七年级上册数学1.3.2有理数的加减法知识点1:有理数减法法则(重点)①有理数减法法则:减去一个数,等于加上这个数的相反数.字母表达式为: a –b=a + (–b)②有理数减法运算的四种情况:(1)任意一个数减去一个正数等于加上一个负数,如a-b=a+(-b);(2)任意一个数减去一个负数等于加上一个正数,如a-(-b)=a+b;(3)任何一个数减去0仍得这个数,如a-0=a;(4)0减去一个数等于这个数的相反数,如0-a=-a.当堂练习1 计算:(1)(–3)–(–5); (2)0–7; (3)7.2–(–4.8).方法总结1.有理数减法的运算步骤:①根据有理数的减法法则将减法运算变为加法运算;②根据有理数的加法法则和运算律计算出结果.2. 有理数的减法是有理数加法的逆运算,在转化过程中,应注意“两变一不变”,即减法变加法、减数变成它的相反数、被减数不变.随堂检测1. 填空:(1)–4 –(–3.2)= –4+ = ;(2)(–35)–(+12)= .2. 计算(1)6–9;(2)(+4)–(–7);(3)(–5)–(–8) ;(4)(–4)–9;(5)0–(–5);(6)0–5.3.已知│a│= 5,│b│= 3,且a>0,b<0,则a–b= .4.若x是2的相反数,|y|=3,则x–y的值是()。

A.–5 B.1C.–1或5 D.1或–55. –3–(–2)的值是()。

A.–1 B.1 C.5 D.–56. 比–1小2的数是()。

A.3 B.1 C.–2 D.–37.(1)(+7) –(–4); (2)(–0.45)–(–0.55);(3)0–(–9);(4)(–4)– 0 ;(5)(–5)–(+3).8.填空:(1)温度4℃比–6℃高________℃;(2)温度–7℃比–2℃低_________℃;(3)海拔高度–13m比–200m高_______m;(4)从海拔20m到–40m,下降了______m.9. 判断并说明理由.(1)在有理数的加法中,两数的和一定比加数大.()(2)两个数相减,被减数一定比减数大.()(3)两数之差一定小于被减数.()(4)0减去任何数,差都为负数.()(5)较大的数减去较小的数,差一定是正数.()10.世界上最高的山峰是珠穆朗玛峰,其海拔高度是8844 米,吐鲁番盆地的海拔高度是–155 米,两处高度相差多少米?11. 以地面为基准,A处高+2.5 m,B处高–17.8 m,C处高–32.4 m.问:(1)A处比B处高多少?(2)B处和C处哪个地方高?高多少?(3)A处和C处哪个地方低?低多少?12.已知|x|=3,|y|=5,且|x–y|=|x|+|y|,求x+y和x–y的值.知识点2:有理数的加减混合运算(难点)(1)运用减法法则,将有理数加减混合运算中的减法转化为加法,转化为加法后的式子是几个正数、负数的和的形式;(2)运用加法交换律、加法结合律,使运算简便。

