《量子力学教程》第二版答案(周世勋原著 )

合集下载

《量子力学教程》周世勋课后答案

《量子力学教程》周世勋课后答案

量子力学课后习题详解第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。

解 根据普朗克的黑体辐射公式dv echv d kThv v v 11833-⋅=πρ, (1) 以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。

本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。

但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kThce kT hc ehcλλλλλπρ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThc λλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。

首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。

据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。

解 根据德布罗意波粒二象性的关系,可知E=hv ,λh P =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph=λnmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。

《量子力学教程》周世勋_课后答案

《量子力学教程》周世勋_课后答案

量子力学课后习题详解 第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。

解 根据普朗克的黑体辐射公式dv echv d kThv v v 11833-⋅=πρ, (1) 以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。

本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。

但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kThc e kT hc ehcλλλλλπρ ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThc λλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。

首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=,经过验证,此解正是所要求的,这样则有xkhc T m =λ 把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。

据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。

解 根据德布罗意波粒二象性的关系,可知E=hv ,λhP =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph =λ nmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。

《量子力学教程》周世勋课后答案

《量子力学教程》周世勋课后答案

量子力学课后习题详解第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。

解 根据普朗克的黑体辐射公式dv echv d kThv v v 11833-⋅=πρ, (1) 以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。

本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。

但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kThce kT hc ehcλλλλλπρ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThc λλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。

首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。

据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。

解 根据德布罗意波粒二象性的关系,可知E=hv ,λh P =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph=λnmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。

《量子力学教程》周世勋课后答案

《量子力学教程》周世勋课后答案

量子力学课后习题详解第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。

解 根据普朗克的黑体辐射公式dv echv d kThv v v 11833-⋅=πρ, (1) 以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。

本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。

但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kThce kT hc ehcλλλλλπρ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThc λλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。

首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。

据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。

解 根据德布罗意波粒二象性的关系,可知E=hv ,λh P =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph=λnmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。

《量子力学教程》第二版答案周世勋原著

《量子力学教程》第二版答案周世勋原著

《量子力学教程》第二版答案周世勋原著量子力学,这一神秘而又令人着迷的科学领域,对于许多学习者来说,既是挑战,也是机遇。

周世勋先生的《量子力学教程》作为经典教材,为我们开启了探索量子世界的大门。

而与之配套的第二版答案,则像是一把解锁知识宝库的钥匙。

在深入探讨这份答案之前,我们先来简单了解一下量子力学的重要性。

量子力学是现代物理学的基石之一,它不仅改变了我们对微观世界的理解,还在众多领域引发了革命性的变革,如半导体技术、激光物理、量子计算等。

可以说,没有量子力学的发展,我们的现代科技将难以达到如今的高度。

周世勋先生的《量子力学教程》以其清晰的逻辑和系统的阐述,深受广大师生的喜爱。

然而,对于学习者来说,在学习过程中难免会遇到一些难题,这时候答案的作用就显得尤为重要。

这份第二版答案的第一个显著特点是准确性。

每一道题目的解答都经过了精心的推导和论证,确保了答案的正确性。

这对于学习者来说是至关重要的,因为错误的答案可能会导致对概念的误解,进而影响后续的学习。

其次,答案的解析过程详细而清晰。

它不仅仅给出了最终的结果,更重要的是展示了如何从问题出发,运用所学的量子力学知识和方法,逐步推导出答案。

这种详细的解析有助于学习者理解解题的思路和技巧,从而提高自己的解题能力。

比如说,在处理一些复杂的波函数问题时,答案会详细地说明如何进行变量分离、如何运用边界条件,以及如何根据物理意义进行合理的假设和简化。

这让学习者能够明白每一个步骤的依据和目的,而不是仅仅记住一个机械的解题过程。

此外,答案还注重对知识点的总结和归纳。

在解答完一组相关的题目后,会对涉及到的重要概念和方法进行总结,帮助学习者加深对这些知识点的理解和记忆。

这对于构建完整的量子力学知识体系非常有帮助。

以量子态的叠加原理为例,答案在解答相关题目后,会总结叠加原理的适用条件、常见的应用场景以及与其他原理的联系和区别。

这样的总结能够让学习者更好地把握这一重要概念的本质。

《量子力学教程》周世勋课后答案

《量子力学教程》周世勋课后答案

量子力学课后习题详解第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。

解 根据普朗克的黑体辐射公式dv echv d kThv v v 11833-⋅=πρ, (1) 以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。

