哈工大机电系统控制基础秋-习题课第三章答案
控制工程基础第三章参考答案
控制工程基础第三章参考答案1. 请问什么是系统的时滞?系统的时滞是指系统输入与响应之间的时间延迟。
在许多实际的控制系统中,输出变量的改变并不立即反映在系统的输入上,而是有一定的延迟。
这种延迟就是系统的时滞。
2. 请简述控制系统的稳态误差。
控制系统的稳态误差是指在稳态下,输出与期望值之间的差别。
稳态误差可以分为零稳态误差和非零稳态误差。
零稳态误差是指当输入值为常数时,输出值与期望值之间的差别;非零稳态误差是指当输入值为非常数时,输出值与期望值之间的差别。
3. 请解释积分环节在控制系统中的作用。
积分环节在控制系统中的作用是消除稳态误差,尤其对于常量输入的情况。
当系统存在零稳态误差时,引入积分环节可以通过积累误差信号来逐渐减小误差,以达到稳定的目标。
积分环节还可以提高系统的灵敏度,增强系统的抗干扰能力。
4. 请简要说明先行环节的作用。
先行环节是在系统前面加入的一个环节,其作用是预先对输入信号进行处理,以改善系统的性能。
常见的先行环节包括微分环节和预估环节。
微分环节可以提高系统的动态响应速度,并减小系统超调量;预估环节可以通过估计未来的输入值来增强系统的鲁棒性。
5. 请解释滞后环节在控制系统中的作用。
滞后环节在控制系统中的作用是补偿相位滞后,改善系统的相位特性。
它可以有效提高系统的稳定性和抗干扰能力,减小系统的超调量和震荡现象。
滞后环节常用于降低系统的低频增益,使系统在低频段的响应更加平滑和稳定。
6. 什么是校正环节?请简要说明其作用。
校正环节是指在控制系统中用于校正输出与期望值之间差别的环节。
它通过调整系统的增益、相位和延迟等参数,使得系统的输出能够与期望值更加接近。
校正环节起到了提高系统性能、降低误差和稳定系统的作用。
7. 请解释反馈控制在控制系统中的作用。
反馈控制是一种常见的控制策略,它根据系统的输出信号与期望值之间的差别,调整系统的输入信号,以实现期望的控制目标。
反馈控制可以有效补偿系统的非线性特性、时滞和干扰等因素,提高系统的稳定性和鲁棒性。
机械控制系统工程课后习题解答
机械控制工程基础答案提示第二章 系统的数学模型2-1 试求如图2-35所示机械系统的作用力)(t F 与位移)(t y 之间微分方程和传递函数。
)(t F )(t y f图2-35 题2-1图解:依题意:()()()()22d y t dy t a m F t f ky t dt b dt⋅=⋅-⋅- 故 ()()()()t F b at ky dt t dy f dtt y d m ⋅=+⋅+22 传递函数: ()()()kfs ms b as F s Y s G ++==22-2 对于如图2-36所示系统,试求出作用力F 1(t )到位移x 2(t )的传递函数。
其中,f 为粘性阻尼系数。
F 2(t )到位移x 1(t )的传递函数又是什么?m 2m 1k 1 f k 2F 1(t )F 2(t ) x 2(t )x 1(t )图2-36 题2-2图解:依题意:对1m : ()()()()212121111dt t x d m dt t dx dtt dx f t x k F =⎥⎦⎤⎢⎣⎡---对两边拉氏变换:()()()[]()s X s m s sX s sX f x k s F 12121111=--- ①对2m : ()()()()()222222212dt t x d m t x k dt t dx dt t dx f t F =-⎥⎦⎤⎢⎣⎡-+ 对两边拉氏变换:()()()[]()()s X s m s x k s sx s sx f s F 22222212=--+ ②故: ()()()()()()()()⎩⎨⎧=+++-=-++S F s x k fs s m s fsx s F s fsx s x k fs s m 222221121121 故得:()()()()()()()()()()()()()()⎪⎪⎩⎪⎪⎨⎧-+++++++=-+++++++⋅=22221212212122222121222211fs k fs s m k fs s m k fs s m s F s fsF s x fs k fs s m k fs s m s fsF k fs s m s F s x 故求()t F 1到()t x 2的传递函数 令:()02=s F()()()()()()()()()2122211122432121212211212x s fsG s F s m s fs k m s fs k fs fsm m s f m m s m k m k s f k k s k k ==++++-=+++++++求()t F 2到()t x 1的传递函数 令:()01=s F()()()()()()()()()1122221122432121212211212x s fsG s F s m s fs k m s fs k fs fsm m s f m m s m k m k s f k k s k k ==++++-=+++++++2-3 试求图2-37所示无源网络传递函数。
国开2024年秋机电控制工程基础形考任务3答案
国开2024年秋《机电控制工程基础》形考三答案1.很多实际系统都是二阶系统,如弹簧-质量-阻尼系统、RLC振荡电路。
判断题 (1.5 分)A.正确B.错误2.若控制系统在初始扰动的作用下,具有恢复原平衡状态的性能,则称该系统是不稳定的。
