10.5分式方程(3)

合集下载

[K12学习]八年级数学下册 10.5 分式方程 列分式方程解应用题的关键是什么素材 (新版)苏科版

[K12学习]八年级数学下册 10.5 分式方程 列分式方程解应用题的关键是什么素材 (新版)苏科版

K12学习教育资源
K12学习教育资源列分式方程解应用题的关键是什么?
难易度:★★★★★
关键词:分式应用题
答案:
解分式方程应用题,要读懂题意,通过题目找出等量关系之后,列出方程进行求解就可以了.
【举一反三】
典例:某班组织学生参观科技馆,科技馆为支持学校开展的科普活动,决定按最低标准对学生进行一次性收费,全班共计200元,开展活动时有10名学生因故未能参加,结果平均每人比原计划多支出1元钱,问该班原计划有多少学生参加?
思路导引:一般来讲,解决本题要设原计划有x名学生参加活动,则=1,
解得x1=50,x2=-40.经检验,x=50是原方程的根,x=-40不合题意,舍去.答:原计划有50人参加活动.
标准答案:50.。

10.5《分式方程(3)》参考教案

10.5《分式方程(3)》参考教案
(1) = (2) + =2
三、例题探索:
例1、为迎接市中学生田径运动会,计划由某校八年级(1)班的3个小组制作240面彩旗,后因一个小组另有任务,改由另外两个小组完成制作彩旗的任务。这样,这两个小组的每个同学就要比原计划多做4面。如果这3个小组的人数相等,那么每个小组有多少名学生?
解:设每个小组有学生x名.
根据题意,得x=10是所列方程的解.
答:每个小组有学生10名.
例2、甲、乙两公司各为“见义勇为基金会”捐款30000元,已知乙公司比甲公司人均多捐款20元,且甲公司的人数比乙公司的人数多20%。问甲、乙两公司各有多少人?
解:设乙公司有x人,则甲公司有(1+20%)x人.
根据题意,得
解这个方程,得
x=1.6
经检验,x=10是所列方程的解.
但按此价格,他们都买了7.5本笔记本,不符合实际意义.
答:小明和小丽不可能买到相同数量的笔记本.
总结:用分式方程解实际问题的一般步骤:
(1)审题
(2)设未知数
(3)根据题意列方程
(4)解方程
(5)检验
(6)答
四、课堂练习:
课本P118页练习1、2
教学难点
如何结合实际分析问题,列出分式方程。分析过程,得到等量关系
教具准备
小黑板、课件等
教师教学过程
教师复备内容
一、课前预习与导学:
1、列方程(组)解应用题的一般步骤是什么?
(1)根据题意设末知数;
(2)分析题意寻找等量关系,列方程;
(3)解所列方程;
(4)检验所列方程的解是否符合题意;
(5)写出完整的答案。
课题
10.5分式方程(3)
复备人
复备时间

八年级数学下册第10章分式10.5分式方程分式方程及其解法初中八年级下册数学

八年级数学下册第10章分式10.5分式方程分式方程及其解法初中八年级下册数学
例 2 教材例 1 变式题 解方程: 1-x x x-2=2x-4-1.
第六页,共十六页。
10.5
1课时 第
(kèshí)
分式方程及其解法
例1 教材补充例题 下列方程中哪些是分式方程?哪些是整式方
程?为什么? 90 60 x-1 y+2 (1)x=x-6; (2)2-3=4; 1 2 1x (3)x-1=x2-1; (4)π+2=1.
解:(1)(3)是分式方程,因为它们的分母中含有未知数.(2)(4)是整式方程,因为
它们的分母中不含有未知数.
第四页,共十六页。
10.5 第1课时(kèshí) 分式方程及其解法
【归纳总结】分式方程的三个重要特征: (1)是方程; (2)含有分母; (3)分母中含有未知数.
第五页,共十六页。
10.5 第1课时(kèshí) 分式方程及其解法
1.经过观察、讨论、发现、归纳,理解分式方程的概念,能 准确识别分式方程.
总结(zǒngjié)反思 2.经历探索分式方程解法的过程,会解可化为一元一次方程
的分式方程.
分母中含有____________的方程叫做分式方程.
例1 教材补充例题 下列方程中哪些是分式方程?哪些是整式方
程?为什么?
(1)9x0=x6-06; (2)x-21-3=y+42; 1 2 1x (3)x-1=x2-1; (4)π+2=1.
(1)以上解题过程中从哪一步开始出现错误?答:________; (2) 这 一 步 共 有 ________ 处 错 误 , 它 们 是 ____________________________; (3)请给出正确的解答.
第十二页,共十六页。
10.5
1课时 第
(kèshí)

八年级数学下册 10.5 分式方程 验根方法简介素材 苏科版(2021学年)

八年级数学下册 10.5 分式方程 验根方法简介素材 苏科版(2021学年)

八年级数学下册10.5分式方程验根方法简介素材(新版)苏科版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学下册10.5 分式方程验根方法简介素材(新版)苏科版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学下册10.5分式方程验根方法简介素材(新版)苏科版的全部内容。

