(整理)快速成型技术的应用与发展前景
简述快速成型技术的应用领域。

简述快速成型技术的应用领域。
快速成型技术(Rapid Prototyping,RP)是一种通过逐层堆积材料构建三维实体模型的制造技术,它可以快速、精确地制造出产品的样件或模型。
快速成型技术的应用领域非常广泛,下面将从工业设计、医疗领域、建筑设计和教育领域等方面进行简要介绍。
快速成型技术在工业设计领域得到了广泛应用。
在产品设计过程中,通过快速成型技术可以快速制造出产品的样件,供设计师进行实物验证和修正,从而加快产品开发周期。
此外,快速成型技术还可以制造出复杂形状的零部件,为工程师提供更多的设计自由度和创新空间。
快速成型技术在医疗领域也有重要的应用。
医疗器械的研发和生产需要经过严格的验证和测试,而快速成型技术可以快速制造出医疗器械的样件,用于验证其功能和可用性。
此外,快速成型技术还可以制造出个性化医疗器械,如植入式器械和义肢等,为患者提供更好的医疗服务。
快速成型技术在建筑设计领域也有广泛的应用。
传统的建筑模型制作过程需要耗费大量的时间和人力,而快速成型技术可以快速制造出建筑模型,帮助设计师和业主更好地理解和评估建筑设计方案。
此外,快速成型技术还可以制造出建筑构件,如曲面墙板和装饰雕塑等,为建筑设计提供更多的创意和可能性。
快速成型技术在教育领域也有广泛的应用。
通过快速成型技术,学生可以将自己的创意转化为实物,提升创造力和动手能力。
同时,快速成型技术还可以用于制作教学模型和实验装置,帮助学生更好地理解和掌握知识。
快速成型技术在工业设计、医疗领域、建筑设计和教育领域等方面都有广泛的应用。
随着技术的不断发展,快速成型技术将在更多的领域中发挥重要作用,为人们的生活和工作带来更多的便利和创新。
快速成型技术的多领域应用与发展

快速成型技术的多领域应用与发展摘要:简要介绍了快速成型技术的基本原理、工艺方法和技术特点。
阐述了快速成型技术在工业造型、制造、模具、医学、航天等多领域的应用,探讨了快速成型技术今后的发展趋势。
关键词:快速成型技术原型快速制模应用快速成型技术RP(Rapid Protot-yping RP)是20世纪80年代末开始发展起来的一种基于逐层累加成型的新兴制作工艺,它是集多种先进科技于一体的能够迅速将设计思想转化为产品的现代先进制造技术。
它为零件原型制作、新设计思想的校验等方面提供了一种高效低成本的实现手段。
快速成型工艺是一个涉及CAD/CAM、逆向工程技术、分层制造技术、数据编程、材料编制、材料制备、工艺参数设置及后处理等环节的集成制造过程。
通俗地说,快速成型技术就是利用三维CAD的数据,通过快速成型机,将一层层的材料堆积成实体原型。
近十几年来,随着全球市场一体化的形成,制造业的竞争十分激烈。
尤其是计算机技术的迅速普遍和CAD/CAM技术的广泛应用,使得RP技术得到了异乎寻常的高速发展,表现出很强的生命力和广阔的应用前景。
快速成型制造工艺PR技术是将传统的“去除”加工方法(由毛坯切去多余材料形成产品)改变为“增加”加工方法(将材料逐层累积形成产品),采用离散分层/堆积的原理,由CAD模型直接驱动,快速制作原型或三维实体零件的一种全新的制造技术。
快速成型技术发展至今,以其技术的高集成性、高柔性、高速性而得到了迅速发展,目前,快速成型的工艺方法已有几十种之多,其中主要工艺有四种基本类型: 光固化成型法(Stereo lithography Apparatus, SLA)、叠层实体制造法(Laminated Object Manufacturing, LOM)、选择性激光烧结法(Selective Laser Sintering, SLS) 和熔融沉积制造法(Fused Deposition Manufacturing, FDM)。
快速成型技术在制造业中的应用

快速成型技术在制造业中的应用一、背景介绍随着科技的不断发展,制造业也不断地更新迭代,快速成型技术应运而生。
快速成型技术是指利用计算机辅助设计技术和快速制造技术,通过将数字模型数据转化为实际物理模型的过程,实现快速制造的一种技术。
它具有制造周期短,制造成本低,制造精度高等优点,受到了制造业的广泛关注和应用。
二、快速成型技术的发展历程快速成型技术始于上世纪80年代,至今已经发展了30多年。
其核心技术是三维打印技术(3D打印),最初只能用于制造产品的概念模型和小批量试制,但随着科技的进步和应用范围的扩大,现在已经可以应用于生产具有工程实用价值的大批量零部件和成品。
三、快速成型技术在制造业中的应用1.汽车制造快速成型技术在汽车制造方面应用广泛。
汽车生产中有许多金属零部件需要进行加工和制造,传统的金属加工和制造过程需要多次的筛选和测试,而快速成型技术将这一过程简化为虚拟数字模型一次性的制造,大大节约了生产周期和生产成本。
2.航空航天制造在航空航天制造领域,不仅要求制造零件的构造合理,而且要求制造零件具有足够的强度,耐热性,抗腐蚀等性能。
快速成型技术可以制造设计复杂的零件,如涡轮叶片,喷嘴等高难度零件,此外,快速成型技术还可以用于制造航空用材料,如金属陶瓷等。
3.医疗设备制造在医疗设备制造方面,快速成型技术可用于生产高精度,高品质的假肢,矫形器和外科手术器械等医疗器械,这些器械具有良好的适应性和合理性,对手术质量和病人康复起到了重要作用。
四、快速成型技术的优势1.设计复杂零件快速成型技术可以通过复杂的数字模拟模型,将复杂的结构转化成实际的三维模型,可以简化设计,控制生产周期。
2.制造周期短传统加工制造技术需要大量的时间完成整个加工制造过程,快速成型技术可以大大缩短加工周期,在保证加工精度的同时,提高生产效率。
3.制造成本低传统的加工制造技术需要大量的安装和制造机械设备,而快速成型技术为基于数字模拟的生产模式,减少了机械设备的制造和安装成本。
快速成型技术的现状及发展趋势