判断题 (1.5 分)A.正确B.错误3.在控制系统的频域分析中,是以频率作为变量来分析系统的性能。
判断题 (1.5 分)A.正确B.错误4.频域分析法主要通过开环频率特性的图形对系统进行分析,必须通过求解系统的特征根来研究系统的稳定性。
判断题 (1.5 分)A.正确B.错误5.系统的频率特性可通过实验的方法测出,这对于难以列写微分方程式的元部件或系统来说,具有重要的实际意义。
判断题 (1.5 分)B.错误6.系统闭环系统稳定性不能用系统的Bode图来进行判断。
判断题 (1.5 分)A.正确B.错误7.系统的校正就是对已选定的系统附加一些具有某些典型环节的传递函数来改善整个系统的控制性能,以达到所要求的性能指标。
判断题 (1.5 分)A.正确B.错误8.某二阶系统的特征根为两个具有负实部共轭复根,则该系统的单位阶跃响应曲线表现为等幅振荡。
判断题 (1.5 分)A.正确B.错误9.控制系统的频域指标比较直观,包括:最大超调量Mp、调整时间(或过渡时间)ts、峰值时间tp等。
判断题 (1.5 分)A.正确B.错误10.控制系统的开环时域性能指标包括开环剪切频率ωc、相位裕量γ等。
判断题 (1.5 分)A.正确11.控制系统的校正方式有时域法和频域法。
判断题 (1.5 分)A.正确B.错误12.单位脉冲函数就是常数。
判断题 (1.5 分)A.正确B.错误13.线性系统和非线性系统的根本区别在于线性系统满足迭加原理,非线性系统不满足迭加原理。
判断题 (1.5 分)A.正确B.错误14.若一个动态环节的传递函数乘以1/s,说明对该系统串联了一个微分环节。
判断题 (1.5 分)A.正确B.错误15.对控制系统的三个基本要求是稳定、准确及快速。
机械控制工程基础第3章习题解答
由于前述 K h 0.116
101 0.116 s 则系统的传递函数为: G s 2 s 3.16 s 10
输入单位阶跃 X i s
101 0.116 s X o s Gs X i s s 2 3.16 s 10 s 0.42 2.74 1 s 1.58 2.74 X o s s s 1.582 2.742 s 1.582 2.742
单位反馈,开环传递函数为:
Ⅱ 型,开环增益为
an K an 2
an 2 e ss an
3.16
101 K h s G s 2 s 2 10K h s s 10
K h 0.116
n 10 1 / s 3.161 / s 0.5 M p 16.3% 直接代入公式: t s 2.53 s 2% t 1.897 s 5% s
单位阶跃响应:x
ou
t 201 e
t / 2.5
xou t wt
3.8
3.12
微分关系
9 3 G s 2 s s 9 s 2 2 1 3s 32 6 n 31 / s M 58.8% p 0.167
求导,得到最大值
M p 17. 7%
clear all; close all; t=0:0.01:5; y=1-exp(-1.58*t).*cos(2.74.*t) -0.1533.*exp(-1.58*t).*sin(2.74.*t); %output express figure; h=plot(t,y,’r’); set(h,’linewidth’,5) set(gca, ’fontsize’,16) [mp_abs ,tp_space]=max(y(:)); %0.1772 mp= mp_abs–1; %计算最大超调量0.1772 tp= tp_space.*0.01; %计算峰值时间 grid on; i=tp_space; while abs(y(i)-1)>0.02 i=i+1; end ts=i.*0.01; %计算调整时间ts=1.69s
自动控制原理第三章课后习题答案汇总.
3-1 i 殳来统的墩专力桿式旬卜:(1) 0.2c(t) =2r(t)(2)0.04c(t) 0.24c(t) c(t) = r(t)试求系统闭环传递函数 ①(s),以及系统的单位脉冲响应 部初始条件为零。
解:(1) 因为 0.2sC(s) =2R(s)闭环传递函数_ 1_ 20.04s0.24s 1Ts 198%的数值。
若加热容器使水温按 10OC/min 的速度匀速上升,问温度计的稳态指示误差有 多大?Ts 1由一阶系统阶跃响应特性可知: c(4T)二98oo ,因此有 4T =1 min ,得出 T = 0.25 min 。
视温度计为单位反馈系统,则开环传递函数为单位脉冲响应: C(s)=10/s g(t) -10 t _0单位阶跃响应 c(t) C(s) =10/s 2c(t) = 10t(2)(0.04s 2 0.24s 1)C(s)二 R(s)C(s)R(s) 0.04s 20.24s 1单位脉冲响应: C(s)= 0.04s0.24s 1g(t)用宀n4t3单位阶跃响应 h " Wk 2; 16]s 6s (s 3)216g(t)和单位阶跃响应 c(t)。
已知全 闭环传递函数13-2 温度计的传递函数为 — ,用其测量容器内的水温,1min 才能显示出该温度的解法一 依题意,温度计闭环传递函数1G(s) 口G(s“4」 1 —①(s) Ts「K=”TV=1用静态误差系数法,当 r(t^10 t 时,10e ss 二—=10T = 2.5 C 。
K3-3 已知二阶系统的单位阶跃响应为c(t) =10-12.5e」.2t si n(1.6t 53.1o)试求系统的超调量b%、峰值时间t p和调节时间t s。