验根方法简介解分式方程的必不可少的步骤是验根,验根方法较多。

一、代入法【例1】解方程11112-=-x x。

【思考与分析】按照解分式方程的一般步骤解此方程,先同乘以(x2-1),去分母化成整式方程求解再验根.将解得的根代入原方程的左、右两边,若左、右两边相等,则此根为原方程的根,否则此根为原方程的增根.解:原方程变形为:11)1)(1(1-=-+x x x . 方程两边同乘以(x-1)(x+1),得1=x +1解得x=0检验:当x=0时,左边=—1,右边=-1左边=右边 ∴x=0是原方程的根.反思: 此验根方法不仅能检验出原方程的增根,而且可以检验出求得的根是否正确.二、比较法【例2】解方程211=-++xx x x 。

【思考与分析】分母不同要按照解分式方程的一般步骤求解,在验根时可以转换一种思路,令方程中各分母等于零,求出方程的所有增根,与解得的根相比较。

相同时,为原方程的增根,否则为原方程的根.解:方程两边同乘以x(x+1)得:x2+(x —1)·(x+1)=2x (x+1) 整理得:2x=-1 解得:x=-21,检验:令x(x+1)=0,得x=—1或x=0,所以原方程的增根为x =-1或x=0。

∴x =-21不是原方程的增根。

初中七年级数学教案 可以化成一元一次方程的分式方程-“江南联赛”一等奖

初中七年级数学教案   可以化成一元一次方程的分式方程-“江南联赛”一等奖

10.5分式方程教学设计【教学目标】1.会用分式方程表示实际问题中的等量关系,体会分式方程的模型作用;2.理解分式方程的概念;3.能判断出分式方程,会解可化为一元一次方程的分式方程.【教学重点、难点】会解可化为一元一次方程的分式方程.【教学过程】1.甲、乙两人加工同一种服装,乙每天比甲多加工一件,乙加工服装24件所用的时间与甲加工服装20件所用的时间相同.怎样用方程来描述其中数量之间的相等关系?2.一个两位数的个位数字是4,如果把个位数字与十位数字对调,那么所得的两位数与原两位数的比值是7.怎样用方程来描述其中数量之间的相等关系? 4 3.某校学生到离学校15km处植树,部分学生骑自行车出发40min后,其余学生乘汽车出发,汽车速度是自行车速度的3倍,全体学生同时到达.怎样用方程来描述其中数量之间的相等关系?探索规律,揭示新知活动一问题1 比较前面所学的一元一次方程,上面所得方程与一元一次方程有什么区别?分式方程的概念:含有未知数的方程,叫做分式方程.问题2 下列方程中,哪些是分式方程,为什么?活动二解方程:问题1 如何把方程中的分母去掉?问题2 如何判断x=5是否是原分式方程的解?尝试反馈,领悟新知例1 解方程:例2 某校甲、乙两组同学同时出发去距离学校4km的植物园参观.甲组步行,乙组骑自行车,结果乙组比甲组早到20min.已知骑自行车的速度是步行速度的2倍.求甲、乙两组的速度.课堂练习1、小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x千米/小时,根据题意,可得方程.2、一个两位数,个位数字比十位数字大1,个位、十位数字的和与这个两位数的比值是位数.达标检测:1. 解下列分式方程:拓展提高:解方程:P1102,对比此解法与解一元一次方程的共同点和不同点?产生增根的原因是什么?。

10.5 可化为一元一次方程的分式方程及其应用 同步练习(含答案)

10.5 可化为一元一次方程的分式方程及其应用 同步练习(含答案)