七年级数学上册13《有理数的加减法》教案(新版)新人教版

七年级数学上册13《有理数的加减法》教案(新版)新人教版

有理数的加减法(一)[本节课内容]1.有理数的加法2.有理数的加法的运算律[本节课学习目标]1、理解有理数的加法法则.2、能够应用有理数的加法法则,将有理数的加法转化为非负数的加减运算.3、掌握异号两数的加法运算的规律.4、理解有理数的加法的运算律.5、能够应用有理数的加法的运算律进行计算.[知识讲解]一、有理数加法:正有理数及0的加法运算,小学已经学过,然而实际问题中做加法运算的数有可能超出正数范围.例如,足球循环赛中,可以把进球数记为正数,失球数记为负数,它们的和叫做净胜球数.如果,红队进4个球,失2个球;蓝队进1个球,失1个球.于是红队的净胜球数为4+(-2),蓝队的净胜球数为1+(-1).这里用到正数和负数的加法.下面借助数轴来讨论有理数的加法.看下面的问题:一个物体作左右方向的运动;我们规定向左为负,向右为正,向右运动 5m记作 5m,向左运动 5m记作−5m;如果物体先向右移动 5m,再向右移动 3m,那么两次运动后总的结果是什么?两次运动后物体从起点向右移动了 8m,写成算式就是:5+3 = 8如果物体先向左运动 5m,再向左运动 3m,那么两次运动后总的结果是什么?两次运动后物体从起点向左运动了 8m,写成算式就是(−5)+(−3) = −8如果物体先向右运动 5m,再向左运动 3m,那么两次运动后总的结果是什么?两次运动后物体从起点向右运动了 2m,写成算式就是5+(−3) = 2探究这三种情况运动结果的算式如下:3+(—5)=—2;5+(—5)= 0;(—5)+5= 0.如果物体第1秒向可(或向左)走 5m,第二秒原地不动,两秒后物体从起点向右(或向左)运动了 5m.写成算式就是5+0=5 或(—5)+0=—5.你能从以上7个算式中发现有理数加法的运算法则吗?有理数加法法则:①同号的两数相加,取相同的符号,并把绝对值相加.②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得零.③一个数同0相加,仍得这个数.例题例1、计算(-3)+(-9); (2)(-4.7)+3.9.分析:解此题要利用有理数的加法法则.解:(1) (-3)+(-9)=-(3+9)=-12(2) (-4.7)+3·9=-(4.7-3.9)=-0.8.例2 足球循环赛中,红队胜黄队4:1,黄队胜蓝队1:0,蓝队胜红队1:0,计算各队的净胜球数.解:每个队的进球总数记为正数,失球总数记为负数,这两数的和为这队的净胜球数.三场比赛中,红队共进4球,失2球,净胜球数为(+4)+(—2) = +(4—2)=2;黄队共进2球,失4球,净胜球数为(+2)+(—4)=—(4—2)= ( );蓝队共进( )球,失( )球,净胜球数为( )=( ).二、有理数加法的运算律通过这两个题计算,可以看出它们的结果都为10,说明有理数的加法满足交换律,即:两个数相加,交换加数的位置,和不变.用式子表示为:再请你计算一下,[ 8 +(-5)] +(-4),8 + [(-5)]+(-4)].通过这两个题计算,可以仍然可以看出它们的结果都为-1,说明有理数的加法满足结合律,即:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.用式子表示为:上述加法的运算律说明,多个有理数相加,可以任意改变加数的位置,也可以先把其中的几个数相加,使计算简化.例题例1 计算:16 +(-25)+ 24 +(-35).若使此题计算简便,可以先利用加法的结合律,将正数与负数分别结合在一起进行计算.解: 16 +(-25)+ 24 +(-35)= (16 + 24)+ [(-25)+(-35)]= 40 +(-60)=-20.例2 每袋小麦的标准重量为 90千克,10袋小麦称重记录如下:91 91 91.5 89 91.2 91.3 88.7 88.8 91.8 91.110袋小麦总计超过多少千克或不足多少千克?10袋小麦的总重量是多少千克?解: 91+91+91.5+89+91.2+91.3+88.7+88.8+91.8+91.1 = 905.4.