线代08答案 线性代数试题库

合集下载

2008线性代数A参考答案

2008线性代数A参考答案

2007~2008学年第二学期《线性代数》A 卷参考答案及评分标准一、单项选择(每小题2分,共20分)请将正确选项前的字母填入下表中1、2-。

2、159206915-⎛⎫⎪-⎝⎭。

3、4。

4、213/21/2-⎛⎫⎪-⎝⎭。

5、 3 。

6、3。

7、 0 。

8、2。

9、1/λ。

10、222123122344x x x x x x x ++++ 三、计算题(1、2每小题6分,其余每小题6分,共40分)1、解:212223242322A A A A +++=1222232********* ……3分122201220011001---=1=- ……6分2、解:由AX A X =+有()A E X A -=()1002001002001101200101201111120112A E A ⎛⎫⎛⎫⎪ ⎪-=→- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭ ……4分 200120012X ⎛⎫⎪∴=- ⎪ ⎪-⎝⎭……6分 3、解:由225A A E O --=有()()32A E A E E -+= ……3分320A E A E -+=≠有30A E -≠ 所以3A E -可逆 ……6分 且11(3)()2A E A E --=+ ……7分4、解:()1234310111512112370122318100001397000TTTTαααα⎛⎫ ⎪--⎛⎫⎪⎪- ⎪ ⎪-=→ ⎪ ⎪- ⎪ ⎪- ⎪⎝⎭ ⎪⎝⎭……3分 ∴1234,,,αααα线性相关,1234(,,,)2R αααα=,12,αα是它的一个极大无关组,……4分且31241237, 222αααααα=-=+. ……7分5、解:矩阵A 的特征方程为0)1)(2(163530642=--=-+--=-λλλλλλA E得特征值 12321==-=λλλ ……3分当21-=λ时有⎩⎨⎧=-=+⎪⎩⎪⎨⎧=-+=+=--00,036303306632313212121x x x x x x x x x x x 即它的基础解系是⎪⎪⎪⎭⎫ ⎝⎛-111,所以对应于21-=λ的全部特征向量是)0(111≠⎪⎪⎪⎭⎫⎝⎛-c c ……5分当132==λλ时有 02,6306306321212121=+⎪⎩⎪⎨⎧=+=+=--x x x x x x x x 即它的基础解系是向量⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-100012及,所以对应于132==λλ的全部特征向量是不全为零)2121,(100012c c c c ⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛- ……7分6、解: 22020021201002000410011201001201001A E -⎛⎫⎛⎫⎪ ⎪---⎪⎪⎪⎪-⎛⎫=→⎪ ⎪⎪-⎝⎭⎪ ⎪- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭……3分112012001P -⎛⎫⎪∴=- ⎪ ⎪⎝⎭……6分 222123123(,,)24f x x x y y y=-+ ……7分 四、证明题(每题5分,共10分)1、证明:由 AB O = 有 12(,,,)s A X X X O = 即12(,,,)s AX AX AX O = 得i AX O = ()1,2,i s =即i X 为A X O =的s 个解 ……2分 显然12()(,,,)()s R B R X X X n R A =≤-即()()R A R B n +≤ ……3分 2、证明:()123,,3R ααα= ,()1234,,,3R αααα= 123,,ααα 线性无关 1234,,,αααα线性相关 则有 4112233m m m αααα=++ 成立 ……2分 设 112233454()0k k k k ααααα+++-=有 112233454112233()0k k k k k m m m ααααααα+++-++= 1411242234334()()()0k k m k k m k k m kαααα-+-+-+=……3分 ()1235,,,4R αααα=1235,,,αααα 线性无关则有141242343400k k m k k m k k m k -=⎧⎪-=⎪⎨-=⎪⎪=⎩ 解之有 12340k k k k ==== ……4分故 12354,,,ααααα-线性无关 即12354(,,,)4R ααααα-=……5分。

线性代数2008A答案

线性代数2008A答案

上海财经大学成人高等教育线性代数试题参考 答案(2008A 卷)姓名 学号 专业 班级一、 单选题(每小题2分,共计10分)1. 设,A B 均为方阵,且0AB =, 则以下结论中正确的是 ( 4 ) .(1) 0AB = (2) 0,0A B == (3) 0A =或0B = (4) 0A =或0B =2. 以下矩阵中是对称矩阵的是 ( 2 ).(1) 123212025⎛⎫ ⎪-- ⎪ ⎪-⎝⎭ (2)123204341⎛⎫⎪ ⎪ ⎪-⎝⎭ (3) 123211301⎛⎫⎪ ⎪ ⎪⎝⎭ (4) 111011001⎛⎫⎪ ⎪ ⎪⎝⎭3. 以下矩阵中是初等矩阵的是 ( 2 ).(1) 100010000⎛⎫ ⎪- ⎪ ⎪⎝⎭ (2)100010001⎛⎫⎪ ⎪ ⎪-⎝⎭ (3) 101010001⎛⎫⎪ ⎪ ⎪-⎝⎭ (4) 101011001⎛⎫⎪ ⎪ ⎪⎝⎭4. 下列不是n 阶矩阵A 可逆的充分必要条件的为 ( 1 ) .(1) 0A ≠ (2) 0A ≠ (3) ()R A n = (4) A 与单位阵E 等价5. 下列矩阵中是分块矩阵00A B ⎛⎫⎪⎝⎭的逆矩阵为 ( 4 ). (1) 1100A B --⎛⎫⎪⎝⎭ (2) 1100B A --⎛⎫⎪⎝⎭(3) 1100A B--⎛⎫⎪⎝⎭(4) 1100B A --⎛⎫ ⎪⎝⎭二、 填选题(每小题3分,共计30分)6. 行列式 111253_____.4259= (- 6)7. 设4阶行列式的第三行元素为1,2,3,4,其对应的余子式为4,3,2,1,则该行列式的值等于______.( 0 )……………………………………………………………装订线…………………………………………………8. 设A 是3阶方阵,TA 是A 的转置矩阵且 2,A =则 3____.T A =; ( 54 )9. 设211123223,322141113A B ⎛⎫⎛⎫⎪⎪=-=- ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭, 则 _____________AB =; (487731112514⎛⎫ ⎪- ⎪ ⎪-⎝⎭)10.设矩阵 120340002A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则1A -=__________. ; (312212210000--⎛⎫⎪ ⎪ ⎪⎝⎭) 11. 设矩阵 200030004A ⎛⎫⎪= ⎪ ⎪⎝⎭,则*A =__________.(*A 是A 的伴随矩阵); (12000800012⎛⎫⎪ ⎪ ⎪⎝⎭) 12. 设矩阵 123024003A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则*1()A -=__________; (12310246003⎛⎫⎪ ⎪ ⎪⎝⎭)13. 设矩阵 121211212112121,a a a a a A b b B b b b c c c c c -⎛⎫⎛⎫⎪ ⎪==- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,且AP B =,则初等阵P _____________;(1101-⎛⎫ ⎪⎝⎭) 14. 设 123(1,1,1),(2,3,4),(3,4,5)ααα===,则 123,,ααα的秩等于_______.;( 2 ) 15. 设123(1,1,1),(1,3,4),(3,4,5)ααα===,则 123,,ααα的极大无关组的个数为 _____.( 3 )三、 计算题(共计47分)16. 求解方程:2452450245x x x++=+ (本题满分10分)解:由于311113111132245(1)024500(1)47245(1)245047x r r x xx x x x x x c c x x a A x xx r r x x ++-+--+=-+-==-++-+++则原方程即2(11)0x x += 因而原方程的解为:120,11x x ==。