图4 D F M的 工 艺原 理 图
() 5z维打印 (D ):先铺粉 ,利用喷嘴按指定路径将液态粘结剂喷在粉层上 的特定区域,粘结后去除多余 的材料便得 3P
到 所 需 的原 形 或 零件 。这 种 方 法适 合 成 型 结 构复 杂 的零件 。 下表 1 如上 几 种 典 型R I 艺 的 比较 : 是 P 表 1几 种 典型 成 型 方 法 的 比较 原型 表面 复杂 零件 j 材 、 精度 质量 程度 栉 } 率 粝惆 常 辫 用书 ’ 十 常 生 生产 K成本 效率 市 场 擀 设备
型的数控代码指导加工 ,再将加工出每个薄层粘结而成形。主要包括如下几个主要步骤 : ( ) 产品C 实体模型构建 : 1 D A 构建 方法有两种 , 一是可通过概念设计 , 设计出所需零件 的计算机 三维模型 ( 数字模型、
C 模型 );二是可通过逆向工程 ,通过三维数字扫描仪对产品原 型进行扫描 ,而后结合逆向工程对扫描数据进行处理。 D A
69
瓷粉 进 行 粘 结 或烧 结 的工 艺 还 正在 实验 阶 段 。 ()熔 融 沉 积造 型(D 4 F M) : 用 热 熔 喷头 , 半 流 动 状态 的材 料 流 体按 模 型 分 层 数 据 控制 的路 径挤 压 出来 , 在 指定 的 采 使 并
位置沉积、凝固成型 ,这样逐 层沉积、凝固后形成整个原型 ,具体工艺原理如图5 所示。这种方法的能量传输和材料传输均 不同于前面三种方法,系统成本较低; 由于喷头的运动是机械运动,速度有一定 限制 , 以加工时间较长, 但 所 且其材料使 用范
步 ( 并行 )工程 的实施 ; ( )具有高柔性 ,采 用非接触加 工的方式 ,无需任何工夹具 ,即可快速成型 出具有一定精度和强度并满足 一定功能的 7
简述快速成型技术的应用

简述快速成型技术的应用快速成型技术(Rapid Prototyping,简称RP)是一种通过计算机辅助设计(CAD)和计算机辅助制造(CAM)技术,直接从三维CAD模型中构建实物模型的方法。
它在工业设计、制造、医疗、艺术等领域有着广泛的应用。
快速成型技术在工业设计领域得到了广泛的应用。
传统的产品设计过程需要经历多个阶段,包括手工制作模型、校对设计、制作模具等步骤。
而使用快速成型技术,设计师可以通过CAD软件直接生成三维模型,并使用快速成型机器将其转化为实物模型。
这样不仅可以减少设计时间,还可以快速验证设计的可行性,降低产品开发的风险。
快速成型技术在制造领域也有着重要的应用。
传统的制造过程通常需要制作模具,然后再进行大规模生产。
而使用快速成型技术,可以直接从CAD模型中生成产品原型,然后再根据需要进行小批量生产。
这种灵活的生产方式可以满足个性化定制的需求,提高生产效率,降低生产成本。
快速成型技术在医疗领域也有着广泛的应用。
医生可以利用快速成型技术生成患者特定的三维模型,用于手术模拟、医疗器械设计等方面。
这种个性化的医疗模型可以帮助医生更好地了解患者的病情,制定更精确的治疗方案,提高手术的成功率。
快速成型技术还被广泛应用于艺术创作领域。
艺术家可以使用CAD 软件设计出复杂的艺术品模型,然后通过快速成型技术将其转化为实物。
这种技术不仅可以大大缩短艺术品制作的时间,还可以实现艺术家的创作理念。
同时,快速成型技术还可以帮助艺术家实现雕塑、陶瓷等多种材质的艺术品制作。
快速成型技术在工业设计、制造、医疗和艺术等领域的应用非常广泛。
它可以大大缩短产品开发周期,提高生产效率,降低生产成本。
同时,它还可以帮助医生提高诊断和治疗的准确性,艺术家实现创作理念。
随着技术的不断发展,快速成型技术将会在更多领域发挥重要作用,推动各行各业的创新和发展。
快速成型技术及其在工业生产中的应用

快速成型技术及其在工业生产中的应用快速成型技术是近年来工业生产领域中一个炙手可热的技术,其将传统的制造方式推向了一个全新的境界,对于工业生产的质量、效率、成本的优化均有积极的帮助,在未来的发展中,其前景更加广阔。
一、快速成型技术概述快速成型技术是指通过计算机辅助设计(CAD)和计算机辅助制造(CAM)技术,利用激光、电子束、喷墨等方式将原料制造成零部件的新型制造技术。
目前,应用较广泛的快速成型技术主要有激光烧结成型、光固化成型、激光熔化成型、线切割成型、喷墨成型等。
二、快速成型技术在工业生产中应用1. 工业设计快速成型技术最大的优势是在产品设计阶段,可以快速制造出实际尺寸的零部件,从而帮助实现更好的设计效果。
传统的模型制作需要用手工完成,周期较长、成本高,且不利于修改,而快速成型技术可以快速、准确、灵活地制造出多种模型,帮助设计师实现更好的设计效果。
2. 制造业在工业生产领域中,快速成型技术广泛应用于各种制造行业,如汽车、航空、医疗等。
在汽车行业中,快速成型技术可以快速地生产出各种所需零部件,从而实现零部件的快速替换和更新,提高整车的制造效率和质量,同时,由于快速成型技术可以精确制造各种模具,因此可以生产各种复杂、精密的模具,为汽车制造业带来更大的便利。
在航空行业中,快速成型技术的应用范围也十分广泛,主要用于生产各种复杂、精密的零部件,从而提高飞机的制造效率和质量。
在医疗行业中,快速成型技术可以用于生产各种医疗器械和植入物。
其制造出来的零部件可以依据患者的具体情况进行制造,因此可以更好地满足医疗行业的需求。
3. 艺术设计快速成型技术还可以用于艺术设计领域。
由于其精度和灵活性较高,因此可以造就出更多新颖、独特的艺术品,对于传统艺术的转型和发展有着积极的作用。
由于快速成型技术可以将艺术家的想象力变为现实,因此可以给艺术家带来更多的自由度和创作灵感。
三、快速成型技术发展前景随着科技的不断进步和市场需求的不断增加,快速成型技术在工业生产领域中的应用前景十分广阔。
快速成型技术在工业设计中的应用