1 严+ y----解:c(t) =1 _ ---- e ~ sin(p 1 _U2豹n t + P)2 '二cos :二cos53.1° 二0.6t s 二 3.5 =3.2 =2.92(S)5n 1.2或:先根据c(t)求出系统传函,再得到特征参数,带入公式求解指标。
哈尔滨工业大学自控原理习题答案(第三章)
则根据系统框图可得
代入 ,得
另 ,得到系统的干扰输出
则误差表达式为
若积分环节加在扰动点之前则
, ,
可求得 。
若积分环节加在扰动点之后,则
, ,
可求得
由此可见在扰动点之前的前向通道加入积分环节,才能消除阶跃扰动产生的稳态误差。
3.23
设
则系统的闭环传递函数为:
误差为
将 及 得
闭环特征方程为
又因为 故系统稳定,与参数a,b无关。
若
则有系统的稳态误差
则求出待定系数为
3.29
当a=0时系统的闭环传递函数为:
则根据
得 。
当 ,根据系统的闭环传递函数为
则根据
得a=0.25
3.30
由图3.30所示的单位阶跃响应 ,可得系统的超调量和峰值时间为
又有参数间的关系:
因为系统的开环传递函数为 ,则系统的闭环传递函数为
则
得到参数为
3.34
列Routh表可得
3.12
由系统框图可知系统的开环传递函数为
因为是单位反馈,可得系统的特征方程为
如果要求闭环传递函数的特征根全部位于s=-1垂线之左,可令s=z-1,并代入特征方程,得
建立Routh表
Z3115
z21140K-27
z1 0
z040K-27
令第一列的元素全部为正,可得不等式组
解得K的取值范围为
3.14
由系统框图可以求得系统的开环传递函数为
3.1
图3.1(b)所示的单位阶跃响应具有等幅振荡特性,说明系统的阻尼比 。这与系统主反馈取“-”及内反馈取“0”相对应,因为在这种情况下该二阶系统的传递函数为
图3.1(c)所示单位阶跃响应具有发散特性,说明系统不稳定。这与系统的主反馈取“-”及内反馈取“+”相对应,因为在这种情况下,该二阶系统的传递函数为:
哈工大机电系统控制基础秋-习题课第三章答案
第3章习题课答案3-1 设单位反馈系统的开环传递函数为,试求该系统的单位阶跃响应和单位脉冲响应。
解:系统闭环传递函数为24(s)44(s 5)4(s)54(s 1)(s 4)1(s 5)o i X s X s s s +===++++++ (1)当()1()i x t t =时,41()41133()()()(4)(1)14o o i i X s X s X s X s s s s s s s ===-+++++则 441()1()1()1()33t to x t t e t e t --=-⋅+⋅(2)当()()i x t t δ=时,()1i X s =44(s)433(s)(s)1(s)(s 4)(s 1)14o o i i X X X X s s ==⨯=-++++则 44()()1()3tt o x t e e t --=-⋅3-2 系统结构图如图3-70所示。
已知系统单位阶跃响应的超调量σ%3.16=%,峰值时间1=p t s 。
(1)求系统的开环传递函数)(s G ; (2)求系统的闭环传递函数)(s Φ;(3)根据已知的性能指标σ%、p t 确定系统参数K 及τ; (4)计算等速输入s t t r )(5.1)(︒=时系统的稳态误差。
解 (1) )110(10)1(101)1(10)(++=+++=ττs s K s s s s s K s G(2)2222210)110(10)(1)()(n n n s s K s s Ks G s G s ωξωωτ++=+++=+=Φ(3)由 ⎪⎩⎪⎨⎧=-===--113.16212ξωπσςξπn p oooo t e 联立解出由(2) 18.1363.31022===n K ω,得出 318.1=K 。
(4)63.31263.01018.1311010)(lim 0=+⨯=+==→τK s sG K s v413.063.35.1===v ss K A e3-3 设图(a )所示系统的单位阶跃响应如图(b )所示。
哈工大电路原理基础课后习题集
第一章习题1.1 图示元件当时间t<2s时电流为2A,从a流向b;当t>2s时为3A,从b流向a。
根据图示参考方向,写出电流的数学表达式。
1.2图示元件电压u=(5-9e-t/τ)V,τ>0。
分别求出t=0 和t→∞时电压u的代数值及其真实方向。
图题1.1 图题1.21.3 图示电路。
设元件A消耗功率为10W,求;设元件B消耗功率为-10W,求;设元件C发出功率为-10W,求。
图题1.31.4求图示电路电流。
若只求,能否一步求得?1.5 图示电路,已知部分电流值和部分电压值。
(1) 试求其余未知电流。
若少已知一个电流,能否求出全部未知电流?(2) 试求其余未知电压u14、u15、u52、u53。
若少已知一个电压,能否求出全部未知电压?1.6 图示电路,已知,,,。
求各元件消耗的功率。
1.7 图示电路,已知,。
求(a)、(b)两电路各电源发出的功率和电阻吸收的功率。
1.8 求图示电路电压。
1.9 求图示电路两个独立电源各自发出的功率。
1.10 求网络N吸收的功率和电流源发出的功率。
1.11 求图示电路两个独立电源各自发出的功率。
1.12 求图示电路两个受控源各自发出的功率。