10.5 可化为一元一次方程的分式方程及其应用基础能力训练◆列方程解应用题1.某食堂有粮m公斤,原计划每天用粮a公斤,现在每天节约用粮b 公斤,则可以比原计划多用的天数是______.2.A、B两地相距72 km,甲、乙两辆汽车同时从A地出发去B地,甲车比乙车早到24分钟,已知甲车比乙车每小时多走15 km,求两车的速度.在这个问题中,如果设甲车的速度为x km/h,那么乙车速度为_____km/h,甲车走完全程所用时间为_____h,乙车走完全程所用时间为_____h根据题意列方程为____________________.3.某人上午8 h从A地出发,下午2 h到达B地,每小时行走4 km(1)求A地与B地相距多少千米?(2)若要求这人中午12 h到达B地,那么他每小时应行走多少千米?(3)若每小时行走8 km,从A地到B地需几小时?(4)当v(或t)为定值时,s和t(或v)有什么关系?当s(s≠0)为定值时,v和t有什么关系?4.甲加工180个零件所用的时间,乙可以加工240个零件,已知甲每小时比乙少加工5个零件,求两人每小时各加工的零件个数.5.轮船顺流航行66千米所需时间和逆流航行48千米所需时间相同,已知水流速度是每小时3千米,求轮船在静水中的速度.◆公式的变形 6.121--=t s s U 求t. 7.])1(2[211d n a n M -+=,求d.综合创新训练◆综合运用8.从火车上下来的两个旅客,他们沿着一个方向到同一个地点去,第一个旅客一半路程以速度a 行走,另一半路程以速度b 行走,第二个旅客一半时间以速度a行走,另一半时间以速度b行走,车站到目的地的距离为s.(1)试表示两个旅客从火车站到目的地所需时间t1、t2.(2)哪个旅客先到达目的地?◆实际应用9.有人沿环城无轨电车路线行走,每12分钟有一辆电车从后面超过他,每隔4分钟有一辆电车迎面向他驶来.若此人速度不变,不计电车停车时间,问每隔多少分钟从电车车站发出一辆车?10.一艘小船由A港到B港顺流需6小时,由B港到A港逆流需8小时.一天,小船从早晨6点由A港出发顺流到B港时,发现一救生圈在途中掉落水中,立即返回,1小时后找到救生圈.问:(1)若小船按水流速度由A港漂流到B港需要多少小时?(2)救生圈是何时掉入水中的?参考答案1答案:am b a m -- 2答案:)15(-x x 72 1572-x 6024721572=--x x 3答案:解析:(1)4×6=24(km);(2)24÷4=6(km /h);(3)24÷8=3(h);(4)当v(或t)为定值时,s 和t(或v)成正比例关系;当s(s≠0)为定值时,v 和t 成反比例关系.4答案:解析:设甲每小时加工x 个零件,则乙每小时加工(x+5)个零件.由题意得5240180+=x x , 解得x =15.经检验x =15是所列方程的根.x+5=20.答:甲每小时加工15个零件,乙每小时加工20个零件. 5答案:解析:设轮船在静水中的速度为x km /h. 由题意得348366-=+x x ,解得x =19. 经检验x =19是原方程的根.∴轮船在静水中的速度为19 km /h.6答案:UU s s t +-=21. 7答案:nn n a M d --=2122. 8答案:解析:(1)abbs as b sa s t 2221+=+=;b a s t +=22. (2))(2)(22221b a ab b a s b a s ab bs as t t +-=+-+=-. ∵a ≠b ∴第二个旅客先到达目的地.9答案:解析:设x 分钟从电车起点发出一辆电车,电车速度为v 1米/分,行人速度为v 2米/分,则相邻两车之间相距xv 1米,4分钟人车相向而行完xv 1米,12分钟车比人多行xv 1米.则有⎩⎨⎧-=-=⇒⎩⎨⎧=-=+1212121121)12(12)4(4121244v x v v x v xv v v xv v v ∴xx --=124124.解得x =6. 答:每隔6分钟从电车起点发出一辆车.10答案:解析:(1)设船由A 港漂流到B 港需要x 小时.由题意得: xx 181161+=-解得x=48. 经检验x =48是原方程的根.答:船由A 港漂流到B 港需要48小时.(2)设救生圈x 点落人水中.由题意得(6+6-x)·1)48181()48161(⨯+=-解得x =11.答:救生圈11点落入水中.。

初中数学苏教版八年级下册《10.5 分式方程》PPT课件(示范文本)

初中数学苏教版八年级下册《10.5  分式方程》PPT课件(示范文本)
边= 右边=0, 左边=右边.
解分式方程:
试一试
1.在方程的两边都乘以最简公分母,约去分母,化成整式方程. 2.解这个整式方程. 3.检验:把整式方程的解代入原分式方程,如果左边=右边,则整式方程的解是原分式方程的解; 4、写出原方程的解.
情境设置
所列方程的分母中含有未知数.
分母中含有未知数的方程叫做分式方程.
问题中所列的各方程与一元一次方程(如:2x-1=0、 )有没有区别?若有,其本质区别是什么?
下列方程中,哪些是分式方程?
(1)
(2)
(3)
(4)
去分母
去分母
两边同乘分母的最小公倍数 6
方程两边同乘最简公分母 2x
解之,得x=15
经检验, x=15是所列方程的解.
答:骑自行车的学生的速度为15 km/h.
一化二解三检验
归纳 解分式方程的一般步骤:
解下列方程:
(1)
(2)
(5)
(3)
(4)
(6)
例2:我校学生到离学校15km处植树,部分学生骑自行车出发40min后,其余学生乘汽车出发,汽车速度是自行车速度的3倍,全体学生同时到达.求骑自行车的学生的速度.
解:设自行车的速度为xkm/h,可得方程
等式的基本性质:等式两边都乘或除以同一个不等于0的数,所得结果仍是等式。
1.如何解一元一次方程
分式方程
整式方程
去分母
解分式方程的基本思想方法是什么?
转化
同乘各分式的最简公分母
注意:解分式方程一定要检验.
例1 解方程:
(1)
解:方程两边同乘x(x+4),得
3x-(x+4)=0
解得 x=2