快速成型技术在工业设计中的应用快速成型技术是一种基于计算机辅助设计和制造的先进技术,它在工业设计中有着广泛的应用。
通过该技术,设计师可以快速地将设计概念转化为实际的产品原型,从而提高工作效率、降低成本。
在工业设计中,快速成型技术能够帮助设计师将创意快速转化为实际的产品原型。
传统的产品开发过程中,设计师需要通过手工制作或者借助模具来制造产品原型,这个过程通常耗时较长且费用较高。
而快速成型技术能够通过快速地堆叠材料来制造产品原型,大大缩短了制造周期,节省了时间和成本。
在产品设计的早期阶段,快速成型技术可以帮助设计师快速验证设计概念的可行性。
设计师可以通过将设计文件输入到快速成型设备中,快速制造出产品原型,进而进行实物验证。
如果设计存在问题,设计师可以及时进行修改,从而避免了在后期制造过程中可能出现的错误和延误。
快速成型技术还可以帮助设计师进行产品的外观设计和功能测试。
通过快速制造出产品原型,设计师可以更直观地了解产品的外观效果,从而进行必要的修改和优化。
同时,快速成型技术还可以制造出具有实际功能的产品原型,设计师可以通过对原型进行测试来评估产品的性能和可靠性。
在产品定制方面,快速成型技术也发挥着重要的作用。
传统的产品制造过程中,生产线通常需要进行大规模的调整和改装,以满足不同产品的需求。
而快速成型技术可以根据用户的需求快速制造出定制化的产品,大大提高了生产线的灵活性和适应性。
快速成型技术还可以帮助设计师进行产品的小批量生产。
在传统的生产方式中,小批量生产往往需要进行专门的模具制造,成本较高且周期较长。
而快速成型技术可以通过直接制造产品来降低生产成本,提高生产效率,满足小批量生产的需求。
快速成型技术在工业设计中有着广泛的应用。
它可以帮助设计师将创意快速转化为实际的产品原型,提高工作效率、降低成本。
同时,它还可以帮助设计师进行产品的外观设计、功能测试、定制生产和小批量生产。
随着技术的不断发展,相信快速成型技术将在工业设计中发挥更大的作用,为创新和进步提供更多可能性。
快速成形技术发展状况与趋势

快速成形技术发展状况与趋势快速成形技术,又称为三维打印、增材制造等,是近年来新兴的一种制造技术,它可以将数字化的设计文件转化为实体物体,而且速度快、成本低,能够满足个性化定制的需求。
该技术的发展已经引起海内外制造业的广泛关注和研究,下面介绍快速成形技术的发展状况和趋势。
快速成形技术最早出现在20世纪80年代,最初被用于快速制作模型,其发展始于CAD 设计技术、计算机组成技术以及材料工程技术的发展。
20世纪90年代以后,该技术经过不断的改良和完善,应用范围逐渐扩大,主要涉及到汽车、航空、医疗、建筑等领域。
目前,全球主要的快速成形技术公司有美国Stratasys、德国EOS、瑞典Arcam和中国沃特玛等。
近年来,随着材料科技、智能制造和数字工厂的发展,快速成形技术呈现出以下几个趋势:1. 多材料、多工艺:不同快速成形技术采用不同材料和工艺,未来发展方向是多材料、多工艺的结合。
例如,增材制造可以利用多种材料打印出复杂的组件,立体光绘可以通过多重叠加实现更高的可塑性和更精细的表面质量。
2. 智能化、网络化:快速成形技术已经与计算机、互联网和智能化制造相结合,实现了数字化和智能化的设计与制造,未来将趋向于更加智能化和网络化,实现生产和流程的自动化。
例如,智能打印机具有自我诊断和自动修复的功能,可以自主管理并调节打印参数,提高设备利用率和打印效率。
3. 个性化、定制化:快速成形技术具有快速、便捷、低成本的特点,可以实现个性化和定制化的生产,未来将趋向于更加个性化和高效化。
例如,医疗领域可以利用该技术制作个性化的医疗器械、假体和植入物,满足患者的特殊需求;商品领域可以利用该技术实现全球化生产和本地化供应,提高响应速度和市场竞争力。
4. 生态可持续、绿色制造:快速成形技术采用增材制造和材料回收等技术,可以实现生态可持续和绿色制造,未来将趋向于更加环保和节能。
例如,采用生物降解材料可以实现零污染和资源循环利用,采用能源节约技术可以减少能源消耗和碳排放。
快速成型技术的现状和发展趋势

快速成型技术的现状和发展趋势快速成型技术(Rapid Prototyping Technology,RPT)是一种将设计文件快速转化为实体模型的技术。
它通过逐层堆叠材料的方式制造模型,相比传统的基于切割、拼接和加工的方法,具有快速、灵活和定制化的特点。
随着科技的不断发展和应用领域的扩大,快速成型技术也在不断创新和更新。
1.技术日臻成熟:快速成型技术经过多年的研发和实践,已经在各个领域有了广泛的应用,例如汽车制造、医疗器械、航空航天等。
技术的稳定性和可靠性得到了验证,成型精度和制造效率也有了很大提高。
2.多种成型技术:随着快速成型技术的发展,出现了许多不同的成型技术,包括光固化、喷墨、熔融沉积等。
每种技术都有自己的特点和适用范围,可以根据不同的需求选择合适的技术。
3.材料种类丰富:最初的快速成型技术只能使用一些特定的材料进行成型,如塑料、树脂等。
而现在,随着材料科学的进步,可以使用金属、陶瓷等多种材料进行快速成型,大大扩展了应用领域。
1.精度的提高:精度是快速成型技术的一个重要指标,未来的发展趋势是进一步提高成型的精度。
通过改进设备和材料,优化参数设置等方式,可以实现更加精细的成型,满足更高的需求。
2.成型速度的提升:虽然快速成型技术已经很快,但是在一些特定的应用场景下,速度还是有待提高。
未来的发展趋势是研发更加高效的成型设备和更快速的材料固化方式,以满足更加紧迫的需求。
3.结构复杂性的增加:快速成型技术的优势之一就是可以制造复杂结构的模型。
未来的发展趋势是进一步发展可以制造更加复杂的结构,如组织结构、微观结构等,以满足更多领域的需求。
4.材料种类的扩展:材料的种类对快速成型技术的应用范围有很大的影响。
未来的发展趋势是不断扩展可用材料的范围,如增加金属、陶瓷、生物材料等,以满足更广泛的应用需求。
总之,快速成型技术是一项具有广阔应用前景的技术,随着科技的不断发展和创新,将会在制造业、医疗、航空等领域发挥更为重要的作用。
快速成型技术的应用及发展趋势

