高中数学备考资料:高考数学选择题十大万能解题方法
【高中数学】高考数学答题技巧:选择题十大解题技巧
【高中数学】高考数学答题技巧:选择题十大解题技巧高考数学选择题比其他类型题目难度较低,但知识覆盖面广,要求解题熟练、灵活、快速、准确。
现总结了高考数学答题技巧:选择题十大解题技巧,帮助同学们提高答题效率及准确率。
1.剔除法:利用已知条件和选项所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。
这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。
2.特特定值检验法:对于具备一般性的数学问题,在解题过程中,可以将问题特殊化,利用问题在某一特定情况下不真,则它在通常情况下不真这一原理,达至去伪存真的目的。
3.极端性原则:将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。
极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,采用极端性去分析,就能瞬间解决问题。
4.承发推化解法:利用数学定理、公式、法则、定义和题意,通过轻易编程语言推理小说得出结论结果的方法。
5.逆推验证法(代答案入题干验证法):将选项代入题干进行验证,从而否定错误选项而得出正确答案的方法。
6.正容易则英荷:从题的负面化解比较难时,可以从选项启程逐步逆发推找到符合条件的结论,或从反面启程得出结论。
7.数形结合法:由题目条件,做出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。
数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。
8.关系式归纳法:通过题目条件展开推理小说,找寻规律,从而概括出来恰当答案的方法。
9.特征分析法:对题设和选择项的特点进行分析,发现规律,归纳得出正确判断的方法。
10.估值挑选法:有些问题,由于题目条件管制,无法(或没必要)展开精准的运算和推论,此时就可以利用估计,通过观察、分析、比较、测算,从面得出结论恰当推论的方法。
以上就是由数学网为您提供的中考数学答题技巧:选择题十大解题技巧,祝你高考拿高分,鲤鱼跳龙门!加油!。
2020高考数学选择题的十大万能解题方法
高考数学选择题的十大万能解题方法1、特值检验法:对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。
2、极端性原则:将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。
极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。
3、剔除法:利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。
这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。
4、数形结合法:由题目条件,作出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。
数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。
5、递推归纳法:通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。
6、顺推破解法:利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。
7、逆推验证法(代答案入题干验证法):将选择支代入题干进行验证,从而否定错误选择支而得出正确选择支的方法。
8、正难则反法:从题的正面解决比较难时,可从选择支出发逐步逆推找出符合条件的结论,或从反面出发得出结论。
9、特征分析法:对题设和选择支的特点进行分析,发现规律,归纳得出正确判断的方法。
10、估值选择法:有些问题,由于题目条件限制,无法(或没有必要)进行精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的方法。
高考数学选择题十大高效解题法
高考数学选择题十大高效解题法选择题解法可归纳为:6大漏洞、8大法则。
“6大漏洞”是指:有且只有一个正确答案;不问过程只问结果;题目有暗示;答案有暗示;错误答案有严格标准;正确答案有严格标准;“8大原则”是指:选项唯一原则;范围最大原则;定量转定性原则;选项对比原则;题目暗示原则;选择项暗示原则;客观接受原则;语言的精确度原则。
下面是选择题解法实例:1.特值检验法对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。
例:△ABC的三个顶点在椭圆4x2+5y2=6上,其中A、B两点关于原点O对称,设直线AC的斜率k1,直线BC的斜率k2,则k1k2的值为A.-5/4B.-4/5C.4/5D.2√5/5解析:因为要求k1k2的值,由题干暗示可知道k1k2的值为定值。
题中没有给定A、B、C三点的具体位置,因为是选择题,我们没有必要去求解,通过简单的画图,就可取最容易计算的值,不妨令A、B分别为椭圆的长轴上的两个顶点,C为椭圆的短轴上的一个顶点,这样直接确认交点,可将问题简单化,由此可得,故选B。
2.极端性原则将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。
