二元一次方程组 教案
二元一次方程教案
二元一次方程教案二元一次方程教案(精选8篇)作为一名为他人授业解惑的教育工作者,总不可避免地需要编写教案,教案有助于学生理解并掌握系统的知识。
怎样写教案才更能起到其作用呢?下面是店铺为大家整理的二元一次方程教案,供大家参考借鉴,希望可以帮助到有需要的朋友。
二元一次方程教案篇1一、教学目标:1.理解二元一次方程及二元一次方程的解的概念;2.学会求出某二元一次方程的几个解和检验某对数值是否为二元一次方程的解;3.学会把二元一次方程中的一个未知数用另一个未知数的一次式来表示;4.在解决问题的过程中,渗透类比的思想方法,并渗透德育教育二、教学重点、难点:重点:二元一次方程的意义及二元一次方程的解的概念难点:把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程三、教学方法与教学手段:通过与一元一次方程的比较,加强学生的类比的思想方法;通过“合作学习”,使学生认识数学是根据实际的需要而产生发展的观点四、教学过程:1.情景导入:新闻链接:桐乡70岁以上老人可领取生活补助,得到方程:80a+150b=902 880。
2.新课教学:引导学生观察方程80a+150b=902 880与一元一次方程有异同?得出二元一次方程的概念:含有两个未知数,并且所含未知数的项的次数都是1次的方程叫做二元一次方程做一做:1.根据题意列出方程:①小明去看望奶奶,买了5 kg苹果和3 kg梨共花去23元,分别求苹果和梨的单价,设苹果的单价x元/kg ,梨的单价y元/kg;②在高速公路上,一辆轿车行驶2时的路程比一辆卡车行驶3时的路程还多20千米,如果设轿车的速度是a千米/小时,卡车的速度是b千米/小时,可得方程:(2)课本P80练习2.判定哪些式子是二元一次方程方程。
合作学习:活动背景爱心满人间——记求是中学“学雷锋、关爱老人”志愿者活动。
问题:参加活动的36名志愿者,分为劳动组和文艺组,其中劳动组每组3人,文艺组每组6人,团支书拟安排8个劳动组,2个文艺,单从人数上考虑,此方案是否可行?为什么?把x=8,y=2代入二元一次方程3x+6y=36,看看左右两边有没有相等?由学生检验得出代入方程后,能使方程两边相等,得出二元一次方程的解的概念:使二元一次方程两边的值相等的一对未知数的值叫做二元一次方程的一个解。
七年级数学二元一次方程组解法教案(优秀6篇)
七年级数学二元一次方程组解法教案(优秀6篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如合同协议、条据文书、策划方案、总结报告、党团资料、读书笔记、读后感、作文大全、教案资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as contract agreements, documentary evidence, planning plans, summary reports, party and youth organization materials, reading notes, post reading reflections, essay encyclopedias, lesson plan materials, other sample essays, etc. If you want to learn about different formats and writing methods of sample essays, please stay tuned!七年级数学二元一次方程组解法教案(优秀6篇)《二元一次方程与一次函数》教学设计这次漂亮的本店铺为亲带来了6篇《七年级数学二元一次方程组解法教案》,希望能够满足亲的需求。
二元一次方程组教案3 篇
二元一次方程组教案3 篇一、学习内容分析:执教者钱嘉颖时间XXXX年6月12日1、选自初一年级(下)数学学科第八章(第一单元)第一节(课)(1课时45分钟)2、教材内容简要分析教材以引言中的一个实际例子,“一班和二班进行篮球比赛,总共打了22场。
每胜一场得2分,每负一场得1分,已知比赛结束一班累计得了40分,思考:一班胜了多少场,负了多少场”来开展这次课程。
以本例来首先回忆已学过的一元一次方程的知识内容,以此作为切入点,引导学生思考用两个未知数来表示方程,借此进入二元一次方程的介绍。
之后,引导学生利用一元一次方程的解法特点来思考二元一次方程组的解答方法,本次课程内容主要介绍了代入解答法(也称消元法)的详细解答过程,以及二元一次方程组的实际运用及解答,让学习者更好的吸收及掌握二元一次方程组和二元一次方程组的消元法。
另外,在本单元结束介绍了作为课外知识的“二元一次方程古代表示方法”。
3、学习内容分析表:知识点重点难点编号内容1二元一次方程组定义及特点二元一次方程组的两个特点二元一次方程组成立的条件(未知数要同时满足两个条件)2二元一次方程组代入消元法代入消元法的具体解法消元法与一元一次方程解法间的联系3二元一次方程组实际运用以实际例题列出方程并解答未知数的假设以及运用已知条件列出正确方程。
二、学习者分析:本次教学的对象是云南省某中学的初中一年级学生,平均年龄12岁。
初一年级是学生由幼稚的童年向青年转化和个性逐渐成型的重要转折点,初一年级学生具有其特殊性。
初一年级学生由于刚刚接触完全不同于小学的学习生活而有手足无措的情况。
而在这个时期的学生生理和心理飞速发展变化,自我意识开始强烈,有了自己的兴趣,独立性增强,感情趋于丰富复杂化,有一定独立思考的能力、一定程度的抽象思维能力和逻辑思维能力,处于识记能力最强的时期。
此时,进行的教育可以更加重视独立思考,在数学教学中更加重视引导教学,致使学习者能够更加深刻的理解所学知识,达到教学目标。
二元一次方程组教案
教学目标:1.知识技能(1)会用代入消元法解二元一次方程组;(2)了解“消元”思想,初步体会数学研究中“化未知为已知”的化归思想.2.数学思考通过对方程组中的未知数特点的观察和分析,明确解二元一次方程组的主要思路是“消元”,从而促成由未知向已知转化,培养学生观察能力和体会化归思想:3.问题解决通过用代入消元法解二元一次方程组的训练,及选用合理、简捷的方法解方程组,培养学生的运算能力。
4.情感目标:通过研究探讨解决问题的方法,培养学生会作交流意识与探究精神。
教学重点:用代入消元法解二元一次方程组.教学难点:在解题过程中体会“消元”思想和“化未知为已知”的化归思想.教学过程:第一环节:情境引入教师引导学生共同回忆上一节课讨论的“买门票”问题,想一想当时是怎么获得二元一次方程组的解的.设他们中有x 个成人,y 个儿童,我们得到了方程组⎩⎨⎧=+=+.3435,8y x y x 成人和儿童到底去了多少人呢?在上一节课的“做一做”中,我们通过检验⎩⎨⎧==3,5y x 是不是方程8x y +=和方程5334x y +=的解,从而得知这个解既是8x y +=的解,也是5334x y +=的解,根据二元一次方程组的解的定义,得出⎩⎨⎧==3,5y x 是方程组⎩⎨⎧=+=+3435,8y x y x 的解.所以成人和儿童分别去了5人和3人. 提出问题:每一个二元一次方程的解都有无数多个,而方程组的解是方程组中各个方程的公共解,前面的方法中我们找到了这个公共解,但如果数据不巧,这可没那么容易,那么,有什么方法可以获得任意一个二元一次方程组的解呢?第二环节:探索新知问:回顾七年级第一学期学习的一元一次方程,是不是也曾碰到过类似的问题,能否利用一元一次方程求解该问题?