快速成型技术的应用及发展趋势熊文恪模具1111 2011118501266摘要:阐述了快速成型技术的基本概念,总结了快速成型技术的特点,并通过制作实例展现了快速成型技术在产品开发中的应用现状,最后展望了快速成型技术的未来发展趋势。
关键词:快速成型技术应用发展趋势当今时代,制造业市场需求不断向多样化、高质量、高性能、低成本、高科技的方向发展,一, 快速成型技术在成型过程中无需专用的夹具或工具,成型过程具有极高的柔性, 这是快速成型技术非常重要的一个技术特征。
1—5 自动化程度高。
快速成型是一种完全自动的成型过程, 只需要在成型之初由操作者输入一些基本的工艺参数,整个成型过程操作者无需或较少干预[ 4] 。
出现故障, 设备会自动停止, 发出警示并保留当前数据。
完成成型过程时, 机器会自动停止并显示相关结果。
2快速成型技术应用近年来, 快速成型技术在工业造型、制造、建筑、艺术、医学、航空、航天、考古和影视等领域得到迅速良好的应用。
主要包括以下几个方面:2—1 设计和功能验证。
通过快速成型技术可以快速制作产品的物理模型, 以验证设计人员的构思, 发现产品设计中存在的问题。
而使用传统的方法制作原型意味着从绘图到工装模具设计和制造, 一般至少历时数月, 经过多次返工和修改。
采用快速成型技术则可节省大量时间和费用。
同时, 使用快速成型技术制作的原型可直接进行装配检验、干涉检查和模拟产品真实工作情况的一些功能试验, 如运动分析、应力分析、流体和空气动力学分析等, 从而迅速完善产品的结构和性能、相应的工艺及所需工模具的设计。
2—2 非功能性样品制作。
在新产品正式投产之前或按照定单制造时,需要制作产品的展览样品或摄制产品样本照片,采用快速成型是理想的方法。
邵敏[ 5]在首饰设计方面提出首饰设计是立体的物质实体性设计,,逐层制造的优点,探索制造具有功能梯度、综合性能优良、特殊复杂结构的零件,也是一个新的方向发展。
3—2.概念创新与工艺改进。
快速成型技术在新产品开发中的应用

快速成型技术在新产品开发中的应用简介快速成型技术(Rapid Prototyping,简称RP)是一种通过快速制造物理模型的技术,可以帮助企业在新产品开发过程中快速验证设计和理念。
本文将探讨快速成型技术在新产品开发中的应用,并分析其优势和挑战。
1. 快速验证产品设计在传统的产品开发过程中,设计师和工程师通常必须等待数周或数月才能看到实物样品,这增加了开发周期和成本。
而快速成型技术通过快速制造物理样品,使得设计师能够快速验证和修改设计。
这不仅减少了开发周期,还帮助企业降低了开发成本。
2. 提高产品质量通过快速成型技术,设计师和工程师可以快速制造出可视和可操作的模型。
这些模型可以帮助他们更直观地评估产品的外观、尺寸和操作性能。
通过在早期阶段发现和解决问题,可以避免后期的设计漏洞,提高产品的质量和用户满意度。
3. 加快新产品上市时间快速成型技术的应用可以大大加快新产品的上市时间。
通过快速验证设计,优化产品性能和质量,企业可以更快地将产品推向市场,抢占竞争对手的先机。
这在当今快节奏的市场环境中尤为重要,尤其对于技术领先和创新性强的行业尤为有效。
4. 降低开发风险快速成型技术可以帮助企业降低新产品开发的风险。
通过制造出物理模型,企业可以在生产前测试产品的功能和性能,检测潜在问题并进行改进。
这有助于避免生产缺陷和不必要的成本,降低企业的风险。
快速成型技术应用的挑战除了上述的优势之外,快速成型技术在实际应用过程中也面临一些挑战。
1. 材料选择快速成型技术需要选用合适的材料来制造模型。
不同的材料具有不同的物理特性和机械性能,因此选择合适的材料很重要。
同时,随着产品的复杂性增加,需要更多种类的材料,这增加了材料选择的难度。
2. 生产能力和适用范围快速成型技术的应用还受到生产能力和适用范围的限制。
不同的技术和设备具有不同的生产能力和适用范围,部分复杂结构的产品可能无法通过快速成型技术进行制造。
因此,企业需要根据产品类型和要求选择合适的快速成型技术。
快速成型技术在产品设计中的应用

快速成型技术在产品设计中的应用快速成型技术,即Rapid Prototyping,简称RP技术,是一种利用计算机辅助设计(CAD)和计算机辅助制造(CAM)技术,通过堆叠或涂覆材料来逐层制造实体模型的技术。
随着科技的不断发展,快速成型技术在产品设计中的应用得到了越来越广泛的应用,为产品开发提供了更快、更灵活的解决方案。
本文将探讨快速成型技术在产品设计中的应用,并介绍其优势和未来发展趋势。
快速成型技术在产品设计中的应用主要体现在以下几个方面:1.快速制作实体模型:传统上,产品的开发需要花费大量的时间和成本来制作实体模型进行测试和验证。
而有了快速成型技术,设计师可以通过CAD软件设计出模型,并利用快速成型技术将设计图转化成实体模型,实现快速制作和验证设计的效果。
这样可以有效缩短产品开发周期,提高产品设计的灵活性和精度。
2.灵活性和创新性:快速成型技术可以很容易地制作复杂形状的实体模型,从而为设计师提供了更多的创意空间。
设计师可以通过快速成型技术制作出各种各样的模型,包括曲线、空间结构等复杂形状,从而激发设计的创新性,提高产品的竞争力。
3. 降低成本:传统的产品设计需要雕刻模型或制作模具,这些过程通常需要大量的时间和成本。
而快速成型技术可以直接将设计图转化为实体模型,无需制作模具和雕刻,从而大大节省了成本和时间。
4. 可视化效果:产品设计师可以通过快速成型技术将设计图快速转化为实体模型,从而更直观地展现给客户和团队成员,加快决策过程。
这种可视化效果可以帮助客户和团队更好地理解设计意图,提出意见和建议,从而更好地满足市场需求。
5. 高效的定制化生产:快速成型技术可以帮助企业快速响应市场需求,实现定制化生产。
设计师可以根据客户需求快速制作出客户需求的产品,实现小批量、多样化的生产,从而提高产品的市场竞争力。
未来,随着科技的不断发展和应用场景的不断扩大,快速成型技术在产品设计中的应用将会越来越广泛。
随着快速成型技术的不断创新和发展,将会有更多的材料可以用于快速成型技术,从而更好地满足产品设计的需求。
快速成型技术及其应用

