人教版九年级上数学教案:24.1 圆 第一课时
人教版九年级数学上册教案:第24章 圆(第1课时)
24.1圆的有关性质24.1.1圆(第1课时)一、基本目标【知识与技能】理解并掌握圆的两种定义及与圆有关的概念,并能够从图形中识别.【过程与方法】通过实际操作体会圆的不同定义,数形结合理解与圆有关的概念,掌握学习几何的一些常用方法:实际操作法、数形结合法等.【情感态度与价值观】通过实际操作,体会数学中的创造与探索精神,体会圆的有关概念.二、重难点目标【教学重点】圆的有关概念.【教学难点】用集合观点定义圆.环节1自学提纲,生成问题【5 min阅读】阅读教材P79~P81的内容,完成下面练习.【3 min反馈】1.(1)到定点O的距离为5的点的集合是以__O__为圆心,__5__为半径的圆.(2)连结圆上任意两点的__线段__叫做弦,经过圆心的弦叫做__直径__;圆上任意两点间的部分叫做__圆弧__;圆上任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆,大于半圆的弧叫做__优弧__,小于半圆的弧叫做__劣弧__.2.如图,图中有__1__条直径,__2__条非直径的弦;圆中以点A为一个端点的优弧有__4__条,劣弧有__4__条.3.什么叫等圆?什么叫等弧?解:能够重合的两个圆叫做等圆;在同圆或等圆中,能够互相重合的弧叫做等弧. 环节2 合作探究,解决问题【活动1】 小组讨论(师生互学)【例1】下列说法:①弧分为优弧和劣弧;②半径相等的圆是等圆;③过圆心的线段是直径;④长度相等的弧是等弧;⑤半径是弦,其中正确的是________.(填序号)【互动探索】(引发学生思考)优弧、劣弧、等圆、直径、等弧的定义分别是什么?圆上的弧可以分为哪几类?【答案】②【互动总结】(学生总结,老师点评)由圆的有关概念可知,连结圆上任意两点的线段是弦;过圆心的弦是直径;在同圆或等圆中,能够互相重合的弧是等弧;圆上的弧分为优弧、半圆、劣弧.【例2】如图,在Rt △ABC 和Rt △ABD 中,∠C =90°,∠D =90°,点O 是AB 的中点.求证:A 、B 、C 、D 四个点在以点O 为圆心的同一圆上.【互动探索】(引发学生思考)要使A 、B 、C 、D 四个点在以点O 为圆心的同一圆上,结合圆的集合性定义,圆上各点到定点(圆心O )的距离有什么关系?点A 、B 、C 、D 与点O 有什么关系?【证明】连结OC 、OD .∵在Rt △ABC 和Rt △ABD 中,∠ACB =90°,∠ADB =90°,点O 是AB 的中点,∴OA =OB =OC =OD =12AB , ∴A 、B 、C 、D 四个点在以点O 为圆心的同一圆上.【互动总结】(学生总结,老师点评)由圆的集合性定义可知,圆上各点到定点(圆心O )的距离都等于定长(半径r ).【活动2】 巩固练习(学生独学)1.给出下列说法:①直径是弦;②优弧是半圆;③半径是圆的组成部分;④两个半径不相等的圆中,大的半圆的弧长小于小的半圆的周长.其中正确的是__①__.(填序号)2.如图,点A 、B 、C 、E 在⊙O 上,点A 、O 、D 与点B 、O 、C 分别在同一直线上,图中有几条弦?分别是哪些?解:图中有3条弦,分别是弦AB、BC、CE.3.如图,点A、N在半圆O上,四边形ABOC、DNMO均为矩形,求证:BC=MD.证明:连结ON、OA.∵点A、N在半圆O上,∴ON=OA.∵四边形ABOC、DNMO均为矩形,∴ON=MD,OA=BC,∴BC=MD.【活动3】拓展延伸(学生对学)【例3】下列说法:①经过点P的圆有无数个;②以点P为圆心的圆有无数个;③半径为3 cm,且经过点P的圆有无数个;④以点P为圆心,以3 cm为半径的圆有无数个,其中错误的有()A.1个B.2个C.3个D.4个【互动探索】(引发学生思考)结合圆的定义,怎样确定一个圆?确定一个圆的条件有哪些?【答案】A【互动总结】(学生总结,老师点评)确定一个圆需要两个要素:一是圆心,确定圆的位置;二是半径,确定圆的大小.两者缺一不可.【例4】A、B是半径为5的⊙O上两个不同的点,则弦AB的取值范围是()A.AB>0B.0<AB<5C.0<AB<10D.0<AB≤10【互动探索】(引发学生思考)连结圆上任意两点的线段是弦,求弦AB的取值范围,就要知道连结圆上任意两点构成的最长线段和最短线段分别是什么?【答案】D【互动总结】(学生总结,老师点评)圆上最长的弦是直径,则圆上不同两点构成的弦长大于0且小于等于直径长.环节3课堂小结,当堂达标(学生总结,老师点评)圆⎩⎪⎪⎨⎪⎪⎧ 圆的集合性定义圆的有关概念⎩⎪⎨⎪⎧ 弦——直径弧⎩⎪⎨⎪⎧ 劣弧半圆优弧等圆等弧请完成本课时对应练习!。
人教版数学九年级上册24.1 第1课时 圆 教案
学 生 结 合图 形 与弦的概念 理解弦、直径、 弧、优弧、劣弧、 半圆、等圆、等 弧的概念.