八年级数学下册10.5分式方程验根方法简介素材

八年级数学下册10.5分式方程验根方法简介素材

验根方法简介解分式方程的必不可少的步骤是验根,验根方法较多。

一、代入法【例1】解方程11112-=-x x . 【思考与分析】按照解分式方程的一般步骤解此方程,先同乘以(x 2-1),去分母化成整式方程求解再验根.将解得的根代入原方程的左、右两边,若左、右两边相等,则此根为原方程的根,否则此根为原方程的增根.解:原方程变形为:11)1)(1(1-=-+x x x . 方程两边同乘以(x-1)(x+1),得1=x+1解得x=0检验:当x=0时,左边=-1,右边=-1左边=右边 ∴x=0是原方程的根.反思: 此验根方法不仅能检验出原方程的增根,而且可以检验出求得的根是否正确.二、比较法【例2】解方程211=-++xx x x . 【思考与分析】分母不同要按照解分式方程的一般步骤求解,在验根时可以转换一种思路,令方程中各分母等于零,求出方程的所有增根,与解得的根相比较.相同时,为原方程的增根,否则为原方程的根.解:方程两边同乘以x (x +1)得:x 2+(x-1)·(x+1)=2x (x+1)整理得:2x=-1 解得:x=-21, 检验:令x (x+1)=0,得x=-1或x=0,所以原方程的增根为x =-1或x=0.∴x =-21不是原方程的增根. ∴原方程的根为x =-21. 反思:此种验根方法,适合求得的根比较复杂,到初三后,此验根方法将显露出更大的优势.三、公分母值判别法【例3】解分式方程:13132=-+--xx x 【思考与分析】将分式方程两边同乘以(x-3)化成整式方程后再求解.把解得的根代入同乘的最简公分母中,进行判断.使公分母为零的根为原方程的增根,否则为原方程的根. 解:原方程变形为13132=-+--xx x 方程两边同乘以(x-3)得2-x -1=x -3,即-2x =-4.解得x =2.检验:把x =2代入(x-3)得:x-3≠0.∴ x =2是原方程的根.反思:此验根方法比较简单,因此被广泛的应用.四、条件约定法【例4】解方程求x ,)1(1≠=+-b b ax a . 【思考与分析】我们观察到此类方程中含有字母系数,可以把字母系数当成是数字按照求解一般方程的步骤进行,可以省略验根的步骤.解:方程两边同乘以x-a 得:a+b (x-a )=x-a ,a+bx-ab=x-a解得x =12--b a ab . 反思:解字母系数分式方程的验根需要分类讨论,较为复杂,所以现行教材约定此类分式方程毋须验根.。

初中数学八年级下册《10.5 分式方程》PPT课件 (10)

初中数学八年级下册《10.5 分式方程》PPT课件 (10)
逆水速度=______静__水-_速__度____ 水速
例2. 某市为了构建城市立体道路网络,决定修
建一条轻轨铁路,为使工程提前半年完成,需 将工作效率提高15﹪。原计划完成这项工作需 要多少个月?
例1. 已知轮船在静水中每小时行20千米,如果 此船在某江中顺流航行72千米所用的时间与逆 流航行48千米所用的时间相同,那么此江水每 小时的流速是多少千米?
学以致用
1.水池装有两个进水管,单独开甲管需a小时注
满空池,单独开乙管需b小时注满空池,若同时打
开两管,a 那1 b么注满a空abb池的时间a1 是b1 (
1 )小时
ab
A、
B、
C、
D、
2.A地在河的上游,B地在河的下游,若船从A地
开往B地的速度为V1,从B地返回A地的B速度为V2,则
A、B两地间往返一次的平均速度为____ V1 V2
2
2V1V2 V1 V2
V1 V2 2V1V2
A、
B、 C、
D、无法计算

布置作业:
课本118页 习题10.5 2、3、4三大题,应用题要求抄题目
10.5 分式方程应用题二
复习回顾:
列分式方程解应用题的一般步骤: 1.审
2.设 3.列 4.解
5.验 6.答
例1. 已知轮船在静水中每小时行20千米, 如 果 此 船 在 某 江 中 顺 流 航 行 72 千 米 所 用 的 时 间 与 逆 流 航 行 48 千 米 所 用 的 时 间 相 同,那么此江水每小时的流速是多少千 米顺? 水速度=______静__水+_速_度_____ 水速
例2. 某市为了构建城市立体道路网络,决定修 建一条轻轨铁路,为使工程提前半年完成,需 将工作效率提高15﹪。原计划完成这项工作需 要多少个月?

苏科版八年级下册数学:10.5 分式方程

苏科版八年级下册数学:10.5 分式方程

以上做法对吗?
数学文化
英国数学家:尼古拉斯•桑德森(1682---1739) 是当时研究分式方程解法的数学家, 并给出了一个分式方程的解法。
相关数学史:
尼古拉斯•桑德森 他一生下来就因染上天花双目失明。 然而他却精通法语、希腊语和拉丁语,又研究数学。 他申请剑桥大学被拒,终身也未上过大学, 但桑德森最终在剑桥大学当上了卢卡斯教授 —— 牛顿本人就曾任此职位, 桑德森发明了一种进行算术和代数计算 的“盲人计算器”,做出很多方面的 数学研究。
达标测试
4.解下列方程:
(1)
5 x-4=4 x+10 x-2 3 x-6
-1
X=2为增根,方程无解
(2)
3= 6 x+1 x2-1
X=3
思维拓展
1.解方程 x 2 1
x3
x3
2.解关于x的方程
x 2 k x3 x3
X-2(x-3)=1 X-2x+6=1 -x=-5 X=5
X-2(x-3)=k X-2x+6=k -x=k-6 X=6-k
苏科版数学教材八年级下
10.5 分式方程(2)
知识回顾
1、什么样的方程叫做分式方程?
2、怎样解分式方程?
3.解方程
(1) 3 1 0 x 1 x 1
(2)
1 x-2

