材料基本原理名词解释

合集下载

材料科学基础部分名词解释

材料科学基础部分名词解释

1、晶界内吸附:少量杂质或合金元素在晶体内部的分布式不均匀的,偏聚于晶界合金元素或杂质元素融入基体后与晶体缺陷产生相互作用,溶质原子在内界面缺陷区的浓度超过基体中的平均浓度。

2、菲克第一定律:在单位时间内通过垂直扩散方向的单位截面积的扩散物质与该界面处的浓度梯度成正比。

3、菲克第二定律:在非稳态扩散过程中,距离X处,浓度随时间的变化率等于该处的扩散通量随距离变化率的负值。

4、上坡扩散:溶质原子从低浓度向高浓度处扩散的过程。

5、配位数:晶体结晶中任一原子周围最近且等距离的原子个数。

6、均匀形核:在母相中自发形成新相结晶核心的过程。

7、致密度:晶体结构中原子体积与占总体积的百分数。

8、蠕变:金属材料长期处于高温条件下在低于屈服点的应力作用下,缓慢而持续不断的增加材料塑性变形的过程。

9、位错:已滑移区与未滑移区的分界部分。

10、马氏体转变:同成分、不变平面切变类型的固态转变。

11、晶体:质点(原子、分子或离子)以周期性重复方式在三维空间做有规则的排列的固体。

12、形变强化:由塑性变形引起的材料强度、硬度升高的现象。

13、间隙固溶体:将外来组元引入晶体结构,占据主晶相同间隙位置的一部分,仍保持一个晶相这种固溶体。

这种固溶体称为间隙固溶体。

14、空位:未被原子占据的阵点。

15、间隙扩散:扩散原子在晶体间隙间跃迁导致的扩散。

16、包晶转变:由一个固相和一个液相形成一个新固相的转变。

17、成分过冷:由成分变化和实际温度分布两个因素决定的过冷。

18、回复:冷塑性变形金属加热时,光学显微组织发生变化前亚结构的变化。

19、晶体缺陷:实际晶体结构与理想点阵结构发生偏差的区域。

20、反应扩散:伴随有反应的扩散。

21、非均匀形核:晶胚依附在其他基体表面形成核心。

22、伪共晶:共晶点附近非共晶成分的合金非平衡凝固后得到的共晶组织。

23、再结晶:由拉长的变形晶粒变为新的轴晶粒。

24、加工硬化:从机械性能上看,形变量越大形变金属的强度和硬度越高,而塑性韧性下降的现象。

材料科学基础基本概念和名词解释

材料科学基础基本概念和名词解释

晶体缺陷单晶体:是指在整个晶体内部原子都按照周期性的规则排列。

多晶体:是指在晶体内每个局部区域里原子按周期性的规则排列,但不同局部区域之间原子的排列方向并不相同,因此多晶体也可看成由许多取向不同的小单晶体(晶粒)组成点缺陷(Point defects):最简单的晶体缺陷,在结点上或邻近的微观区域内偏离晶体结构的正常排列。

在空间三维方向上的尺寸都很小,约为一个、几个原子间距,又称零维缺陷。

包括空位vacancies、间隙原子interstitial atoms、杂质impurities、溶质原子solutes 等。

线缺陷(Linear defects):在一个方向上的缺陷扩展很大,其它两个方向上尺寸很小,也称为一维缺陷。

主要为位错dislocations。

面缺陷(Planar defects):在两个方向上的缺陷扩展很大,其它一个方向上尺寸很小,也称为二维缺陷。

包括晶界grain boundaries、相界phase boundaries、孪晶界twin boundaries、堆垛层错stacking faults等。

晶体中点阵结点上的原子以其平衡位置为中心作热振动,当振动能足够大时,将克服周围原子的制约,跳离原来的位置,使得点阵中形成空结点,称为空位vacancies肖脱基(Schottky)空位:迁移到晶体表面或内表面的正常结点位置,使晶体内部留下空位。

弗兰克尔(Frenkel)缺陷:挤入间隙位置,在晶体中形成数目相等的空位和间隙原子。

晶格畸变:点缺陷破坏了原子的平衡状态,使晶格发生扭曲,称晶格畸变。

从而使强度、硬度提高,塑性、韧性下降;电阻升高,密度减小等。

热平衡缺陷:由于热起伏促使原子脱离点阵位置而形成的点缺陷称为热平衡缺陷(thermal equilibrium defects),这是晶体内原子的热运动的内部条件决定的。

过饱和的点缺陷:通过改变外部条件形成点缺陷,包括高温淬火、冷变形加工、高能粒子辐照等,这时的点缺陷浓度超过了平衡浓度,称为过饱和的点缺陷(supersaturated point defects) 。