本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。

但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kThce kT hc ehcλλλλλπρ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThc λλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。

首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。

据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。

解 根据德布罗意波粒二象性的关系,可知E=hv ,λh P =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph=λnmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。

量子力学教程(第二版)周世勋习题解答

量子力学教程(第二版)周世勋习题解答
整理(10)、(11)、(12)、(13)式,并合并成方程组,得
(10) (11) (12) (13)
ek1a B sin k 2aC cosk 2aD 0 0
k1ek1a B k 2 cosk 2aC k 2 sin k 2a D 0 0
0 sin k 2aC cosk 2aD ek1a F 0
(x) c (x)

④乘 ⑤,得 (x) (x) c2 (x) (x) , 可见,c 2 1 ,所以 c 1
当 c 1时, (x) (x) , (x) 具有偶宇称,
当 c 1时, (x) (x) , (x) 具有奇宇称,
18
当势场满足 U (x) U (x) 时,粒子的定态波函数具有确定的宇称。
3
第一章 绪论
1.1.由黑体辐射公式导出维恩位移定律: mT b, b 2.9 10 3 m0C 。
证明:由普朗克黑体辐射公式:
d
8h c33Βιβλιοθήκη 1hd ,
ekT 1
及 c 、 d c d 得
2
8hc 5
1,
hc
ekT 1
令 x hc ,再由 d 0 ,得 .所满足的超越方程为
kT
d
2
(x)
E
2
(x)

12
Ⅲ: x a
2 2m
d2 dx2
3
(x)
U
(x)
3
(x)
E
3
(x)

由于(1)、(3)方程中,由于U (x) ,要等式成立,必须
1(x) 0 2 (x) 0
即粒子不能运动到势阱以外的地方去。
方程(2)可变为
d
2 2 ( dx2

量子力学教程(第二版)周世勋习题解答

量子力学教程(第二版)周世勋习题解答

0 0 e k1a
0
k 2 sin k 2 a k 1 Be k1a
k 2 cos k 2 a k 2 sin k 2 a 0 e k1a sin k 2 a k 2 cos k 2 a sin k 2 a k 1e k1a sin k 2 a
d 21 ( x) dx2
#
x
1 2
4 3 1 1 2 0 , 可见 x 是所求几率最大的位置。 e
9
2.6
在一维势场中运动的粒子,势能对原点对称:U ( x) U ( x) ,证明粒子的定态波函数具有确定的
宇称。 证:在一维势场中运动的粒子的定态 S-方程为
10
2.7 一粒子在一维势阱中
U 0 0, U ( x) 0,
x a x a
运动,求束缚态( 0 E U 0 )的能级所满足的方程。 解:粒子所满足的 S-方程为
2 d 2 ( x) U ( x) ( x) E ( x) 2 dx2
按势能U ( x) 的形式分区域的具体形式为
在各区域的具体形式为 Ⅰ: x 0 Ⅱ: 0 x a
2 d 2 1 ( x) U ( x) 1 ( x) E 1 ( x) 2m dx2 2 d 2 2 ( x) E 2 ( x) 2m dx2


4
Ⅲ: x a
2 d 2 3 ( x) U ( x) 3 ( x) E 3 ( x) 2m dx2
由③再经 x x 反演,可得①,反演步骤与上完全相同,即是完全等价的。 ④
( x) c ( x)
④乘 ⑤,得