再计算总计超过多少千克905.4-90×10 = 5.4.答:总计超过 5千克,10袋水泥的总质量是 505千克.三、小结:有理数加法法则:①同号的两数相加,取相同的符号,并把绝对值相加.②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得零.③一个数同0相加,仍得这个数.有理数加法运算律:①加法交换律:a+ b = b + a②加法结合律:(a+ b)+ c = a+( b +c)有理数的加减法(二)学习目标1、会将有理数的减法运算转化为有理数的加法运算.2、会将有理数的加减混合运算转化为有理数的加法运算.重点、难点会进行有理数的减法运算,会进行有理数的加减混合运算.教学过程一、有理数的减法法则实际生活中有很多时候要涉及到有理数的减法.例如:长春某天的气温是―3~4ºC,这一天的温差是多少呢?(温差是最高气温减最地气温,单位:ºC).显然,这天的温差是4―(―3).这里就用到了有理数的减法.我们知道,减法是与加法相反的运算,计算4―(―3),就是要求一个数,使之与(―3)的和得4,因为与―3相加得4,所以这个数应该是7,即4―(―3) = 7. (1)另一方面,我们知道4+(+3) = 7 (2)由(1),(2)有4―(―3) = 4+(+3) (3)从(3)式能看出减―3相当于加哪个数吗?用上面的方法考虑:0―(―3) =___, 0+(+3) =___;1―(―3) =___, 1+(+3) =____;―5―(―3) =___,―5+(+3) =___.这些数减−3的结果与它们加+3的结果相同吗?计算: 9-8=___, 9+(- 8)=____;15-7=___, 15+(-7)=____.上述式子表明:减去一个数,等于加上这个数的相反数.于是,得到有理数减法法则:减去一个数,等于加这个数的相反数.用式子可以表示成a−b = a+(−b)例题计算:(1) (-3)―(―5); (2)0-7;(3) 7.2―(―4.8); (4)-3.解:(1) (-3)―(―5)= (-3)+5=2;(2) )0-7 = 0+(-7) =-7;(3) 7.2―(―4.8) = 7.2+4.8 = 12;(4)-3=-3+(-5)=-8.二、有理数加减混合运算有理数的加减混合运算,可以按照运算顺序,从左到右逐一加以计算,通常也会利用有理数的减法法则,把它写成只有加法运算的和的形式.例如:(+2)-(-3)-(+4)+(-5)可以写成(+2)+(+3)+(-4)+(-5)将上面这个式子写成省略加号和括号的形式即为:(+2)+(+3)+(-4)+(-5) = 2+3-4-5对于这个式子,有两种读法:①读作“2加3减4减5”;②读作“2、3、-4、-5的和”例1.计算(-20)+(+3)-(-5)-(+7)解:(-20)+(+3)-(-5)-(+7)= (-20)+(+3)+(+5)+(-7)=-20+3+5-7=-20-7+3+5=-27+8=-19说明:计算时,可以按照运算顺序,从左到右逐一加以计算三、加法运算律在加减混合运算中的作用与方法加法运算律在加减混合运算中的运用,可以使一些计算简便,例如利用加法运算律使符号相同的加数在一起,或使和为整数的加数在一起,或使分母相同或便于通分的加数在一起等等例2.用两种方法计算:-4.4-(-4)-(+2)+(-2)+12.4解法1:-4.4-(-4)-(+2)+(-2)+12.4=-4.4+4+(-2)+(-2)+12.4=(-4.4+12.4)+4+[(-2)+(-2)]= 8+[4+(-5)]= 8+(-1)= 7此解法是将和为整数、便于通分的加数在一起解法2:-4.4-(-4)-(+2)+(-2)+12.4=-4.4+4-2-2+12.4=(8+4-2-2)+(--)= 8+(-1) = 7此种方法是将整数部分与小数部分分别相加使计算简化四、小结:①有理数减法法则:减去一个数,等于加这个数的相反数.用式子可以表示成a−b = a+(−b)②有理数加减混合运算可以统一为加法运算,即:a+b−c = a+b+(−c)。