工程材料基础名词解释

工程材料基础名词解释

⼯程材料基础名词解释⼯程材料基础名词解释⼀、合⾦:合⾦是指由两种或两种以上的⾦属元素、或⾦属元素与⾮⾦属元素组成的具有⾦属特性的物质。

⼆、固溶体:合⾦组元通过溶解形成⼀种成分和性能均匀、且结构与组元之⼀相同的固相称为固溶体。

三、固溶强化:通过融⼊某种溶质元素形成固溶体⽽是⾦属的强度、硬度升⾼的现象称为固溶强化。

四、结晶:物质从液态冷却转变为固态的过程称为凝固,凝固后的物质可以为晶体也,可以为⾮晶体。

若凝固后的物质为晶体,则这种凝固称为结晶。

五、相图:指在平衡条件下,合⾦的成分、温度和组织之间关系的图形。

六、硬度:是指材料抵抗局部变形,特别是塑形变形、压痕或划痕的能⼒。

七、热处理:是指采⽤适当的⽅式在固态下对⾦属进⾏加热、保温和冷却,以获得所学的组织和性能⼯艺⽅法。

⼋、本质晶粒度:根据标准试验⽅法,在c?930保温⾜够时间(3-8⼩时)±10后测定的钢中晶粒的⼤⼩。

是表⽰钢中奥⽒体晶粒长⼤的倾向性。

九、淬⽕:把钢进⾏奥⽒体化,保温后以适当⽅式冷却,已获得马⽒体或以下贝⽒体组织的热处理⼯艺⽅法称为淬⽕。

⼗、回⽕脆性:淬⽕钢回⽕时冲击韧性并不总是随挥回⽕温度的升⾼⽽简单的增加,有些钢在某个温度范围内回⽕时,其冲击韧性显著下降,这种脆化现象称为回⽕脆性。

⼗⼀、调质:⽣产上习惯将淬⽕加⾼温回⽕称为调质处理。

⼗⼆、变质处理:在液态⾦属结晶之前,特意加⼊某些难熔固态颗粒,造成⼤量以⾮⾃发晶核的固态质点,使结晶时晶核数量⼤⼤增加,从⽽提⾼了形核率,细化晶粒,这种处理⽅式即为变质处理。

⼗三、过冷和过冷度:实际结晶温度低于理论结晶温度的现象称为过冷,理论结晶温度T0与实际结晶温度T1之差称为过冷度。

⼗四、时效:⾦属或合⾦在⼤⽓温度下经过⼀段时间后,由于过饱和固溶体脱溶和晶格沉淀⽽使强度逐渐升⾼的现象。

⼗五、红硬性:⼜叫热硬性,钢在⾼温下保持硬度的能⼒。

⼗六、选材的基本原则:所选的材料的使⽤性能应能满⾜零件的使⽤要求,易加⼯,成本低,寿命⾼。

材料科学基础名词解释

材料科学基础名词解释

材料科学基础名词解释1、晶体:原子按一定方式在三维空间内周期性地规则重复排列,有固定熔点,各向异性。

2、中间相:两组元A和B组成合金时,除了形成以A为基或以B为基的固溶体外,还可能形成晶体结构与A、B两组员均不相同的新相。

由于它们在二元相图上的位置总是位于中间,故通常把这些相称为中间相。

3、亚稳相:亚稳相指的是热力学上不能稳定存在,但在快速冷却或加热过程中,由于热力学能垒或动力学的因素造成其未能转变为稳定相而暂时稳定存在的一种相。

4、配位数: 晶体结构中任一原子周围最近邻且等距离的原子数。

5、再结晶:冷变形后的金属加热到一定温度之后,在原变形组织中重新产生了无畸变的新晶粒,而性能也发生了明显的变化并恢复到变形前的状态,这个过程称为再结晶(指出现无畸变的等轴新晶粒逐步取代变形晶粒的过程)。

6、伪共晶:在非平衡凝固条件下,某些亚共晶或过共晶成分的合金也能得到全部的共晶组织,这种由非共晶成分的合金得到的共晶组织称为共晶组织。

7、交滑移:当某一螺型位错在原滑移面上滑移受阻时,有可能从原滑移面转移到与之相交的另一滑移面上去继续滑移,这一过程称为交滑移。

8、过时效:铝合金经固溶处理后,在加热保温过程中将先后析出GP区,,和,在开始保温阶段,随保温时间延长,硬度强度上升,当保温时间延长,将析出,这时材料的硬度强度将下降,这种现象称为过时效。

9、形变强化:金属经冷塑性变形后,其强度硬度上升,塑性和韧性下降,这种现象称为形变强化。

10、固溶强化:由于合金元素(杂质)的加入,导致的以金属为基体的强度得到加强的现象。

11、弥散强化:许多材料由两相或多相构成,如果其中一相为细小的颗粒并弥散分布在材料内,这种材料的强度往往会增加,称为弥散强化。

12、不全位错: 柏氏矢量不等于点阵矢量整数倍的位错称为不全位错。

13、扩展位错:通常指一个全位错分解为两个不全位错,中间夹杂着一个堆垛层错的整个位错形态。

14、螺型位错:位错附近的原子按螺旋形排列的位错称为螺型位错。

材料科学基础名词解释

材料科学基础名词解释

名词解释(对比)
1、均匀形核非均匀形核
2、平衡凝固非平衡凝固
3、热脆性冷脆性
4、伪共晶离异共晶不平衡共晶
5、平衡分配系数有效分配系数
6、能量起伏结构起伏成分起伏
7、再结晶二次再结晶
8、滑移线滑移带
9、交滑移双交滑移
10、致密度配位数
11、固溶体中间相
12、点阵阵点
13、置换固溶体间隙固溶体
14、正常价化合物电子化合物
15、热平衡缺陷过饱和点缺陷
16、滑移攀移
17、割阶扭折
18、全位错不全位错
19、单位位错部分位错
20、晶界亚晶界
21、小角度晶界大角度晶界
22、化学扩散自扩散a
23、稳态扩散非稳态扩散
24、自扩散互扩散
25、肖特基缺陷弗兰克尔缺陷
26、微观偏析宏观偏析
27、金属键离子键共价键范德瓦耳斯键
28、螺型位错刃型位错
29、晶格晶包
30、匀晶转变共晶转变共析转变包晶转变包析转变
31、奥氏体莱氏体珠光体。

材料工程原理名词解释简答题总结

材料工程原理名词解释简答题总结

1.几何相似:也就是原物和模型对应点流动空间任意相应线段两线段夹角相同,任意相应线段长度保持一定比例。

运动相似:指两流动的相应流线几何相似或相应点的流速大小成比例,方向相同。

动力相似:指原物和模型对应点同名力作用下,相应的同名力成比例。

主要有重力、粘性力、压力、惯性力和弹性力。

2.绝对压力:以绝对真空为基准测得的压力。

流体的真实压力。

表压或真空度:以大气压为基准测得的压力。

工程上用压力表测得的流体压力表压= 绝对压力-大气压力//真空度= 大气压力-绝对压力3. 层流与湍流答:层流是指流体在管道中作有秩序的、层次分明的流动,流速层间没有质点扩散现象发生,流体内部没有漩涡产生(1.5分)。