(x) (x) c 2 (x) (x) , 可见, c 2 1 ,所以 c 1

量子力学周世勋第二版课后习题解答第5章

量子力学周世勋第二版课后习题解答第5章

5.1 如果类氢原子的核不是点电荷,而是半径为0r 、电荷均匀分布的小球,计算这种效应对类氢原子基态能量的一级修正。

解:这种分布只对0r r <的区域有影响,对0r r ≥的区域无影响。

据题意知)()(ˆ0r U r U H -=' 其中)(0r U 是不考虑这种效应的势能分布,即 rze r U 024πε-=)()(r U 为考虑这种效应后的势能分布,在0r r ≥区域,rZe r U 024)(πε-=在0r r <区域,)(r U 可由下式得出,⎰∞-=rE d rer U )( ⎪⎪⎩⎪⎪⎨⎧≥≤=⋅⋅=)( 4 )( ,434410200300330420r r r Ze r r r r Ze r r Ze r E πεπεπππε⎰⎰∞--=0)(r r rEdr e Edr er U⎰⎰∞--=002023002144r r rdr r Ze rdr r Ze πεπε)3(84)(82203020*********r r r Ze r Ze r r r Ze --=---=πεπεπε )( 0r r ≤⎪⎩⎪⎨⎧≥≤+--=-=')( 0 )( 4)3(8)()(ˆ000222030020r r r r r Ze r r r Ze r U r U H πεπε由于0r 很小,所以)(2ˆˆ022)0(r U H H+∇-=<<'μ,可视为一种微扰,由它引起的一级修正为(基态r a Ze a Z 02/1303)0(1)(-=πψ) ⎰∞'=τψψd H E )0(1*)0(1)1(1ˆ ⎰-+--=0002202220302334]4)3(8[r r a Zdr r e r Ze r r r Ze a Z ππεπεπ ∴0a r <<,故102≈-r a Ze 。

∴ ⎰⎰+--=0302404220330024)1(1)3(2r r r d ra e Z dr r r r r a e Z Eπεπε2030024505030300242)5(2r a e Z r r r a e Z πεπε+--= 23002410r a e Z πε= 2032452r a e Z s = 5.2 转动惯量为I 、电偶极矩为D 的空间转子处在均匀电场在ε中,如果电场较小,用微扰法求转子基态能量的二级修正。

《量子力学教程》周世勋_课后答案

《量子力学教程》周世勋_课后答案

量子力学课后习题详解 第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。

解 根据普朗克的黑体辐射公式dv echv d kThv v v 11833-⋅=πρ, (1) 以及c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体波长介于λ与λ+d λ之间的辐射能量密度。

本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。

但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kThce kT hc ehcλλλλλπρ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThcλλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。

首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ 把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。

据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。

解 根据德布罗意波粒二象性的关系,可知E=hv ,λhP =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph =λnmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。

《量子力学教程》周世勋_课后答案

《量子力学教程》周世勋_课后答案

量子力学课后习题详解第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。

解 根据普朗克的黑体辐射公式dv echv d kThv v v 11833-⋅=πρ, (1) 以及c v =λ, (2)λρρd dv v v -=, (3)有[,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。

本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。

但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kThc e kT hc ehcλλλλλπρ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThcλλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。

首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=,经过验证,此解正是所要求的,这样则有@xkhc T m =λ 把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。

据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。

解 根据德布罗意波粒二象性的关系,可知E=hv ,λhP =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么>ep E μ22=如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph =λnmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ:最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。

《量子力学教程》周世勋课后答案

《量子力学教程》周世勋课后答案

量子力学课后习题详解第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。

解 根据普朗克的黑体辐射公式dv echv d kThv v v 11833-⋅=πρ, (1) 以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。

本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。

但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kThce kT hc ehcλλλλλπρ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThc λλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。

首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。

据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。

解 根据德布罗意波粒二象性的关系,可知E=hv ,λh P =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph=λnmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。