1.13 图示电路,已知电流源发出的功率是12W,求r的值。
1.14 求图示电路受控源和独立源各自发出的功率。
1.15图示电路为独立源、受控源和电阻组成的一端口。
试求出其端口特性,即关系。
1.16 讨论图示电路中开关S开闭对电路中各元件的电压、电流和功率的影响,加深对独立源特性的理解。
第二章习题2.1 图(a)电路,若使电流A,,求电阻;图(b)电路,若使电压U=(2/3)V,求电阻R。
2.2 求图示电路的电压及电流。
2.3 图示电路中要求,等效电阻。
求和的值。
2.4求图示电路的电流I。
2.5 求图示电路的电压U。
2.6 求图示电路的等效电阻。
2.7 求图示电路的最简等效电源。
图题2.72.8 利用等效变换求图示电路的电流I。
哈工大机电系统控制第三章答案
3-1 题图3-1所示的阻容网络中,i ()[1()1(30)](V)u t t t =--。
当t =4s 时,输出o ()u t 值为多少?当t 为30s 时,输出u o (t )又约为多少?解:661(s)1111(s)1110410141o i U sCU RCs s R sC -====+⨯⨯⨯+++(4)0.632(V)o u ≈,(30)1(V)o u ≈3-2 某系统传递函数为21()56s s s s +Φ=++,试求其单位脉冲响应函数。
解:2(s)112(s)5623o i X s X s s s s +-==+++++ 其单位脉冲响应函数为23(t)(e 2e )1()t t x t δ--=-+⋅3-3 某网络如图3-3所示,当t ≤0-时,开关与触点1接触;当t ≥0+时,开关与触点2接触。
试求输出响应表达式,并画出输出响应曲线。
1V题图3-1 题图3-3解:1(s)11(s)2121()o i R U RCs s sCU RCs s R R sC++===++++ 01(t)1(2)1()(V)i i i u u u t =+=+-⋅1111212(s)(s)121212o i s s U U s s s ss ++-===-+++ 则21(t)(e 2)1()(V)t o u t -=-⋅1201(t)1(e 2)1()(V)o o o u u u t -=+=+-⋅其输出响应曲线如图3-3所示图3-3 题图3-43-4 题图3-4所示系统中,若忽略小的时间常数,可认为1d 0.5()d yB s x-=∆。
其中,ΔB 为阀芯位移,单位为cm ,令a =b (ΔB 在堵死油路时为零)。
(1) 试画出系统函数方块图,并求(s)(s)Y X 。
(2) 当i ()[0.51()0.51(4)1(40)]cm x t t t s t s =⨯+⨯---时,试求t =0s,4s,8s,40s,400s 时的y (t )值,()B ∆∞为多少? (3) 试画出x (t )和y (t )的波形。
哈工大集合论习题课-第三章 关系习题课(学生)
习 题 课例1设{,,}A a b c =,给出A 上的一个二元关系,使其同时不满足自反性、反自反性、对称性、反对称和传递性的二元关系,并画出R 的关系图。
解:{(,),(,),(,),(,)}R a a b c c b a c =,关系图如图所示。
例2 设X 是一个集合,X =n ,求:1.X 上的二元关系有多少?()22n 2. X 上的自反的二元关系有多少? 3. X 上的反自反的二元关系有多少?解:因为把所有的反自反的二元关系的每个都加上对角线上的序对,就变成了自反的关系,因此,自反的与反自反的个数一样多。
即22nn-4. X 上的对称的二元关系有多少?2222n n n nn -++=,故共有222n n+个对称的关系。
5. X 上的反对称的二元关系有多少?22(32)n n n -∙6. X 上既是自反的也是反自反的二元关系的个数;(0)个7.X 上既不是自反的也不是反自反的二元关系有多少?2(2(22))n nn --解:解:可用容斥原理来计算设B 表示所有自反关系构成的集合,C 表示所有反自反关系构成的集合,则22nnB C -==。
而B C φ=,故B C B C =+,从而CC B C S B C S B C =-=--2222222222222(22)n n n n n n n n n n n ----=--=-=-于是,既不是自反的,也不是反自反关系共有22(22)n nn --个。
8.自反的且对称的关系有多少?[此结果与“反自反的且对称的关系有多少?”是一样多]即有222n n -(对角线上全去掉)9.自反的或对称的关系有多少?解:设B 表示自反关系的集合,C 表示对称关系的集合,则自反或对称关系的集合为:22222222n n n n nnB C B C B C +--=+-=+-。
10.X 上既是反自反的也是反对称的二元关系的个数为:223n n -;11.X 上既是对称的也是反对称的关系个数;解:X 上既是对称的也是反对称的关系X R I ⊆,故有2n 。
控制工程基础第三章参考答案
第三章 习题及答案传递函数描述其特性,现在用温度计测量盛在容器内的水温。