七年级数学上册第一章1.3有理数的加减法人教版

七年级数学上册第一章1.3有理数的加减法人教版

七年级数学上册第一章1.3有理数的加减法(人教版)有理数的加减法1.3.1 有理数的加法第1课时有理数的加法法则1.了解有理数加法的意义.2.理解有理数加法法则的合理性.3.能运用有理数加法法则正确进行有理数加法运算.阅读教材P16~18,思考并回答下列问题.结合教材对两个有理数相加的7个算式,类似地再列举出相应的算式并结合数轴解释,得出结果[如(+3)+(+4)、(-3)+(-4)、(-3)+(+4)、(+3)+(-4)、(+3)+(-3)、(-3)+0、(+3)+0],根据以上7个算式,思考:你能总结出有理数相加的符号如何确定?和的绝对值如何确定?互为相反数的两个数相加,一个有理数和0相加,和分别为多少?知识探究有理数加法法则:1.同号两数相加,取相同的符号,并把绝对值相加. 2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0.3.一个数同0相加,仍得这个数.自学反馈计算:(1)16+(-8)=8;(2)(-12)+(-13)=-56;(3)(+312)+(-72)=0;(4)(+8)+(-3)=5;(5)(-0.125)+(18)=0;(6)0+(-9.7)=-9.7.在进行有理数加法运算时,一要辨别加数是同号还是异号;二要确定和的符号;三要计算和的绝对值.即“一辨、二定、三算”.活动1 小组讨论例1 计算:(1)(-3)+(-9);(2)(-4.7)+解:(1)-12.(2)-0例2 足球循环比赛中,红队胜黄队4∶1,黄队胜蓝队1∶0,蓝队胜红队1∶0,计算各队的净胜球数.解:黄队净胜球:-2,红队净胜球:2,蓝队净胜球:0.活动2 跟踪训练1.计算:(1)(+3)+(+8) (2)(+14)+(-12);(3)(-312)+(-3.5); (4)(-314)+(+213);(5)(-19)+8.3; (6)-3.4+4.解:(1)11.(2)-14.(3)-7.(4)-1112.(5)10.7.(6)0 注意计算的符号,特别是负号.2.某县某天夜晚平均气温是-10 ℃,白天比夜晚高12 ℃,那么白天的平均气温是多少?解:2 ℃.3.两个数的和为负数,则下列说法中正确的是(D) A.两个均是负数B.两个数一正一负C.至少有一个正数 D.至少有一个负数4.一个正数与一个负数的和是(D)A.正数 B.负数C.零 D.不能确定符号活动3 课堂小结有理数加法法则:1.同号相加,取相同的符号,并把绝对值相加.2.异号相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值.3.任意有理数和零相加,仍得这个数.第2课时有理数的加法运算律1.掌握有理数的加法运算律,理解小学中的加法运算律在有理数中仍然成立.2.能用有理数的运算律对有理数加法进行简便运算. 3.能根据有理数加法算式的特点选择适当的简便运算方法.阅读教材P19~20,思考并回答下列问题.知识探究加法交换律的文字表达:两个数相加,交换加数的位置,和不变.加法交换律的字母表达:a+b=b+a.加法交换律的例子说明:1+2=2+1.加法结合律的文字表达:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.加法结合律的字母表达:(a+b)+c=a+(b+c).加法结合律的例子说明:(1+2)+3=1+(2+3).自学反馈计算:(1)(-7.34)+(-12.74)+7.34+12.4;(2)(-35+15)+(-45);(3)(-37)+(+15)+(+27)+(-115);(4)(-20.75)+314+(-4.25)+1934;(5)(-6.8)+425+(-3.2)+635+(-5.7)+(+5.7).解:(1)-0.34.(2)-65.(3)-117.(4)-2.(5)1. 活动1 小组讨论例1 计算:(1)(-2)+3+1+(-3)+2+(-4);(2)16+(-25)+24+(-35);(3)314+(-235)+534+(-825);(4)(-7)+6+(-3)+10+(-6).解:(1)-3.(2)-20.(3)-2.(4)0.例2 10袋小麦称后记录如图所示(单位:kg).10袋小麦一共多少千克?如果每袋小麦以90 kg为标准,10袋小麦总计超过多少千克或不足多少千克?解法1:先计算10袋小麦一共多少千克:91+91+91.5+89+91.2+91.3+88.7+88.8+91.8+91.1=90再计算总计超过多少千克:905.4-90×10=解法2:每袋小麦超过90 kg的千克数记作正数,不足的千克数记作负数.10袋小麦对应的数分别为+1,+1,+1.5,-1,+1.2,+1.3,-1.3,-1.2,+1.8,++1+1.5+(-1)+1.2+1.3+(-1.3)+(-1.2)+1.8+=[1+(-1)]+[1.2+(-1.2)]+[1.3+(-1.3)]+(1+1.5+1.8+1.1)=0×10+5.4=90答:10袋小麦一共905.4 kg,总计超过5.4 kg.注意运算律的运用.活动2 跟踪训练1.用适当的方法计算:(1)23+(-17)+6+(-22);(2)1+(-12)+13+(-16);(3)1.125+(-325)+(-18)+(-0.6);(4)(-2.48)+(+4.33)+(-7.52)+(-4.33).解:(1)-10.(2)23.