湍流则是指流体在流动过程中,流体质点有不规则的运动,速度的大小和方向随时发生变化,出现漩涡4干球湿度:干球湿度t为湿空气的真实温度。

湿球温度:大量空气与少量水分相接触时的热,质传递平衡的湿空气温度。

5泵的气缚与气蚀答:气缚是离心泵在启动前未充满液体时,泵壳内存在的空气所产生的离心力很小,造成吸入口处所形成的真空不足以将液体吸入泵内的现象。

汽蚀为离心泵叶轮入口最低压力点处压力降至液体在该温度下的饱和蒸汽压时,液体部分汽化并有部分气体解吸,生成大量小汽泡。

这些小汽泡在泵内流动过程的突然破裂产生很好的局部冲击压力造成叶轮呈现海绵状、鱼鳞状的破坏现象7扩散传质:在浓度差驱动下通过分子热运动而引起的组分传递现象。

对流传质:流体中由于流体宏观流动引起物质从一处迁移到另一出的现象。

8恒定干燥条件:干燥介质(或热空气)的温度、湿度、流速及与物料的接触方式在整个干燥过程中保持不变的条件。

干燥曲线:表征相同干燥条件下,物料含水量X及物料表面温度斯塔与干燥时间t的关系曲线。

9稳态流动:各截面上的温度、压力、流速等物理量仅随位置变化,而不随时间变化;非稳态流动:流体在各截面上的有关物理量既随位置变化,也随时间变化。

10灰体:物体在任何温度下所有各波长的辐射强度与绝对黑体相应波长的辐射强度比值不变,这种物体叫作灰体。

材料科学基础 名词解释

材料科学基础 名词解释

1、化学键:组成物质整体的质点(原子、分子或离子)间的相互作用力叫做化学键。

共价键:有些同类原子,例如周期表IV A、V A、VIA族中大多数元素或电负性相差不大的原子相互接近时,原子之间不产生电子的转移,此时借共用电子对所产生的力结合,形成共价键。

离子键:当两种电负性相差大的原子相互靠近时,其中电负性小的原子失去电子,成为正离子,电负性大的原子获得电子成为负离子,两种离子靠静电引力结合在一起形成离子键。

范德瓦尔键(分子键):分子的一部分往往带正电荷,而另一部分往往带负电荷,一个分子的正电荷部位和另一分子的负电荷部位间,以微弱静电力相吸引,使之结合在一起,称为范德瓦尔键,也叫分子键。

金属键:由金属正离子和自由电子之间互相作用而结合称为金属键。

2、晶体:物质的质点(分子、原子或离子)在三维空间作有规律的周期性重复排列所形成的物质叫晶体。

单晶体:由一个晶粒组成的晶体。

准晶:原子在晶体内部是长程有序的具有准周期性的具有五次对称轴的介于晶体与非晶体之间的一类晶体,叫做准晶。

玻璃体:液体冷却时,尚未转变为晶体就凝固了,它实质是一种过冷的液体结构,称为玻璃体。

非晶态金属(金属玻璃):在特殊的冷却条件下金属可能不经过结晶过程而凝固成保留液体短程有序结构的非晶态金属。

非晶态金属又称作金属玻璃。

微晶合金:晶粒尺寸达微米(μm)的超细晶粒合金材料,称为微晶合金。

纳晶合金:晶粒尺寸达纳米(nm)的超细晶粒合金材料,称为纳晶合金。

3、空间点阵(点阵):代表原子(分子或离子)中心的点的空间排列,称为空间点阵,简称点阵。

阵点:代表原子(分子或离子)中心的点。

晶格:将阵点用一系列平行直线连接起来,构成一空间格架叫晶格。

晶胞:点阵中能保持点阵特征的最基本单元叫晶胞。

晶体结构:是指晶体中实际质点(原子、分子或离子)的具体排列情况,它们能组成各种类型,因此实际存在的晶体结构是无限多的。

4、晶向:晶体中某些原子在空间排列的方向叫晶向。

材料科学基础名词解释(全)

材料科学基础名词解释(全)