解:设去了x 个成人,则去了(8)x -个儿童,根据题意,得:()53834x x +-= 解得:5x =将5x =代入8x -, 解得:8-5=3.答:去了5个成人, 3个儿童.(先让学生独立思考,然后在学生充分思考的前提下,进行小组讨论,在此基础上由学生代表回答,老师适时地引导与补充,力求通过学生观察、思考与讨论后能得出以下的一些要点.)1.列二元一次方程组设有两个未知数:x 个成人,y 个儿童.列一元一次方程只设了一个未知数:x 个成人,儿童去的个数通过去的总人数与去的成人数相比较,得出(8)x -个.因此y 应该等于(8)x -.而由二元一次方程组的一个方程8x y +=,根据等式的性质可以推出8y x =-.2.发现一元一次方程中53(8)34x x +-=与方程组中的第二个方程5334x y +=相类似,只需把5334x y +=中的“y ”用“()8x -”代替就转化成了一元一次方程.(由学生来回答)上一节课我们就已知道方程组中相同的字母表示的是同一个未知量.所以将⎩⎨⎧=+=+②y x ①y x 3435,8中的①变形,得8y x =-③,我们把8y x =-代入方程②,即将②中的y 用()8x -代替,这样就有()53834x x +-=.“二元”化成“一元”.教师总结:这就是我们在数学研究中经常用到的“化未知为已知”的化归思想,通过它使问题得到完美解决.下面我们完整地解一下这个二元一次方程组.(教师把解答的详细过程板书在黑板上,并要求学生一起来完成) 解:8,5334.x y x y +=⎧⎨+=⎩由①得:8y x =-. ③ 将③代入②得:()53834x x +-=.解得:5x =.把5x =代入③得:3y =.所以原方程组的解为:⎩⎨⎧==.3,5y x(提醒学生进行检验,即把求出的解代入原方程组,必然使原方程组中的每个方程都同时成立,如不成立,则可知解有误)下面我们试着用这种方法来解答上一节的“谁的包裹多”的问题.第三环节:巩固新知内容:1.例:解下列方程组:(1) ⎩⎨⎧+==+;3,1423y x y x (2)⎩⎨⎧=+=+.134,1632y x y x(根据学生的情况可以选择学生自己完成或教师指导完成) (1)解:将②代入①,得:()14233=++y y .解得:1=y .把1y =代入②,得:4=x .所以原方程组的解为:⎩⎨⎧==.1,4y x(2)由②,得:y x 413-=. ③ 将③代入①,得:()1634132=+-y y . 解得:2=y .将y=2代入③,得:5=x .所以原方程组的解是⎩⎨⎧==.2,5y x2.思考总结:⑴给这种解方程组的方法取个什么名字好? ⑵上面解方程组的基本思路是什么? ⑶主要步骤有哪些?⑷我们观察例题的解法会发现,我们在解方程组之前,首先要观察方程组中未知数的特点,尽可能地选择变形后的方程较简单和代入后化简比较容易的方程变形,这是关键的一步.你认为选择未知数有何特点的方程变形好呢?1.在解上面两个二元一次方程组时,我们都是将其中的一个方程变形,即用含其中一个未知数的代数式表示另一个未知数,然后代入另一个未变形的方程,从而由“二元”转化为“一元”,达到消元的目的.我们将这种方法叫代入消元法.2.解二元一次方程组的基本思路是消元,把“二元”变为“一元”.3.解上述方程组的步骤:第一步:在已知方程组的两个方程中选择一个适当的方程,将它的某个未知数用含有另一个未知数的代数式表示出来.第二步:把此代数式代入没有变形的另一个方程中,可得一个一元一次方程. 第三步:解这个一元一次方程,得到一个未知数的值.第四步:把求得的未知数的值代回到原方程组中的任意一个方程或变形后的方程(一般代入变形后的方程),求得另一个未知数的值.第五步:把方程组的解表示出来.第六步:检验(口算或笔算在草稿纸上进行),即把求得的解代入每一个方程看是否成立.4.用代入消元法解二元一次方程组时,尽量选取一个未知数的系数的绝对值是1的方程进行变形;若未知数的系数的绝对值都不是1,则选取系数的绝对值较小的方程变形.第四环节:练习提高1.教材随堂练习2.补充练习:用代入消元法解下列方程组:(1)⎩⎨⎧=-=+;32,42y x y x (2)⎩⎨⎧=+=-;32,1943y x y x ⑶⎪⎩⎪⎨⎧=-+=-.023,723y x y x第五环节:课堂小结总结解二元一次方程组的基本思路是“消元”,即把“二元”变为“一元”; 解二元一次方程组的第一种解法——代入消元法,其主要步骤是:将其中的一个方程中的某个未知数用含有另一个未知数的代数式表示出来,并代入另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程.解这个一元一次方程,便可得到一个未知数的值,再将所求未知数的值代入变形后的方程,便求出了一对未知数的值.即求得了方程组的解.第六环节:布置作业1.课本习题2.解答习题第3题板书:用代入消元法解二元一次方程组 思路: 消元,把“二元”变为“一元”.解二元一次方程组的步骤: 1.变形 2.代入 3.求解教学反思:补充练习:用代入消元法解二元一次方程组(1)⎩⎨⎧=-=+;32,42y x y x (2)⎩⎨⎧=+=-;32,1943y x y x⑶⎪⎩⎪⎨⎧=-+=-.023,723y x y x (4)用代入消元法解二元一次方程组(1)⎩⎨⎧=-=+;32,42y x y x (2)⎩⎨⎧=+=-;32,1943y x y x⑶⎪⎩⎪⎨⎧=-+=-.023,723y x y x (4)。
8.1二元一次方程组(教案)
在本次《二元一次方程组》的教学中,我发现了一些值得思考的问题和亮点。首先,学生对二元一次方程组的概念和结构掌握得比较扎实,能够理解并运用代入法和加减消元法解题。然而,在具体操作过程中,部分学生对于如何选择合适的方程进行代入以及如何进行消元还存在一定的困难。
在讲授新课环节,我通过案例分析和实际操作,让学生体会到了二元一次方程组在现实生活中的应用。这一点得到了学生的积极反馈,他们对此表现出浓厚的兴趣。但同时,我也意识到,在今后的教学中,需要更加注重培养学生的逻辑思维能力和问题解决能力。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“二元一次方程组在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
-在讲解代入法时,以\( \begin{cases} {x+y=5} \\ {2x-y=3}\end{cases}\)为例,强调如何从方程组中选取合适的方程进行代入。
-通过\( \begin{cases} {3x+4y=7} \\ {2x+3y=5}\end{cases}\)讲解加减消元法,让学生掌握消元的步骤和技巧。
-针对实际问题,如“甲乙两地相距120公里,甲车从甲地出发,以每小时40公里的速度向乙地行驶,同时乙车从乙地出发,以每小时30公里的速度向甲地行驶,两车多久后相遇?”,指导学生如何从中提取信息,建立方程组\( \begin{cases} {x+y=120} \\ {4x+3y=0}\end{cases}\)。
《二元一次方程组》教案