量子力学周世勋第二版课后习题解答第4章

量子力学周世勋第二版课后习题解答第4章

4.1.求在动量表象中角动量x L 的矩阵元和2x L 的矩阵元。

解:⎰⋅⋅'-'-=τπd e p z py e L r p i y z rp i p p x)ˆˆ()21()(3 ⎰⋅⋅'--=τπd e zp yp e r p i y z rp i)()21(3⎰⋅⋅'-∂∂-∂∂-=τπd e p p p p i e rp i zy y z r p i))(()21(3⎰⋅'-∂∂-∂∂-=τπd e p p p p i r p p i z y y z)(3)21)()(()()(p p p p p p i yz z y '-∂∂-∂∂= δ⎰''=τψψd L x L px p p p x 2*2)()( ⎰⋅⋅'--=τπd e p z p y e r p i y z r p i23)ˆˆ()21(⎰⋅⋅'---=τπd e p z p y p z py e r p i y z y z rp i)ˆˆ)(ˆˆ()21(3 ⎰''-∂∂-∂∂-=τπd e p p p p i p z p y e rp i yz z y y z r p i))()(ˆˆ()21(3⎰⋅⋅'--∂∂-∂∂=τπd e p z p y e p p p p i r p i y z rp i y z z y)ˆˆ()21)()((3⎰⋅'-∂∂-∂∂-=τπd e p p p p r p p i y z z y)(322)21()()()(22p p p p p p yz z y '-∂∂-∂∂-= δ4.2 求能量表象中,一维无限深势阱的坐标与动量的矩阵元。

解:基矢:x a n a x u n πsin 2)(=能量:22222a n E n μπ =对角元:2sin 202a xdx a m x a x a mm ==⎰π 当时,n m ≠ ⎰⋅⋅=a mn dx ax x a m a x 0)(sin )(sin2π[][]1)1()(4)(1)(11)1(])(sin )()(cos )([ ])(sin )()(cos )([1)(cos )(cos 12222222022202220---=⎥⎦⎤⎢⎣⎡+----=⎥⎥⎦⎤+++++-⎢⎢⎣⎡--+--=⎥⎦⎤⎢⎣⎡+--=--⎰nm n m aaa n m m n an m n m a x a n m n m ax x a n m n m a x a n m n m ax x a n m n m a a dx x a n m x a n m x a ππππππππππππ [][]m n i n m n m a a n i x a n m n m a x a n m n m a a n i dx x an m x a n m a n i xdxa n x a m a n i xdx an dx d x am a i dx x u px u p n m nm aa a a n m mn 21)1(]1)1()(1)(1 )(cos)()(cos )()(sin)(sin cos sin 2sin sin 2)(ˆ)(2220202020*--=--⎥⎦⎤⎢⎣⎡-++=⎥⎦⎤⎢⎣⎡--+++=⎥⎦⎤⎢⎣⎡-++-=⋅-=⋅-==--⎰⎰⎰⎰πππππππππππππππ解:定态薛定谔方程为),(),(2),(2122222t p EC t p C p t p C dp d =+-μμω 即 0),()2(),(2122222=-+-t p C p E t p C dp d μμω 两边乘以ω2,得0),()2(),(11222=-+-t p C p E t p C dp dμωωμω 令μωββμωξ1, 1===p pωλ E2=0),()(),(222=-+t p C t p C d d ξλξ跟课本P.39(2.7-4)式比较可知,线性谐振子的能量本征值和本征函数为t E i n p n n n e p H e N t p C n E--=+=)(),()(22211βωβ 式中n N 为归一化因子,即2/12/1)!2(n N nn πβ= 4.4.求线性谐振子哈密顿量在动量表象中的矩阵元。

《量子力学教程》周世勋课后答案

《量子力学教程》周世勋课后答案

量子力学课后习题详解第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。

解 根据普朗克的黑体辐射公式dv echv d kThv v v 11833-⋅=πρ, (1) 以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。

本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。

但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kThce kT hc ehcλλλλλπρ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThc λλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。

首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。

据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。

解 根据德布罗意波粒二象性的关系,可知E=hv ,λh P =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph=λnmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。

量子力学(第二版)周世勋原著课后习题整理版

量子力学(第二版)周世勋原著课后习题整理版

证明在定态中,几率流密度与时间无关。

证:对于定态,可令)]()()()([2 ])()()()([2 )(2 )( )()()(******r r r r i e r e r e r e r i i J er t f r t r Et iEt iEt iEt iEtiψψψψμψψψψμμψψ∇-∇=∇-∇=ψ∇ψ-ψ∇ψ===ψ----)()(,可见t J 与无关。