材料科学基础名词解释(全)晶体:即内部质点在三维空间呈周期性重复排列的固体。

非晶体:原子没有长程的排列,无固定熔点、各向同性等。

晶体结构:指晶体中原子或分子的排列情况,由空间点阵和结构基元构成。

空间点整:指几何点在三维空间作周期性的规则排列所形成的三维阵列,是人为的对晶体结构的抽象。

晶面指数:结晶学中用来表示一组平行晶面的指数。

晶胞:从晶体结构中取出来的反映晶体周期性和对称性的重复单元。

晶胞参数:晶胞的形状和大小可用六个参数来表示,即晶胞参数。

离子晶体晶格能:1mol离子晶体中的正负离子,由相互远离的气态结合成离子晶体时所释放的能量。

原子半径:从原子核中心到核外电子的几率分布趋向于零的位置间的距离。

配位数:一个原子或离子周围同种原子或异号离子的数目。

极化:离子紧密堆积时,带电荷的离子所产生的电厂必然要对另一个离子的电子云产生吸引或排斥作用,使之发生变形,这种征象称为极化。

同质多晶:化学组成相同的物质在不同的热力学条件下形成结构不同的晶体的现象。

类质同晶:化学组成相似或相近的物质在相同的热力学条件下形成具有相同结构晶体的现象。

铁电体:指具有自发极化且在外电场作用下具有电滞回线的晶体。

正、反尖晶石:在尖晶石结构中,如果A离子占据四面体空隙,B离子占据八面体空隙,称为正尖晶石。

如果半数的B离子占据四面体空隙,A离子和另外半数的B离子占据八面体空隙则称为反尖晶石。

反萤石结构:正负离子位置刚好与萤石结构中的相反。

压电效应:由于晶体在外力作用下变形,正负电荷中心产生相对位移使晶体总电矩发生变化。

结构缺陷:通常把晶体点阵结构中周期性势场的畸变称为结构缺陷。

空位:指正常结点没有被质点占据,成为空结点。

间隙质点:质点进入正常晶格的间隙位置。

点缺陷:缺陷尺寸处于原子大小的数量级上,三维方向上的尺寸都很小。

线缺陷:指在一维方向上偏离理想晶体中的周期性、规则性排列而产生的缺陷。

面缺陷:是指在二维方向上偏离理想晶体中的周期性、规则性排列而产生的缺陷。

材料科学基础最全名词解释

材料科学基础最全名词解释

小崔工作室材料科学基础最全名词解释固相烧结:固态粉末在适当的温度,压力,气氛和时间条件下,通过物质与气孔之间的传质,变为坚硬、致密烧结体的过程。

液相烧结:有液相参加的烧结过程。

金属键:自由电子与原子核之间静电作用产生的键合力。

离子键:金属原子自己最外层的价电子给予非金属原子,使自己成为带正电的正离子,而非金属得到价电子后使自己成为带负电的负离子,这样正负离子靠它们之间的静电引力结合在一起。

共价键:由两个或多个电负性相差不大的原子间通过共用电子对而形成的化学键。

氢键:由氢原子同时与两个电负性相差很大而原子半径较小的原子(O,F,N等)相结合而产生的具有比一般次价键大的键力。

弗兰克缺陷:间隙空位对缺陷肖脱基缺陷:正负离子空位对的奥氏体:γ铁内固溶有碳和(或)其他元素的、晶体结构为面心立方的固溶体。

布拉菲点阵:除考虑晶胞外形外,还考虑阵点位置所构成的点阵。

不全位错:柏氏矢量不等于点阵矢量整数倍的位错称为不全位错。

玻璃化转变温度:过冷液体随着温度的继续下降,过冷液体的黏度迅速增大,原子间的相互运动变得更加困难,所以当温度降至某一临界温度以下时,即固化成玻璃。

这个临界温度称为玻璃化温度Tg。

表面能:表面原子处于不均匀的力场之中,所以其能量大大升高,高出的能量称为表面自由能(或表面能)。

半共格相界:若两相邻晶体在相界面处的晶面间距相差较大,则在相界面上不可能做到完全的一一对应,于是在界面上将产生一些位错,以降低界面的弹性应变能,这时界面上两相原子部分地保持匹配,这样的界面称为半共格界面或部分共格界面。

柏氏矢量:描述位错特征的一个重要矢量,它集中反映了位错区域内畸变总量的大小和方向,也使位错扫过后晶体相对滑动的量。

柏氏矢量物理意义:①从位错的存在使得晶体中局部区域产生点阵畸变来说:一个反映位错性质以及由位错引起的晶格畸变大小的物理量。

②从位错运动引起晶体宏观变形来说:表示该位错运动后能够在晶体中引起的相对位移。

材料科学基础名词解释

材料科学基础名词解释
面族:在晶体中所有等效的面。
密排六方结构(HCP):有6个原子在上下面的角隅上,每个原子为6个单胞所共有,1个原子在上下基面的中心,为2个单胞所共有,有3个原子在中间面上的晶体结构。
最高密度面:任一晶系中具有最大面密度的晶面。
间隙:晶体中原子周围存在的空间,最低限度由最邻近四个原子或离子所确定的原子间区域。
各向同性:若晶体的性质和测量方向无关,则称晶体是各向同入原子或离子就形成晶体。
点阵常数:单胞的棱长称为点阵常数。
阵点:单胞的顶角点称为阵点。
线密度:在晶体方向单位长度上有原子中心的数目。ρL=在一个单胞内沿方向上原子中心的数目/包含在一个单胞内线的长度
密勒指数:用以描述晶体点阵系统中指定的点、方向和面的惯用约定和记号。
八面体位置:连接六个相同原子的多面体可以用来描述间隙位置的集合结构,在这种情况下,它有8个面,因而这些间隙称为八面体间隙。
面密度:在晶体学面单位面积上的原子或离子中心的数目。ρP=在一个单胞内中心原子一个 面上的原子数目/包含在一个单胞中的面的面积。
多晶体:指的是原子在整个晶体中不是按统一的规则排列的,无一定的外形,其物理性质在各个方向都相同。
第三章晶体结构
各向异性:若晶体的性质和测量方向有关,则称晶体是各向异性的。
原子堆垛因子:在晶体结构中原子占据的体积与可利用的总体积的比率定义为原子堆垛因子。
APF=在单胞中原子体积/单胞体积
体心立方(BCC):立方体单胞的每一个角隅和中心放入一个原子。
密排方向:满足线密度为最高线密度(1/2r)的方向。
密排面:满足面密度为最高面密度(1/( r2))的晶面,沿这个方向原子间相互接触。
密堆结构:体密度为1/( r3)的晶体结构称为密堆结构,在其中每个原子与六个近邻。

材料科学基础-名词解释

材料科学基础-名词解释

第六章组元:组元通常是指系统中每一个可以单独分离出来,并能独立存在的化学纯物质,在一个给定的系统中,组元就是构成系统的各种化学元素或化合物.相:在一个系统中,成分、结构相同,性能一致的均匀的组成部分叫做相,不同相之间有明显的界面分开,该界面称为相界面。