快速成型技术及其应用一、本文概述随着科技的迅速发展和市场竞争的日益激烈,产品的设计、开发和生产周期已经成为决定企业竞争力的关键因素。
在这一背景下,快速成型技术(Rapid Prototyping,简称RP技术)应运而生,以其独特的优势在生产制造领域引发了深刻的变革。
本文旨在全面介绍快速成型技术的基本概念、发展历程、主要类型及其在各行业中的应用实例,分析快速成型技术带来的经济效益与社会影响,并展望其未来的发展趋势和挑战。
通过对这一技术的深入探讨,我们期望能够帮助读者更好地理解并应用快速成型技术,以促进企业创新能力的提升和产业升级的加速。
二、快速成型技术的基本原理与分类快速成型技术(Rapid Prototyping, RP)是一种基于三维计算机辅助设计(CAD)数据,通过逐层堆积材料来制造三维实体的技术。
其基本原理可以概括为“离散-堆积”。
将三维CAD模型进行切片处理,得到一系列二维层面信息;然后,按照这些层面信息,通过特定的成型设备,如激光烧结机、熔融沉积机、光固化机等,将材料逐层堆积起来,最终形成与原始CAD模型一致的三维实体。
根据成型材料的不同和成型方式的差异,快速成型技术可以分为以下几类:熔融沉积成型(Fused Deposition Modeling, FDM):该技术使用热塑性材料,如蜡、ABS塑料等。
材料在喷头中加热至熔融状态,然后按照CAD模型的切片信息,通过喷头逐层挤出材料,冷却后形成实体。
光固化成型(Stereo Lithography, SLA):使用液态光敏树脂作为材料。
在紫外光照射下,液态树脂逐层固化,形成实体。
该技术精度较高,适用于制造复杂结构和高精度的模型。
选择性激光烧结(Selective Laser Sintering, SLS):采用粉末状材料,如塑料粉末、金属粉末、陶瓷粉末等。
在激光的作用下,粉末逐层烧结,形成实体。
该技术可以制造金属和陶瓷等高强度材料的零件。
快速成型技术现状与行业发展趋势

快速成型技术行业现状与产业开展趋势杭州先临三维科技股份2021.5.28目录1.快速成型技术开展历史及现状 (1)1.1快速成型技术发轫的背景 (1)1.2快速成型技术的优点、原理和工艺 (2)快速成型技术的优点 (2)快速成型的根本原理 (2)快速成型的工艺方法 (4)1.3 快速成型技术的开展 (10)快速成型技术的开展历史 (10)快速成型技术的开展方向 (11)2 快速成型技术行业及产业 (12)2.1 快速成型技术的行业应用现状 (12)医学应用 (12)制造领域 (12)2.2 快速成型技术的行业市场主体分析 (13)2.3 快速成型技术的产业开展现状及趋势 (14)快速成型技术产业开展状况 (14)全球市场 (15)2.3.3亚太市场 (16)3 国内快速成型技术产业开展的机遇及挑战 (19)3.1国内快速成型技术产业开展现状 (19)国内快速成型技术的研发和推广情况 (19)国内的快速成型技术的应用情况 (20)国内快速成型技术企业的典型企业列举 (20)3.2 国内快速成型技术产业的开展机遇 (27)国内外的市场环境利于快速成型技术产业开展 (27)国内的政策环境利于快速成型技术产业开展 (27)3.3 国内快速成型技术产业面临的挑战 (28)快速成型技术在向产品生产化开展中所存在的主要问题 (28)快速成型技术产业面临的应用化挑战 (28)快速成型技术行业现状与产业开展趋势1黄贤清何文浩1.快速成型技术开展历史及现状1.1快速成型技术发轫的背景在新产品的开发过程中,总是需要在投入大量资金组织加工或装配之前对所设计的零件或整个系统加工一个简单的例子或原型。
这样做主要是因为生产本钱昂贵,而且模具的生产需要花费大量的时间准备,因此,在准备制造和销售一个复杂的产品系统之前,工作原型可以对产品设计进行评价、修改和功能验证。
一个产品的典型开发过程是从前一代的原型中发现错误,或从进一步研究中发现更有效和更好的设计方案,而一件原型的生产极其费时,模具的准备需要几个月,因此一个复杂的零件用传统方法加工非常困难。
快速成型技术的应用与发展趋势

快速成型技术的应用及发展趋势摘要:;快速成型技术凭借其加工原理的独特性和相对传统加工时间的大大节省,在模具工业和修复医学方面得到了大力的推广和应用.同时也是一种结合计算机、数控、激光和材料技术于一体的先进制造技术,并提出快速成型技术未来的发展方向。
关键词:快速成型;快速模具;修复医学;成型方法;成型材料;引言快速成型(Rapid Prototyping,简称RP)是80年代末期开始商品化的一种高新制造技术,它是集CAD/CAM技术、激光加工技术、数控技术和新材料等技术领域的最新成果于一体的零件原型制造技术.快速成型不同于传统的用材料去除方式制造零件的方法,而是用材料一层一层积累的方式构造零件模型.它利用所要制造零件的三维CAD模型数据直接生成产品原型,并且可以方便地修改CAD模型后重新制造产品原型.由于该技术不像传统的零件制造方法需要制作木模、塑料模和陶瓷模等,可以把零件原型的制造时间减少为几天、几小时,大大缩短了产品开发周期,减少了开发成本.随着计算机技术的快速发展和三维CAD软件应用的不断推广,越来越多的产品基于三维CAD设计开发,使得快速成型技术的广泛应用成为可能.快速成形技术已广泛应用于宇航、航空、汽车、通讯、医疗、电子、家电、玩具、军事装备、工业造型(雕刻)、建筑模型、机械行业等领域[1]。
1.快速成型技术的应用1.1 工业产品开发及样件试制作为一种可视化的设计验证工具,RP具有独特的优势。
(1)在国外,快速原型即首版的制作,已成为供应商争取订单的有力工具。
美国Detroit的一家制造商,利用2台不同型号的快速成型机以及快速精铸技术,在接到№rd公司标书后的4个工作日内生产出了第一个功能样件,从而拿到了Ford公司年生产总值300万美元的发动机缸盖精铸件的合同。
(2)在RP系统中,一些使用特殊材料制作的原型(如光敏树脂等)可直接进行装配检验、模拟产品真实工作状况的部分功能试验。
Chrysler 直接利用RP技术制造的车体原型进行高速风洞流体动力学试验,节省成本达70%。
简述快速成型技术的应用领域。