发现需要时间才能指示出实际水温的98%的数值,试问该温度计指示出实际水温从10%变化到90%所需的时间是多少?解: 41min, =0.25min T T = 1111()=1-e0.1, =ln 0.9t h t t T -=-T21T22()=0.9=1-e ln 0.1t h t t T -=-,210.9ln2.20.55min 0.1r t t t T T =-===2.已知某系统的微分方程为)(3)(2)(3)(t f t f t y t y +'=+'+'',初始条件2)0( , 1)0(='=--y y ,试求:⑴系统的零输入响应y x (t );⑵激励f (t ) (t )时,系统的零状态响应y f (t )和全响应y (t );⑶激励f (t ) e 3t(t )时,系统的零状态响应y f (t )和全响应y (t )。
解:(1) 算子方程为:)()3()()2)(1(t f p t y p p +=++)()e 25e 223()()()( )()e 21e 223()()()( )()e e 2()(2112233)( )2(;0 ,e 3e 4)( 34221e e )( 2x 2222x 212121221x t t y t y t y t t t h t y t t h p p p p p p H t t y A A A A A A A A t y t t t t t t f f t t ttεεεε------------+=+=+-==-=⇒+-+=+++=-=⇒⎩⎨⎧-==⇒⎩⎨⎧--=+=⇒+=∴* )()e4e 5()()()( )()e e ()(e )()( )3(2x 23t t y t y t y t t t h t y ttt t t f f εεε------=+=-==*3.已知某系统的微分方程为)(3)(')(2)(' 3)(" t f t f t y t y t y +=++,当激励)(t f =)(e4t tε-时,系统2的全响应)()e 61e 27e314()(42t t y t t tε-----=。
哈工大学电力电子习题集3
文件: 电力电子技术16.11
电力电子技术
直流-直流变换器(8)
第3章 习题(2)
第2部分:简答题 5. 桥式可逆斩波电路如题图3-4所示, 电机为正向电动状态。
题图3-4 当电机处于低速轻载运行状态(即负载 电流较小且正负交变),完成下题: (1)采用双极型控制方式时,画出V1 ~V4驱动信号的波形,负载上电压和电流 的波形;并在此基础上结合电流波形说明 在一个周期内的不同区段上负载电流的路 径以及在该区段内电机的工作状态。
哈尔滨工业大学远程教育
文件:
电力电子技术16.19
电力电子技术
直流-直流变换器(8)
第3章 习题(3)
第2部分:简答题 1. 画出隔离型Buck变换器的电路结构并简述其工作原理。(略) 2. 隔离型Buck变换器在正常工作时为什么要设定最大占空比? 解:为了防止变压器磁通饱和。 3. 画出隔离型Buck-Boost变换器的电路结构并简述其工作原理。(略) 4. 为什么反激式变换器不能在空载下工作? 答:在负载为零的极端情况下,由于T导通时储存在变压器电感中的磁能 无处消耗,故输出电压将越来越高,损坏电路元件,所以反激式变换器不 能在空载下工作。
电力电子技术
第16讲
3 直流-直流变换器(8)
直流-直流变换器(8)
本讲是的习题课,讲解第3章所布置的习题。
第3章 习题(1)
第1部分:填空题 1.直流斩波电路完成的是直流到另一固定电压或可调电压的直流电的变换。 2.直流斩波电路中最基本的两种电路是降压斩波电路和升压斩波 电路。 3.斩波电路有三种控制方式:脉冲宽度调制、脉冲频率调制和混合型。 ,其中最常用的控制方式是:脉冲宽度调制。 4.脉冲宽度调制的方法是: 周期 不变,导通 时间变化,即通过导通占空比 的改变来改变变压比,控制输出电压。 5.脉冲频率调制的方法是:导通时间不变,周期变化,导通比也能发生变化 ,从而达到改变输出电压的目的。该方法的缺点是:导通占空比的变化范围 有限。输出电压、输出电流中的谐波频率不固定,不利于滤波器的设计 。 6.降压斩波电路中通常串接较大电感,其目的是使负载电流 连续 。 7.升压斩波电路使电压升高的原因:电感L储能使电压泵升,电容C可将输出 电压保持住 。 8.升压斩波电路的典型应用有直流电动机传动和单相功率因数校正等。 9.升降压斩波电路和Cuk斩波电路呈现升压状态的条件是开关器件的导通占 空比为1/2<α <1;呈现降压状态的条件是开关器件的导通占空比为0<α <1/2。
《机械工程控制基础》课后题答案
目录第一章自动控制系统的基本原理第一节控制系统的工作原理和基本要求第二节控制系统的基本类型第三节典型控制信号第四节控制理论的内容和方法第二章控制系统的数学模型第一节机械系统的数学模型第二节液压系统的数学模型第三节电气系统的数学模型第四节线性控制系统的卷积关系式第三章拉氏变换第一节傅氏变换第二节拉普拉斯变换第三节拉普拉斯变换的基本定理第四节拉普拉斯逆变换第四章传递函数第一节传递函数的概念与性质第二节线性控制系统的典型环节第三节系统框图及其运算第四节多变量系统的传递函数第五章时间响应分析第一节概述第二节单位脉冲输入的时间响应第三节单位阶跃输入的时间响应第四节高阶系统时间响应第六章频率响应分析第一节谐和输入系统的定态响应第二节频率特性极坐标图第三节频率特性的对数坐标图第四节由频率特性的实验曲线求系统传递函数第七章控制系统的稳定性第一节稳定性概念第二节劳斯判据第三节乃奎斯特判据第四节对数坐标图的稳定性判据第八章控制系统的偏差第一节控制系统的偏差概念第二节输入引起的定态偏差第三节输入引起的动态偏差第九章控制系统的设计和校正第一节综述第二节希望对数幅频特性曲线的绘制第三节校正方法与校正环节第四节控制系统的增益调整第五节控制系统的串联校正第六节控制系统的局部反馈校正第七节控制系统的顺馈校正第一章自动控制系统的基本原理定义:在没有人的直接参与下,利用控制器使控制对象的某一物理量准确地按照预期的规律运行。