2.2二元一次方程组参考教案一、背景介绍及教学资料本节课是在学生学习了二元一次方程的基础上,通过用天平直观形象的展示抽象出二元一次方程组的概念,体会方程组的模型思想,进一步让学生经历体会从实际问题中抽象出数学问题,培养学生良好的数学应用意识.为进一步学习二元一次方程组的解法奠定基础.二、教学设计【教学内容分析】本节课提出二元一次方程组和二元一次方程组解的概念,并利用列表尝试的方法求简单二元一次方程组的解.为接下去学习二元一次方程组的解法作准备.【教学目标】1、了解二元一次方程组的概念和二元一次方程组解的含义.2、会检验一对数是不是二元一次方程组的解,会利用列表尝试的方法求简单二元一次方程组的解.3、通过对实际问题的分析,使学生进一步体会方程组是刻画现实世界的有效数学模型,同时培养学生观察、归纳、概括能力.【教学重点、难点】重点是二元一次方程组的意义和二元一次方程组解的概念.难点是利用列表尝试的方法求简单二元一次方程组的解.【教学准备】多媒体、实物投影仪.【教学过程】教学环节教师活动学生活动设计意图创设情境提出图中画的是什么?问题展示:学生欣赏被称为被称为“现代绘画之父”的法国保罗·塞尚的作品引发学生兴趣.问题一个苹果和一个梨的质量合计200g 这个苹果的质量加上一个10g的砝码恰好与这个梨的质量相等,问苹果和梨的质量各为多少g?这个问题中,如果设苹果和梨的质量分别为x g和y g,你能列出几条方程?请把它们列出来.交流讨论得出:方程200x y+=和10y x=+经历从实际问题中抽象出二元一次方程组的过程,体会方程的模型思想”尝试探索引出新知做一做1、(1)已知方程200x y+=,填写下表:x ...85 90 95 100 105...y ......提问:你能从中确定苹果和梨子的质量吗?(2)已知方程10y x=+,填写下表:x ..85 90 95 100 105 .y ...问题:现在你能找出苹果和梨的质量分别为多少g吗?为什么?指出:两个方程中x,y的值必须同时满足上述两个方程,因此可以把两个方程合起来,写成:20010x yy x+=⎧⎨=+⎩自主探索,口答就方程200x y+=而言有无数组解,也就是说苹果和梨子的质量不能唯一的确定.自主探索,口答合作思考、讨论、探索解决问题得出,因为方程200x y+=和方程10y x=+中,x,y都表示同一个未知通过自主探索体会从实际问题中抽象出二元一次方程组及二元一次方程解的不确定性,与二元一次方程组的解的唯一性的辩证关系.95105xy=⎧⎨=⎩12x y =⎧⎨=⎩3328y xx y =-⎧⎨+=⎩ 32x y =⎧⎨=-⎩ 23y xx y =⎧⎨+=⎩ 21x y =⎧⎨=⎩1325y x x y =-⎧⎨+=⎩例 题 讲 解PPT 演示讲解课本例题.总结列表尝试法一般步骤:1.尝试在一定范围内先确定满足其中一个方程的一些解; 2.再代入检验解是否满足另一个方程; 3.同时满足这两个方程的解就是方程组的解.应用 探究 发展能力 巩固练习小聪全家外出旅游,估计需要胶卷底片120张,商店里有两种型号的胶卷:A 型每卷36张底片,B 型每卷12张底片,小聪一共买了4卷胶卷,刚好有120张底片.如果设两种胶卷分别买了x 卷和y 卷,请根据问题中的条件列出关于x ,y 的方程组,并用列表尝试的方法求两种胶卷的数量.(结合本例让学生自主解决课本中的例题)指出: 因为x ,y 必须取正整数(为什么?)x 的最小可能性是多少?分组讨论,交流解:根据条件可列出关于x ,y 的方程组43612120x y x y +=⎧⎨+=⎩ 因为胶卷是整卷卖的,所以x 的最小取值是1.综合运用知识养学生探究、创新的精神和合作交流的意识.所以可以列表尝试如下:x1 2 3y36x+12 y 显然,只有x=3,y=1符合这个方程组,所以方程组的解是答:小聪买了A型胶卷3卷,B型胶卷1卷.x1 2 3y336x+12y反馈练习及时调控1,已知两个自然数的和是67,差是3.设这两个自然数分别是x,y,请列出关于x,y的方程组,并用列表尝试的方法求出这两个自然数.2、探究活动把一根长为1.2m的铁丝折成一个长方形,长方形的长和宽有多少种不同的取法?要使取法只有一种,你准备增加什么条件?设折成的长方形的长与宽分别为x,y,根据题设和你所增加的条件列出方程组.自主练习分组合作,交流探讨,尝试让学生自编习题,1、针对难点设计练习题以随时反馈教学效果.2、尝试让学生自编习题,提高学生探索问题分析问题能力.回顾小节通过这节课的学习,你有什么收获?讨论、整理、口答相互补充.引导学生思考、交流、梳理所学知识.31xy=⎧⎨=⎩教后总结:本节课通过被称为被称为“现代绘画之父”的法国保罗·塞尚的作品引发学生兴趣,导入课题.用天平直观形象的展示抽象出二元一次方程组的过程,体会方程组的模型思想,进一步让学生经历体会从实际问题中抽象出数学问题,发展学生灵活运用有关知识解决实际问题的能力,培养学生良好的数学应用意识.同时综合运用探索、启发等几种方法.体会从实际问题中抽象出二元一次方程组及二元一次方程解的不确定性,与二元一次方程组的解的唯一性的辩证关系.并结合多媒体、实物投影仪等现代教学手段实施教学,体现直观性.使学生进一步体会方程组是刻画现实世界的有效数学模型.通过合作探索:“把一根长为1.2m的铁丝折成一个长方形,长方形的长和宽有多少种不同的取法?要使取法只有一种,你准备增加什么条件?” 尝试让学生自编习题,提高学生探索问题分析问题能力.从而较好地完成二元一次方程组和二元一次方程组的解的概念的建构,达到教学目标.。
初中二元一次方程数学教案三篇
【导语】教案是教师为顺利⽽有效地开展教学活动,根据课程标准,教学⼤纲和教科书要求及学⽣的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学⽅法等进⾏的具体设计和安排的⼀种实⽤性教学⽂书。
©⽆忧考⽹准备了以下内容,供⼤家参考!篇⼀:应⽤⼆元⼀次⽅程组——鸡兔同笼 教学⽬标: 知识与技能⽬标: 通过对实际问题的分析,使学⽣进⼀步体会⽅程组是刻画现实世界的有效数学模型,初步掌握列⼆元⼀次⽅程组解应⽤题.初步体会解⼆元⼀次⽅程组的基本思想“消元”。
培养学⽣列⽅程组解决实际问题的意识,增强学⽣的数学应⽤能⼒。
过程与⽅法⽬标: 经历和体验列⽅程组解决实际问题的过程,进⼀步体会⽅程(组)是刻画现实世界的有效数学模型。
情感态度与价值观⽬标: 1.进⼀步丰富学⽣数学学习的成功体验,激发学⽣对数学学习的好奇⼼,进⼀步形成积极参与数学活动、主动与他⼈合作交流的意识. 2.通过"鸡兔同笼",把同学们带⼊古代的数学问题情景,学⽣体会到数学中的"趣";进⼀步强调课堂与⽣活的联系,突出显⽰数学教学的实际价值,培养学⽣的⼈⽂精神。
重点: 经历和体验列⽅程组解决实际问题的过程;增强学⽣的数学应⽤能⼒。
难点: 确⽴等量关系,列出正确的⼆元⼀次⽅程组。
教学流程: 课前回顾 复习:列⼀元⼀次⽅程解应⽤题的⼀般步骤 情境引⼊ 探究1:今有鸡兔同笼, 上有三⼗五头, 下有九⼗四⾜, 问鸡兔各⼏何? “雉兔同笼”题:今有雉(鸡)兔同笼,上有35头,下有94⾜,问雉兔各⼏何? (1)画图法 ⽤表⽰头,先画35个头 将所有头都看作鸡的,⽤表⽰腿,画出了70只腿 还剩24只腿,在每个头上在加两只腿,共12个头加了两只腿 四条腿的是兔⼦(12只),两条腿的是鸡(23只) (2)⼀元⼀次⽅程法: 鸡头+兔头=35 鸡脚+兔脚=94 设鸡有x只,则兔有(35-x)只,据题意得: 2x+4(35-x)=94 ⽐算术法容易理解 想⼀想:那我们能不能⽤更简单的⽅法来解决这些问题呢? 回顾上节课学习过的⼆元⼀次⽅程,能不能解决这⼀问题? (3)⼆元⼀次⽅程法 今有鸡兔同笼,上有三⼗五头,下有九⼗四⾜,问鸡兔各⼏何? (1)上有三⼗五头的意思是鸡、兔共有头35个, 下有九⼗四⾜的意思是鸡、兔共有脚94只. (2)如设鸡有x只,兔有y只,那么鸡兔共有(x+y)只; 鸡⾜有2x只;兔⾜有4y只. 解:设笼中有鸡x只,有兔y只,由题意可得: 鸡兔合计头xy35⾜2x4y94 解此⽅程组得: 练习1: 1.设甲数为x,⼄数为y,则“甲数的⼆倍与⼄数的⼀半的和是15”,列出⽅程为_2x+05y=15 2.⼩刚有5⾓硬币和1元硬币各若⼲枚,币值共有六元五⾓,设5⾓有x枚,1元有y枚,列出⽅程为05x+y=65. 三、合作探究 探究2:以绳测井。