全国2008年1月自学考试线性代数(经管类)试题+答案

全国2008年1月自学考试线性代数(经管类)试题+答案

全国2代码:04184 一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列 出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后 的括号内。错选、多选或未选均无分。 1.设A为三阶方阵且则( D ) A.-108 B.-12 C.12 D.108 2.如果方程组有非零解,则 k=( B ) A.-2 B.-1 C.1 D.2 3.设A、B为同阶方阵,下列等式中恒正确的是( D ) A.AB=BA B. C. D. 4.设A为四阶矩阵,且则( C ) A.2 B.4 C.8 D.12 5.设可由向量α1 =(1,0,0)α2 =(0,0,1)线性表示,则下列向量 中只能是( B ) A.(2,1,1) B.(-3,0,2) C.(1,1,0) D.(0,-1,0) 6.向量组α1 ,α2 ,…,αs 的秩不为s(s)的充分必要条件是( C ) A. α1 ,α2 ,…,αs 全是非零向量 B. α1 ,α2, …,αs 全是零向量 C. α1 ,α2, …,αs中至少有一个向量可由其它向量线性表出
= 22.设A=,求A. A= 23.设A=,B=,且A,B,X满足(E-BA)求X,X (E-BA) X= = X== 24.求向量组α1 =(1,-1,2,4)α2 =(0,3,1,2), α3 =(3,0,7,14), α4 =(2,1,5,6), α5 = (1,-1,2,0)的一个极大线性无关组. α1 α2 α4 为极大无关组。 25.求非齐次方程组的通解 通解 26. 设A=,求P使为对角矩阵. = P= = 四、证明题(本大题共1小题,6分) 27.设α1,α2,α3 是齐次方程组A x =0的基础解系. 证明α1,α1+α2, α1 +α2 +α3也是Ax =0的基础解系. 略。

《2008线性代数》试卷参考答案(不完整版)

《2008线性代数》试卷参考答案(不完整版)

2 3 10
0
3
C1 证明:β = AZ 有解,Z0 = ⋮ ,则β = C1α1 + ⋯ + Cnαn,故(A,β)的列向 Cn 量组与 A 的列向量组等价,从而秩相等 反过来, (A,β)的列向量组与 A 的列向量组等价 故β可用α1, ⋯ ,αn线性表示 令β = C1α1 + ⋯ + Cnαn,则 Z0= C1 ⋮ 为 AZ=β的解 Cn
1 1 = (a + 2)(a − 1)2 a
当 a≠ −2, a ≠ 1 时,有唯一解; 当 a= 1时,无解; 当 a=-2 时,有无数解。 方程为-2x1+x2+x3=2,,x1+x2-2x3=4 对应齐次方程组基础解为 −1, − 1,1
T
求一特解为 x1=3,x2= 3 ,x3=0
2
10
−1 故通解为 a −1 + −1 六、证明题
n −2 n −1
n
=nn −1
1 + n +n + ⋯+ 0 0 ⋮ 0 0
n+1 2
n −1
0 0 0 0 ⋮ ⋮ 0 −1 −1 0
n+1 2
0 −1 ⋮ 0 0
n
−1 0 ⋮ 0 0
n
=nn −1 五、 a 1 解: A = 1 a 1 1
(−1)n+
n (n +1) 2
= nn −1
(−1)n(n+1)
1 1 1 3、解: A = ⋮ 1 1
2 1 1 ⋮ 1 1−n
3 1 1 ⋮ 1−n 1 ⋯ ⋯ ⋯ ⋱ ⋯ ⋯
2 n
⋯ n−2 n−1 ⋯ 1 1 ⋯ 1 1−n ⋱ ⋮ ⋮ ⋯ 1 1 ⋯ 1 1

2008年07月线性代数(经管类)试题及答案

2008年07月线性代数(经管类)试题及答案

全国2008年07月高等教育自学考试线性代数(经管类)试题答案一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设3阶方阵A=[321,,ααα],其中i α(i=1, 2, 3)为A 的列向量,且|A|=2,则|B|=|[3221,,3ααα+α]|=( C ) A.-2 B.0 C.2 D.62.若方程组⎩⎨⎧=-=+0x kx 0x x 2121有非零解,则k=( A )A.-1B.0C.1D.23.设A ,B 为同阶可逆方阵,则下列等式中错误的是( C ) A.|AB|=|A| |B|B. (AB)-1=B-1A-1C. (A+B)-1=A-1+B-1D. (AB)T=BTAT4.设A 为三阶矩阵,且|A|=2,则|(A*)-1|=( D )A.41B.1C.2D.45.已知向量组A :4321,,,αααα中432,,ααα线性相关,那么( B )A. 4321,,,αααα线性无关B. 4321,,,αααα线性相关C. 1α可由432,,ααα线性表示D. 43,αα线性无关 6.向量组s 21,,ααα 的秩为r ,且r<s ,则( C ) A. s 21,,ααα 线性无关B. s 21,,ααα 中任意r 个向量线性无关C. s 21,,ααα 中任意r+1个向量线性相关D. s 21,,ααα 中任意r-1个向量线性无关 7.若A 与B 相似,则( D ) A.A ,B 都和同一对角矩阵相似 B.A ,B 有相同的特征向量C.A-λE=B-λED.|A|=|B|8.设1α,2α是Ax=b 的解,η是对应齐次方程Ax=0的解,则( B ) A. η+1α是Ax=0的解B. η+(1α-2α)是Ax=0的解C. 1α+2α是Ax=b 的解D. 1α-2α是Ax=b 的解 9.下列向量中与α=(1,1,-1)正交的向量是( D ) A. 1α=(1,1,1) B. 2α=(-1,1,1) C. 3α=(1,-1,1) D. 4α=(0,1,1)10.设A=⎥⎦⎤⎢⎣⎡--2111,则二次型f(x1,x2)=xTAx 是( B )A.正定B.负定C.半正定D.不定二、填空题(本大题共10小题,每小题2分,共20分) 请在每小题的空格中填上正确答案。

08级《线性代数与空间解析几何》试题B参考答案

08级《线性代数与空间解析几何》试题B参考答案

《线性代数与空间解析几何》试题(B)参考答案与评分标准(090209)一、单项选择(每小题3分,共15分)1.D2.A3.B4.A5.C二、填空题(每小题2分,共10分)1. 3,2. 0,3. 2240x y z ⎧+=⎨=⎩, 4. 43-三、计算题(每小题10分,共30分)1.解 1201120112011001471201120112010001120112001200122322012400000000⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪--- ⎪ ⎪ ⎪ ⎪→→→ ⎪ ⎪ ⎪ ⎪---- ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭⎝⎭,3 分 向量组的秩为3,一个最大无关组123,,ααα7(22)+ 分 4132ααα=-。

9 分2.解 21111(2)(1)11λλλλλ=+-,3 分12,4λλ≠≠- 当且时方程组有唯一解分2λ=-当时,方程组无解6 分(结论1分,过程1分)1λ=当时,方程组有无穷多解,7 分 通解12111010001x k k --⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭9 分 3.解 二次型对应的矩阵为122224242A -⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭1 分 2122||224(2)(7)242I A λλλλλλ---=+-=-+--+,特征值为1232,7λλλ===-3 分12122122222,244000,1,024400001I A λλαα---⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=-=-→== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭当时基础解系,5 分 82220117,254011,22450002I A λλα---⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=--=--→= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭⎝⎭3当时基础解系,7 分222123132,,2273203X CY C f y y y ⎛⎫ ⎪ ⎪ ⎪===+- ⎪ ⎪ ⎪- ⎪⎝⎭经过正交化、单位化,正交变换标准型 9 分四、计算题(每小题8分,共24分)1.解,设所求平面的法向量为n ,则12(6,3,2),(4,1,2)n n n n ⊥=-⊥=-2 分12632(4,4,6)412i j kn n n =⨯=-=---取,5 分 所求的平面方程 2230x y z +-=。