相平衡:在某一温度下,系统中各个相经过很长时间也不互相转变,处于平衡状态,这种平衡称为相平衡.各组元在各相中的化学势相同。

相图:表示合金系中合金的状态与温度、成分之间的关系的图形,又称为平衡图或状态图。

相变:从一种相转变为另一种相的过程称为相变。

若转变前后均为固相,则称为固态相变。

凝固:物质由液态到固态的转变过程称为凝固结晶:如果液态转变为结晶态的固体这个过程称为结晶过冷:纯金属的实际凝固温度Tn总比其熔点Tm低的现象过冷度:Tm与Tn的差值△T叫做过冷度均匀形核:在液态金属中,存在大量尺寸不同的短程有序的原子集团.当温度降到结晶温度以下时,短程有序的原子集团变得稳定,不再消失,成为结晶核心。

这个过程叫自发形核。

非均匀形核:实际金属内部往往含有许多其他杂质。

当液态金属降到一定温度后,有些杂质可附着金属原子,成为结晶核性,这个过程叫非自发形核.临界晶核:半径恰为r*的晶核称为临界晶核临界半径:r*称为晶核的临界晶核半径临界形核功:形成临界晶核时自由能的变化△G*>0,这说明形成临界晶核是需要能量的.形成临界晶核所需的能量△G*称为临界形核功。

能量起伏:形成临界晶核时,液、固两相之间的自由能差只提供所需要的表面能的三分之二,另外的三分之一则由液体中的能量起伏来提供结构起伏:液态金属中的规则排列的原子团总是处于时起时伏,此起彼伏的变化之中,人们把液态金属中的这种排列原子团的起伏现象称为相起伏或结构起伏。

粗糙界面:粗糙界面在微观上高低不平、粗糙,存在几个原子厚度的过渡层.但是宏观上看,界面反而是平直的。

光滑界面:光滑界面是指固相表面为基本完整的原子密排面,固液两相截然分开,从微观上看界面是光滑的。

材料科学基础名词解释

材料科学基础名词解释

1.相变驱动力:是指在恒温恒压下,相变后与相变前的吉布斯自由能之差。

2.形核驱动力:固态相变过程中,形核后与形核前的吉布斯自由能之差。

3.连续析出(连续脱溶):
满足以下特点的析出称为连续析出:
(1)新相以分散的,孤立的小颗粒形核;
(2)新相与母相界面多数情况为共格界面,少数为非共格界面;
(3)相变终了时有剩余母相,而且剩余母相的晶粒形状,位向不变,且成分连续变化;
(4)脱溶速率受控于溶质扩散。

(2005)
4不连续析出(不连续脱溶):
满足以下特点的称为不连续析出:
(1)脱溶产物为交替排列的两相化合物;
(2)脱溶物在母相晶界处形核,然后向一个晶粒内生长;
(3)'α与α的结构相同,成分不同;
(4)在母相与脱溶物的界面上存在结构,成分的不连续性。

材料科学基础概念名词解释

材料科学基础概念名词解释

单晶体:是指样品中所含分子(原子和离子)在三维空间中呈规则、周期排列的一种固体状态。

退火孪晶:退火后形成的孪晶就是退火孪晶或由于相变过程中原子重新排列时发生错排而产生的;孪晶是两个晶体(或一个晶体的两个部分)沿一个公共晶面(即特定取向关系)构成镜面对称的位向关系,这就叫孪晶。