二元一次方程组教案
孔昭绶:同学们,你们想过没有?为什么要来读师范?诸位今日走入师范之门,习教育之法。
今后还要致力于民国之国民教育,如果不解决为何读书这个问题,势必学而不得其旨,思而不知其意。
到头来呀,自己五年的大好青春和一番苦功,都不知下到什么地方去了。
……大家都知道,我们一师素称千年学府。
自南宋理学大儒张南轩先生在此地创办城南书院至今八百余年。
虽经天灾,虽历战祸,虽经朝代变迁,帝王更迭,而绵绵不息直垂于今日。
如孙鼎臣、何绍基,如曾国藩、李元度,如谭嗣同、黄兴,历代人才辈出而灿若星辰,成为我湖湘学派生生不息之重要一支。
为什么?我想一句话就可以概括:经世致用。
何谓经世,致力于国家,致力于社会谓之经世。
那么何谓致用?以我之所学,化我之所用谓之致用。
经世致用者,就是说,我们不是为了读书而读书。
我们读书的目的,我们求学的动力,是为了学得知识,以求改变我们的国家,改变我们的社会。
我们湖南人历来读书,只为了两个字:做事。
做什么事呢?做于国于民有用之事。
毛:那校长,什么样的事?才是于国于民有用的事?孔:乱以尚武平天下,治以修文化人心。
以今时今日论,我认为首要大事,当推教育。
我中华百年积弱,正因为民智未开,只有大兴教育,才能以新知识,新文化。
扫除全民族的愚昧和落后。
教育人人,则人人得治。
人人自治,则社会必良。
社会改良,则人才必盛。
人才既出,则国势必张。
以此而推论,当今之中国,有什么事比教育还大。
欲救国强种,有什么手段能比教育还强?所以,读师范,学教育,他日学成,以我之所学,为民智之开启而效绵薄,为民族之振兴而尽一己之力,这不正是诸位经世致用的最佳途径吗?毛泽东第一次到杨昌济老师家里,由杨老师给他开“小灶”。
毛:修学储能?杨:对!修学储能就是你今天的第一课。
也是我这个老师对你这个弟子提出的学习目标。
润之,一个年轻人走进学校的目的是什么?是学习知识,更是储备能力。
孔子曰:质胜于文则野,文胜于质则史。
就是说一个人,光是能力素质强,而学问修养不够,则必无法约束自己。
(精品教案)消元法解二元一次方程组讲课稿(精选6篇)
(精品教案)消元法解二元一次方程组讲课稿(精选6篇)收集整理的消元法解二元一次方程组讲课稿(精选6篇),欢迎阅读与收藏。
1.教材的地位和作用二元一次方程组是初中数学的重点内容之一,是一元一次方程知识的连续和提高,又是学习其他数学知识的基础。
本节课是在学生学习了一元一次方程的基础上,接着学习另一种方程及方程组,它是学生系统学习二元一次方程组知识的前提和基础。
经过类比,让学生从中充分体味二元一次方程组,明白并掌握解二元一次方程组的基本概念,为往后函数等知识的学习打下基础。
2.教学目标知识目标:经过实例了解二元一次方程和它的解,二元一次方程组和它的解。
能力目标:会推断一组未知数的值是否为二元一次方程及方程组的解。
会在实际咨询题中列二元一次方程组。
情感目标:使学生经过交流、合作、讨论猎取成功体验,激发学生学习知识的兴趣,增强学生的自信心。
3.重点、难点重点:二元一次方程和二元一次方程的解,二元一次方程组和二元一次方程组的解的概念。
难点:在实际日子中二元一次方程组的应用。
现代教学理论以为,在教学过程中,学生是学习的主体,教师是学习的组织者、言道者,教学的一切活动必须以强调学生的主动性、积极性为动身点。
依照这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采纳启示式、讨论式以及说练结合的教学办法,以咨询题的提出、咨询题的解决为主线,始终在学生知识的“最近进展区”设置咨询题,倡导学生主动参与教学实践活动,以独立考虑和相互交流的形式,在教师的指导下发觉、分析和解决咨询题,在引导分析时,给学生留出脚够的考虑时刻和空间,让学生去联想、探究,从真正意义上完成对知识的自我建构。
另外,在教学过程中,我采纳多媒体辅助教学,以直观呈现教学素材,从而更好发激发学生的学习兴趣,增大教学容量,提高教学效率。
“咨询题”是数学教学的心脏,活动是数学教学中的灵魂。
因此我在学生思维最近进展区内设置并提出一系列咨询题,经过数学活动,引导学生:自主性学习,合作式学习,探索式学习等,激发学生的学习兴趣,提高学生的数学思维和参与度,力求学生在“双基”数学能力和理性精神方面得到一定进展。
二元一次方程组-教学教案
二元一次方程组-教学教案一、重点、难点分析本节教学的重点是使学生了解二元一次方程、二元一次方程组以及二元一次方程组的解的含义,会检验一对数值是否是某个二元一次方程组的解.难点是了解二元一次方程组的解的含义.这里困难在于从1个数值变成了2个数值,而且这2个数值合在一起,才算作二元一次方程组的解.用大括号来表示二元一次方程组的解,可以使学生从形式上克服理解的困难;而讲清问题中已含有两个互相联系着的未知数,把它们的值都写出来才是问题的解答.这是克服这一难点的关键所在.二、知识结构本小节通过求两个未知数的实际问题,先应用学生以学过的一元一次方程知识去解决,然后尝试设两个未知数,根据题目中的两个条件列出两个方程,从而引入二元一次方程、二元一次方程组(用描述的语言)以及二元一次方程组的解等概念.三、教法建议1.教师通过复习方程及其解和解方程等知识,创设情境,导入课题,并引入二元一次方程和二元一次方程组的概念.2.通过反复的练习让学生学会正确的判断二元一次方程及二元一次方程组.3.通过二元一次方程组的解的概念的教学,通过教师的示范作用,让学生学会正确地去检验二元一次方程组的解的问题.4.为了减少学习上的困难,使学生学到最基本、最实用的知识,教学中不宜介绍相依方程组如和矛盾方程组如等概念,也不要使方程组中任何一个方程的未知数的系数全部为0(因为这种数学中的特例较少实际意义)当然,作为特例,出现类似之类的二元一次方程组是可以的,这时可以告诉学生,方程(1)中未知数的系数为0,方程(1)也看作一个二元一次方程.教学设计示例一、素质教育目标(-)知识教学点1.了解二元一次方程、二元一次方程组和它的解的概念.2.会将一个二元一次方程写成用含一个未知数的代数式表示另一个未知数的形式.3.会检验一对数值是不是某个二元一次方程组的解.(二)能力训练点培养学生分析问题、解决问题的能力和计算能力.(三)德育渗透点培养学生严格认真的学习态度.(四)美育渗透点通过本节的学习,渗透方程组的解必须满足方程组中的每一个方程恒等的数学美,激发学生探究数学奥秘的兴趣和激情.二、学法引导1.教学方法:讨论法、练习法、尝试指导法.2.学生学法:理解二元一次方程和二元一次方程组及其解的概念,并对比方程及其解的概念,以强化对概念的辨析;同时规范检验方程组的解的书写过程,为今后的学习打下良好的数学基础.三、重点・难点・疑点及解决办法(-)重点使学生了解二元一次方程、二元一次方程组以及二元一次方程组的解的含义,会检验一对数值是否是某个二元一次方程组的解.(二)难点了解二元一次方程组的解的含义.(三)疑点及解决办法检验一对未知数的值是否为某个二元一次方程组的解必须同时满足方程组的两个方程,这是本节课的疑点.在教学中只要通过多举一系列的反例来说明,就可以辨析解决好该问题了.