广工2008线代试题A-答案

广工2008线代试题A-答案
七、(8分)
解:设有关系式 ,即
则有
因为 线性无关,所以
………………………………………….4分
齐次线性方程组的系数行列式为
…………….….…6分
即当 为奇数时,齐次线性方程组只有零解,从而 ,即向量组线性无关;
即当 为偶数时,齐次线性方程组有非零解,从而存在不全为零的数 ,使 ,即向量组线性无关………………………………………………………………..……………8分
解答
一、单项选择题(每题4分,共20分)
1、D;2、D;3、D;4、B;5、B;
二、填空题(每题4分,共24分)
1、 ;2、 ;3、 ;4、 ;5、 ;6、
三、(11分)法一:
解: = --------------------------------------------4分
---------------------------------------------7分
五、(13分)
解:对增广矩阵进行初等行变换
…………3分
(1) ;……………5分
(2) ;………………………………7分
(3) ;………………………9分
----------------------------------------11分
方程组的通解为:
-----------------------------------------------------13分
4、设 是齐次线性方程组 的一个基础解系,则( )也是它的基础解系
(A) ;(B) ;
ห้องสมุดไป่ตู้(C) (D) .
5、设A是n阶正交矩阵,则下列结论不正确的是()
(A) ;(B)A的行列式等于1
(C)A的行向量都是单位向量且两两正交;

2008级线性代数试题和答案A卷

2008级线性代数试题和答案A卷

经济学院本科生09-10学年第一学期线性代数期末考试试卷 (A 卷)答案及评分标准一、填空题(每小题4分、本题共28分)1. 设A 为n 阶方阵, *A 为其伴随矩阵, 31det =A , 则=⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛*-A A 1541det 1_____ 2. 已知12,αα均为2维列向量, 矩阵),2(2121αααα-+=A , ),(21αα=B . 若行列式6A =, 则B = _____3.若,),,,(),,,,(2121k r r s s ==αααβααα,1),,,,(21+=k r s γααα 则),,,,,(21γβαααs r = _____4. 设A 为5阶方阵, 且4)(=A r , 则齐次线性方程组0*=x A (*A 是A 的伴随矩阵)的基础解系所包含的线性无关解向量的个数为 _____5. 设33()ij A a ⨯=是实正交矩阵, 且,a b T11=1,=(1,0,0)则线性方程组Ax b =的解是 _____6. 若使二次型31212322213212242),,(x tx x x x x x x x x f ++++=为正定的, 则 t 的取值范围是 _____7. 设3阶方阵A 满足0322=--E A A , 且0<A <5, 则=A _____ 答案:(1) 3)1(n - (2)-2 (3) k +1 (4) 4(5) T)0,0,1( (6) 2<t (7)3二、单项选择题(每小题4分、本题共28分)1. 设A 为n 阶方阵, B 是A 经过若干次矩阵的初等变换后所得到的矩阵, 则有( ) (A) B A = (B) B A ≠(C) 若0=A , 则一定有0=B (D) 若0>A , 则一定有0>B2. 设行列式3040222207005322D =--, 则第四行各元素代数余子式之和的值为 ( ) (A) 28 (B) -28 (C) 0 (D) 336 3. 设A 为m 阶方阵, B 为n 阶方阵, ⎪⎪⎭⎫⎝⎛=00B AC , 则 C 等于 ( )(A) B A (B) B A - (C) B A mn )1(- (D) B A n m +-)1( 4. 设n 维列向量组)(,,21n m m <ααα 线性无关, 则n 维列向量组m βββ ,,21线性无关的充分必要条件是 ( )(A) 向量组m ααα ,,21可由向量组m βββ ,,21线性表示 (B) 向量组m βββ ,,21可由向量组m ααα ,,21线性表示 (C) 矩阵),,(21m ααα 与矩阵),,(21m βββ 等价 (D) 向量组m ααα ,,21与向量组m βββ ,,21等价 5.设A 、B 为n 阶方阵, 且)()(B r A r =, 则( )(A) 0)(=-B A r (B) )(2)(A r B A r =+ (C) )()()(B r A r B A r +≤ (D) )(2)(A r AB r =6. 设矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛=0000000000000004,1111111111111111B A , 则A 与B ( )(A )合同且相似 (B )合同但不相似( C ) 不合同但相似 (D) 不合同且不相似7.设21,λλ是矩阵A 的两个不同的特征值, 对应的特征向量分别为21,αα, 则221),(ααα+A 线 性无关的充分必要条件是 ( )(A )01≠λ (B )02≠λ ( C )01=λ (D) 02=λ 答案:CCC CCA A三、计算题(每小题8分、本题共32分)1.计算n +1阶行列式 nnnn d b d b d b a a a a D 00000022112101=+. 解 分三种情况讨论:(1)当n d d d ,,,21 全不为0时,D 为箭型行列式且∑∑==--=-=====n k n k k k nnnk k k k c c d d d d ba a d d d a a a db a a D jjd jb 1210212110;)(000000001(2)当n d d d ,,,21 中只有一个为0时,不妨假设0=i d ,则ni i i i ni i i inni i i i ni i i c c d d d d b a d d b d d a d b d b b d b d a a a a a a D i111111111111011000011+-+-+--+-↔-=-=-====+(3)当n d d d ,,,21 中有两个以上为0时,显然0=D .综合以上三种情况,我们有⎪⎩⎪⎨⎧=∃-=≠-=+-=∑0,;...),...,2,1(0;)(11211210i n i i i i k nk n kk k d i d d d d d b a n k d d d d d b a a D 2. 设矩阵A 满足关系式11)2(--=-C A B C E T , 其中⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=1000210002101021,1000210032102321C B , 求A ? 解 在等式11)2(--=-C A B C E T等号两边同时乘以C , 得[]TB C A 1)2(--=,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=--1000210012100121)2(,100021003210432121B C B C ,[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=-=-1210012100120001)2(1TB C A . 3.设线性方程组 ⎪⎪⎩⎪⎪⎨⎧=+++=+++-=+--=+--bx x x x x ax x x x x x x x x x x 43214321432143217107141253032(1)问:a , b 取何值时, 线性方程组无解、有解?(2)当线性方程组有解时, 试用基础解系表示通解.解 设题中线性方程组为.Ax b =用消元法, 对线性方程组Ax b =的增广矩阵A 施以行初等变换,化为阶梯形矩阵:⎪⎪⎪⎪⎪⎭⎫⎝⎛--−−−→−⎪⎪⎪⎪⎪⎭⎫⎝⎛----=b-401000000-1001320b1-10初等行变换a a A 32117107141125313211 由此可知:当b ≠4时,)()(A r A r ≠ 线性方程组Ax b =无解; 当b =4时, 恒有)()(A r A r = 线性方程组Ax b =有解.若,3)()(,1==≠A r A r a 方程组有无穷多个解,通解为:T T )1,0,21,27()0,0,21,21(--+k k 为任意实数 若,2)()(,1===A r A r a 方程组有无穷多个解,通解为:T 2T 1T )1,0,21,27()0,1,23,21()0,0,21,21(--+-+k k 21k k 、为任意实数 4.设矩阵,,321101210,324202423*1Q A Q B Q A -=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛= 求E B 2010+的特征值和特征向量. 其中*A 是A 的伴随矩阵, E 为3阶单位矩阵. 解 计算A 的特征多项式32422423--------=-λλλλA E .)1()8(2+-=λλ故A 的特征值为1,8321-===λλλ. 因为.,,8*X AX A X AX A i λλλ====∏则若所以*A 的特征值为1,-8,-8.由于Q A Q B *1-=与*A 相似, 相似矩阵有相同的特征值,所以E B 2010+的特征值为:2011,2002,2002.下面求特征向量, 因为X Q A X A Q X Q Q A Q X Q B 1*11*11||))(()(-----===λ,我们有矩阵B 的属于λA的特征向量为X Q 1-, 因此矩阵E B 2010+的属于2010+λA的特征向量为X Q 1-第三步 求出A 的全部特征向量对于81=λ,求解线性方程组0)8(=-x A E 得特征向量 .2121⎪⎪⎪⎭⎫ ⎝⎛=α 对于132-==λλ,求解线性方程组0)(=--x A E 得特征向量.021,10132⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-=αα第四步 求出E B 2010+ 的全部特征向量,即计算312111,,ααα---Q Q Q .,012,23223,23121,21211111212113121111⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=----αααQ Q Q Q综合以上分析我们有:矩阵E B 2010+属于特征值2011的特征向量为k ⎪⎪⎪⎪⎪⎭⎫⎝⎛--27121, k 为任意实数属于特征值2002的特征向量为 ,0122322321⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫⎝⎛--k k 21k k 、为任意实数四、证明题(每题6分,共12分)1. 已知向量组)1(,,,121>+s s s αααα 线性无关, 向量组s βββ,,21 可表示为),,2,1(1s i t i i i i =+=+ααβ, 其中i t 是实数. 证明s βββ,,21 线性无关.证明 用定义. 假设存在 s 个数s k k k ,,21 , 使 02211=+++s s k k k βββ , 即 0)()()(132222111=+++++++s s s s t k t k t k αααααα , 也就是0)()()(11133212221111=++++++++++--s s s s s s s t k k t k k t k k t k k ααααα .又因为)1(,,,121>+s s s αααα 线性无关, 所以上式中系数部分都为0, 即⎪⎪⎪⎩⎪⎪⎪⎨⎧==+=+=--0000112111s s s s s t k k t k k t k k 解得 021====s k k k , 故s βββ,,21 线性无关. 2. 设n 阶矩阵 A 满足022=-+E A A 且E A ≠. 证明A 相似于对角矩阵. 证 由022=-+E A A 可得 ))(2(0)2)((E A A E A E A E ---==+- (1)可得A 的特征值为 1或 -2,要证明A 相似于对角矩阵,也就是A 可以对角化,即要证明A 有n 个线性无关的特征向量。