极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。
3.剔除法利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。
这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。
4.数形结合法由题目条件,作出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。
数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。
5.递推归纳法通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。
高考数学选择题解题十大技巧
高考数学选择题解题十大技巧高考数学选择题比其他类型题目难度较低,但知识覆盖面广,要求解题熟练、灵活、快速、准确。
现总结了以下十个选择题的答题技巧,帮助同学们提高答题效率及准确率。
1.剔除法:利用已知条件和选项所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。
这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。
2.顺推解除法:利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。
3.逆推验证法(代答案入题干验证法):将选项代入题干进行验证,从而否定错误选项而得出正确答案的方法。
4.正难则反法:从题的正面解决比较难时,可从选项出发逐步逆推找出符合条件的结论,或从反面出发得出结论。
5.数形结合法:由题目条件,做出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。
数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。
6.递推归纳法:通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。
7.特征分析法:对题设和选择项的特点进行分析,发现规律,归纳得出正确判断的方法。
8.估值选择法:有些问题,由于题目条件限制,无法(或没有必要)进行精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的方法。
9.特特殊值检验法:对于具有一般性的数学问题,在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。
10.极端性原则:将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。
极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,采用极端性去分析,就能瞬间解决问题。
高考数学选择题十大解题技巧
高考数学选择题十大解题技巧高考数学选择题比其他类型题目难度较低,但知识覆盖面广,要求解题熟练、灵活、快速、准确。
现总结了以下十个选择题的答题技巧,帮助同学们提高答题效率及准确率。
1.剔除法:利用已知条件和选项所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。
这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。
2.特特殊值检验法:对于具有一般性的数学问题,在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。
3.极端性原则:将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。
极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,采用极端性去分析,就能瞬间解决问题。
4.顺推破解法:利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。
5.逆推验证法(代答案入题干验证法):将选项代入题干进行验证,从而否定错误选项而得出正确答案的方法。
6.正难则反法:从题的正面解决比较难时,可从选项出发逐步逆推找出符合条件的结论,或从反面出发得出结论。
7.数形结合法:由题目条件,做出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。
数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。
8.递推归纳法:通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。
9.特征分析法:对题设和选择项的特点进行分析,发现规律,归纳得出正确判断的方法。
10.估值选择法:有些问题,由于题目条件限制,无法(或没有必要)进行精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的方法。
1。
备战高考 高考数学选择题10大解题法则
备战高考高考数学选择题10大解题法则
备战高考高考数学选择题10大解题法则
今天,小编为大家整理了高考数学选择题10大解题法则,一起来看看!更多内容尽请关注学习方法网!
备战高考 |高考数学选择题10大解题法则
1.特值检验法:对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。