四、课时安排一课时.五、教具学具准备电脑或投影仪、自制胶片.六、师生互动活动设计1.教师通过复习方程及其解和解方程等知识,创设情境,导入课题,并引入二元一次方程和二元一次方程组的概念.2.通过反复的练习让学生学会正确的判断二元一次方程及二元一次方程组.3.通过二元一次方程组的解的概念的教学,通过教师的示范作用,让学生学会正确地去检验二元一次方程组的解的问题.七、教学步骤(-)明确目标本节课的教学目标为理解二元一次方程及二元一次方程组的概念并会判断一对未知数的值是否为二元一次方程组的解.(二)整体感知由复习方程及其解,导入二元一次方程及二元一次方程组的概念,并会判断它们;同时学会用一个未知数表达另一个未知数为今后的解方程组埋下伏笔;最后学会检验二元一次方程组解的问题.(三)教学过程1.创设情境、复习导入(1)什么叫方程?什么叫方程的解和解方程?你能举一个一元一次方程的例子吗?回答老师提出的问题并自由举例.【教法说明】提此问题,可使学生头脑中再现有关一元一次方程的知识,为学习二元一次方程做铺垫.(2)列一元一次方程求解.香蕉的售价为5元/千克,苹果的售价为3元/千克,小华共买了香蕉和苹果9千克,付款33元,香蕉和苹果各买了多少千克?学生活动:思考,设未知数,回答.设买了香蕉千克,那么苹果买了千克,根据题意,得解这个方程,得答:小华买了香蕉3千克,苹果6千克.上面的问题中,要求的是两个数,能不能同时设两个未知数呢?设买了香蕉千克,买了苹果千克,根据题意可得两个方程观察以上两个方程是否为一元一次方程,如果不是,那么这两个方程有什么共同特点?观察、讨论、举手发言,总结两个方程的共同特点.方程里含有两个未知数,并且未知项的次数是1,像这样的方程,叫做二元一次方程.这节课,我们就开始学习与二元一次方程密切相关的知识―二元一次方程组.【教法说明】学生自己归纳总结出方程的特点之后给出二元一次方程的概念,比直接定义印象会更深刻,有助于对概念的理解.2.探索新知,讲授新课(1)关于二元一次方程的教学.我们已经知道了什么是二元一次方程,下面完成练习.练习一判断下列方程是否为二元一次方程,并说明理由.① ② ③④ ⑤ ⑥练习二分组练习:同桌结组,一人举例,一人判断是否为二元一次方程.学生活动:以抢答形式完成练习1,指定几组同学完成练习2.【教法说明】这样做既可以活跃气氛,又能加深学生对二元一次方程概念的理解.练习三课本第6页练习1.提出问题:二元一次方程的解是惟一的吗?学生回答后,教师归纳:一元一次方程只有一个解,而二元一次方程有无限多解,其中一个未知数(或)每取一个值,另一个未知数(或)就有惟一的值与它相对应.填表,使上下每对、的值满足方程.-20.42-13师生共同总结方法:已知,求,用含有的代数式表示,为;已知,求,用含有的代数式表示,为.【教法说明】由此练习,学生能真正理解二元一次方程的解是无限多的;并且能把一个二元一次方程定成用含有一个未知数的代数式表示另一个未知数的形式,为用代入法解二元一次方程组奠定了基础.(2)关于二元一次方程组的教学.上面的问题包含两个必须同时满足的条件,一是香蕉和苹果共买了9千克,一是共付款33元,也就是必须同时满足两个方程.因此,把这两个方程合在一起,写成这两个方程合在一起,就组成了一个二元一次方程组.方程组各方程中,同一字母必须代表同一数量,才能合在一起.已知、都是未知数,判别下列方程组是否为二元一次方程组?① ②③ ④【教法说明】练习五有助于学生理解二元一次方程组的概念,目的是避免学生对二元一次方程组形成错误的认识.。
二元一次方程公开课教案【优秀8篇】
二元一次方程公开课教案【优秀8篇】教学建议这次帅气的为您整理了8篇《二元一次方程公开课教案》,希望可以启发、帮助到大朋友、小朋友们。
元一次方程教学设计篇一一、教材分析《·》本课内容是在学生掌握了二元一次方程组有关概念之后的学习内容,用代入消元法解二元一次方程组是学生接触到的解方程组的第一种方法,是解二元一次方程组的方法之一,消元体现了“化未知为已知”的重要思想,它是学习本章的重点和难点。
学完以后可以帮助我们解决一些实际的问题,也是为了今后学习函数、线性方程组及高次方程组奠定了基础。
二、教学目标1、使学生学会用代入消元法解二元一次方程组。
2、理解代入消元法的基本思想;了解化“未知为已知”的转化过程,体会化归思想。
三、教学重难点1、重点:用代入法解二元一次方程组。
2、难点:在“消元”的过程中能够判断消去哪个未知数,使得解方程组的运算转为较简便的过程。
四、教学过程(1)复习引入在上节课中我们学习了二院一次方程组的有关概念,并学习了二元一次方程组的概念还学会判断一组值是否是二元一次方程组的解的问题,同学们还记得二元一次方程组和二元一次方程组的解的概念吗?追问二元一次方程组既然有解那么它们的解又怎么求呢?设计意图:让学生复习巩固二元一次方程组和二元一次方程组解的概念,追问其他一个抛砖引玉的效果,激起学生的学习兴趣,引出课题。
(2)探究新知此过程通过播放洋葱视频中的代入消元法片段视频,播放致列出二元一次方程组和一元一次后点击暂停,先让学生考虑想清楚两个问题。
一个问题是为什么能用一元一次方程解决的实际问题我们要用二元一次方程组来解决?第二个问题观察二元一次方程组和一元一次方程组之间有何异同?学生想清楚这两个问题后,渗透消元的思想,然后继续播放视频让学生知道二元一次方程组完整的解题过程,并在每一步做出相应的解释,怎么变化而来。
播放视频完后先让学生自主总结归纳解二元一次方程组的基本步骤,教师引导总结。
接着完成配套的3个习题,强化训练。
二元一次方程教案15篇
二元一次方程教案15篇二元一次方程教案1一、教材分析本节内容共安排2个课时完成。
该节内容是二元一次方程(组)与一次函数及其图像的综合应用。
通过探索方程与函数图像的关系,培养学生数学转化的思想,通过二元一次方程方程组的图像解法,使学生初步建立了数(二元一次方程)与形(一次函数的图像(直线))之间的对应关系,进一步培养了学生数形结合的意识和能力。
本节要注意的是由两条直线求交点,其交点的横纵坐标为二元一次方程组的近似解,要得到准确的结果,应从图像中获取信息,确立直线对应的函数表达式即方程,再联立方程应用代数方法求解,其结果才是准确的.二、学情分析学生已有了解方程(组)的基本能力和一次函数及其图像的基本知识,学习本节知识困难不大,关键是让学生理解二元一次方程和一次函数之间的内在联系,体会数和形间的相互转化,从中使学生进一步感受到数的问题可以通过形来解决,形的问题也可以通过数来解决.三、目标分析1.教学目标知识与技能目标(1) 初步理解二元一次方程和一次函数的关系;(2) 掌握二元一次方程组和对应的两条直线之间的关系;(3) 掌握二元一次方程组的图像解法.过程与方法目标(1) 教材以问题串的形式,揭示方程与函数间的相互转化,使学生在自主探索中学会不同数学知识间可以互相转化的数学思想和方法;(2) 通过做一做引入例1,进一步发展学生数形结合的意识和能力.(3) 情感与态度目标(1) 在探究二元一次方程和一次函数的对应关系中,在体会近似解与准确解中,培养学生勤于思考、精益求精的精神.(2) 在经历同一数学知识可用不同的数学方法解决的过程中,培养学生的创新意识和变式能力.2.教学重点(1)二元一次方程和一次函数的关系;(2)二元一次方程组和对应的两条直线的关系.3.教学难点数形结合和数学转化的思想意识.四、教法学法1.教法学法启发引导与自主探索相结合.2.课前准备教具:多媒体课件、三角板.学具:铅笔、直尺、练习本、坐标纸.