2008级《线性代数》考题(2009年12月25用)(1)

2008级《线性代数》考题(2009年12月25用)(1)

2008级《线性代数》考题(2009年12月用)(附答案)一. 填空题(每空3分,共15分)1. 设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=333222111c b a c b a c b a A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=333222111d b a d b a d b a B 且4=A ,1=B 则=+B A 20 2. 二次型233222213214),,(x x tx x x x x x f +-+=是正定的,则t 的取值范围是44 t -3. A 为3阶方阵,且21=A ,则=--*12)3(A A 2716-4. 设n 阶矩阵A 的元素全为1,则A 的n 个特征值是0,21====n n λλλ5. 设A 为n 阶方阵,n βββ ,,21为A 的n 个列向量,若方程组0=AX 只有零解,则向量组(n βββ ,,21)的秩为 n二. 选择题(每题3分,共15分)6. 设线性方程组⎪⎩⎪⎨⎧=+=+--=-0322313221ax cx bc bx cx ab ax bx ,则下列结论正确的是(A ) (A)当c b a ,,取任意实数时,方程组均有解 (B)当a =0时,方程组无解 (C) 当b =0时,方程组无解 (D)当c =0时,方程组无解 7. A.B 同为n 阶方阵,则(C )成立(A) B A B A +=+ (B) BA AB =(C) BA AB = (D) 111)(---+=+B A B A8. 设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=333231232221131211a a a a a a a a a A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+++=331332123111131211232221a a a a a a a a a a a a B ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100010101P ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1010100012P 则(C )成立 (A)21P AP (B) 12P AP (C) A P P 21 (D) A P P 12 9. A ,B 均为n 阶可逆方阵,则AB 的伴随矩阵=*)(AB (D ) (A) **B A (B) 11--B A AB (C) 11--A B (D)**A B 10. 设A 为n n ⨯矩阵,r A r =)(<n ,那么A 的n 个列向量中(B ) (A )任意r 个列向量线性无关 (B) 必有某r 个列向量线性无关(C) 任意r 个列向量均构成极大线性无关组(D) 任意1个列向量均可由其余n -1个列向量线性表示三. 计算题(每题7分,共21分)11. 设⎪⎪⎪⎭⎫⎝⎛=300041003A 。

最新-2008年-自考-线性代数-经管类-真题详细答案

最新-2008年-自考-线性代数-经管类-真题详细答案

全国2007年4月高等教育自学考试线性代数(经管类)参考答案课程代码:-、单项选择题(本大题共 10小题,每小题2分,共20分) 1.设A 为3阶方阵,且|A| = 2,则|2A 」卜(D ) A . -4B . -11311|2A| = 23|A| =84 .Ax=0有非零解:二r (A ) :: A 的列向量组线性相关.8 .设3元非齐次线性方程组 Ax=b 的两个解为。