2.4证明(2.6-14)式中的归一化常数是aA 1='证:⎪⎩⎪⎨⎧≥<+'=a x a x a x an A n ,0 ),(sin πψ (2.6-14)由归一化,得aA a x a n n a A a A dx a x an A x A dx a x an A dx a x an A dx aa aaaa a a aan 222222222)(sin 2)(cos22)](cos 1[21)(sin 1'=+⋅'-'=+'-'=+-'=+'==-----∞⎰⎰⎰⎰πππππψ∴归一化常数aA 1='3.8.在一维无限深势阱中运动的粒子,势阱的宽度为a ,如果粒子的状态由波函数)()(x a Ax x -=ψ描写,A 为归一化常数,求粒子能量的几率分布和能量的平均值。

解:由波函数)(x ψ的形式可知一维无限深势阱的分布如图示。

粒子能量的本征函数和本征值为⎪⎩⎪⎨⎧≥≤≤≤a x x a x x an a x ,0 ,0 0 ,sin 2)(πψ 22222a n E n μπ = ) 3 2 1( ,,,=n 动量的几率分布函数为2)(n C E =ω⎰⎰==∞∞-an dx x x an dx x x C 0*)(sin)()(ψπψψ 先把)(x ψ归一化,由归一化条件,⎰⎰⎰+-=-==∞∞-aa dx x ax a x A dx x a x A dx x 022220222)2()()(1ψ⎰+-=adx x ax x a A 043222)2(30)523(525552a A a a a A =+-= ∴530aA =∴⎰-⋅⋅=an dx x a x x a n aa C 05)(sin 302π ]sin sin [1520203x xd a n x x xd a n x a a a a ⎰⎰-=ππ ax a n n a x a n x n a x a n x n a x a n n a x a n x n a a 0333222222323]cos 2sin 2 cos sin cos [152ππππππππππ--++-=])1(1[15433nn --=π∴2662])1(1[240)(n nn C E --==πω⎪⎩⎪⎨⎧=== ,6 ,4 ,205 3 196066n n n ,,,,,π ⎰⎰==∞∞-adx x p x dx x H x E 02)(2ˆ)()(ˆ)(ψμψψψ ⎰--⋅-=adx a x x dx d a x x a 02225)](2[)(30μ)32(30)(303352052a a adx a x x a a-=-=⎰μμ 225aμ = 4.5 设已知在Z L L ˆˆ2和的共同表象中,算符yx L L ˆˆ和的矩阵分别为 ⎪⎪⎪⎭⎫⎝⎛=010******** x L ⎪⎪⎪⎭⎫⎝⎛--=0000022ii i i L y 求它们的本征值和归一化的本征函数。

量子力学教程习题答案周世勋

量子力学教程习题答案周世勋
《量子力学教程》 习题解答
2021/3/11
1
《量子力学教程》
习题解答说明
• 为了满足量子力学教学和学生自学的需要,完 善精品课程建设,我们编写了周世勋先生编写 的《量子力学教程》的课后习题解答。本解答 共分七章,其中第六章为选学内容。
• 第一章 第二章 第三章 第四章 第五章 第六章 第七章
2021/3/11
(
r
)e
i
Et)]
2m
i
[
( r )
*
(
r
)
*
( r )
(r)]
2m
可见 J与t 无关。
2021/3/11
9
2.2 由下列定态波函数计算几率流密度:
(1) 1
1 ei k r r
(2) 2
1 e i k r r
从所得结果说明 1 表示向外传播的球面波, 2 表示向内(即向原点) 传播的球面波。
解: J1和J 2只有r分量
在球坐标中
r0
r
e
1 r
e
1 r s i n
(1)
J1
i 2m
(
1
* 1
1* 1 )
i [1 2m r
eikr
r
(1 r
eikr )
1 r
e ik r
r
(1 r
eikr
)]r0
i 2m
[
1 r
(
1 r2
ik
1 r
)
1 r
(
1 r2
ik
1 r )]r0
k mr 2
r0
k mr3
r
J1与
r
同向。表示向外传播的球面波。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章量子理论基础1.1由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λT=b (常量);并近似计算b 的数值,准确到二位有效数字。