2.极端性原则:将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。
极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。
3.剔除法:利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。
这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。
4.数形结合法:由题目条件,作出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。
数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。
5.递推归纳法:通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。
高中高考数学选择题的10种常用解法
高考数学的10 种常用解法解数学有两个根本思路:一是直接法;二是接法①充分利用干和支两方面提供的信息,快速、准确地作出判断是解的根本策略。
②解的根本思想是:既要看到通常各常的解思想,原上都可以指的解答;更看到。
根据的特殊性,必定存在着假设干异于常的特殊解法。
我需把两方面有机地合起来,具体具体分析。
1、直接求解法11、如果log7log 3log 2 x0 ,那么x 2 等于〔〕A1B3C3D236942、方程xsin x 的数解的个数〔〕100A 61B 62C 63D 64精1. f(x)=x(sinx+1)+ax 2,f(3)=5, f(- 3)=() (A) - 5(B) - 1(C)1(D) 无法确定2.假设定在数集R 上的函数 y=f(x+1)-1的反函数是 y=f(x- 1),且 f(0)=1, f(2001) 的 ( )(A)1(B)2000(C)2001(D)20023.奇函数 f(x) 足: f(x)=f(x+2) ,且当 x∈ (0,1), f(x)=2 x- 1, f (log 1 24) 的2〔A 〕1〔 B 〕5〔 C〕5〔 D 〕23 2224244. a>b>c,n∈ N,且11n恒成立, n的最大是〔〕b c aa b c(A)2(B)3(C)4(D)55.如果把 y=f(x) 在 x=a及 x=b 之的一段象近似地看作直的一段,a≤ c≤b,那么 f(c)的近似可表示〔〕1f (a) f (b)(B) f (a) f (b) (C) f (a)c a[ f (b) f (a)] (D) f (a)c a(A)b a b [ f (b) f (a)]2a6.有三个命:①垂直于同一个平面的两条直平行;② 平面的一条斜 l 有且有一个平面与垂直;③异面直a, b 不垂直,那么 a 的任一平面与 b 都不垂直。
其中正确的命的个数 ().1C7.数列 1,1+2,1+2+2 2, ⋯ ,1+2+22+⋯ +2n-1, ⋯的前 99 的和是〔〕〔 A 〕 2100- 101〔 B〕 299- 101〔 C〕 2100- 99〔 D〕 299- 99精答案: B DACCDA2、特例法把特殊值代入原题或考虑特殊情况、 特殊位置, 从而作出判断的方法称为特例法〔特殊值法〕(1) 、从特殊结构入手3 一个正四面体,各棱长均为2 ,那么对棱的距离为〔〕A 、1B 、1C 、 2D 、222(2)、从特殊数值入手4、 sin xcos x1 x2 ,那么 tan x 的值为〔 〕,54 B 、4 3 3 4A 、或 4C 、D 、33435、△ ABC 中, cosAcosBcosC 的最大值是〔〕3 1 C 、 11A 、3B 、D 、882(3) 、从特殊位置入手6、如图 2,一个正三角形内接于一个边长为 a 的正三角形中,问x 取什么值时,内接正三角形的面积最小〔〕A 、aB 、aC 、aD 、3 a 图 223 427、双曲线 x 2y 2 1的左焦点为 F ,点 P 为左支下半支异于顶点的任意一点,那么直线PF的斜率的变化范围是〔〕A 、 ( ,0)B 、 ( , 1) U (1, )C 、 ( ,0) U (1, )D 、 (1, )(4) 、从变化趋势入手8、用长度分别为 2、3、 4、 5、6〔单位: cm 〕的 5 根细木棍围成一个三角形〔允许连接,但不允许折断〕,能够得到的三角形的最大面积为多少〔〕A 、 8 5 cm 2B 、 610 cm 2 C 、 3 55 cm 2D 、 20 cm 29、 a b1,P lg a lg b ,Q1 lg a lg b , R lgab,那么〔〕22A R P QB P Q RC Q P RD P R Q注:此题也可尝试利用根本不等式进行变换.10、一个 方体共一 点的三个面的面 分 是2, 3,6 , 个 方体 角 的 是A 2 3B 3 2C 6D 6〔〕精1.假设 04, 〔〕(A) sin 2sin (B) cos2cos (C) tan2 tan (D) cot 2 cot 2.如果函数 y=sin2x+a cos2x 的 象关于直x= - 称,那么 a=()8(A) 2(B) - 2(C)1 (D) - 13. f(x)=x1 +1(x ≥ 1).函数 g(x)的 象沿 x 方向平移 1 个 位后,恰好与f(x) 的象关于直 y=x 称, g(x) 的解析式是〔 〕〔A 〕 x 2+1(x ≥0)(B)(x - 2)2+1(x ≥ 2) (C) x 2+1(x ≥1) (D)(x+2) 2+1(x ≥ 2)4.