第一节控制系统的工作原理和基本要求一、控制系统举例与结构方框图例1.一个人工控制的恒温箱,希望的炉水温度为100C°,利用表示函数功能的方块、信号线,画出结构方块图。
图1人通过眼睛观察温度计来获得炉内实际温度,通过大脑分析、比较,利用手和锹上煤炭助燃。
比较图2例2.图示为液面高度控制系统原理图。
试画出控制系统方块图和相应的人工操纵的液面控制系统方块图。
解:浮子作为液面高度的反馈物,自动控制器通过比较实际的液面高度与希望的液面高度,调解气动阀门的开合度,对误差进行修正,可保持液面高度稳定。
《机械工程控制基础》课后题答案及解析
目录第一章自动控制系统的基本原理第一节控制系统的工作原理和基本要求第二节控制系统的基本类型第三节典型控制信号第四节控制理论的内容和方法第二章控制系统的数学模型第一节机械系统的数学模型第二节液压系统的数学模型第三节电气系统的数学模型第四节线性控制系统的卷积关系式第三章拉氏变换第一节傅氏变换第二节拉普拉斯变换第三节拉普拉斯变换的基本定理第四节拉普拉斯逆变换第四章传递函数第一节传递函数的概念与性质第二节线性控制系统的典型环节第三节系统框图及其运算第四节多变量系统的传递函数第五章时间响应分析第一节概述第二节单位脉冲输入的时间响应第三节单位阶跃输入的时间响应第四节高阶系统时间响应第六章频率响应分析第一节谐和输入系统的定态响应第二节频率特性极坐标图第三节频率特性的对数坐标图第四节由频率特性的实验曲线求系统传递函数第七章控制系统的稳定性第一节稳定性概念第二节劳斯判据第三节乃奎斯特判据第四节对数坐标图的稳定性判据第八章控制系统的偏差第一节控制系统的偏差概念第二节输入引起的定态偏差第三节输入引起的动态偏差第九章控制系统的设计和校正第一节综述第二节希望对数幅频特性曲线的绘制第三节校正方法与校正环节第四节控制系统的增益调整第五节控制系统的串联校正第六节控制系统的局部反馈校正第七节控制系统的顺馈校正第一章 自动控制系统的基本原理定义:在没有人的直接参与下,利用控制器使控制对象的某一物理量准确地按照预期的规律运行。
第一节 控制系统的工作原理和基本要求 一、 控制系统举例与结构方框图例1. 一个人工控制的恒温箱,希望的炉水温度为100C °,利用 表示函数功能的方块、信号线,画出结构方块图。
图1人通过眼睛观察温度计来获得炉内实际温度,通过大脑分析、比较,利用手和锹上煤炭助燃。
煤炭给定的温度100 C手和锹眼睛实际的炉水温度比较图2例2. 图示为液面高度控制系统原理图。
试画出控制系统方块图和相应的人工操纵的液面控制系统方块图。
哈工大机电系统控制第三章答案-汇编
3-1 题图3-1所示的阻容网络中,i ()[1()1(30)](V)u t t t =--。
当t =4s 时,输出o ()u t 值为多少?当t 为30s 时,输出u o (t )又约为多少?解:661(s)1111(s)1110410141o i U sCU RCs s R sC -====+⨯⨯⨯+++(4)0.632(V)o u ≈,(30)1(V)o u ≈3-2 某系统传递函数为21()56s s s s +Φ=++,试求其单位脉冲响应函数。
解:2(s)112(s)5623o i X s X s s s s +-==+++++ 其单位脉冲响应函数为23(t)(e 2e )1()t t x t δ--=-+⋅3-3 某网络如图3-3所示,当t ≤0-时,开关与触点1接触;当t ≥0+时,开关与触点2接触。
试求输出响应表达式,并画出输出响应曲线。
1V题图3-1 题图3-3解:1(s)11(s)2121()o i R U RCs s sCU RCs s R R sC++===++++ 01(t)1(2)1()(V)i i i u u u t =+=+-⋅1111212(s)(s)121212o i s s U U s s s ss ++-===-+++ 则21(t)(e 2)1()(V)t o u t -=-⋅1201(t)1(e 2)1()(V)o o o u u u t -=+=+-⋅其输出响应曲线如图3-3所示图3-3 题图3-43-4 题图3-4所示系统中,若忽略小的时间常数,可认为1d 0.5()d yB s x-=∆。
其中,ΔB 为阀芯位移,单位为cm ,令a =b (ΔB 在堵死油路时为零)。
(1) 试画出系统函数方块图,并求(s)(s)Y X 。
(2) 当i ()[0.51()0.51(4)1(40)]cm x t t t s t s =⨯+⨯---时,试求t =0s,4s,8s,40s,400s 时的y (t )值,()B ∆∞为多少? (3) 试画出x (t )和y (t )的波形。
《控制工程基础》第三章习题解题过程和参考答案 (2)
以下求各指标:
由 ,其中 ,
故:
(也可查图3-16而得)
(2)由式(3-46),单位脉冲响应:
代入各参数:
3-7某二阶系统的结构框图如题3-7图所示,试画出 , 和 时的单位阶跃响应曲线。
题3-7图控制系统框图
解:
系统闭环传递函数为:
系统的参数为: 。
(1)
此时, ,为欠阻尼,可求得:
(2)
此时,由 ,可知 ,仍为欠阻尼。由于阻尼比增大,因此超调量减小。