五、教学过程本节课设计了六个教学环节:第一环节设置问题情境,启发引导;第二环节自主探索,建立方程与函数图像的模型;第三环节典型例题,探究方程与函数的相互转化;第四环节反馈练习;第五环节课堂小结;第六环节作业布置.第一环节: 设置问题情境,启发引导内容:1.方程x+y=5的解有多少个? 是这个方程的解吗?2.点(0,5),(5,0),(2,3)在一次函数y= 的图像上吗?3.在一次函数y= 的图像上任取一点,它的坐标适合方程x+y=5吗?4.以方程x+y=5的解为坐标的所有点组成的图像与一次函数y= 的图像相同吗?由此得到本节课的第一个知识点:二元一次方程和一次函数的图像有如下关系:(1) 以二元一次方程的解为坐标的点都在相应的函数图像上;(2) 一次函数图像上的点的坐标都适合相应的二元一次方程.意图:通过设置问题情景,让学生感受方程x+y=5和一次函数y= 相互转化,启发引导学生总结二元一次方程与一次函数的对应关系.效果:以问题串的形式,启发引导学生探索知识的形成过程,培养了学生数学转化的思想意识.前面研究了一个二元一次方程和相应的一个一次函数的关系,现在来研究两个二元一次方程组成的方程组和相应的两个一次函数的关系.顺其自然进入下一环节.第二环节自主探索方程组的解与图像之间的关系内容:1.解方程组2.上述方程移项变形转化为两个一次函数y= 和y=2x ,在同一直角坐标系内分别作出这两个函数的图像.3.方程组的解和这两个函数的图像的交点坐标有什么关系?由此得到本节课的第2个知识点:二元一次方程和相应的两条直线的关系以及二元一次方程组的图像解法;(1) 求二元一次方程组的解可以转化为求两条直线的交点的横纵坐标;(2) 求两条直线的交点坐标可以转化为求这两条直线对应的函数表达式联立的二元一次方程组的解.(3) 解二元一次方程组的方法有:代入消元法、加减消元法和图像法三种.注意:利用图像法求二元一次方程组的解是近似解,要得到准确解,一般还是用代入消元法和加减消元法解方程组.意图:通过自主探索,使学生初步体会数(二元一次方程)与形(两条直线)之间的对应关系,为求两条直线的'交点坐标打下基础.效果:由学生自主学习,十分自然地建立了数形结合的意识,学生初步感受到了数的问题可以转化为形来处理,反之形的问题可以转化成数来处理,培养了学生的创新意识和变式能力.第三环节典型例题探究方程与函数的相互转化内容:例1 用作图像的方法解方程组例2 如图,直线与的交点坐标是 .意图:设计例1进一步揭示数的问题可以转化成形来处理,但所求解为近似解.通过例2,让学生深刻感受到由形来处理的困难性,由此自然想到求这两条直线对应的函数表达式,把形的问题转化成数来处理.这两例充分展示了数形结合的思想方法,为下一课时解决实际问题作了很好的铺垫.效果:进一步培养了学生数形结合的意识和能力,充分展示了方程与函数的相互转化.第四环节反馈练习内容:1.已知一次函数与的图像的交点为 ,则 .2.已知一次函数与的图像都经过点A(2,0),且与轴分别交于B,C两点,则的面积为( ).(A)4 (B)5 (C)6 (D)73.求两条直线与和轴所围成的三角形面积.4.如图,两条直线与的交点坐标可以看作哪个方程组的解?意图:4个练习,意在及时检测学生对本节知识的掌握情况.效果:加深了两条直线交点的坐标就是对应的函数表达式所组成的方程组的解的印象,培养了学生的计算能力和数学转化的能力,使学生进一步领悟到应用数形结合的思想方法解题的重要性.第五环节课堂小结内容:以问题串的形式,要求学生自主总结有关知识、方法:1.二元一次方程和一次函数的图像的关系;(1) 以二元一次方程的解为坐标的点都在相应的函数图像上;(2) 一次函数图像上的点的坐标都适合相应的二元一次方程.2.方程组和对应的两条直线的关系:(1) 方程组的解是对应的两条直线的交点坐标;(2) 两条直线的交点坐标是对应的方程组的解;3.解二元一次方程组的方法有3种:(1)代入消元法;(2)加减消元法;(3)图像法. 要强调的是由于作图的不准确性,由图像法求得的解是近似解.意图:旨在使本节课的知识点系统化、结构化,只有结构化的知识才能形成能力;使学生进一步明确学什么,学了有什么用.第六环节作业布置习题7.7附:板书设计六、教学反思本节课在学生已有了解方程(组)的基本能力和一次函数及其图像的基本知识的基础上,通过教师启发引导和学生自主学习探索相结合的方法,进一步揭示了二元一次方程和函数图像之间的对应关系,从而引出了二元一次方程组的图像解法,以及应用代数方法解决有关图像问题,培养了学生数形结合的意识和能力,充分展示了方程与函数的相互转化.教学过程中教师一定要讲清楚图像解法的局限性,这是由于画图的不准确性,所求的解往往是近似解.因此为了准确地解决有关图像问题常常把它转化为代数问题来处理,如例2及反馈练习中的4个问题.二元一次方程教案2知识与技能(1) 初步理解二元一次方程和一次函数的关系;(2) 掌握二元一次方程组和对应的两条直线之间的关系;(3) 掌握二元一次方程组的图像解法.过程与方法(1) 教材以“问题串”的形式,揭示方程与函数间的相互转化,使学生在自主探索中学会不同数学知识间可以互相转化的数学思想和方法;(2) 通过“做一做”引入例1,进一步发展学生数形结合的意识和能力.情感与态度(1) 在探究二元一次方程和一次函数的对应关系中,在体会近似解与准确解中,培养学生勤于思考、精益求精的精神.(2) 在经历同一数学知识可用不同的数学方法解决的过程中,培养学生的创新意识和变式能力.教学重点(1)二元一次方程和一次函数的关系;(2)二元一次方程组和对应的两条直线的关系.教学难点数形结合和数学转化的思想意识.教学准备教具:多媒体课件、三角板.学具:铅笔、直尺、练习本、坐标纸.教学过程第一环节: 设置问题情境,启发引导(5分钟,学生回答问题回顾知识)内容:1.方程x+y=5的解有多少个? 是这个方程的解吗?2.点(0,5),(5,0),(2,3)在一次函数y= 的图像上吗?3.在一次函数y= 的图像上任取一点,它的坐标适合方程x+y=5吗?4.以方程x+y=5的解为坐标的所有点组成的图像与一次函数y= 的图像相同吗?由此得到本节课的第一个知识点:二元一次方程和一次函数的图像有如下关系:(1) 以二元一次方程的解为坐标的点都在相应的函数图像上;(2) 一次函数图像上的点的坐标都适合相应的二元一次方程 .第二环节自主探索方程组的解与图像之间的关系(10分钟,教师引导学生解决)内容:1.解方程组2.上述方程移项变形转化为两个一次函数y= 和y=2x ,在同一直角坐标系内分别作出这两个函数的图像.3.方程组的解和这两个函数的图像的交点坐标有什么关系?由此得到本节课的第2个知识点:二元一次方程和相应的两条直线的关系以及二元一次方程组的图像解法;(1) 求二元一次方程组的解可以转化为求两条直线的交点的横纵坐标;(2) 求两条直线的交点坐标可以转化为求这两条直线对应的函数表达式联立的二元一次方程组的'解.(3) 解二元一次方程组的方法有:代入消元法、加减消元法和图像法三种.注意:利用图像法求二元一次方程组的解是近似解,要得到准确解,一般还是用代入消元法和加减消元法解方程组.第三环节典型例题 (10分钟,学生独立解决)探究方程与函数的相互转化内容:例1 用作图像的方法解方程组例2 如图,直线与的交点坐标是 .第四环节反馈练习(10分钟,学生解决全班交流)内容:1.已知一次函数与的图像的交点为 ,则 .2.已知一次函数与的图像都经过点A(—2, 0),且与轴分别交于B,C两点,则的面积为.(A)4 (B)5 (C)6 (D)73.求两条直线与和轴所围成的三角形面积.4.如图,两条直线与的交点坐标可以看作哪个方程组的解?第五环节课堂小结(5分钟,师生共同总结)内容:以“问题串”的形式,要求学生自主总结有关知识、方法:1.二元一次方程和一次函数的图像的关系;(1) 以二元一次方程的解为坐标的点都在相应的函数图像上;(2) 一次函数图像上的点的坐标都适合相应的二元一次方程.2.方程组和对应的两条直线的关系:(1) 方程组的解是对应的两条直线的交点坐标;(2) 两条直线的交点坐标是对应的方程组的解;3.解二元一次方程组的方法有3种:(1)代入消元法;(2)加减消元法;(3)图像法. 要强调的是由于作图的不准确性,由图像法求得的解是近似解.第六环节作业布置习题7.7A组(优等生)1、 2、3 B组(中等生)1、2 C组1、2二元一次方程教案3教学目标1、经历用方程组解决实际问题的过程,体会方程组是刻画现实世界的有效数学模型;2、能够找出实际问题中的已知数和未知数,分析它们之间的数量关系,列出方程组;3、学会开放性地寻求设计方案,培养分析教学难点用方程组刻画和解决实际问题的过程。