肖特基空位:离开平衡位置的原子迁移到晶体表面或内表面的正常结点位置上,而使晶体内部留下的空位。

弗仑克尔缺陷:离开平衡位置的原子挤入点阵的间隙位置,而在晶体中同时形成数目相等的空位和间隙原子。

单位位错:通常把伯氏矢量等于单位点阵矢量的位错称为单位位错。

刃型位错:在金属晶体中,由于某种原因,晶体的一部分相对另一部分出现一个多余的半原子面。

这个多余的半原子面有如切入晶体的刀片,刀片的刃口线即为位错线。

这种线缺陷称为刃型位错。

滑移:晶体中相邻两部分在切应力作用下沿着一定的晶面和晶向相对滑动。

孪生:是塑性变形的另一种重要形式,它常作为滑移不易进行时的补充。

滑移系:一个滑移面和此面上的一个滑移方向合起来叫作一个滑移系。

晶格畸变:点缺陷出来破坏了原子间的平衡状态,使晶格发生扭曲,称为晶格畸变。

固溶强化:溶质原子与位错的弹性交互作用。

弥散强化:指一种通过在均匀材料中加入硬质颗粒的一种材料的强化手段。

第二相强化,亚组织强化。

回复:是指新的无畸变晶粒出现之前所产生的亚结构和性能变化的阶段。

熔晶转变:是一个固相转变为另一个固相和一个液相的恒温转变。

之所以熔晶转变,是因为固相在温度下降时可以部分熔化。

过冷:结晶只有在T0以下的实际结晶温度下才能进行,这种现象称为过冷。

过冷度:实际结晶温度与理论结晶温度之间的差值。

均匀形核:晶核由液相中的一些原子团直接形成,不受杂质粒子或外表面的影响。

平衡分配系数:平衡凝固时固相的溶质质量分数和夜相溶质质量分数之比。

伪共晶:非平衡凝固时,成分在共晶点附近的非共晶成分合金也可能得到100%的共晶组织,这样的共晶组织称为伪共晶。

材料科学基础名词解释

材料科学基础名词解释

阵点:点阵中的各个点,称为阵点。
晶胞:晶胞 能完整反映晶体内部原子或离子在三维空间分布之化学-结构特征的平行六面体单元。
晶向指数、晶面指数:为了便于确定和区别晶体中不同方位的晶向和晶面,国际上通用密勒(Miller)指数来统一标定晶
向指数与晶面指数。
晶向族:原子排列情况相同在空间位向不同(即不平行)的晶向统称为晶向族。
不对称倾斜晶界:如果倾斜晶界的界面绕x轴转了一角度φ,则此时两晶粒之间的位向差仍为θ角,但此时晶界的界面对于两个晶粒是 倾斜晶界不对称的,故称不对称倾斜晶界(unsymmetrical tilt boundary)。
扭转晶界:扭转晶界(twist boundary)是小角度晶界的一种类型。它可看成是两部分晶体绕某一轴在一个共同的晶面上相对扭转一个θ角所构成的,扭转轴垂直于这一共同的晶面。该晶界的结构可看成是由互相交叉的螺型位错所组成 。
柯肯达尔效应(kirkendall effect):原来是指两种扩散速率不同的金属在扩散过程中会形成缺陷,现已成为中空纳米颗粒的一种制备方法。可以作为固态物质中一种扩散现象的描述。
表面扩散:是指原子、离子、分子以及原子团在固体表面沿表面方向的运动。当固体表面存在化学势梯度场,扩散物质的浓度变化或样品表面的形貌变化时,就会发生表面扩散。
粘流态:当温度高于粘流化温度Tf并继续升高时,高聚物得到的能量足够使整个分子链都可以自由运动,从而成为能流动的粘液,其粘度比液态低分子化物的粘度要大得多,所以称为粘流态。
弹性形变:弹性形变是指固体受外力作用而使各点间相对位置的改变,当外力撤消后,固体又恢复原状谓之“弹性形变”。
弹性模量:材料在弹性变形阶段内,正应力和对应的正应变的比值。
晶面族:立方晶系中,由于原子的排列具有高度的对称性,往往存在有许多原子排列完全相同但在空间位向不同(即不平行)的晶面,这些晶面总称为晶面族。

材料科学基础 名词解释

材料科学基础 名词解释

金属键: 金属键(metallic bond)是化学键的一种,主要在金属中存在。

由自由电子及排列成晶格状的金属离子之间的静电吸引力组合而成.晶体: 是由许多质点(包括原子、离子或分子)在三维空间作有规则的周期性重复排列而构成的固体同素异晶转变(并举例): 金属在固态下随温度的变化,由一种晶格变为另一种晶格的现象,称为金属的同素异晶转变。

液态纯铁冷却到1538℃时,结晶成具有体心立方晶格的δ-Fe;继续冷到1394℃时发生同素异晶的转变,转变为面心立方晶格γ-Fe;再继续冷却到912℃时,γ-Fe又转变为体心立方晶格的α-Fe。

晶胞: 在空间点阵中,能代表空间点阵结构特点的小平行六面体,反映晶格特征的最小几何单元。

点阵常数: 晶胞三条棱边的边长a、b、c及晶轴之间的夹角α、β、γ称为晶胞参数晶面指数: 晶体中原子所构成的平面。

晶面族: 晶体中具有等同条件(这些晶面的原子排列情况和面间距完全相同),而只是空间位向不同的各组晶面称为晶面族晶向指数: 晶体中的某些方向,涉及到晶体中原子的位置,原子列方向,表示的是一组相互平行、方向一致的直线的指向。

晶向族(举例); 晶体结构中那些原子密度相同的等同晶向称为晶向族。

<111>:[111],[-1-11][11-1][-1-1-1][1-1-1][-111][-11-1][1-11]晶带和晶带轴: 所有相交于某一晶向直线或平行于此直线的晶面构成一个晶带,此直线称为晶带轴。

配位数: 在晶体中,与某一原子最邻近且等距离的原子数称为配位数致密度: 晶胞内原子球所占体积与晶胞体积之比值晶面间距: 两近邻平行晶面间的垂直距离对称:通过某种几何操作后物体空间性质完全还原为原始状态空间点阵:将构成物质结构的粒子抽象为质点后,质点在三维空间的排列情况布拉菲点阵:考虑点阵上的阵点的具体排列而得到的点阵具体排列形式,而不是强调是布拉菲数学计算得到的十四种排列固溶体:溶质原子在固态的溶剂中的晶格或间隙位置存在,晶体结构保持溶剂的物质中间相:两种或以上元素原子形成与其组元的晶体结构均不相同的化合物准晶:有独特结构和对称性的物质,原子排列在晶体的有序排列和非晶体的无序排列之间拓扑密排相:将半径不同的原子搭配组合在空间的紧密堆垛形成的相,致密度超过等径原子的堆垛面心立方结构,体心立方结构,密排六方结构,置换固溶体: 溶质原子占据溶剂晶格中的结点位置而形成的固溶体称置换固溶体有序固溶体:无序固溶体,间隙固溶体和间隙化合物: 原子半径小于0.1nm的非金属元素,如H(0.046nm),N(0.071nm)、C(0.077nm)、B(0.097nm)、O(0.060nm)溶入到溶剂金属晶体点阵中的间隙中形成的固溶体间隙相与间隙化合物: 间隙化合物指由过渡族金属元素与碳、氮、氢、硼等原子半径较小的非金属元素形成的金属化合物。

材料科学基础名词解释

材料科学基础名词解释

材基名词解释:位错:是在晶体中某处有一列或若干列原子发生了有规律的错排现象,使长度达几百至几万原子间距、宽约几个原子间距范围内的原子离开其平衡位置,发生了有规律的错动。

(书)位错是晶格中的某处有一列或若干列原子发生了某些有规律的错排现象。

调质:习惯上将淬火和随后的高温回火相结合的热处理工艺成为调质处理合金:指两种或两种以上的金属,或金属与非金属,经熔炼或烧结,或用其他方法组合而成的具有金属特性的物质。