而调节时间 ,所以:
由此得联立方程:
解得:
3-10典型二阶系统的单位阶跃响应为
试求系统的最大超调 、峰值时间 、调节时间 。
解:
由式(3-46),典型二阶系统的单位阶跃响应表达式为:
,其中
将上式与给定响应式比较,可计算系统的二个参数 。
由 ,求得阻尼比:
或者也可这样求:
由 ,求得阻尼比:
由 ,得
二个参数求出后,求各指标就很方便了。
综合有:
开环增益K在上述范围内,则闭环系统不但稳定,且所有闭环极点的实部均小于-1。
3-19已知单位反馈系统的开环传递函数为
试根据下述条件确定 的取值范围。
(1)使闭环系统稳定;
(2)当 时,其稳态误差 。
解:
(1)关于闭环稳定性
求解本题当然可以用普通方法,如在习题3-12至3-18中所应用的。
但我们换一种思路,设计利用一些规律性的结果。在习题3-17中已经求出,对于单位反馈系统若具有下列形式的开环传递函数:
①特征方程的系数均大于0且无缺项。
②列劳斯表如下
1
10
21
10
10
结论:劳斯表第—列均为正值,系统闭环稳定。
哈工大机电系统控制基础秋习题课第三章答案
第3章习题课答案3-1 设单位反馈系统的开环传递函数为4()(s 5)G s s =+,试求该系统的单位阶跃响应和单位脉冲响应。
解:系统闭环传递函数为24(s)44(s 5)4(s)54(s 1)(s 4)1(s 5)o i X s X s s s +===++++++ (1)当()1()i x t t =时,1()i X s s=41()41133()()()(4)(1)14o o i i X s X s X s X s s s s s s s ===-+++++则 441()1()1()1()33t tox t t e t e t --=-⋅+⋅ (2)当()()i x t t δ=时,()1i X s =44(s)433(s)(s)1(s)(s 4)(s 1)14o o i i X X X X s s ==⨯=-++++则 44()()1()3tt o x t e e t --=-⋅3-2 系统结构图如图3-70所示。
已知系统单位阶跃响应的超调量σ%3.16=%,峰值时间1=p t s 。
(1)求系统的开环传递函数)(s G ; (2)求系统的闭环传递函数)(s Φ;(3)根据已知的性能指标σ%、p t 确定系统参数K 及τ; (4)计算等速输入s t t r )(5.1)(︒=时系统的稳态误差。
解 (1) )110(10)1(101)1(10)(++=+++=ττs s K s s s s s K s G(2) 2222210)110(10)(1)()(nn n s s K s s Ks G s G s ωξωωτ++=+++=+=Φ (3)由 ⎪⎩⎪⎨⎧=-===--113.16212ξωπσςξπn p oooo t e 联立解出⎪⎩⎪⎨⎧===263.063.35.0τωξn由(2) 18.1363.31022===n K ω,得出318.1=K 。
(4) 63.31263.01018.1311010)(lim 0=+⨯=+==→τK s sG K s v 413.063.35.1===v ss K A e3-3 设图(a )所示系统的单位阶跃响应如图(b )所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3章习题课答案
3-1 设单位反馈系统的开环传递函数为4
()(s 5)
G s s =+,试求该系统的单位阶跃响应和单位脉冲响应。
解:系统闭环传递函数为
24
(s)44(s 5)
4(s)54(s 1)(s 4)
1(s 5)
o i X s X s s s +===++++++ (1)当()1()i x t t =时,1()i X s s
=
41
()411
33()()()(4)(1)14
o o i i X s X s X s X s s s s s s s ===-+++++
则 441()1()1()1()33
t t
o
x t t e t e t --=-⋅+⋅ (2)当()()i x t t δ=时,()1i X s =
44(s)4
33(s)(s)1(s)(s 4)(s 1)14
o o i i X X X X s s ==⨯=-++++
则 44()()1()3
t
t o x t e e t --=
-⋅
3-2 系统结构图如图3-70所示。
已知系统单位阶跃响应的超调量σ%3.16=%,峰值时间
1=p t s 。
(1)求系统的开环传递函数)(s G ; (2)求系统的闭环传递函数)(s Φ;
(3)根据已知的性能指标σ%、p t 确定系统参数K 及τ; (4)计算等速输入s t t r )(5.1)(︒=时系统的稳态误差。
解 (1) )110(10)
1(101)1(10
)(++=++
+=ττs s K s s s s s K s G
(2) 2
2
22210)110(10)(1)()(n
n n s s K s s K
s G s G s ωξωωτ++=+++=+=Φ (3)由 ⎪⎩
⎪⎨⎧=-===--113.16212ξωπσςξπn p o
o
o
o t e 联立解出
⎪⎩⎪⎨⎧===263
.063
.35
.0τωξn
由(2) 18.1363.31022
===n K ω,得出
318.1=K 。
(4) 63.31263.01018