=(1,0,2)T , P =(1,一1,3)T ,且系数矩阵A 的秩r (A )=2 ,意常数k, k 1, k 2,方程组的通解可表为( C ) A . k 1(1,0,2)T +k 2(1,-1,3)TB . (1,0,2)T +k (1,-1,3)T041842 .设矩阵 A= (1, 2), B=A . ACBB . ABC(1 I 42323,则下列矩阵运算中有意义的是(5 6C . BACCBA3.设A 为任意n 阶矩阵,下列矩阵中为反对称矩阵的是(TTTA . A + AB . A - AC . AA■a b )*设2阶矩阵A= I ,则 A = ( A)l c d丿(d—b \f-d c 、(-d b 、(d —c \iB .C .D .i<_c a丿b~aJ< c~a)(—ba丿3 -10 -n i-3"i巾-1 'A''1、1 - A .B .C .14 D .33丿I 13丿G 1丿I-1 0 丿设矩阵A=-2A .所有2阶子式都不为零B .所有 2阶子式都为零C .所有3阶子式都不为零D .存在一个3阶子式不为零7 .设A 为mxn 矩阵,齐次线性方程组Ax=0有非零解的充分必要条件是A . A 的列向量组线性相关B . A 的列向量组线性无关C . A 的行向量组线性相关D . A 的行向量组线性无关则对于任(A-A T )T 二A T -(A T )T 二 A T — A = -(A-A T ),所以 A - A T 为反对称矩阵.A.)矩阵4 .3的逆矩阵是(1 -1精品文档C . (1,0,2)T +k (0,1,-1)TD . (1,0,2)T +k (2,-1,5)T为鳥 k(: - 一)=(1,0,2)T +k (0,1,-1)T .行成比例值为零.:-(1,0,2)T 是 Ax=b 的特解,:•---(0,1,-1)T 是 Ax=0 的基础解系,所以 Ax=b 的通解可表A . 4B . 3C . 2D . 1人-1-1 -1 3 九一3九一31 1 1| ZE — A|=-1 Z-1 -1=-1 九-1 -1 =仏—3) —1^—1 -1-1-1人—1-1-1 K-1-1 -1 丸—1I 1 11 1 11 1 1 1、■0 1 1 1、1 0 0 0、1 0 0 0 T 1 0 0 0T 0 1 1 1 1 0 0 00 0 0 00 0 0 00 0 0丿e 0 0 °」<00 0丿 C . B . 3 2,秩为2. A 二10小题,每小题(本大题共1、1的非零特征值为(19 .矩阵A= =(九一3)-3),非零特征值为 ■ =3 .10. 4元二次型 f (X 1,X 2,X 3,X 4)-2x 1x 2 - 2x 1x 3 - 2x 1x 4 的秩为共20分)二、填空题 11 .若 a i b i -0,i =1,2,3,则行列式a 1b 1 a 2b 1a 3b 1 a 1b 2 a 2b 2&3匕ag a 2b 3 &3匕12•设矩阵A=则行列式 |AT A|=__4__. |A TA 円 A T ||A 冃 A| 2*2)2 =4 .13.若齐次线性方程组811X 1 ' 812X 2 ' 813X 3 — 072^+822X2+823X 3=0有非零解,则其系数行列式的值为 031x 1+a 32x 2 +a 33x3 =°14.设矩阵A=10,矩阵B=A —E ,则矩阵B 的秩r (B )= 1」15 .向量空间 V={ X=(X 1,X 2,0)|X 1,X 2为实数}的维数为__2__ .16•设向量 a =(1,2,3) , P =(3,2,1),则向量 J B 的内积(a ,B )= _10_ 17 •设A 是4X 3矩阵,若齐次线性方程组 Ax=0只有零解,则矩阵 A 的秩18 .已知某个3元非齐次线性方程组 Ax=b 的增广矩阵A 经初等行变换化为:广0 B=A —E = 0 <0 0 1 ?1 0 , r(B)=2.0 0』r(A)= __3_-2-1,若a(a -1) 方程组无解,则 a 的取值为_0_.a =0时,r(A) =2 ,r(A) =3 .19 .设3元实二次型 f (X 1 , X 2 , X 3 )的秩为3,正惯性指数为2,则此二次型的规范形是 2-y 3.秩r =3,正惯性指数k =2,则负惯性指数r -k =3-2 =1 '1120.设矩阵A= 12 —a e 00、0为正定矩阵,则a 的取值范围是 .3丿 —-1 =1 0,-212 —a1 02 — a 0 =3(1 -a)>0 二 av1 .3三、计算题(本大题共 6小题,每小题9分,共54 分)123 23 321 .计算3阶行列式 249 49 9367 677123 23 3解: 249 49 9 =367 67 7「1 0 1 1 0 0『11 1 00 '「10 1 1 0 0210 0 1 0 T 01 -2 -2 1 0 T 0 1 -2 -2 1 0 L3 2 -5 0 0 h<0 2 -2 3 0 h27-2 b'20 2 2 00、'2 0 0-5 2 -1、 1 0 0 —5/2 1-1/2"T 0 1-2 -2 1 0 T 0 1 0 5 -1 1 T 0 1 0 5 -1 127-2 1」Q 0 27-21」0 1 7/2 -1 1/2丿100 20 3 200 40 9 =0 .300 60 71 022. 设A=-3 2 -5求A ,解:解: ■ -1I 入E — A|=-2-2咒T -(咒_^1) ―'4= ■ $ - 2咒―3 = '_1)^ ―3),特征值,1 = -1 ,对于‘1 =「1,解齐次线性方程组(E - A )x =0 :足一A =「2 一2}]1* ,1—2 -2丿 e 0 丿,X"| =_X 2X 2 =X2'基础解系为单位化为二k 1(-1,1,0,0,0)T k 2(-1,0,-1,0,1)T •25•设矩阵A 」1 2求正交矩阵P ,使P’AP 为对角矩阵.€ 1丿广_5/2 1 —1/2 A 」= 5 -1 1 7/2-11/223•设向量组:1(1,一1,2,1)丁 , :- 2(2,一2,4,一2)丁 , : 3(1)求向量组的一个极大线性无关组;(2)将其余向量表为该极大线性无关组的线性组合.<12 3 0、「1 23 0、 -1 -2 03T0 0 332460 0 0 0 0-2 -1 -4>e-4-4 一4丿1 2 3 0、巾 2 3 0、广1 2 0 -3"1广10 0 -3"0 -4 -4 -4T11 1T0 1 0 0 T0 1 00 0 0 3 30 0 1 1 0 0 110 0 1 1e 0丿1° 0 0 0丿1° 0 0」<0 0 0丿24 •求齐次线性方程组X 1 x 2X 1 X 2 - X 3X 3 X 5 =0=0的基础解系及通解.=01 1 0 0 1、1 10 0 1、1 10 0 1、 解:A = 1 1 -1 0 0 T0 0 -1 0 -1 T 0 0 -1 0 -1e 011 b<0 0 1 11>1。

08年1月线性代数(经管类)试题答案

08年1月线性代数(经管类)试题答案

全国2008年1月高等教育自学考试线性代数(经管类)试题答案课程代码:04184一、单项选择题(本大题共10小题,每小题2分,共20分) 1.设A 为三阶方阵且2||-=A 则=|3|A A T ( D ) A .-108B .-12C .12D .1082.如果方程组⎪⎩⎪⎨=+=-04043232321kx x x x 有非零解,则k =( B )A .-2B .-1C .1D .2A .BA AB =B .111)(---+=+B A B AC .||||||B A B A +=+D .T T T B A B A +=+)(4.设A 为四阶矩阵,且2||=A ,则=*||A ( C ) A .2B .4C .8D .1212A .)1,1,2(B .)2,0,3(-C .)0,1,1(D .)0,1,0(-s 21的秩不为()的充分必要条件是( C ) A .s ααα,,,21 全是非零向量 B .s ααα,,,21 全是零向量C .s ααα,,,21 中至少有一个向量可由其它向量线性表出D .s ααα,,,21 中至少有一个零向量7.设A 为m n ⨯矩阵,方程AX =0仅有零解的充分必要条件是( C ) A .A 的行向量组线性无关 B .A 的行向量组线性相关 C .A 的列向量组线性无关D .A 的列向量组线性相关..A .||||B A =B .秩(A )=秩(B)C .存在可逆阵P ,使B AP P =-1D .BE A E -=-λλ9.与矩阵A =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤200010001相似的是( A )A .⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤100020001B .⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤200010011C .⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤200011001D .⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤10002010110.设有二次型321321),,(x x x x x x f +-=,则),,(321x x x f ( C ) A .正定 B .负定 C .不定 D .半正定11.若0211=k ,则k =21. 12.设A =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤411023,B =⎢⎣⎡⎥⎦⎤010201,则AB =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡241010623.13.设A =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤220010002,则=-1A ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤-2/110010002/1.)= __1__15.已知A 有一个特征值2-,则E A B 2+=必有一个特征值__6__.16.方程组0321=-+x x x 的通解是k k )1,0,1()0,1,1(21+-.123__2__18.矩阵A =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤200020002的全部特征向量是T T T k k k )1,0,0()0,1,0()0,0,1(++不全为零)(,,k k k .__-16__20.矩阵A =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤-301012121所对应的二次型是3121232221321243),,(x x x x x x x x x x f +++-=. 三、计算题(本大题共6小题,每小题9分,共54分)21.计算四阶行列式1002210002100021的值. 解:151500021000210002118021********2110402100021000211002210002100021-=-==-=.22.设A =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤101111123,求1-A .解:⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤100010001101111123→⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤001010100123111101→⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤---301110100220010101→⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤----121110100200010101→⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤----121110200200010202→⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤-----121110121200010002→⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤---2/112/11102/112/1100010001,1-A =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤---2/112/11102/112/1.23.设A =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤-200200011,B =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤300220011,且A ,B ,X 满足E X B A B E T T =--)(1,求X ,1-X .解:由E X B A B E T T =--)(1,得E X A B E B T =--)]([1,即E X A BB BE T =--)(1,E X A B T =-)(,=-1X ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-100020002100020002)(TT A B ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=10002/10002/1X . 24.求向量组)4,2,1,1(1-=α,)2,1,3,0(2=α,)14,7,0,3(3=α,)6,5,1,2(4=α,)0,2,1,1(5-=α 的一个极大线性无关组.解:⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--021165121470321304211→⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---4002130213021304211→⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---4004000000021304211→⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--0004000000021304211, 421,,ααα是一个极大线性无关组.25.求非齐次方程组⎪⎪⎩⎪⎪⎨⎧=-+-+=+++-=-+++=++++12334523622232375432154325432154321x x x x x x x x x x x x x x x x x x x 的通解.解:=A ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----12133452362210231123711111→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----------236281023622102362210711111 →⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------0006000000002362210711111→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------0000000006002362210711111 →⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000000001002362210711111→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000000001002362010711011→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---00000000010023620101651001, ⎪⎪⎪⎩⎪⎪⎪⎨⎧===--=++-=5544354254106223516x x x x x x x x x x x ,通解为⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-1006501021000231621k k .26.设A =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤----020212022,求P 使AP P 1-为对角矩阵.解:λλλλλλλλλ4)2(4)2)(1(2021222||-----=--=-A E 86323+--=λλλ )2(3)42)(2()2(3)8(23+-+-+=+-+=λλλλλλλλ)4)(1)(2()45)(2(2--+=+-+=λλλλλλ,特征值21-=λ,12=λ,43=λ.对于21-=λ,解齐次线性方程组0)(=-x A E λ:⎪⎪⎪⎭⎫ ⎝⎛---→⎪⎪⎪⎭⎫ ⎝⎛---→⎪⎪⎪⎭⎫ ⎝⎛---=-220220012220232012220232024A E λ→⎪⎪⎪⎭⎫⎝⎛--000220012→⎪⎪⎪⎭⎫ ⎝⎛--000110012→⎪⎪⎪⎭⎫ ⎝⎛--000110102→⎪⎪⎪⎭⎫ ⎝⎛--0001102/101,⎪⎪⎩⎪⎪⎨⎧===33323121x x x x xx ,基础解系为⎪⎪⎪⎭⎫ ⎝⎛=112/11α; 对于12=λ,解齐次线性方程组0)(=-x A E λ:⎪⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎪⎭⎫ ⎝⎛-=-120120021120101021120202021A E λ→⎪⎪⎪⎭⎫ ⎝⎛-000120021→⎪⎪⎪⎭⎫ ⎝⎛--000120101→⎪⎪⎪⎭⎫ ⎝⎛0002/110101,⎪⎪⎩⎪⎪⎨⎧=-=-=33323121x x x x x x ,基础解系为⎪⎪⎪⎭⎫ ⎝⎛--=12/112α;对于43=λ,解齐次线性方程组0)(=-x A E λ:⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛=-000210022420210022420232022A E λ→⎪⎪⎪⎭⎫ ⎝⎛000210011→⎪⎪⎪⎭⎫⎝⎛-000210201,⎪⎩⎪⎨⎧=-==33323122xx x x x x ,基础解系为⎪⎪⎪⎭⎫⎝⎛-=1223α. 令⎪⎪⎪⎭⎫ ⎝⎛---=11122/11212/1P ,则P 是可逆矩阵,使=-AP P 1⎪⎪⎪⎭⎫⎝⎛-400010002. 四、证明题(本大题6分)27.设321,,ααα是齐次方程组Ax =0的基础解系,证明1α,21αα+,321ααα++也是Ax =0的基础解系.证: (1)Ax =0的基础解系由3个线性无关的解向量组成.(2)321,,ααα是Ax =0的解向量,则1α,21αα+,321ααα++也是Ax =0的解向量. (3)设0)()(321321211=+++++ααααααk k k ,则0)()(332321321=+++++αααk k k k k k ,由321,,ααα线性无关,得⎪⎩⎪⎨⎧==+=++000332321k k k k k k ,系数行列式01100110111≠=,只有零解0321===k k k ,所以1α,21αα+,321ααα++线性无关.由(1)(2)(3)可知,1α,21αα+,321ααα++也是Ax =0的基础解系.。