(3)-3.(4)-10.2.某出租司机某天下午营运全是在东西走向的人民大道进行的,如果规定向东为正,向西为负,他这天下午行车里程如下(单位:千米):+15,+14,-3,-11,+10,-12,+4,-15,+16,-(1)将最后一名乘客送到目的地,该司机距下午出发点的距离是多少千米?(2)若汽车耗油量为a升/千米,这天下午汽车共耗油多少升?解:(1)15+14-3-11+10-12+4-15+16-18=0,距出发点0千米.(2)118a升.活动3 课堂小结1.有理数的加法交换律、结合律:加法交换律:a+b=b+a,加法结合律:(a+b)+c=a+(b+c).2.简便运算:①运用运算律;②运用相反数的和为零;③凑整.1.3.2 有理数的减法第1课时有理数的减法法则1.掌握有理数的减法法则.2.熟练地进行有理数的减法运算.3.了解加与减两种运算的对立统一关系,掌握数学学习中转化的思想.阅读教材P21~22,思考下列问题.通过实际例子,一方面,利用加法与减法互为逆运算可知:计算4-(-3),就是求一个数x,使x+(-3)=4,易知x=7,所以4-(-3)=7.①另一方面,4+(+3)=7.②由①②,有4-(-3)=4+(+3).再试着把减数-3换成正数,任意列出一些算式进行计算,如:计算9-8与9+(-8);15-7与15+(-7).得出减法法则:减去一个数,等于加这个数的相反数.用字母表示为:a-b=a+(-b).减法法则渗透了一种重要的数学思想方法——转化,有了相反数,减法就可以转化为加法,加减就可以统一为加法.知识探究有理数减法法则:减去一个数,等于加这个数的相反数.用字母表示为:a-b=a+(-b).自学反馈计算:(1)(-3)-(-6);(2)0-8;(3)6.4-(-3.6); (4)(-312)-(+514).解:(1)3.(2)-8.(3)10.(4)-(1)减法转化为加法,减数要变成相反数.(2)法则适用于任何两有理数相减.(3)用字母表示一般形式为:a-b=a+(-b).活动1 小组讨论例计算:(1)(-38)-(-36);(2)0-(-711);(3)1.7-(-3.5); (4)(-234)-(-112);(5)323-(-234); (6)(-334)-(+1.75).解:(1)-2.(2)711.(3)5.2.(4)-114.(5)6512.(6)-活动2 跟踪训练1.计算:(1)(-23)-(+112)-(-14);(2)(-0.1)-(-813)+(-1123)-(-110);(3)(-1.5)-(-1.4)-(-3.6)+(-4.3)-(+5.2);(4)(5-6)-(7-9).解:(1)-12.(2)-313.(3)-6.(4)1.2.根据题意列出式子计算.(1)一个加数是1.8,和是-0.81,求另一个加数;(2)-13的绝对值的相反数与23的相反数的差.解:(1)-0.81-1.8=-2(2)-|-13|-(-23)=-13+23=活动3 课堂小结1.有理数的减法法则:a-b=a+(-b).2.转化原则:减号变加号,减数变成相反数.第2课时有理数的加减混合运算1.会把有理数的加减混合运算统一为加法运算.2.熟悉有理数加减运算的运算律,提高运算的速度和准确度.3.能把有理数加法运算省略加号和括号,理解有理数的和.4.形成解决有理数加减混合运算问题的一些基本策略.阅读教材P23~24,体会加法与减法的统一和书写的简约.知识探究把下列算式统一为加法,并写成省略括号的形式: (-20)+(+3)-(-5)-(+7)=(-20)+(+3)+(+5)+(-7)=-20+3+5-7;(-7)+(+5)+(-4)-(-10)=(-7)+(+5)+(-4)+(+10)=-7+5-4+10.注意有理数的加减混合运算写成省略括号的和的形式的意义.自学反馈把(+23)+(-45)-(+15)-(-13)-(+1)写成省略括号的和的形式,并计算.解:23-45-15+13-1=-活动1 小组讨论例1 计算:(1)(+27)+(-49)-(+59)-(-57)-(+1);(2)-7-(-8)-(-712)-(+9)+(-10)+1112;(3)-99+100-97+98-95+96+ (2)(4)-1-2-3- (100)解:(1)-1.(2)1.(3)50.(4)-5 050.例2 银行储蓄所办理了8件工作业务,取出950元,存进500元,取出800元,存进1 200元,存进2 500元,取出1 025元,取出200元,存进400元,这时,银行现款是增加了,还是减少了?增加或减少了多少元?解:增加了,增加了1 625元.例3 把-a+(+b)-(-c)+(-d)写成省略括号的和的形式为-a+b+c-d.总结:有理数的加减混合运算的计算有如下几个步骤:(1)将减法转化成加法运算;(2)省略加号和括号;(3)运用加法交换律和结合律,将同号两数相加;(4)按有理数加法法则计算.活动2 跟踪训练1.把下列算式写成省略括号的和的形式.(1)(+9)-(+10)+(-2)-(-8)+3;(2)(-13)-(+22)+(-17)-(-18).解:(1)9-10-2+8+3.(2)-13-22-17+2.计算:(1)(-7)-(+5)+(-4)-(-10);(2)1-4+3-0.5;(3)34-72+(-16)-(-23)-1;(4)-2.4+3.5-4.6+解:(1)-6.(2)-0.5.(3)-314.(4)0.活动3 课堂小结1.有理数的加减混合运算.2.省略加号和括号。