1-x 2-x
-3
合作交流
1.试比较(1)与(2)两个方程,从解题步骤上 来看,它们有差异吗?
2.那你能说说为什么用同样的方法解分式方程, 一个有解一个无解?方程(2)得x=2为什么不是原方 程的解?
3.你怎样用较简捷的方法检验求出的根是 否为增根吗?
分分式式程方方 程
整式方程 求出根

沪教版(上海)初中数学七年级第一学期10.5分式的复习课件

沪教版(上海)初中数学七年级第一学期10.5分式的复习课件

等量关系:
小汽车的速度=公共汽车的速度×3
两辆车一同 行驶的时间
M
两辆车一同 行驶的时间
M
小汽车没有出发 时,公交车单独 行驶的3个小时
B 公交车行驶的总时间 N
公交车到站后, 小汽车单独行 驶20分钟
A
小汽车行驶的总时间
N
公交车行驶的总时间-3=小汽车行驶的总时间-
1 3
A、B两地的距离是80千米,一辆公共汽车从A地驶出3小时后, 一辆小汽车也从A地出发,它的速度是公共汽车速度的3倍,已 知小汽车比公共汽车迟20分钟到达B地,求两车的速度
原方程无解
解分式方程的一般步骤:
1、去分母,两边同乘最简公分母。
转化为
分式方程
一元一次方程
2、解一元一次方程。 3、检验 产生增根 4、结论
若分式方程 x 2 K 会产生增根,试求K的值
x3 3x
说明:x=3
第一步:审题发现x=3
第二步:将分式方程化成 整式方程
第三步:把x=3代入求值
例题1:
下列式子是否是分式?
(1)
3x
×
(2)
2x x 1
(3) x 1 2x
(4) x2 y 2 × (5)(x 1)(x 1)
2
x 1
分式的意义
分式的基本性质
分式的运算
分式方程及应用
x
1
1
(1
x x)(1
x)
4x x3
2 x
异分母分式相加减,要通分
x
1
1
(1
x x)(1
x)
4x x3
提速后的时间=现在的时间-55
60
550 550 - 55