简述快速成型技术的应用领域。
快速成型技术(Rapid Prototyping,简称RP)是一种通过将计算机模型直接转化为物理模型的制造技术。
它利用计算机辅助设计(CAD)软件将设计模型转化为三维数字模型,然后通过快速成型机器将数字模型转化为实体模型。
快速成型技术的应用领域非常广泛,下面将对其主要应用领域进行简要介绍。
1. 制造业:快速成型技术在制造业中的应用非常广泛。
它可以用于制造各种机械零件、模具、模型等。
通过快速成型技术,可以大大缩短产品开发周期,降低产品开发成本,提高产品质量。
此外,快速成型技术还可以用于制造复杂的结构件,如骨骼支架、人工关节等。
2. 医疗领域:快速成型技术在医疗领域的应用非常广泛。
它可以用于制造医疗器械、医疗模型、人体组织修复等。
通过快速成型技术,可以根据患者的具体情况,定制医疗器械和人工器官,提高手术的精确性和成功率。
同时,快速成型技术还可以用于制造人体模型,帮助医生进行手术模拟和培训。
3. 文化艺术:快速成型技术在文化艺术领域的应用也越来越广泛。
它可以用于制造各种艺术品、雕塑、建筑模型等。
通过快速成型技术,艺术家可以更加自由地发挥创造力,制作出更加精细、复杂的作品。
同时,快速成型技术还可以用于文物保护和修复,帮助保护和传承人类的文化遗产。
4. 教育领域:快速成型技术在教育领域的应用也日益增多。
它可以用于制作教学模型、实验装置等。
通过快速成型技术,教师可以更加生动地展示教学内容,提高学生的学习兴趣和参与度。
同时,快速成型技术还可以用于学生的创意设计和创新实践,培养学生的创造力和实践能力。
5. 建筑领域:快速成型技术在建筑领域的应用也越来越广泛。
它可以用于制造建筑模型、结构模型等。
通过快速成型技术,建筑师可以更加直观地展示设计方案,帮助客户更好地理解和接受设计。
同时,快速成型技术还可以用于制造建筑构件和装饰品,提高建筑施工效率和质量。
快速成型技术在制造业、医疗领域、文化艺术、教育领域和建筑领域等多个领域都有广泛的应用。
FDM快速成型技术及其应用

感谢观看
4、医疗行业:在医疗领域,FDM技术被用于制造人体植入物、医疗器械等。 由于其制造的材料安全、无毒,且精度高,使得FDM成为医疗行业的重要选择。
5、教育行业:在教育领域,FDM技术常被用于教学示范和实验中,通过打印 出三维模型来帮助学生更好地理解复杂的概念和结构。此外,学生也可以使用 FDM技术来制作自己的设计项目,提高实践能力和创新思维。
六、未来展望
随着科技的快速发展和社会的不断进步,我们期待快速成型技术能够在以下 几个方面有所突破:首先,设备的效率和稳定性还有待提高,以提高生产效率和 质量;其次,材料的种类和性能需要进一步拓展和优化,以满足不同应用场景的 需求;最后,我们期待这种技术能够更好地融入环保理念,以实现可持续的制造 和发展。
(4)材料广泛:光敏树脂种类繁多,可以满足各种不同类型制品的需求。
2、不足
然而,光固化快速成型技术也存在以下不足之处:
(1)成本较高:光固化快速成型技术的设备、材料和维护成本较高,限制 了其广泛应用。
(2)技术难度较大:光固化快速成型技术的技术门槛较高,需要专业人员 进行操作和维护。
(3)环境影响:光固化过程会产生有害的紫外光和挥发性有机化合物,对 环境和操作者的健康有一定影响。
8、环保行业:在环保领域,FDM技术提供了一种可持续的制造方法。通过使 用可降解或可回收的材料进行打印,可以减少废弃物的产生和对环境的影响。此 外,FDM技术还可以用于制造环保设备零件等。
9、科研领域:在科学研究领域,FDM技术常被用于制造实验模型和测试样品。 例如在材料科学中,研究人员可以使用FDM来制造不同材料的复合结构以研究其 物理和化学性能。此外在生物学领域,FDM技术也被用于制造生物组织的复杂结 构以研究其生长和发育的机制。
快速成型技术-第七章

7.2 逆向工程、快速成型与快速模具系统的集成
(一) RE相关技术及应用 1. RE技术 逆向工程技术也称为反求工程、反向工程等,它能将已有实物或
模型转换为三维点云数据资料,借助这些数据资料能在短时间内快速地对已有产 品或模型进行造型上的修改与创新设计,即RE技术的主要内容就是将实物转变为 三维CAD数据资料并进行几何模型重构与产品的快速制造。
7.1 产品快速设计与制造系统的集成
三、产品快速设计与制造系统的应用
利用产品快速设计与制造系统的基本框架及软硬件相关资源,可快速地实现产 品的三维设计。 (一)借助RE技术实现产品的快速设计与制造 图7-2所示为对某一吉普车车轮进 行反求与再设计,图7-3所示为对吉普车车轮进行的多次再设计与LOM模型。在满 足车轮刚度、强度等使用要求的前提下,尽量使其外观具有美感。同时,在设计车 轮外观时,对每一种设计都进行LOM原型制件的快速制作与仿真,对车轮的外观及 结构进行多次改进,最终确定合理的设计方案并生产出车轮样件。
从以上两种产品的快速设计方法及步骤中可以看出,它们都是借助 计算机三维CAD设计、快速成型与快速模具制造等技术来进行产品 的快速设计与制造。不同点则是前者是采用逆向思维的方式,而后者 是采用正向思维的方式进行产品的快速设计与制造。
7.1 产品快速设计与制造系统的集成
产品快速设计与制造过程不仅仅是 考虑某个单一因素,而是集工业设计、 美学、产品的功能与结构性能、产品 的制造工艺性以及成本等多种因素于 一体的设计过程,有时甚至可能还需通 过对产品在实际工作环境中进行仿真 或在仿真基础上进行相关的优化设计, 最终达到产品的设计目的。图7-1所示 为产品快速设计与制造系统的基本框 架。
通过RE技术构建三维CAD数据资料的主要内容是:首先借助三维测量装置对 实物进行三维点云数据资料的采样以获取实物的三维点云数据资料,即对实物进 行三维离散数字化处理,这是RE的关键技术;其次再对三维点云数据资料进行预处 理,如进行数据的平滑滤波、消除噪声、删除冗余数据资料、重要特征的提取与 排序等,初步确定实物的几何特征信息;然后再进行三维曲面的修改与重构,如将数 据资料按研发需求进行曲面的建构与重构、拼接等工作;最后将曲面模型进行检 查与修改并等待输出。
快速成型技术研究发展现状及其应用前景