【精品推荐】七年级数学上册第一章有理数1.3有理数的加减法1.3.1有理数的加法2课件新版新人教版

【精品推荐】七年级数学上册第一章有理数1.3有理数的加减法1.3.1有理数的加法2课件新版新人教版

则a+b+c=
−. 87.5
知识点2 加法运算律的应用
4.某地一天早晨的气温是-3℃,到中午升高了5℃,下午又降低了3℃,
到晚上又降低了5℃.则晚上的气温是 ( )
C
A.6℃
B.10℃ C.-6℃
D.-8℃
5.某村有几块麦田,今年的收成与去年相比(增产为正,减产为负)的
情况如下(单位为kg):+32,-17,-32,+13,+15,+4,-15.则今年
(-
3+
2-
5) +
(-
1 3
+
1 2
-
16 )
=- 6+ 0
=- 6
例3:某出租司机某天下午营运全是在东西走向的人民大道进行的,如果规 定向东为正,向西为负,他这天下午行车里程如下(单位:千米):+15, +14,-3,-11,+10,-12,+4,-15,+16,-18 (1)他将最后一名乘客送到目的地,该司机距下午出发点的距离是多少千 米? (2)若汽车耗油量为a公升/千米,这天下午汽车共耗油多少公升?
=(-4)+9 =5
点拨2: 能凑整的先凑整
(3)(-8)+(+2.8)+(+8)+(-2.8) [点拨3有相反数的可先把相反数相加]
(4)3 1 (2 3) 5 3 (8 2)
4
54
5
[点拨4有分母相同的,可先把分母相同的数结合相加。]
(1)(+28)+(-17)+5+(-16) 正数与正数,负数与负数负分别相加
从而使计算简便.
谢谢观看,敬请指导
天平两臂平衡,表示两边的物体质量相等;两臂不平衡,表示两边物体的质量不相等。让学生在天平平衡的直观情境中体会等式,符合学生的认知特点。例1在天平图下方呈现“=”,让学生用等式表达天平两边物体质量的相等关系,从中体会等式的含义。教材使用了“质量”这个词,是因为天平与其他的秤不同。习惯上秤计量物体有多重,天平计量物体的质量是多少。教学时不要把质量说成重量,但不必作过多的解释。 例2继续教学等式,教材的安排有三个特点: 第一,有些天平的两臂平衡,有些天平两臂不平衡。根据各个天平的状态,有时写出的是等式,有时写出的不是等式。学生在相等与不等的比较与感受中,能进一步体会等式的含义。第二,写出的四个式子里都含有未知数,有两个是含有未知数的等式。这便于学生初步感知方程,为教学方程的意义积累了具体的素材。第三,写四个式子时,对学生的要求由扶到放。圆圈里的关系符号都要学生填写,学生在选择“=”“>”或“<”时,能深刻体会符号两边相等与不相等的关系;符号两边的式子与数则逐渐放手让学生填写,这是因为他们以前没有写过含有未知数的等式与不等式。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
次运动的结果,并用算式表示:
(1)先向左运动3 m,再向右运动5 m,
物体从起点向 右 运动了Байду номын сангаас2 m, (-3)+5= 2