10.5 分式方程(应用题篇)解答题训练(二)2020-2021学年苏科版八年级下册数学

10.5 分式方程(应用题篇)解答题训练(二)2020-2021学年苏科版八年级下册数学

八年级下册数学10.5:分式方程(应用题篇)解答题训练(二)1.某地有甲、乙两家口罩厂,已知甲厂每天能生产口罩的数量是乙厂每天胎生产口罩数量的1.5倍,并且乙厂单独完成60万只口罩生产的时间比甲厂单独完成同样数量的口罩生产的时间要多用5天.(1)将60万只用科学记数法表示为只;(2)求甲、乙两厂每天分别可以生产多少万只口罩?2.为响应“地球熄灯一小时”的号召,某饭店在当天晚上推出烛光晚餐活动.计划用2000元购进一定数量的蜡烛,因为是批量购买,每支蜡烛的价格比原价低20%,结果用相同的费用比原计划多购进25支,则每支蜡烛的原价为多少?3.在今年的3月12日第43个植树节期间,某校组织师生开展了植树活动.在活动之前,学校决定购买甲、乙两种树苗.已知用800元购买甲种树苗的棵数与用680元购买乙种树苗的棵数相同,乙种树苗比甲种树苗每棵少6元.(1)求甲种树苗每棵多少元;(2)若准备用7600元购买甲、乙两种树苗共200棵,则至少要购买乙种树苗多少棵?4.甲、乙两个施工队共同完成某区域绿化改造工程,乙队先单独做3天后,再山两队合作7天完成全部工程.已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的2倍,求甲、乙两个施工队单独完成此项工程各需多少天?5.为打赢“扶贫攻坚战”,某单位计划选购甲、乙两种果树苗送给贫困户,已知甲种果树苗单价比乙种果树苗的单价高10元,若用500元单独购买甲种果树苗与300元单独购买乙种果树苗的数量相同.(1)请问甲,乙两种果树苗的单价各为多少元?(2)如果该单位计划购买甲,乙两种水果树苗共5500棵,总费用不超过92500元,则甲种果树苗最多可以购买多少棵?6.在新冠肺炎防疫工作中,某公司购买了A、B两种不同型号的口罩,已知A型口罩的单价比B型口罩的单价多1.2元,且用7000元购买A型口罩的数量与用4200元购买B 型口罩的数量相同.(1)A、B两种型号口罩的单价各是多少元?(2)根据疫情发展情况,该公司需要增加购买一些口罩,增加购买B型口罩数量是A 型口罩数量的2倍,若总费用不超过3960元,则增加购买A型口罩的数量最多是多少个?7.快递公司为提高快递分拣的速度,决定购买机器人来代替人工分拣.已知购买甲型机器人1台,乙型机器人2台,共需14万元;购买甲型机器人2台,乙型机器人3台,共需24万元;两种机器人的单价与每小时分拣快递的数量如下表:甲型机器人乙型机器人购买单价(万元/台)m n每小时拣快递数量(件)1200 1000(1)求购买甲、乙两种型号的机器人所需的单价m和n分别为多少万元/台?(2)若该公司计划购买这两种型号的机器人共8台,购买总费用不超过41万元,并且使这8台机器人每小时分拣快递件数总和不少于8300件,则该公司有几种购买方案?哪种方案费用最低,最低费用是多少万元?8.列方程或不等式解应用题:新冠肺炎疫情防控期间,学校为做好预防性消毒工作,开学初购进A、B两种消毒液,其中A消毒液的单价比B消毒液的单价多40元,用3200元购买B消毒液的数量是用2400元购买A消毒液数量的2倍.(1)求两种消毒液的单价;(2)学校准备用不多于6800元的资金购买A、B两种消毒液共70桶,问最多购买A 消毒液多少桶?9.某商店第一次用600元购进某种型号的水笔若干支,第二次又用600元购进该款水笔,但每支水笔的进价比第一次贵1元,所以购进数量比第一次少了30支.问第一次每支水笔的进价为多少元.10.广州某公交线路日均运送乘客总量为15600人次,实施5G快速公交智能调度后,每趟车平均运送乘客量比智能调度前增加了20%.若日均运送乘客总量保持不变,则每日发车数量比智能调度前减少26趟.求实施智能调度前每趟车平均运送乘客量为多少人次.11.某中学九年级学生去距学校10km的博物馆参观,一部分学生骑自行车先走,过了20min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.12.某校九年级两个班在“慈善一日捐”活动中各捐款1800元.已知2班比1班人均捐款多4元,2班的人数比1班的人数少5人,请你根据上述信息提出一个用分式方程解决的问题,并写出解题过程.13.为了加强疫情防控,某学校购进了部分N95口罩和一次性医用口罩,已知购买N95口罩共花费2000元,购买一次性医用口罩共花费1000元,购买一次性医用口罩数量是购买N95口罩数量的2.5倍,且购买一个N95口罩比购买一个一次性医用口罩多花4元.(1)求购买一个N95口罩、一个一次性医用口罩各需多少元?(2)该单位决定再次购买N95口罩和一次性医用口罩共3000个,恰逢该商场对两种口罩的售价进行调整,N95口罩售价比第一次购买时降低了20%,一次性医用口罩售价比第一次购买时降低了50%,如果此次购买N95口罩和一次性医用口罩的总费用不超过3250元,那么该单位至少可购买多少个一次性医所口罩?14.2020年12月以来,各地根据疫情防控工作需要,为尽快完成检测任务,我市组织甲、乙两支医疗队开展检测工作,甲队比乙队每小时多检测15人,甲队检测600人比乙队检测500人所用的时间少10%.问甲队每小时检测多少人?15.接种疫苗是阻断病毒传播的有效途经,为了保障人民群众的身体健康,我国目前正在开展新冠疫苗大规模接种工作,现有A、B两个社区疫苗接种点,已知A社区疫苗接种点每天接种的人数是B社区疫苗接种点每天接种人数的1.2倍,A社区疫苗接种点种完6000支疫苗的时间比B社区疫苗接种点种完6000支疫苗的时间少1天.(1)求A、B两个社区疫苗接种点每天各接种多少人?