线性代数2007-2008第二学期试卷A答案

线性代数2007-2008第二学期试卷A答案

n 4, 有唯一解 III)a 2且a 1时,r r
综上,a 2且b 1时,方程组无解。
1 0 (2)a 2, b 1时,A 0 0
1 0 a 1时,A 0 0 0 0 1 1 0 0 1 0 0 2 0 0
3、 设 A, B 均为 3 阶方阵, 且满足 A 2, B 3 , 则 ( AB ) 6 ; ( AB ) = 36 。

1 1 1 1 1 1 2 3 的秩为 4、矩阵 3 1 5 1 1 3 4 2
4
1 0 ,它的行最简形是 0 0
1
1 3 6 0 0 1 和 2 。 3 6 1 1 3 6
6,3,2
8、 设三阶方阵 A 、B 相似,A 的特征值为 1、 2、 3, 则 B* 的特征值为

二、单项选择题(每小题 2 分,共 12 分) 得 分
1 3 0
2 3 2 ( 1) 3
3 1 2 1 0 1 1 0 1 A E 5 2 3 0 1 1 0 1 1 1 0 1 0 2 2 0 0 0 1 ( A E ) x 0的基础解系为 1 , 1 A只有一个线性无关的特征向量,因此A不能对角化。
3310分分设为一向量组12341131151?21893??????317?????????????????????????????????????????????????????????????????1
浙 江 工 业 大 学
《线 性 代 数》试 卷 (A)

2008线性代数考研题

2008线性代数考研题

解 (1) 因为 α 1 , α 2 是 A 的属于不同特征值的特征向量,所以 α 1 , α 2 线性无关.假设
2008 线性代数考研题
1.(08-1,2,3,4-04)设 A 为 n 阶非零矩阵, E 为 n 阶单位矩阵.若 A = O ,则( ). (A) E − A 不可逆, E + A 不可逆. (B) E − A 不可逆, E + A 可逆. (C) E − A 可逆, E + A 可逆. (D) E − A 可逆, E + A 不可逆. 解 应选(C).
由克莱姆法则知方程组有唯一解, 且有 x1 = (2) 当 a ≠ 0 时, A = ( n + 1) a ≠ 0 ,
n
A1 A

其中
1 1 2a 1 0 2a 1 按1列展开 a 2 2a O 2 A1 = M a 2a O = Dn−1 = na n−1 O O 1 M O O 1 a 2 2a 2 0 a 2a
λ1 , λ2 , λ3 互 不 相 同 , 所 以 存 在 可 逆 矩 阵 P 使 得 P −1 AP = diag(λ1 , λ2 , λ3 ) .又因为 A = λ1λ2 λ3 = 0 ,所以 λ1 , λ2 , λ3 中有且仅有一个为零,
故 r ( A) = r (diag(λ1 , λ2 , λ3 )) = 2 . 7.(08-1-11) A = αα + ββ , α , β 是 3 维列向量, α 为 α 的转置, β 为 β 的转 置. (1) 证 r ( A) ≤ 2 ; (2) 若 α , β 线性相关,则 r ( A) < 2 .
故 x1 =
A1 A
=
na n −1 n . = n (n + 1)a (n + 1)a