直三棱柱 ABC — A / B / C / 的体 V , P 、 Q 分 棱 AA /、 CC /上的点,且 AP=C / Q ,四棱 B — APQC 的体 是〔 〕〔A 〕 1V〔 B 〕 1V〔 C 〕 1V〔D 〕 1V23455.在△ ABC 中, A=2B , sinBsinC+sin 2B=()(A)sin 2A (B)sin 2B(C)sin 2C(D)sin2B6.假设 (1-2x) 80 12 x 2 8 8128)=a +a x+a +⋯ +a x ,|a |+|a |+ ⋯ +|a|=(〔 A 〕 1〔 B 〕- 1〔 C 〕 38- 1〔 D 〕 28- 17.一个等差数列的前 n 和 48,前2n 和60, 它的前3n 和 〔〕(A) 24(B) 84(C) 72(D) 368.如果等比数列a n 的首 是正数,公比大于1,那么数列 log 1 a n是〔〕3(A) 增的等比数列;(B) 减的等比数列;(C) 增的等差数列;(D) 减的等差数列。
【高中数学】高考数学选择题十大解题方法总结
【高中数学】高考数学选择题十大解题方法总结高考数学选择题十大解题方法,希望你喜欢。
1.特值检验法:对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。
2.极端性原则:将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。
极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。
3.剔除法:利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。
这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。
4.数形结合法:由题目条件,作出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。
数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。
5.递推归纳法:通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。
6.顺推破解法:利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。
7.逆推验证法(代答案入题干验证法):将选择支代入题干进行验证,从而否定错误选择支而得出正确选择支的方法。
8.正难则反法:从题的正面解决比较难时,可从选择支出发逐步逆推找出符合条件的结论,或从反面出发得出结论。
9.特征分析法:对题设和选择支的特点进行分析,发现规律,归纳得出正确判断的方法。
10.估值选择法:有些问题,由于题目条件限制,无法(或没有必要)进行精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的方法。
高考数学选择题十大解题方法就为大家介绍到这里,希望对你有所帮助。
感谢您的阅读,祝您生活愉快。
掌握10种高考数学选择题答题技巧 答题速度快一倍
掌握10种高考数学选择题答题技巧答题速度快一倍以下是10种高考数学选择题答题技巧,可以帮助提高答题速度:1. 首先通读题目:在开始解答任何选择题之前,先通读整个题目,理解题目要求和给出的信息。
这有助于提前筛选选项,并确定解题的思路。
2. 分析选项:仔细阅读选项,排除明显错误的选项,然后再根据解题思路和题目要求判断剩余选项的正确与否。
3. 利用近似法:如果选项中有数值,可以利用近似法快速估算答案。
通过对选项中的数值进行快速评估,可以帮助排除一些不可能的答案。
4. 注意特殊情况:有些题目可能涉及到特殊情况,例如除法运算中除数为零的情况等。
对于这些情况,要特别注意,并合理选择答案。
5. 利用排除法:利用排除法可以帮助快速缩小选项范围。
如果可以排除某些选项,就可以将注意力集中在剩余的选项上,并更快地找到正确答案。
6. 多角度思考:尝试从不同的角度思考问题,可能会发现不同的解题路径或思路。
这有助于更好地理解题目,并更快地解答出正确答案。
7. 注意单位转换:在物理题或几何题中,可能涉及到单位转换。
在计算过程中要注意单位的转换,以确保得出正确的答案。
8. 注意题目中的关键词:题目中可能出现一些关键词,例如“最大值”、“最小值”、“平均值”等。
对于这些关键词,要特别注意,并在解题过程中加以利用。
9. 注意图表信息:对于涉及图表的题目,要善于利用图表中给出的信息,例如直线斜率、图表趋势等。
这些信息可以帮助更快地解答问题。
10. 练习做题:做更多的练习题可以帮助熟悉各种题型和解题方法,提高解题的速度和准确性。
在备考期间,多做模拟试题,并检查解题方法和答案是否正确。
通过掌握这些技巧,并不断进行练习和实践,可以提高在高考数学选择题中的答题速度,更快地找到正确的答案。
高考数学选择题十大解题方法
高考数学选择题十大解题方法1。
特值检验法:关于具有一样性的数学问题,我们在解题过程中,能够将问题专门化,利用问题在某一专门情形下不真,则它在一样情形下不真这一原理,达到去伪存确实目的。
2。
极端性原则:将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。
极端性多数应用在求极值、取值范畴、解析几何上面,专门多运算步骤繁琐、运算量大的题,一但采纳极端性去分析,那么就能瞬时解决问题。
3。
剔除法:利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。
这是一种常用的方法,专门是答案为定值,或者有数值范畴时,取专门点代入验证即可排除。