初中数学教案:二元一次方程组【优秀8篇】
初中数学教案:二元一次方程组【优秀8篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如合同协议、条据文书、策划方案、总结报告、党团资料、读书笔记、读后感、作文大全、教案资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as contract agreements, documentary evidence, planning plans, summary reports, party and youth organization materials, reading notes, post reading reflections, essay encyclopedias, lesson plan materials, other sample essays, etc. If you want to learn about different formats and writing methods of sample essays, please stay tuned!初中数学教案:二元一次方程组【优秀8篇】元一次方程组篇一第1课 5.1二元一次方程组(1)教学目的1、使学生二元一次方程、二元一次方程组的概念,会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式。
解二元一次方程组教案(优秀6篇)
解二元一次方程组教案(优秀6篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、应急预案、演讲致辞、合同协议、规章制度、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, emergency plans, speeches, contract agreements, rules and regulations, documents, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!解二元一次方程组教案(优秀6篇)作为一名教师,编写教案是必不可少的,教案是教学活动的依据,有着重要的地位。
解二元一次方程组教案优秀9篇
解二元一次方程组教案优秀9篇课前预习:篇一一、阅读教材P96-P98的内容二、独立思考:1、满足方程组的x的值是-1,则方程组的解是_____________.2、用代入法解方程组比较容易的变形是()、A、由①得B、由①得C、由得D、则得3、用代入消元法解方程以下各式正确的是()A、B、C、D、4、如果是二元一次方程,则的值是多少?二元一次方程篇二数学七年级下册《二元一次方程》数学教案一、教学目标:1、认知目标:1)了解二元一次方程组的概念。
2)理解二元一次方程组的解的概念。
3)会用列表尝试的方法找二元一次方程组的解。
2、能力目标:1)渗透把实际问题抽象成数学模型的思想。
2)通过尝试求解,培养学生的探索能力。
3、情感目标:1)培养学生细致,认真的学习习惯。
2)在积极的教学评价中,促进师生的情感交流。
二、教学重难点重点:二元一次方程的意义及二元一次方程的解的概念。
难点:把一个二元一次方程形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程。
三、教学过程(一)创设情景,引入课题1、本班共有40人,请问能确定男女生各几人吗?为什么?(1)如果设本班男生x人,女生y人,用方程如何表示?(x+y=40)(2)这是什么方程?根据什么?2、男生比女生多了2人。
设男生x人,女生y人、方程如何表示?x,y的值是多少?3、本班男生比女生多2人且男女生共40人、设该班男生x人,女生y人。
方程如何表示?两个方程中的x表示什么?类似的两个方程中的y都表示?像这样,同一个未知数表示相同的量,我们就应用大括号把它们连起来组成一个方程组。
4、点明课题:二元一次方程组。
(设计意图:从学生身边取数据,让他们感受到生活中处处有数学)(二)探究新知,练习巩固1、二元一次方程组的概念(1)请同学们看课本,了解二元一次方程组的的概念,并找出关键词由教师板书。
[让学生看书,引起他们对教材重视。
找关键词,加深他们对概念的了解、](2)练习:判断下列是不是二元一次方程组,学生作出判断并要说明理由。
数学教案-二元一次方程与一次函数(优秀6篇)
数学教案-二元一次方程与一次函数(优秀6篇)元一次方程教案篇一一、复习引入1.已知方程x2-ax-3a=0的一个根是6,则求a及另一个根的值。
2.由上题可知一元二次方程的系数与根有着密切的关系。
其实我们已学过的求根公式也反映了根与系数的关系,这种关系比较复杂,是否有更简洁的关系?3.由求根公式可知,一元二次方程ax2+bx+c=0(a≠0)的两根为x1=-b+b2-4ac2a,x2=-b-b2-4ac2a.观察两式右边,分母相同,分子是-b+b2-4ac与-b-b2-4ac.两根之间通过什么计算才能得到更简洁的关系?二、探索新知解下列方程,并填写表格:方程 x1 x2 x1+x2 x1?x2x2-2x=0x2+3x-4=0x2-5x+6=0观察上面的表格,你能得到什么结论?(1)关于x的方程x2+px+q=0(p,q为常数,p2-4q≥0)的两根x1,x2与系数p,q之间有什么关系?(2)关于x的方程ax2+bx+c=0(a≠0)的两根x1,x2与系数a,b,c之间又有何关系呢?你能证明你的猜想吗?解下列方程,并填写表格:方程 x1 x2 x1+x2 x1?x22x2-7x-4=03x2+2x-5=05x2-17x+6=0小结:根与系数关系:(1)关于x的方程x2+px+q=0(p,q为常数,p2-4q≥0)的两根x1,x2与系数p,q的关系是:x1+x2=-p,x1?x2=q(注意:根与系数关系的前提条件是根的判别式必须大于或等于零。
)(2)形如ax2+bx+c=0(a≠0)的方程,可以先将二次项系数化为1,再利用上面的结论即:对于方程ax2+bx+c=0(a≠0)∵a≠0,∴x2+bax+ca=0∴x1+x2=-ba,x1?x2=ca(可以利用求根公式给出证明)例1 不解方程,写出下列方程的两根和与两根积:(1)x2-3x-1=0 (2)2x2+3x-5=0(3)13x2-2x=0 (4)2x2+6x=3(5)x2-1=0 (6)x2-2x+1=0例2 不解方程,检验下列方程的解是否正确?(1)x2-22x+1=0 (x1=2+1,x2=2-1)(2)2x2-3x-8=0 (x1=7+734,x2=5-734)例3 已知一元二次方程的`两个根是-1和2,请你写出一个符合条件的方程。