偏析:先结晶的的部分含高熔点组分较多,后结晶的部分含低熔点组分较多,在晶粒内部存在着浓度差别,这种在一个晶粒内部化学成分不均匀的现象称为晶内偏析,又称枝晶偏析。

过冷度:金属的理论结晶温度Tm与实际结晶温度Tn之差。

同素异构转变:具有多晶型性的金属,当温度或压强改变一定值时其结构会发生变化,从一种晶格转变为另一种晶格,(即原子排列方式发生变化)这叫同素异构转变,也叫多晶型性转变。

(PPT)当外部条件(如温度和压强)改变时,金属内部由一种晶体结构向另一种晶体结构的转变称为多晶型转变或同素异构转变。

(书)Ac3线:又称GS线,它是在冷却过程由奥氏体析出铁素体的开始线,或者说在加热过程中铁素体溶入奥氏体的终了线。

铁素体:碳溶于α-Fe中的间隙固溶体。

奥氏体:碳溶于γ-Fe中的间隙固溶体。

滑移变形:在切应力作用下,晶体的一部分相对于另一部分沿某些晶面和晶向发生滑动,而晶体结构未发生变化的塑性变形。

加工硬化:随着变形程度的增加,金属的强度、硬度显著提高,而塑性、韧性则显著下降,这种现象称为加工硬化或冷作强化固溶强化:随溶质含量增加,固溶体的强度、硬度提高,塑性、韧性下降,称固溶强化细晶强化:金属的晶粒越细,其强度和硬度越高。