(2)一段时间后,A社区接种点每天前来接种的人数比(1)中的人数减少了10m人,而B社区疫苗接种点由于加大了宣传力度,每天前来接种的人数增加到了(1)中A社区疫苗接种点每天接种的人数,这样A社区接种点3m天与B社区接种点(m+20)天一共种完了69000支疫苗,求m的值.参考答案1.解:(1)60万=600000=6×105,故答案是:6×105;(2)设乙厂每天能生产口罩x万只,则甲厂每天能生产口罩1.5x万只,依题意,得:﹣=5,解得:x=4,经检验,x=4是原方程的解,且符合题意,∴1.5x=6.答:甲厂每天能生产口罩6万只,乙厂每天能生产口罩4万只.2.解:设每支蜡烛的原价为x元,依题意得:﹣=25,解得x=20.经检验x=20是所列方程的根,且符合题意.答:每支蜡烛的原价为20元.3.解:(1)设甲种树苗每棵x元,则乙种树苗每棵(x﹣6)元.依题意列方程得,,800x﹣4800=680x,解得x=40,经检验x=40是原方程的根.答:甲种树苗每棵40元.(2)设购买乙种树苗的y棵,则购买甲种树苗的(200﹣y)棵,根据题意,得34y+40(200﹣y)≤7600,解得,∵y为整数,∴y的最小值为67.答:至少要购买乙种树苗67棵.4.解:设甲施工队单独完成此项工程需x天,则乙施工队单独完成此项工程需2x天,根据题意得:+=1.解得:x=12.经检验,x=12是原方程的解,且符合实际问题的意义,2x=24.答:甲施工队单独完成此项工程需12天,则乙施工队单独完成此项工程需24天.5.解:(1)设甲种果树苗的单价为x元,则乙种果树苗的单价为(x﹣10)元,根据题意,得=.解得x=25,经检验x=25是原方程的解.则x﹣10=15.答:甲种果树苗的单价为25元,则乙种果树苗的单价为15元.(2)设甲种果树苗可以购买y棵,根据题意,得25y+15(5500﹣y)≤92500.解得y≤1000.答:甲种果树苗最多可以购买1000棵.6.解:(1)设B型口罩的单价为x元,则A型口罩的单价为(x+1.2)元,根据题意,得:.解方程,得:x=1.8.经检验:x=1.8是原方程的根,且符合题意.所以x+1.2=3.答:A型口罩的单价为3元,则B型口罩的单价为1.8元;(2)设增加购买A型口罩的数量是a个,则购买B型口罩的数量是2a个.根据题意,得:3a+1.8×2a≤3960.解不等式,得:m≤600.答:增加购买A型口罩的数量最多是600个.7.解:(1)根据题意得:,解得:,答:甲、乙两种型号的机器人每台价格分别是6万元、4万元.(2)设该公可购买甲型机器人a台,乙型机器人(8﹣a)台,根据题意得:,解得:≤a≤,∵a为正整数,∴a的取值为2,3,4,∴该公司有3种购买方案,分别是购买甲型机器人2台,乙型机器人6台,购买甲型机器人3台,乙型机器人5台,购买甲型机器人4台,乙型机器人4台,设该公司的购买费用为w万元,则w=6a+4(8﹣a)=2a+32,∵k=2>0,∴w随a的增大而增大,当a=2时,w最小,w最小=2×2+32=36(万元),∴该公司购买甲型机器人2台,乙型机器人6台这个方案费用最低,最低费用是36万元.8.解:(1)设B消毒液的单价为x元,则A消毒液的单价为(x+40)元,依题意得:=2×,解得:x=80,经检验,x=80是原方程的解,且符合题意,∴x+40=120.答:A消毒液的单价为120元,B消毒液的单价为80元.(2)设购进A消毒液m桶,则购进B消毒液(70﹣m)桶,依题意得:120m+80(70﹣m)≤6800,解得:m≤30.答:最多购买A消毒液30桶.9.解:设第一次每支水笔的进价为x元,则第二次每支水笔的进价为(x+1)元,依题意得:﹣=30,整理得:x2+x﹣20=0,解得:x1=4,x2=﹣5,经检验,x1=4,x2=﹣5是原方程的解,x1=4符合题意,x2=﹣5不符合题意,舍去.答:第一次每支水笔的进价为4元.10.解:设限行期间这路公交车每天运行x车次,+26=,解得:x=100,经检验x=100是原分式方程的根,答:实施智能调度前每趟车平均运送乘客量为100人次.11.解:设骑车学生的速度为xkm/h,由题意得,﹣=,解得:x=15.经检验:x=15是原方程的解.答:骑车学生的速度为15km/h.12.问题:两班各有多少人?解:设2班有x人,则1班有(x+5)人,依题意得:﹣=4,依题意得:x2+5x﹣2250=0,解得:x1=45,x2=﹣50.经检验,x1=45,x2=﹣50是原方程的解,x1=45符合题意,x2=﹣50不符合题意,舍去,∴x+5=50(人).答:1班有50人,2班有45人.13.解:(1)设购买一个一次性医用口罩需x元,则购买一个N95口罩需(x+4)元.列方程:×2.5=,解得:x=1.经检验x=1是原方程的解,∴x+4=5.答:购买一个普通口罩需1元,购买一个N95口罩需5元.(2)设购买一次性医用口罩y个.则购买N95口罩(3000﹣y)个,依题意得:1×(1﹣50%)y+5×(1﹣20%)(3000﹣y)≤3250.解得:y≥2500.∴该单位至少可购买2500个一次性医所口罩.14.解:设甲队每小时检测x人,则乙队每小时检测(x﹣15)人,由题意可得,=×(1﹣10%).解得x=60.经检验x=60是原方程的解,且符合题意.答:甲队每小时检测60人.15.解:(1)设B社区疫苗接种点每天各接种x人,则A社区疫苗接种点每天各接种1.2x 人,根据题意,得+1=.解得x=1000.经检验x=1000是原方程的解,且符合题意.所以1.2x=1200.答:A社区疫苗接种点每天各接种1200人,B社区疫苗接种点每天各接种1000人;(2)根据题意,得(1200﹣10m)•3m+1200(m+20)=69000,整理,得m2﹣160m+1500=0.解得m1=150(舍去),m2=10,答:m的值是10.。