线性代数经管类试题答案

线性代数经管类试题答案

全国2008年7月高等教育自学考试线性代数经管类试题答案课程代码:04184一、单项选择题本大题共10小题,每小题2分,共20分1.设3阶方阵],,[321ααα=A ,其中i α3,2,1=i 为A 的列向量,且2||=A ,则=+=|],,3[|||3221ααααB CA .-2B .0C .2D .62.若方程组⎩⎨⎧=-=+002121x kx x x 有非零解,则k = AA .-1B .0C .1D .2A .||||||B A AB =B .111)(---=A B ABC .111)(---+=+B A B AD .T T T A B AB =)(4.设A 为三阶矩阵,且2||=A ,则=|)(|A A A .41 B .1 C .2 D .44321432A .4321,,,αααα线性无关B .4321,,,αααα线性相关C .1α可由432,,ααα线性表示D .43,αα线性无关6.向量组s ααα,,,21 的秩为r ,且s r <,则 C A .s ααα,,,21 线性无关B .s ααα,,,21 中任意r 个向量线性无关C .s ααα,,,21 中任意r +1个向量线性相关D .s ααα,,,21 中任意r -1个向量线性无关 7.若A 与B 相似,则 D A .A ,B 都和同一对角矩阵相似 B .A ,B 有相同的特征向量 C .E B E A λλ-=-D .||||B A =8.设21,αα是b Ax =的解,η是对应齐次方程组0=Ax 的解,则 B A .1αη+是0=Ax 的解B .)(21ααη-+是0=Ax 的解C .21αα+是b Ax =的解D .21αα-是b Ax =的解A .)1,1,1(1=αB .)1,1,1(2-=αC .)1,1,1(3-=αD .)1,1,0(4=α10.设⎥⎦⎤⎢⎣⎡--=2111A ,则二次型Ax x x x f T =),(21是 B A .正定B .负定C .半正定D .不定11.设A 为三阶方阵且3||=A ,则=|2|A __24__.12.已知)3,2,1(=α,则=||αα__0__.13.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=200030021A ,则=*A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-300020046.__3__123321__2__16.方程组1321=-+xx x 的通解是k k )1,0,1()0,1,1()0,0,1(21+-+.17.设A 满足032=-+A A E ,则=-1A )(3E A -.__24__20.矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=221201A 所对应的二次型是323121232132142223),,(x x x x x x x x x x x f ++-+=.三、计算题本大题共6小题,每小题9分,共54分21.计算6阶行列式100200010000001000200100000003000021.解:100200010000001000200100000003000021行展开按第41020001000201000000300021行展开按第41200210000030021行展开按第21202100023-行展开按第11841612216=-⨯-=-)(.22.已知⎥⎦⎤⎢⎣⎡=3152A ,⎥⎦⎤⎢⎣⎡-=3421B ,⎥⎦⎤⎢⎣⎡-=2512C ,X 满足C B AX =+,求X .解:⎥⎦⎤⎢⎣⎡=10013152],[E A →⎥⎦⎤⎢⎣⎡01105231→⎥⎦⎤⎢⎣⎡--21101031→⎥⎦⎤⎢⎣⎡---21531001→⎥⎦⎤⎢⎣⎡--21531001,=-1A ⎥⎦⎤⎢⎣⎡--2153,=-B C -⎥⎦⎤⎢⎣⎡-2512⎥⎦⎤⎢⎣⎡-3421=⎥⎦⎤⎢⎣⎡-1111, =-=-)(1B C A X ⎥⎦⎤⎢⎣⎡--2153⎥⎦⎤⎢⎣⎡-1111=⎥⎦⎤⎢⎣⎡--3182.23.求向量组)3,1,2,1(1=α,)6,5,1,4(2---=α,)7,4,3,1(3---=α的秩和其一个极大线性无关组.解:⎪⎪⎪⎭⎫ ⎝⎛------743165143121→⎪⎪⎪⎭⎫ ⎝⎛------10550189903121→⎪⎪⎪⎭⎫ ⎝⎛211021103121→⎪⎪⎪⎭⎫⎝⎛000021103121,秩为2,21,αα是一个极大线性无关组.24.当b a ,为何值时,方程组⎪⎩⎪⎨⎧+=+++=-=++3)2(321132132321b x a x x x x x x x 有无穷多解 并求出其通解. 解:=A ⎪⎪⎪⎭⎫ ⎝⎛++-323211101111b a →⎪⎪⎪⎭⎫ ⎝⎛+-11011101111b a →⎪⎪⎪⎭⎫ ⎝⎛+-b a 10011101111,0,1=-=b a 时,有无穷多解.此时A →⎪⎪⎪⎭⎫ ⎝⎛-000011101111→⎪⎪⎪⎭⎫ ⎝⎛-000011100201,⎪⎩⎪⎨⎧=+=-=33323112x x x x x x ,通解为⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛112010k .25.已知⎥⎦⎤⎢⎣⎡-=11713A ,求其特征值与特征向量. 解:)10)(4(401411713||2--=+-=---=-λλλλλλλA E ,特征值41=λ,102=λ.对于41=λ,解齐次线性方程组0)(=-x A E λ:⎪⎪⎭⎫ ⎝⎛→⎪⎪⎭⎫ ⎝⎛--=-00117711A E λ,⎩⎨⎧=-=2221x x x x ,基础解系为 ⎪⎪⎭⎫⎝⎛-=111α,对应的全部特征向量为11αk 1k 是任意非零常数;对于102=λ,解齐次线性方程组0)(=-x A E λ:⎪⎪⎭⎫ ⎝⎛→⎪⎪⎭⎫ ⎝⎛→⎪⎪⎭⎫ ⎝⎛--=-007/1100171717A E λ,⎪⎩⎪⎨⎧=-=222171x x x x ,基础解系为 ⎪⎪⎭⎫ ⎝⎛-=17/12α,对应的全部特征向量为22αk 2k 是任意非零常数.26.设⎥⎦⎤⎢⎣⎡--=2112A ,求nA .解:)3)(1(342112||2--=+-=--=-λλλλλλλA E ,特征值11=λ,32=λ. 对于11=λ,解齐次线性方程组0)(=-x A E λ:⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎭⎫⎝⎛--=-001100111111A E λ,⎩⎨⎧==2221x x x x ,基础解系为 ⎪⎪⎭⎫⎝⎛=111α;对于32=λ,解齐次线性方程组0)(=-x A E λ:⎪⎪⎭⎫ ⎝⎛→⎪⎪⎭⎫⎝⎛=-00111111A E λ,⎩⎨⎧=-=2221x x x x ,基础解系为 ⎪⎪⎭⎫⎝⎛-=112α. 令⎪⎪⎭⎫ ⎝⎛-=1111P ,⎪⎪⎭⎫ ⎝⎛=3001D ,则⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎭⎫ ⎝⎛-=-111121212121211P ,D AP P =-1,1-=PDP A , 1111)())((----==P PD PDP PDP PDP A n n⎪⎪⎭⎫ ⎝⎛-=111121⎪⎪⎭⎫⎝⎛n 3001⎪⎪⎭⎫ ⎝⎛-1111⎪⎪⎭⎫⎝⎛-=n n 313121⎪⎪⎭⎫ ⎝⎛-1111⎪⎪⎭⎫⎝⎛+--+=n n n n 3131313121.四、证明题本大题6分27.设α为0=Ax 的非零解,β为b Ax =0≠b 的解,证明α与β线性无关.证:设021=+βαk k ,则0)(21=+βαk k A ,021=+βαA k A k ,0021=+b k k ,由此可得02=k ,从而01=αk ,又0≠α,可得01=k ,所以α与β线性无关.。

2008年4月全国自考线性代数(经管类)真题参考答案

2008年4月全国自考线性代数(经管类)真题参考答案

2008年4月全国自考线性代数(经管类)真题参考答案一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.A.-15B.-6C. 6D.15答案:C2.A. AB. BC. CD. D答案:C3.A. AB. BC. CD. D 答案:B4.A. AB. BC. CD. D 答案:A5.A.-4B.-2C. 2D. 4 答案:B6.A. AB. BC. CD. D答案:D7.A. AB. BC. CD. D答案:D8.设3阶方阵A的特征值为1,-1,2,则下列矩阵中为可逆矩阵的是()A.E-AB.-E-AC.2E-AD.-2E-A答案:D9.A. AB. BC. CD. D答案:A10.A. 1B. 2C. 3D. 4答案:C二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。

错填、不填均无分。

1.图中空格处答案应为:______答案:02.图中空格处答案应为:______答案:3.图中空格处答案应为:______答案:4.图中空格处答案应为:______答案:25.图中空格处答案应为:______答案:-26.图中空格处答案应为:______ 答案:7.图中空格处答案应为:______答案:08.图中空格处答案应为:______答案:49.图中空格处答案应为:______答案:10.图中空格处答案应为:______答案:三、计算题(本大题共6小题,每小题9分,共54分)1.答案:2.答案:3.答案:4.答案:5.答案:6.答案:四、证明题(本题6分)1.答案:本资料由广州自考网收集整理,更多自考资料请登录下载考试必看:自考一次通过的秘诀!。