(PPT)用细化晶粒来提高材料强度的方法。

(书)弥散强化:当在晶内呈颗粒状弥散分布时,第二相颗粒越细,分布越均匀,合金的强度、硬度越高,塑性、韧性略有下降,这种强化方法称弥散强化或沉淀强化再结晶:冷变形金属加热至较高温度时,将形成一些位向与变形晶粒不同的内部缺陷较少的无畸变等轴小晶粒,这些小晶粒不断向周围的变形金属中扩展长大,至到金属的冷变形组织完全被等轴的新晶粒所取代,这一过程就是金属的再结晶。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
50、应力球张量-也称静水应力状态,不能使物体产生形状变化,而只能产生体积变化,即不能使物体产生塑性变形。
51、加工硬化-随着变形程度的增加,(位错运动所受到的阻力增大),金属的强度和硬度增加,而塑性和韧性下降,即产生了加工硬化。
52、应变速率-单位时间内的应变,又称变形速度。
53、滑移-晶体在外力的作用下,其一部分沿着一定的晶面和该晶面上的一定晶向,相对于另一部分产生的相对移动。
45 塑性-指金属材料在外力作用下发生变形而不破坏其完整性的能力。
46热塑性变形-金属在再结晶温度以上的变形。
47、张量-由若干个当量坐标系改变时满足转换关系的所有分量的集合。
48 塑性-指固体材料在外力作用下发生永久变形而不被破坏其完整性的能力。
49 简单加载-是指在加载过程中各应力分量按同一比例增加,应力主轴方向固定不变。
11、粗糙界面和光滑界面-从原子尺度上来看,固-液界面固相一侧的点阵位置只有50%左右被固相原子所占据,从而形成一个坑坑洼洼凹凸不平的界面层。粗糙界面在有些文献中也称为“非小晶面”。
光滑界面—从原子尺度上来看,固-液界面固相一侧的点阵位置几乎全部为固相原子占满,只留下少数空位或台阶,从而形成整体上平整光滑的界面结构。也称为“小晶面”或“小平面”。
25沉淀脱氧-是指溶解于液态金属中的脱氧剂直接和熔池中的[FeO]起作用,使其转化为不溶于液态金属的氧化物,并脱溶沉淀转入熔渣中的一种脱氧方式。
26真空脱氧-钢液的熔化过程是在真空条件下进行,利用抽真空降低气相中CO分压来加强钢液中碳的脱氧能力。
27 偏析-合金在凝固过程中发生的化学成分不均匀现象。
33焊接-通过加热或加压,或者两者并用,用或不用填充材料,使两个分离的工件(同种或异种金属或非金属,也可以是金属与非金属)产生原子(分子)间结合而形成永久性连接的工艺工程。
34热影响区-焊接过程中,焊缝周围未熔化的母材在加热和冷却过程中,发生显微组织和力学性能变化的区域。该区主要发生物理冶金过程。
稳定温度场-不随时间而变的温度场(即温度只是坐标的函数):
8 温度梯度—是指温度随距离的变化率。或沿等温面或等温线某法线方向的温度变化率。
9 溶质平衡分配系数K0—特定温度T*下固相合金成分浓度CS*与液相合金成分CL*达到平衡时的比值。
10 均质形核和异质形核-均质形核(Homogeneous nucleation) :形核前液相金属或合金中无外来固相质点而从液相自身发生形核的过程,亦称“自发形核” 。非均质形核(Hetergeneous nucleation) :依靠外来质点或型壁界面提供的衬底进行生核过程,亦称“异质形核”。
14 枝晶间距-指相邻同次枝晶间的垂直距离。它是树枝晶组织细化程度的表征。
15 共生生长-是指在共晶合金结晶时,后析出的相依附于领先相表面而析出,进而形成相互交叠的双相晶核且具有共同的生长界面,依靠溶质原子在界面前沿两相间的横向扩散,互相不断地为相邻的另一相提供生长所需的组元,彼此偶合的共同向前生长。
43焊接变形-在焊接过程中,由于不均匀加热和冷却收缩,势必使构件产生局部鼓曲、 歪曲、弯曲或扭转等。焊接变形的基本形式有纵、横向收缩,角变形,弯曲变形,扭曲变形和波浪形等。实际的焊接变形常常是几种变形的组合。
44 裂纹-在应力与致脆因素的共同作用下,使材料的原子结合遭到破坏,在形成新界面时产生的缝隙称为裂纹。
1 表面张力—表面上平行于表面切线方向且各方向大小相等的张力。表面张力是由于物体在表面上的质点受力不均匀所致。
2 粘度-表面上平行于表面切线方向且各方向大小相等的张力。或作用于液体表面的应力τ大小与垂直于该平面方向上的速度梯度dvx/dvy的比例系数。
3 表面自由能(表面能)-为产生新的单位面积表面时系统自由能的增量。
30、冷裂纹和热裂纹-金属凝固冷却至室温附近发生的开裂现象称之为冷裂纹; 在固相线附近发生的裂纹称之为热裂纹。
31 溶质再分配-由于合金凝固过程中随温度的变化,固液界面前沿溶质富集并形成浓度梯度。所以,溶质必须在液、固两相重新分布,即所谓的“溶质再分配”。
32 热流密度-单位时间内通过单位面积的热量。
35焊接线能量E-单位长度上的焊接热输入量,E = IU/v
36 焊接的合金化-把需要的合金元素加入到金属中去的过程。合金化的目的:首先,补偿在高温下金属由于蒸发或氧化造成的损失;其次是为了消除缺陷,改善焊缝金属的组织与性能,或为了获得具有特殊性能的堆焊金属。
37 合金化的过渡系数-表征合金元素利用率高低的参数。η等于它在熔敷金属中的实际含量与它的原始含量之比。或者单位长度焊条中药皮重量与焊芯重量之比。
17 联生结晶-熔池边界未熔母材晶粒表面,非自发形核就依附在这个表面,在较小的过冷度下以柱状晶的形态向焊缝中心生长,称为联生结晶(也称外延生长)。
18 择优生长-那些主干取向与热流方向平行的枝晶,较之取向不利的相邻枝晶生长得更为迅速。它们优先向内伸展并抑制相邻枝晶的生长。在逐渐淘汰趋向不利的晶体过程中发展成柱状晶组织。这种互相竞争淘汰的晶体生长过程称为晶体的择优生长。
19 快速凝固-是指采用急冷技术或深过冷技术获得很高的凝固前沿推进速率的凝固过程。
20 气体的溶解度 —在一定温度和压力条件下,气体溶入金属的饱和浓度。影响溶解度的主要因素是温度及压力、气体的种类和合金的成分。
21 熔渣的碱度-是熔渣中的碱性氧化物与酸性氧化物浓度的比值(分子理论)或液态熔渣中自由氧离子的浓度(或氧离子的活度)(离子理论)。
12 “成分过冷”与“热过冷”-液态合金在凝固过程中溶质再分配引起固-液界面前沿的溶质富集,导致界面前沿熔体液相线的改变而可能产生所谓的“成分过冷”。这种仅由熔体存在的负温度梯度所造成的过冷,习惯上称为“热过冷” 。
13 内生生长和外生生长-晶体自型壁生核,然后由外向内单向延伸的生长方式,称为“外生生长”。 平面生长、胞状生长和柱状枝晶生长皆属于外生生长。等轴枝晶在熔体内部自由生长的方式则称为“内生生长”。
15离异生长-两相的析出在时间上和空间上都是彼此分离的,因而形成的组织没有共生共晶的特征。这种非共生生长的共晶结晶方式称为离异生长,所形成的组织称离异共晶。
16 孕育与变质-孕育主要是影响生核过程和促进晶粒游离以细化晶粒;而变质则是改变晶体的生长机理,从而影响晶体形貌。变质在改变共晶合金的非金属相的结晶形貌上有着重要的应用,而在等轴晶组织的获得和细化中采用的则是孕育方法。
4 液态金属的充型能力-液态金属充满铸型型腔,获得形状完整、轮廓清晰的铸件的能力,即液态金属充填铸型的能力。
5 液态金属的流动性-是液态金属的工艺性能之一,与金属的成分、温度、杂质含量及其物理性质有关。
6 铸型的蓄热系数-表示铸型从液态金属吸取并储存在本身中热量的能力。
7 不稳定温度场-温度场不仅在空间上变化,并且也随时间变化的温度场
54、主切应力平面-一般把切应力有极值的平面称为主切应力平面
55、平面应变状态-如果物体内所有质点都只在同一个坐标平面内发生变形,而在该平面的法线方向没有变形,这种变形称为平面变形。
56、附加应力-由于变形体各部分之间的不均匀变形受到整体性的限制,在各部分之间必将产生相互平衡的应力,该应力叫附加应力。
28微观和宏观偏析-微观偏析是指微小范围(约一个晶粒范围)内的化学成分不均匀现象,有晶界和晶内偏析之分。宏观偏析是指宏观尺寸上的偏析,包括:正常偏析、逆偏析、V形偏析和逆V形偏析、带状偏析与层状偏析和重力偏析。
29 气孔-因气体分子聚集而产生的孔洞。气孔有析出性气孔、反应性气孔和侵入性气孔之分。
22、长渣和短渣-熔渣的粘度随温度增高而急剧下降(快速)变化的渣称之为短渣; 反之为长渣。
23 熔渣的氧化和还原能力-是指熔渣向液态金属中传入氧(或从液态金属中导出氧)的能力。
24 扩散脱氧-是在液态金属与熔渣界面上进行的,利用(FeO)与[FeO]能够互相转移, 趋于平衡时符合分配定律的机理进行脱氧。
38 熔合比-焊缝中局部熔化母材所占比例
39内力-在外力作用下,变形体内各质点就会产生相互作用的力。
40内应力—没有外力的作用条件下,平衡物体内部的应力。
41焊接瞬时应力—在焊接加Biblioteka 冷却过程中某一瞬时中存在的应力。
42焊接残余应力—焊件完全冷却、温度均匀化后残留于焊件中的应力。
相关文档
最新文档