分式方程的应用教案

分式方程的应用教案

教学过程预设问题:1.列分式方程解应用题的步骤是什么?2.怎样分析题目,找出等量关系,列方程3.列分式方程解应用题时要注意什么?教学过程设计(一)创设情境,导入新课1.学校准备购进足球a个,需要1000元,篮球比足球多4个,需要1200元,排球比足球少5个,费用比排球少x元,则足球每个元,篮球每个元,排球每个元.2.列方程解应用题的步骤:(二)自探、合探例1:宏达公司生产了A型、B型两种计算机,它们的台数相同,但总价值和单价不同。

已知A型计算机总价值102万元;B型计算机总价值为81.6万元,且单价比A型机便宜了2400元,问A型、B型两种计算机的单价各是多少元?(三)学生展示、评价(同组交流后展示)这道题是买卖问题,涉及的三个量分别是、、,所以可列表分析:(四)、教师精讲通过上面的例题,总结列分式解应用题的步骤;1.审题,可列表分析2.解:设未知数,要带单位3.列方程4.解方程5.检验:是否是方程的解;是否符合实际6.答题:要写全,带单位.(五)巩固练习:1、同学们在练习打字时,张三比李四每分钟多录入20个汉字,张三录入300个汉字与李四录入200个汉字所用时间相同,张三和李四每分钟个录入多少个汉字?2、某学校准备组织部分学生到少年宫参加活动,陈老师从少年宫带回来两条信息:信息一:按原来报名参加的人数,共需要交费用320元,如果参加的人数能够增加到原来人数的2倍,就可以享受优惠,此时只需交费用480元;信息二:如果能享受优惠,那么参加活动的每位同学平均分摊的费用比原来少4元.根据以上信息,原来报名参加的学生有多少人?(六)检测:一个两位数,两个数字之和为12.如果把她的两个数字的位置交换后,得到的新数与原数的比为4:7,求原来的两位数。

(七)小结(1)知识;(2)注意:(八)作业:书上28页8题,34页6、8题(九)课后反思:10.5分式方程的应用(第一课时)学案(一)创设情境,导入新课1.学校准备购进足球a个,需要1000元,篮球比足球多4个,需要1200元,排球比足球少5个,费用比排球少x元,则足球每个元,篮球每个元,排球每个元.2.列方程解应用题的步骤:(二)自探、合探例1:宏达公司生产了A型、B型两种计算机,它们的台数相同,但总价值和单价不同。

最新八年级下册数学《10.5 分式方程》教案 (13)

最新八年级下册数学《10.5 分式方程》教案 (13)

10.5 分式方程(1)
教学目标:
1.使学生理解分式方程的意义.
2.使学生掌握可化为一元一次方程的分式方程的一般解法.
3.了解解分式方程解的检验方法.
4.在学生掌握了分式方程的一般解法和分式方程验根方法的基础上,使学生进一步掌握可化为一元一次方程的分式方程的解法,使学生熟练掌握解分式方程的技巧.
5.通过学习分式方程的解法,使学生理解解分式方程的基本思想是把分式方程转化成整式方程,把未知问题转化成已知问题,从而渗透数学的转化思想.
教学重点:
(1)可化为一元一次方程的分式方程的解法.
(2)分式方程转化为整式方程的方法及其中的转化思想.
教学难点:
检验分式方程解的原因
教学过程
使方程两边相等的未知数的值,叫做方程的解.
练习:判断下列各式哪个是分式方程.
一艘轮船在静水中的最大航速为
江水的流速为多少?
分式方程的一般步骤:
看结果是不是零;使最简公分母为零的根不是原方程的解,必须舍。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

10.5分式方程(3)
学习过程:
自主先学
问题:京沪铁路是我国东部沿海地区纵贯南北的大动脉,全长1462 km,是我国最繁忙的干线之一.如果货运列车的速度为a km/h,快速列车的速度是货运列车的2倍,那么:
(1)货运列车从北京到上海需要______小时;
(2)快速列车从北京到上海需要_____小时;
(3)已知从北京到上海快速列车比货运列车少用12h,你能列出一个方程吗?
总结:用分式方程解实际问题的一般步骤是什么?
合作探究
例1:为迎接市中学生田径运动会,计划由某校八年级(1)班的3个小组制作240面彩旗,后因1个小组另有任务,其余2个小组的每名学生要比原计划多做4面彩旗才能完成任务.如果这3个小组的人数相等,那么每个小组有学生多少名?
例2:甲、乙两公司为“见义勇为基金会”各捐款30000元.已知乙公司比甲公司人均多捐20元,且甲公司的人数比乙公司的人数多20%.问甲、乙两公司各有多少人?
例3:小明用12元买软面笔记本,小丽用21元买硬面笔记本,已知每本硬面笔记本比软面笔记本贵1.2元,小明和小丽能买到相同数量的笔记本吗?
当堂检测
1.一个分数的分母比它的分子大5,如果将这个分数的分子加上14,分母减去1,那么所得分数是原来的倒数.求原分数.
2.甲、乙两个机器人检测零件,甲比乙每小时多检测10个,甲检测300个与乙检测200个所用的时间相等.甲、乙两个机器人每小时各检测零件多少个?
3.轮船在顺水中航行20千米与逆水中航行10千米所用时间相同,水流速度为2.5千米/小时,求轮船的静水速度。

4.改善生态环境,防止水土流失,某村计划在荒坡上种960棵树,由于青年志愿者的支援,每日比原计划多种1/3,结果提前4天完成任务,原计划每天种多少棵数?
1。

相关文档
最新文档