快速成型技术研究发展现状及其应用前景
近年来,快速成型技术被越来越多的应用到制造中,发挥着重要作用。
快速成型技术是将快速原型加工技术、快速成型技术扩展到工业上的技术。
这种技术可以快速准确地生产出可媲美传统制造技术的产品,可以满足各种客户对定制产品的多样需求,大大提高了产品质量和效率。
目前,快速成型技术的研究发展不断深入,包括快速手动成型技术、自动成型技术、三维打印技术和CNC等。
其中,快速原型加工技术通过进行3D数控加工,可以实现更加精确的产品造型;自动成型技术可以实现一次性生产;三维打印技术由激光刻画、仿形技术、模板来实现;CNC机器能够帮助客户更加方便快捷地进行各种数控加工。
另外,随着快速成型技术的发展,可以在不同行业中大量应用,如汽车制造、航空航天、医疗器械制造等。
此外,快速成型技术还可以用于新材料的开发和研究、军工制造、农业和水产养殖等领域,有助于推动各行业的技术进步和产业升级。
综上所述,快速成型技术在许多领域的应用前景广阔,可以大大提升制造业的品质和效率,极大地改善制造业的发展环境。
随着技术的不断进步和发展,快速成型技术也将会继续受到越来越多的重视,为技术进步和产业升级提供有力的支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
快速成型技术的应用与发展前景一.什么是快速成型技术快速成形技术又称快速原型制造(Rapid Prototyping Manufacturing,简称RPM)技术,诞生于20世纪80年代后期,是基于材料堆积法的一种高新制造技术,被认为是近20年来制造领域的一个重大成果。
它集机械工程、CAD、逆向工程技术、分层制造技术、数控技术、材料科学、激光技术于一身,可以自动、直接、快速、精确地将设计思想转变为具有一定功能的原型或直接制造零件,从而为零件原型制作、新设计思想的校验等方面提供了一种高效低成本的实现手段。
即,快速成形技术就是利用三维CAD的数据,通过快速成型机,将一层层的材料堆积成实体原型。
二.快速成型技术的产生背景(1)随着全球市场一体化的形成,制造业的竞争十分激烈,产品的开发速度日益成为主要矛盾。
在这种情况下,自主快速产品开发(快速设计和快速工模具)的能力(周期和成本)成为制造业全球竞争的实力基础。
(2)制造业为满足日益变化的用户需求,要求制造技术有较强的灵活性,能够以小批量甚至单件生产而不增加产品的成本。
因此,产品的开发速度和制造技术的柔性就十分关键。
(3)从技术发展角度看,计算机科学、CAD技术、材料科学、激光技术的发展和普及为新的制造技术的产生奠定了技术物质基础。
三.快速成形技术的特点快速成型技术具有以下几个重要特征:l )可以制造任意复杂的三维几何实体。
由于采用离散/堆积成型的原理.它将一个十分复杂的三维制造过程简化为二维过程的叠加,可实现对任意复杂形状零件的加工。
越是复杂的零件越能显示出 RP 技术的优越性此外, RP 技术特别适合于复杂型腔、复杂型面等传统方法难以制造甚至无法制造的零件。
2 )快速性。
通过对一个 CAD 模型的修改或重组就可获得一个新零件的设计和加工信息。
从几个小时到几十个小时就可制造出零件,具有快速制造的突出特点。
3 )高度柔性。
无需任何专用夹具或工具即可完成复杂的制造过程,快速制造工模具、原型或零件。
4)技术高度集成性。
RP技术是计算机、数控、激光、材料和机械等技术的综合集成。
CAD技术通过计算机进行精确的离散运算和繁杂的数据转换,实现零件的曲面或实体造型,数控技术为高速精确的二维扫描提供必要的基础,这又是以精确高效堆积材料为前提的,激光器件和功率控制技术使材料的固化、烧结、切割成为现实。
快速扫描的高分辨率喷头为材料精密堆积提供了技术保证术产生背景。
5)快速响应性。
快速原型零件制造从CAD设计到原型 (或零件 )的加工完毕,只需几个小时至几十个小时,复杂、较大的零部件也可能达到几百小时,但从总体上看,速度比传统成形方法要快得多。
尤其适合于新产品的开发,RP技术已成为支持并行工程和快速反求设计及快速模具制造系统的重要技术之一到加工区域,工作台上升到加工平面,热压辊热压,工件的层数增加一层,高度增加一个料厚,再在新层上切割截面轮廓。
如此反复直至零件的所有截面粘接、切割完,得到分层制造的实体零件。
LOM的特点:LOM工艺只须在片材上切割出零件截面的轮廓,而不用扫描整个截面。
因此成形厚壁零件的速度较快,易于制造大型零件。
工艺过程中不存在材料相变,因此不易引起翘曲变形,零件的精度较高,小于0.15mm。
工件外框与截面轮廓之间的多余材料在加工中起到了支撑作用,所以LOM工艺无需加支撑。
<三>.选择性激光烧结选择性激光烧结SLS(Selective Laser Sintering)工艺,常采用的材料有金属、陶瓷、ABS塑料等材料的粉末作为成形材料。
其工艺过程是:利用粉末状材料成形的。
将材料粉末铺洒在已成形零件的上表面,并刮平;用高强度的CO2激光器在刚铺的新层上扫描出零件截面;材料粉末在高强度的激光照射下被烧结在一起,得到零件的截面,并与下面已成形的部分连接;当一层截面烧结完后,铺上新的一层材料粉末,选择地烧结下层截面。
选择性烧结SLS的工艺特点:熔融材料适应面广,不仅能制造塑料零件,还能制造陶瓷、蜡等材料的零件。
特别是可以制造金属零件。
这使SLS工艺颇具吸引力。
SLS工艺无需加支撑,因为没有烧结的粉末起到了支撑的作用。
其缺点是:成形件结构疏松多孔,表面粗糙度较高;成形效率不高;得到的塑料、陶瓷或金属件远不如传统成形方法得到的同类材质工件,需进行渗铜等后处理,但在后处理中难于保证制件尺寸精度沉积成形<四>.熔融沉积制造(丝状材料选择性融覆)FDM工艺熔融乘积制造FDM(Fused Deposition Manufacturing)工艺又称为熔丝沉积制造, FDM的材料一般是热塑性材料,如蜡、ABS、尼龙等。
以丝状供料。
材料在喷头内被加热熔化。
喷头沿零件截面轮廓和填充轨迹运动,同时将熔化的材料挤出;材料迅速凝固,并与周围的材料凝结。
如果热熔性材料的温度始终稍高于固化温度,而成型的部分温度稍低于固化温度,就能保证热熔性材料挤喷出喷嘴后,随即与前一个层面熔结在一起。