4。
数形结合法:由题目条件,作出符合题意的图形或图象,借助图形或图象的直观性,通过简单的推理或运算,从而得出答案的方法。
数形结合的好处确实是直观,甚至能够用量角尺直截了当量出结果来。
5。
递推归纳法:通过题目条件进行推理,查找规律,从而归纳出正确答案的方法。
6。
顺推破解法:利用数学定理、公式、法则、定义和题意,通过直截了当演算推理得出结果的方法。
7。
逆推验证法(代答案入题干验证法):将选择支代入题干进行验证,从而否定错误选择支而得出正确选择支的方法。
8。
正难则反法:从题的正面解决比较难时,可从选择支动身逐步逆推找出符合条件的结论,或从反面动身得出结论。
9。
特点分析法:对题设和选择支的特点进行分析,发觉规律,归纳得出正确判定的方法。
10。
估值选择法:有些问题,由于题目条件限制,无法(或没有必要)进行精准的运算和判定,现在只能借助估算,通过观看、分析、比较、推算,从面得出正确判定的方法。
要练说,得练听。
听是说的前提,听得准确,才有条件正确仿照,才能不断地把握高一级水平的语言。
我在教学中,注意听说结合,训练幼儿听的能力,课堂上,我专门重视教师的语言,我对幼儿说话,注意声音清晰,高低起伏,抑扬有致,富有吸引力,如此能引起幼儿的注意。
高中数学选择题10大解题技巧
高中数学选择题10大解题技巧高中数学解题模板高中数学选择题10大解题技巧。
这十种方法涵盖了高中数学的选择题解题的技巧,套用一下试试看,你会发现选择题拿满分真心不是事儿。
1.特值检验法对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。
例:△ABC的三个顶点在椭圆4x2+5y2=6上,其中A、B两点关于原点O对称,设直线AC的斜率k1,直线BC的斜率k2,则k1k2的值为A.-5/4B.-4/5C.4/5D.25/5解析:因为要求k1k2的值,由题干暗示可知道k1k2的值为定值。
题中没有给定A、B、C三点的具体位置,因为是选择题,我们没有必要去求解,通过简单的画图,就可取最容易计算的值,不妨令A、B 分别为椭圆的长轴上的两个顶点,C为椭圆的短轴上的一个顶点,这样直接确认交点,可将问题简单化,由此可得,故选B.2.极端性原则将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。
极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。
3.剔除法利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。
这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。
4.数形结合法由题目条件,作出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。
数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。
5.递推归纳法:通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。
6.顺推破解法:利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。
例:银行计划将某资金给项目M和N投资一年,其中40%的资金给项目M,60%的资金给项目N,项目M能获得10%的年利润,项目N能获得35%的年利润,年终银行必须回笼资金,同时按一定的回扣率支付给储户。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学备考资料:高考数学选择题十大万能解题方法1.特值检验法:对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。
2.极端性原则:将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。
极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。
3.剔除法:利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。
这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。
4.数形结合法:由题目条件,作出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。
数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。
5.递推归纳法:通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。
6.顺推破解法:利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。
7.逆推验证法(代答案入题干验证法):将选择支代入题干进行验证,从而否定错误选择支而得出正确选择支的方法。
8.正难则反法:从题的正面解决比较难时,可从选择支出发逐步逆推找出符合条件的结论,或从反面出发得出结论。
9.特征分析法:对题设和选择支的特点进行分析,发现规律,归纳得出正确判断的方法。
10.估值选择法:有些问题,由于题目条件限制,无法(或没有必要)进行精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的方法。