.1311010)(lim 0=+⨯=+=
=→τK s sG K s v 413.063
.35
.1===v ss K A e
3-3 设图(a )所示系统的单位阶跃响应如图(b )所示。
试确定系统参数,1K 2K 和a 。
解 由系统阶跃响应曲线有
⎪⎩⎪
⎨⎧=-===∞o
o o o
p t h 3.333)34(1.03)(σ
系统闭环传递函数为
2
2
2
2122
12)(n
n n s s K K as s K K s ωξωω++=++=Φ (1) 由 ⎪⎩⎪⎨⎧
===-=--o o o o n p e
t 3.331.012
12
ξξπσωξπ 联立求解得 ⎩⎨
⎧==28.3333.0n ωξ 由式(1)⎩⎨⎧====22
21108
2
1n n a K ξωω
另外 3lim 1
)(lim )(21
22100
==++=⋅
Φ=∞→→K K as s K K s s s h s s 5.21
)(lim )(0
=⋅
Φ=∞→s
s s h s
第4章习题
4-1设单位反馈控制系统的开环传递函数为1
10
)(+=s s G K ,当系统作用以下输入信号时,试求系统的稳态输出。
(1) )30sin()(0
+=t t x i
解:系统的闭环传递函数为:11
10
)(1)()(+=+=
s s G s G s G K K B
11
arctan 2121101110)(ω
ω
ωωj B e
j j G -⋅+=+=。
此题中,1=ω,得频率特性为: 02.5122
10
1110)(j B e j j G -⋅=+=ω,由此得:
4-2 绘出开环传递函数为)
105.0)(1()
2(5)(+++=
s s s s s G 的系统开环对数频率特性。
解:将)(s G 中的各因式换成典型环节的标准形式,即
)
105.0)(1()
15.0(10)(+++=
s s s s s G
如果直接绘制系统开环对数幅频特性渐近线,其步骤如下: (1)转折频率1ω=1,2ω=2,3ω=20。
(2)在ω=l 处,dB K L 2010lg 20lg 20)(1====ωω。
(3)因第一个转折频率1ω=1,所以过(1ω=1,dB L 20)(=ω)点向左作一20dB /dec 斜率的直线,再向右作一40dB /dec 斜率的直线交至频率2ω=2时转为一20dB /dec ,当交至3ω=20时再转为一40dB /dec 斜率的直线,即得开环对数幅频特性渐近线,如图5—47所示。
)8.24sin(905.0)2.530sin(122
10
)(0001+=-+=
t t t x oss
图5—47 例5—10系统开环对数频率特性
系统开环对数相频特性:
ωωωωϕ05.05.090)(1110----+--=tg tg tg
对于相频特性,除了解它的大致趋向外,最感兴趣的是剪切频率c ω时的相角,而不是整个相频曲线,本例中5==c ωω时的相角为
011105.114505.055.0590)(-=⨯-⨯+--=---tg tg tg c ωϕ
4-3 试确定下列系统的谐振峰值、谐振频率:2
X ()5=
X ()
25
O i j j j j ωωωω++ 解:2
2
22()5(5)1()()2()5()5(5)5
o i X j X j j j j ωωωωωω==++++ 则5,5
n ωξ==
2
2 1.2511
212
1()55
r M ξξ
=
==--
22
112512(
) 1.73rad/s 5
r ωωξ=-=-= 4-4 根据下列给定的最小相位系统对数幅频特性曲线图写出相应的传递函数。
解:4-5(a)
(1)求结构
从图中看出,低频段斜率为0,是0型系统,由渐近线的斜率变化: 第1个转折频率处斜率变化20/dB dec -,是一阶惯性环节; 第2个转折频率处斜率变化也是20/dB dec -,也是一阶惯性环节; 因此传递函数结构为
12()(1)(1)
K
G s T s T s =
++
(2)求参数
从图中看出,低频段与零分贝线水平重合,因此
1K =
对第1个一阶惯性环节,转折频率11ω=,则:
11
1
1T ω=
=
对第2个一阶惯性环节,转折频率24ω=,则:
22
1
1
0.254
T ω=
=
= 综合得:
()(1)(0.251)
K
G s s s =
++
解:4-5(b)
(1)求结构
从图中看出,低频段斜率为20/dB dec -,是1型系统,由渐近线的斜率变化: 第1个转折频率处斜率变化20/dB dec -,是一阶惯性环节;
第2个转折频率处斜率变化也是20/dB dec -,也是一阶惯性环节; 因此传递函数结构为
12()(1)(1)K
G s s T s T s =
++
(2)求参数
从图中看出,低频段延长线与零分贝线交点频率:0100ω=,因为是1型系统,由式(4-67)
100K =
对第1个一阶惯性环节,转折频率10.01ω=,则:
11
1
1
1000.01T ω=
=
=
对第2个一阶惯性环节,转折频率2100ω=,则:
22
1
1
0.01100
T ω=
=
= 综合得:
12100
()(1)(1)(1001)(0.011)
K G s s T s T s s s s =
=++++
4-6 已知某二阶反馈控制系统的最大超调量为25%,试求相应的阻尼比和谐振峰值。
解:已知0.25
p
M==
解得0.4
ξ=
则
1.36
r
M===。