解根据普朗克的黑体辐射公式dvec hvd kThv vv 11833−⋅=πρ,(1)以及c v =λ,(2)λρρd dv v v −=,(3)有,118)()(5−⋅=⋅=⎟⎠⎞⎜⎝⎛−=−=kT hcv v e hc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。

本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。

但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−⋅+−−⋅=−kThc kThce kT hc e hc λλλλλπρ⇒0115=−⋅+−−kThc ekThc λλ⇒kThc ekThc λλ=−−)1(5如果令x=kThcλ,则上述方程为xe x =−−)1(5这是一个超越方程。

首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ把x 以及三个物理常量代入到上式便知Km T m ⋅×=−3109.2λ这便是维恩位移定律。

据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

1.2在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。

解根据德布罗意波粒二象性的关系,可知E=hv ,λh P =如果所考虑的粒子是非相对论性的电子(2c E e µ<<动),那么ep E µ22=如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0×,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph=λnmm mE c hc E h e e 71.01071.031051.021024.1229662=×=××××===−−µµ在这里,利用了meV hc ⋅×=−61024.1以及eVc e 621051.0×=µ最后,对Ec hc e 22µλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。

1.3氦原子的动能是kT E 23=(k 为玻耳兹曼常数),求T=1K 时,氦原子的德布罗意波长。

解根据eV K k 3101−=⋅,知本题的氦原子的动能为,105.123233eV K k kT E −×=⋅==显然远远小于2c 核µ这样,便有Ec hc 22核µλ=nmm m37.01037.0105.1107.321024.19396=×=×××××=−−−这里,利用了eVeV c 962107.3109314×=××=核µ最后,再对德布罗意波长与温度的关系作一点讨论,由某种粒子构成的温度为T 的体系,其中粒子的平均动能的数量级为kT ,这样,其相庆的德布罗意波长就为Tkc hc Ec hc 2222µµλ==据此可知,当体系的温度越低,相应的德布罗意波长就越长,这时这种粒子的波动性就越明显,特别是当波长长到比粒子间的平均距离还长时,粒子间的相干性就尤为明显,因此这时就能用经典的描述粒子统计分布的玻耳兹曼分布,而必须用量子的描述粒子的统计分布——玻色分布或费米公布。

1.4利用玻尔——索末菲的量子化条件,求:(1)一维谐振子的能量;(2)在均匀磁场中作圆周运动的电子轨道的可能半径。

已知外磁场H=10T ,玻尔磁子124109−−⋅×=T J M B ,试计算运能的量子化间隔△E ,并与T=4K 及T=100K 的热运动能量相比较。

解玻尔——索末菲的量子化条件为∫=nhpdq 其中q 是微观粒子的一个广义坐标,p 是与之相对应的广义动量,回路积分是沿运动轨道积一圈,n 是正整数。

(1)设一维谐振子的劲度常数为k ,谐振子质量为μ,于是有22212kxp E +=µ这样,便有)21(22kx E p −±=µ这里的正负号分别表示谐振子沿着正方向运动和沿着负方向运动,一正一负正好表示一个来回,运动了一圈。

此外,根据221kx E =可解出kE x 2±=±这表示谐振子的正负方向的最大位移。

这样,根据玻尔——索末菲的量子化条件,有∫∫−++−=−−+−x x x x nhdx kx E dx kx E )21(2)()21(222µµ⇒nhdx kx E dx kx E x x x x =−+−∫∫+−−+)21(2)21(222µµ⇒hndx kx E x x 2)21(22=−∫+−µ为了积分上述方程的左边,作以下变量代换;θsin 2kEx =这样,便有h nk E d E 2sin 2cos 2222=⎟⎟⎠⎞⎜⎜⎝⎛∫−θθµππ⇒∫−=⋅222cos 2cos 2ππθθθµh n d k E E ⇒h n d k E 2cos 2222=⋅∫=ππθθµ这时,令上式左边的积分为A ,此外再构造一个积分∫−⋅=222sin 2ππθθµd kE B 这样,便有∫∫−−⋅=−⋅=⋅=+22222cos 2,22ππππθθµµπθµd kE B A k E d k E B A (1)∫∫−−==2222,cos )2(2cos ππππϕϕϖθθµd kEd k E 这里ϕ=2θ,这样,就有0sin ==−∫−ππϕµd kEB A (2)根据式(1)和(2),便有kE A µπ=这样,便有h n k E 2=µπ⇒k h n E µπ2=,knhµ=其中π2h h =最后,对此解作一点讨论。