初二数学上册第七章《二元一次方程组》教案设计
初二数学上册第七章《二元一次方程组》教案设计一、教学目标1.理解二元一次方程组的定义,掌握二元一次方程组的解法。
2.学会使用代入消元法和加减消元法解二元一次方程组。
3.能够运用二元一次方程组解决实际问题。
二、教学重点与难点1.重点:二元一次方程组的定义及解法。
2.难点:代入消元法和加减消元法的灵活运用。
三、教学准备1.教学课件2.实物投影仪3.小黑板4.学生练习册四、教学过程第一课时:二元一次方程组的定义与解法1.导入新课师:同学们,我们在前一章节学习了二元一次方程,那么大家知道什么是二元一次方程组吗?今天我们就来学习二元一次方程组的定义和解法。
2.学习二元一次方程组的定义师:二元一次方程组是由两个二元一次方程构成的方程组。
比如,我们有方程组:$$\begin{cases}2x+3y=8\\3x2y=1\end{cases}$$这个方程组就是一个二元一次方程组。
3.学习二元一次方程组的解法师:我们学习二元一次方程组的解法。
解二元一次方程组有两种常用方法:代入消元法和加减消元法。
(1)代入消元法师:代入消元法就是先从方程组中选取一个方程,解出一个未知数,然后将其代入另一个方程,从而求解另一个未知数。
下面我们通过例题来学习这种方法。
例题:解方程组:$$\begin{cases}2x+3y=8\\3x2y=1\end{cases}解:从第一个方程中解出x,得:$$x=\frac{83y}{2}$$将这个表达式代入第二个方程中,得:$$3\left(\frac{83y}{2}\right)2y=1 $$化简得:$$129y2y=2$$解得:$$y=1$$将y=1代入第一个方程,得:$$x=\frac{83\times1}{2}=2.5$$所以方程组的解为:\begin{cases}x=2.5\\y=1\end{cases}$$(2)加减消元法师:加减消元法就是将方程组中的两个方程相加或相减,从而消去一个未知数,求解另一个未知数。
二元一次方程组的数学教案最新9篇
二元一次方程组的数学教案最新9篇公式法解二元一次方程教案篇一一。
教学目标(一)教学知识点1、代入消元法解二元一次方程组。
2、解二元一次方程组时的消元思想,化未知为已知的化归思想。
(二)能力训练要求1、会用代入消元法解二元一次方程组。
2、了解解二元一次方程组的消元思想,初步体会数学研究中化未知为已知的化归思想。
(三)情感与价值观要求1、在学生了解二元一次方程组的消元思想,从而初步理解化未知为已知和化复杂问题为简单问题的化归思想中,享受学习数学的乐趣,提高学习数学的信心。
2、培养学生合作交流,自主探索的良好习惯。
二。
教学重点1、会用代入消元法解二元一次方程组。
2、了解解二元一次方程组的消元思想,初步体现数学研究中化未知为已知的化归思想。
三。
教学难点1、消元的思想。
2、化未知为已知的化归思想。
四。
教学方法启发自主探索相结合。
教师引导学生回忆一元一次方程解决实际问题的方法并从中启发学生如果能将二元一次方程组转化为一元一次方程。
二元一次方程便可获解,从而通过学生自主探索总结用代入消元法解二元一次方程组的步骤。
五。
教具准备投影片两张:第一张:例题(记作7.2A);第二张:问题串(记作7.2B)。
六。
教学过程Ⅰ。
提出疑问,引入新课[师生共忆]上节课我们讨论过一个希望工程义演的问题;没去观看义演的成人有x个,儿童有y个,我们得到了方程组成人和儿童到底去了多少人呢?[生]在上一节课的做一做中,我们通过检验是不是方程x+y=8和方程5x+3y=34,得知这个解既是x+y=8的解,也是5x+3y=34的解,根据二元一次方程组解的定义得出是方程组的解。
所以成人和儿童分别去了5个人和3个人。
[师]但是,这个解是试出来的。
我们知道二元一次方程的解有无数个。
难道我们每个方程组的解都去这样试?[生]太麻烦啦。
[生]不可能。
[师]这就需要我们学习二元一次方程组的解法。
Ⅰ。
讲授新课[师]在七年级第一学期我们学过一元一次方程,也曾碰到过希望工程义演问题,当时是如何解的呢?[生]解:设成人去了x个,儿童去了(8-x)个,根据题意,得:5x+3(8-x)=34解得x=5将x=5代入8-x=8-5=3答:成人去了5个,儿童去了3个。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.二元一次方程及二元一次方程组
问题2 能不能根据题意直接设两个未知数,使 列方程变的容易呢?
解:设这个队胜场为x,负场为y.
x y 10 ①
2x y 16 ②
问题3 这两个方程与一元一次方程有什么不同?它 们有什么特点?
1.二元一次方程及二元一次方程组
含有未知数的项的次数是多少?
含有两个未知数,每个未知数的项的次数都是1, 并且一共有两个方程,像这样的方程组叫做二元一 次方程组.
2.二元一次方程、二元一次方程组的解
问题5 满足方程①,且符合问题的实际意 义的值有哪些?把它们填入表中.
2.二元一次方程、二元一次方程组的解
追问1 如果不考虑方程表示的实际意义, 还可以取哪些值?这些值是有限的吗?
5.布置作业
教科书 习题8.1 第1、2、3、4题
像这样含有两个未知数,并且含有 未知数的项的次数都是1的方程叫做二元 一次方程.
1.二元一次方程及二元一次方程组
问题4 引言中的问题包含了两个必须同时满足的条 件,也就是未知数x,y必须同时满足方程x+y=10和
2x+y=16.把两个方程合在一起,写成
x y 2x
10, y 16 .
就组成了一个方程组.这个方程组含有几个未知数?
3.巩固练习
练习1
3 xy
x
6, y 2.
2yx7yz.9,
x 2 y 3,
y
2. x
不是二元一次方程组,为什么?
3.巩固练习
练习2 判断下列各组未知数的值是不是二元一
次方程组
x x
y y
8,的解: 10
x 3,
y
5.
x 11,
y
1.
x 9,
x
1.
3.巩固练习
练习3 教科书第89页练习
解:设x位工人参加第一道工序,y位工人 参加第二道工序,列出二元一次方程组
x y 7, 900x 1200 y.
4.课堂小结
回顾本节课的学习过程,回答以下问题: (1)举例说明二元一次方程、二元一次方程 组的概念. (2)举例说明二元一次方程、二元一次方程 组的解的概念.
二元一次方程组
学习目标: 了解二元一次方程组及其解的概念. 学习重点: 二元一次方程组及其解的概念.
1.二元一次方程及二元一次方程组
章引言:篮球联赛中,每场比赛都要分出胜负,每 队胜一场得2分,负一场得1分.某队在10场比赛中 得到16分,那么这个队胜负分别是多少?问题1 ຫໍສະໝຸດ 据章引言的问题如何列一元一次方程?
追问2 上表中哪对x,y的值还满足方程②?
x=6,x=4还满足方程②.也就是说,它是
方程①与方程②的公共解,记作
x y
6, 4.
2.二元一次方程、二元一次方程组的解
追问3 你是如何理解“公共解”的? 一般地,组成二元一次方程组的两个方程的
公共解,叫做二元一次方程组的解.
追问4 章引言中问题的解是什么? 这个队在10场比赛中胜6场、负4场.