一个层面沉积完成后,工作台按预定的增量下降一个层的厚度,再继续熔喷沉积,直至完成整个实体造型。
FDM特点:a.系统及运行成本: FDM工艺无需其他快速成形系统中昂贵的关键部件-激光器,故MEM快速成形控制系统成本较低;成形材料相对其他快速成形系统价格低廉;MEM原型特有空隙结构,节约材料与成形时间。
b. 后处理:原型后处理简单,方便。
C.工艺适用范围: FDM工艺适用于薄壳体零件及微小零件,如电器外壳、手机外壳、玩具等,都是现代社会比较实用流行的用品;而且原型强度比较好,近似于实际零件,可以作为概念型直接验证设计。
六.快速成形技术的应用<一>.用于新产品的设计与试制。
1. CAID应用: 工业设计师在短时间內得到精确的原型与业者作造形研讨。
2.机构设计应用: 进行干涉验证,及提早发现设计错误以减少后面模具修改工作3.CAE功效: 快速模具技术以功能性材料制作功能性模具,以进行产品功能性测试与研讨。
4.视觉效果(visualization) :设计人員能在短时间之內便能看到设计的雛型,可作为进一步研发的基石。
5.设计确认(verification): 可在短时间內即可完成原型的制作,使设计人员有充分的时间对于设计的产品做详细的检证。
6.复制于最佳化设计(iteration & optimization) :可一次制作多个元件,可使每个元件针对不同的设计要求同时进行测试的工作,以在最短时间內完成设计的最佳化。
7.直接生产(fabrication): 直接生产小型工具,或作为翻模工具<二>.快速制模及快速铸造快速模具制造传统的模具生产时间长,成本高。
将快速成型技术与传统的模具制造技术相结合,可以大大缩短模具制造的开发周期,提高生产率,是解决模具设计与制造薄弱环节的有效途径。
快速成形技术在模具制造方面的应用可分为直接制模和间接制模两种,直接制模是指采用RP技术直接堆积制造出模具,间接制模是先制出快速成型零件,再由零件复制得到所需要的模具<三>.机械制造由于RP技术自身的特点,使得其在机械制造领域内,获得广泛的应用,多用于制造单件、小批量金属零件的制造。
有些特殊复杂制件,由于只需单件生产,或少于50件的小批量,一般均可用RP技术直接进行成型,成本低,周期短。
<四>.医疗中的快速成形技术在医学领域的应用近几年来,人们对RP技术在医学领域的应用研究较多。
以医学影像数据为基础,利用RP技术制作人体器官模型,对外科手术有极大的应用价值。
<五>.三维复制快速成形制造技术多用于艺术创作、文物复制、数字雕塑等。
<六>.航空航天技术领域航空航天产品具有形状复杂、批量小、零件规格差异大、可靠性要求高等特点,产品的定型是一个复杂而精密的过程,往往需要多次的设计、测试和改进,耗资大、耗时长,而快速成型技术以其灵活多样的工艺方法和技术优势而在现代航空航天产品的研制与开发中具有独特的应用前景。
<七>.家电行业快速成形系统在国内的家电行业上得到了很大程度的普及与应用,使许多家电企业走在了国内前列。
如:广东的美的、华宝、科龙;江苏的春兰、小天鹅;青岛的海尔等,都先后采用快速成形系统来开发新产品,收到了很好的效果。
快速成形技术的应用很广泛,可以相信,随着快速成形制造技术的不断成熟和完善,它将会在越来越多的领域得到推广和应用。
七.快速成型技术的发展方向从目前RP技术的研究和应用现状来看,快速成型技术的进一步研究和开发工作主要有以下几个方面:(1)开发性能好的快速成型材料,如成本低、易成形、变形小、强度高、耐久及无污染的成形材料。
(2)提高RP系统的加工速度和开拓并行制造的工艺方法。
(3)改善快速成形系统的可靠性,提高其生产率和制作大件能力,优化设备结构,尤其是提高成形件的精度、表面质量、力学和物理性能,为进一步进行模具加工和功能实验提供基础。
(4)开发快速成形的高性能RPM软件。
提高数据处理速度和精度,研究开发利用CAD原始数据直接切片的方法,减少由STL格式转换和切片处理过程所产生精度损失。
(5)开发新的成形能源。
(6)快速成形方法和工艺的改进和创新。
直接金属成形技术将会成为今后研究与应用的又—个热点。
(7)进行快速成形技术与CAD、CAE、RT、CAPP、CAM以及高精度自动测量、逆向工程的集成研究。
(8)提高网络化服务的研究力度,实现远程控制。
八.快速成型技术在今后发展中面临的问题目前RP技术还是面临着很多问题,问题大多来自技术本身的发展水平,其中最突出的表现在如下几个方面。
工艺问题快速成型的基础是分层叠加原理,然而,用什么材料进行分层叠加,以及如何进行分层叠加却大有研究价值。
因此,除了上述常见的分层叠加成形法之外,正在研究、开发一些新的分层叠加成形法,以便进一步改善制件的性能,提高成形精度和成形效率。
材料问题成型材料研究一直都是一个热点问题,快速成型材料性能要满足:①有利于快速精确的加工出成型;②用于快速成型系统直接制造功能件的材料要接近零件最终用途对强度、刚度、耐潮、热稳定性等要求;③有利于快速制模的后续处理。
发展全新的RP材料,特别是复合材料,例如纳米材料、非均质材料、其他方法难以制作的材料等仍是努力的方向。
精度问题目前,快速成形件的精度一般处于±0.1 mm的水平,高度(Z)方向的精度更是如此。
快速成型技术的基本原理决定了该工艺难于达到与传统机械加工所具有的表面质量和精度指标,把快速成型的基本成形思想与传统机械加工方法集成,优势互补,是改善快速成型精度的重要方法之一[3]。
软件问题目前,快速成型系统使用的分层切片算法都是基于STL文件格式进行转换的,就是用一系列三角网格来近似表示CAD模型的数据文件,而这种数据表示方法存在不少缺陷,如三角网格会出现一些空隙而造成数据丢失,还有由于平面分层所造成的台阶效应,也降低了零件表面质量和成形精度,目前,应着力开发新的模型切片方法,如基于特征的模型直接切片法、曲面分层法,即:不进行STL格式文件转换,直接对CAD模型进行切片处理,得到模型的各个截面轮廓,或利用反求工程得到的逐层切片数据直接驱动快速成型系统,从而减少三角面近似产生的误差,提高成形精度和速度。