首先,注意到谐振子的能量被量子化了;其次,这量子化的能量是等间隔分布的。

(2)当电子在均匀磁场中作圆周运动时,有B q Rυυµ=2⇒qBRp ==µυ这时,玻尔——索末菲的量子化条件就为∫=πθ20)(nhR qBRd ⇒nhqBR =⋅π22⇒nhqBR =2又因为动能耐µ22p E =,所以,有µµ22)(2222R B q qBR E ==,22B nBN q nB qBn =⋅==µµℏℏ其中,µ2ℏq M B =是玻尔磁子,这样,发现量子化的能量也是等间隔的,而且BBM E =∆具体到本题,有JJ E 232410910910−−×=××=∆根据动能与温度的关系式kT E 23=以及JeV K k 223106.1101−−×==⋅可知,当温度T=4K 时,JJ E 2222106.9106.145.1−−×=×××=当温度T=100K 时,JJ E 2022104.2106.11005.1−−×=×××=显然,两种情况下的热运动所对应的能量要大于前面的量子化的能量的间隔。

1.5两个光子在一定条件下可以转化为正负电子对,如果两光子的能量相等,问要实现实种转化,光子的波长最大是多少?解关于两个光子转化为正负电子对的动力学过程,如两个光子以怎样的概率转化为正负电子对的问题,严格来说,需要用到相对性量子场论的知识去计算,修正当涉及到这个过程的运动学方面,如能量守恒,动量守恒等,我们不需要用那么高深的知识去计算,具休到本题,两个光子能量相等,因此当对心碰撞时,转化为正风电子对反需的能量最小,因而所对应的波长也就最长,而且,有2c hv E e µ==此外,还有λhc pc E ==于是,有2c hce µλ=⇒2c hc e µλ=nmm m 31266104.2104.21051.01024.1−−−×=×=××=尽管这是光子转化为电子的最大波长,但从数值上看,也是相当小的,我们知道,电子是自然界中最轻的有质量的粒子,如果是光子转化为像正反质子对之类的更大质量的粒子,那么所对应的光子的最大波长将会更小,这从某种意义上告诉我们,当涉及到粒子的衰变,产生,转化等问题,一般所需的能量是很大的。

能量越大,粒子间的转化等现象就越丰富,这样,也许就能发现新粒子,这便是世界上在造越来越高能的加速器的原因:期待发现新现象,新粒子,新物理。

第二章波函数和薛定谔方程2.1证明在定态中,几率流与时间无关。

证:对于定态,可令)]r ()r ()r ()r ([m2i ]e )r (e )r (e )r (e )r ([m2i )(m2i J e)r ( )t (f )r ()t r (**ii **Et i Et i **Et i ����ℏ����ℏℏ����ℏℏℏℏℏψψψψψψψψΨΨΨΨψψΨ∇−∇=∇−∇=∇−∇===−−−−−)()(,可见t J 与�无关。

2.2由下列定态波函数计算几率流密度:ikrikr ere r −==1)2( 1)1(21ψψ从所得结果说明1ψ表示向外传播的球面波,2ψ表示向内(即向原点)传播的球面波。

解:分量只有和r J J 21��在球坐标中ϕθθϕθ∂∂+∂∂+∂∂=∇sin r 1e r 1e r r 0���r mrk r mr k r r ik r r r ik r r m i r e r r e r e r r e r m i mi J ikr ikr ikr ikr �ℏ�ℏ�ℏ�ℏℏ�30202201*1*111 11(111(1[2 )]1(1)1(1[2 )(2 )1(==+−−−−=∂∂−∂∂=∇−∇=−−ψψψψr J 1��与同向。

相关文档
最新文档