(2)先向右运动了3 m,再向左运动了5 m,
物体从起点向 左 运动了 2 m , 3+(-5)=-2 ;
5

3
-1 0 1 2 3 4 5 6 7 8
8
(+5)&#,我们规定向右为正,向左为
负.向右运动5 m记作5 m,向左运动5 m记作-5 m.
(2)如果物体先向左运动5 m,再向左运动3 m,那么两次运 动后总的结果是什么?能否用算式表示?
-3 +
-5
-8 -7 -6 -5 -4 -3 -2 -1
-8
(w-ww5.n)iu+wk.c(om-牛3牛)文=库文-档8分

01
(+5)+(+3)=8 (-5)+(-3)=-8
注意关注加数的 符号和绝对值
根据以上两个算式能否尝试总结同号两数相加的法则?
结论: 同号两数相加,取相同符号,并把绝对值相加.
课件说明
•本节课学习有理数的加法法则.
•学习目标: 1.理解有理数加法法则; 2.利用加法法则正确地进行有理数的加法运算.
•学习重点: 1.了解有理数加法的意义; 2.会根据有理数的ww加w.ni法uwk.法com则牛牛进行文档有分 理数的加法运算.享
有理数有几种分类方法?
5
都是如何分类的4 呢? 牛牛文档分 享如果物体第1 s向右(或左)运动5 m,第2秒原 地不动,很显然,两秒后物体从起点向右(或左) 运动了5 m.如何用算式表示呢?
5+0=5. 或 (-5)+0=-5. 结论:
一不同情况完整地将有理 数的加法法则表述出来吗?
(1)-12 (3)-7
(2)-0.8 (4)0 牛牛文档分 享1.用算式表示下面的结果:
(1)温度由-4 ºC上升7ºC; 上升3°
(2)收入7元,又支出5元. 收入2元
2.口算:
(1)(-4)+(-6);-10 (2) 4+(-6);-2
(3)(-4)+6; 2
(4)(-4)+4;0 牛牛文档分 享 牛牛文档分 享
牛牛文档分 享在小学,我们学过正数及0的加法运算.学过 的加法类型是正数与正数相加、正数与0相加.引 入负数后个加数
正数 0
负数
正数
正数+正数 正数+0 负数+负数
0
0+正数 0+0
的意义. 例如:第一个式子,向前走两步,退后三步,
相当于只前进了两步;第二个式子,用水桶
在井中提水,桶第一次下降了5米,第二次下
降了3米(规w定理数的加法法则是什么? 2.在总结加法法则时我们使用了哪些常见的数学 研究方法? 3.进行有理数的加法运算时需要注意哪几个步骤?
有理数加法法则:
(1)同号两数相加,取相同符号,并把绝对值相加. (2)绝对值不相等的异号两数相加,取绝对值较大的 加数的符号,并用较大的绝对值减去较小的绝对值, 互为相反数的两个数相加得0. (3)一3)+(-9); (2)(-4.7)+3.9; (3) 0+(-7); (4)(-9)+(+9).
(3)先向左运动了5 m,再向右运动了5 m,
物体从起点运动了 0 m , (-5)+5= 0. 牛牛文档分 享(-3)+5= 2
注意关注加数的 符号和绝对值
3+(-5)=-2
(-5)+5= 0
根据以上三个算式能否尝试总结异号两数相加的法则?
结论: 绝对值不相等的异号两数相加,取绝对值较大的加 数的符号,并用较大的绝对值减去较小的绝对值, 互为相反数的两个数相加得0 .
0+负数
负数
负数+正数 负数+0
负数+负数
结论:共三种类型.
即:(1)同号两个数相加; (2)异号两个数相加;
(3)一个数与0相ww加w.n. 牛牛文档分享一个物体向左右方向运动,我们规定向右为正,向左为 负.比如:向右运动5 m记作5 m,向左运动5 m记作-5 m.
(1)如果物体先向右运动5 m,再向右运动了3 m,那么 两次运动后总的结果是什么?能否用算式表示?
(5)(-4)+14; 10
()15+(-22); (2) (-13)+(-8);
(1) 7
(2) 21
(3)(-0.9)+1.5; (4) 1 +(- 2 ).
(3)0.6
23
(4) 1
6
4.请你用生活实例解释5+(-3)=2,(-5)+(-3)=-8
相关文档
最新文档