兰州交通大学2008级线性代数(后八周)试题参考答案

兰州交通大学2008级线性代数(后八周)试题参考答案

⎛ −2 ⎞ ⎛ 1 ⎞ ⎜ ⎟ ⎜ ⎟ 1 2 G 为__ x = k ⎜ ⎟ + ⎜ ⎟ ___; ⎜ −2 ⎟ ⎜ 3 ⎟ ⎜ ⎟ ⎟ ⎜ ⎜ ⎟ ⎟ ⎜ ⎝ 1 ⎠ ⎝ 0⎠
10、已知 3 阶方阵 A 的特征值为 1 , −3 , 9 ,则
三、计算题(本题共 5 小题,合计 62 分)
1 A = ___ −1 ___; 3
⎛ ⎞ ⎜ ⎟ 0 1 0 1 ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎜ ⎟ G ⎜ ⎟ G ⎜ ⎟ G ⎜ ⎟ G 解得特征向量 ξ 2 = 0 ,ξ1 = −1 ,单位特征向量 p2 = 0 , p3 = ⎜ − 1 ⎟ …..(11 分) ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ 2⎟ ⎜ ⎜0⎟ ⎜1⎟ ⎜0⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎜ 1 ⎟ ⎜ ⎟ 2 ⎠ ⎝ ⎛ ⎞ ⎜ 0 1 0 ⎟ ⎜ ⎟ G p3 ) = ⎜ 1 0 − 1 ⎟ …………………………….(12 分) 2 2⎟ ⎜ ⎜ 1 ⎟ 1 0 ⎜ ⎟ 2 2 ⎠ ⎝
⎛ 0 1 1 ⎞ ⎛ 2 0 0 ⎞ ⎛ −1 1 0 ⎞ ⎛ −2 3 −3 ⎞ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ 于是,得 A = PΛP = 1 1 1 0 −2 0 ⎜ ⎟⎜ ⎟ ⎜ 1 −1 1 ⎟ = ⎜ −4 5 −3 ⎟ …(14 分) ⎜ 1 1 0 ⎟ ⎜ 0 0 1 ⎟ ⎜ 0 1 −1⎟ ⎜ −4 4 −2 ⎟ ⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠ G G 2 2 2 15、 (本题 14 分)求正交变换 x = Py ,把二次型 f ( x1 , x2 , x3 ) = 4 x1 + 3 x2 + 3 x3 − 2 x2 x3 化
3、设 A、 B 分别为 m × n 和 m × k 矩阵,向量组(I)是由 A 的列向量构成的向量组,向量 组(Ⅱ)是由 ( A, B ) 的列向量构成的向量组,则必有( C )

南开大学2008级线性代数试题和答案 B卷

南开大学2008级线性代数试题和答案 B卷

经济学院本科生09-10学年第一学期线性代数期末考试试卷 (B 卷)答案及评分标准一、填空题(每小题4分、本题共28分)1. 设A 为3×3矩阵, 2=A , 把A 按行分块为⎪⎪⎪⎭⎫ ⎝⎛=321A A A A , 其中j A (j =1,2,3)是A 的第j行, 则行列式122322010A A A A += _____2. 设A 为n 阶方阵, *A 为其伴随矩阵, 31det =A , 则=⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛*-A A 1541det 1 _____3. 设3阶方阵O A ≠, ⎪⎪⎪⎭⎫⎝⎛-=15342531t B 且O AB =, 则=t _____4. 设A 为5阶方阵, 且4)(=A r , 则齐次线性方程组0*=x A (*A 是A 的伴随矩阵)的基础解系所包含的线性无关解向量的个数为 _____5. 设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=---1121121111n n n n n a a a a a a A ,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n x x x X 21,⎪⎪⎪⎪⎪⎭⎫⎝⎛=111 B , 其中i j a a ≠(j i ≠), 则B X A =T 的解为 _____6. 设3阶方阵A 满足0322=--E A A , 且0<A <5, 则=A _____7. 若使二次型243132212322214321222)(),,,(x x x x x x x x x x t x x x x f ++-+++=为正定的, 则 t 的取值范围是 _____ 答案:(1) -4 (2)3)1(n - (3) 2 (4) 4(5) ()1,0,0T⋅⋅⋅ (6) 3 (7) 2>t二、单项选择题(每小题4分、本题共28分)1.设行列式3040222207005322D =--, 则第四行各元素余子式之和的值为 ( ) (A) 28 (B) -28 (C) 0 (D) 3362.设A 为m 阶方阵, B 为n 阶方阵, ⎪⎪⎭⎫ ⎝⎛=00BA C , 则 C 等于 ( ) (A)B A (B) B A - (C) B A m n )1(- (D) B A n m +-)1( 3. 设)21,0,,0,21( =α, 矩阵ααααT T E B E A 2 ,+=-=, 则 AB 等于( )(A) O (B) E - (C) E (D) ααTE +4.设n 维列向量组)(,,21n m m <ααα 线性无关, 则n 维列向量组m βββ ,,21线性无关的充分必要条件是 ( )(A) 向量组m ααα ,,21可由向量组m βββ ,,21线性表示 (B) 向量组m βββ ,,21可由向量组m ααα ,,21线性表示 (C) 矩阵),,(21m ααα 与矩阵),,(21m βββ 等价 (D) 向量组m ααα ,,21与向量组m βββ ,,21等价5.设矩阵33)(⨯=ij a A 满足T*A A =, 其中*A 是A 的伴随矩阵, TA 是A 的转置矩阵,1213,,a a a 11若为三个相等的正数, a 11则为( )(A )13 (B )3( C )(D)6.设21,λλ是矩阵A 的两个不同的特征值, 对应的特征向量分别为21,αα, 则221),(ααα+A 线 性无关的充分必要条件是 ( )(A )01≠λ (B )02≠λ ( C )01=λ (D) 02=λ7. 设矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=0000000000000004,1111111111111111B A , 则A 与B ( ) (A )合同且相似 (B )合同但不相似( C ) 不合同但相似 (D) 不合同且不相似答案:BCC CCA A三、计算题(每小题8分、本题共32分)1.计算n 阶行列式12125431432321-=n n n D.解:2121112111211212221-------+-=+-=--+-=n n n n n nn n n n nn n n n n n )()())(()()()())(()()(2. 设矩阵A 满足关系式11)2(--=-C A B C E T ,其中⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=1000210002101021,1000210032102321C B , 求A ? 解 在等式11)2(--=-C A B C E T 等号两边同时乘以C , 得[]TB C A 1)2(--=,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=--1000210012100121)2(,100021003210432121B C B C ,[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=-=-1210012100120001)2(1TB C A . 阶)()()(行列式的外边,将第一列的公因子提到列均加到第一列上,并将每第二、三、11111111111111111211111011110111101111043212112112541143132121----+=---+=-+=n n n nn n n n nnn n n n n n D n3.设线性方程组 ⎪⎪⎩⎪⎪⎨⎧=+++=+++-=+--=+--bx x x x x ax x x x x x x x x x x 43214321432143217107141253032(1)问:a , b 取何值时, 线性方程组无解、有解?(2)当线性方程组有解时, 试用基础解系表示通解.解 设题中线性方程组为.Ax b =用消元法, 对线性方程组Ax b =的增广矩阵A 施以行初等变换,化为阶梯形矩阵:⎪⎪⎪⎪⎪⎭⎫⎝⎛--−−−→−⎪⎪⎪⎪⎪⎭⎫⎝⎛----=b-401000000-1001320b1-10初等行变换a a A 32117107141125313211 由此可知:当b ≠4时,)()(A r A r ≠ 线性方程组Ax b =无解; 当b =4时, 恒有)()(A r A r = 线性方程组Ax b =有解.若,3)()(,1==≠A r A r a 方程组有无穷多个解,通解为:T T )1,0,21,27()0,0,21,21(--+k k 为任意实数 若,2)()(,1===A r A r a 方程组有无穷多个解,通解为:T 2T 1T )1,0,21,27()0,1,23,21()0,0,21,21(--+-+k k 21k k 、为任意实数 4.设A 为3阶实对称矩阵, 且满足A 2+A -2E =0, 已知向量T )0,1,0(1=αT )1,0,1(2=α是A 的对应特征值λ=1的特征向量, 求A n , 其中n 为自然数.解:由题设可知(A - E )(A +2E )=0,A 的特征值可能取值为λ=1,-2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档