下载后可自行编辑修改,页脚下载后可删除。
.
○1 .平面上的圆把平面分成几局部? ○2 .点与圆的位置关系有几种? 三、课堂训练
让学生通过练习 进一步理解概念, 培养学生的应用 意识和能力
完成课本 83 页练习
补充:
O 为圆心画圆可以画 个圆,以 4 ㎝为半径画圆可
以画 个圆 2.以下说法错误的有〔 〕 ○1 经过 P 点的圆有无数个;○2 以 P 为圆心的圆有无 数个;○3 半径为 3 ㎝且过 P 点的圆有无数个;○4 以 P 为圆心,半径为 3 ㎝的圆有无数个;
学生根据对定 义的理解,尝试 说明直径与弦 的区别与联系 学生思考得到
点与圆的位置 3.一个点到圆的最小距离是 4,最大距离是 9,那么 关系 圆的半径是〔 〕
A.5 或 13 B.6.5 C.2.5 D
4.判断:○1 直径不是弦,弦不是直径;○2 直径是圆 教 师 组 织学 生
中最长的弦;○3 圆上任意两点间的局部叫弧;○4 一 条弦 5.如右图,在⊙O 中,点 A,O,D 以及点 B,O,C 分别 在同一条直线上,那么图中弦的条数是〔 〕
进展练习,教师 巡回检查,集体 交流评价,对于 重点问题进展 强化,点拨方
归纳提升,加强学 习反思,帮助学生 养成系统整理知 识的习惯
法,对于共性问
四、小结归纳 1.圆的定义:
题,做好补教, 对于好的做法, 加以鼓励表扬.
○1 .描述性;○2 .集合定义
教师并指导学
2.弦、弧、半圆、等圆、等弧的概念
.
作课类别 教学媒体
知 识 技 能 教过 学程 目方 标法 情 感 态 度 教学重点 教学难点
人教版数学九年级上册《24.1.1圆》教学设计1
人教版数学九年级上册《24.1.1圆》教学设计1一. 教材分析人教版数学九年级上册第24章《圆》是初中数学的重要内容,主要让学生掌握圆的基本概念、性质及相关的运算。
本节内容在学生的认知发展过程中具有承上启下的作用,既是对以前平面几何知识的拓展,也为后续学习圆的方程、圆与圆的位置关系等知识打下基础。
二. 学情分析九年级的学生已经具备了一定的几何知识,对图形的认识和推理能力有一定的基础。
但圆的概念较为抽象,学生对其理解和掌握可能存在一定的困难。
因此,在教学过程中,需要注重引导学生从实际问题中抽象出圆的概念,并通过丰富的实例让学生体会圆的性质。
三. 教学目标1.理解圆的概念,掌握圆的性质。
2.学会用圆规和直尺画圆。
3.能够运用圆的性质解决实际问题。
四. 教学重难点1.圆的概念和性质。
2.圆的画法。
3.圆的性质在实际问题中的应用。
五. 教学方法1.情境教学法:通过实际问题引入圆的概念,让学生在情境中感受圆的特点。
2.直观教学法:利用圆规和直尺示范画圆,让学生直观地理解圆的性质。
3.实践操作法:让学生亲自动手画圆,加深对圆的认识。
4.问题驱动法:引导学生提出问题,并进行解答,激发学生的学习兴趣。
六. 教学准备1.教学课件:制作相关的教学课件,辅助讲解。
2.圆规和直尺:准备足够的圆规和直尺供学生实践操作。
3.练习题:准备相应的练习题,巩固所学知识。
七. 教学过程1.导入(5分钟)通过一个实际问题引入圆的概念,如“在一条固定的绳子长度为2米的情况下,如何才能画出一个最大的圆?”引导学生思考,激发学生的学习兴趣。
2.呈现(10分钟)讲解圆的概念和性质,如圆的定义、圆心、半径等。
通过课件展示,让学生直观地理解圆的特点。
3.操练(10分钟)让学生亲自动手用圆规和直尺画圆,体会圆的性质。
教师巡回指导,解答学生遇到的问题。
4.巩固(10分钟)出示一些练习题,让学生运用所学的圆的性质进行解答。
教师及时批改,给予反馈。
5.拓展(10分钟)引导学生思考圆在实际生活中的应用,如自行车轮子、圆桌等。
部编人教版九年级数学上册 24.1.1 圆 教案
1、教师课前检查了解学生完成预习作业情况。
2、教师布置学生自学,明确内容和要求,进行方法指导。
3、生生互动,质疑答疑。通过再次预习和讨论交流,学生基本掌握所布置七个题的要求和目标。
展示
探究
例题1、下列说法正确的序号是
①直径是弦②弦是直径③半圆是弧,弧不一定是半圆④优弧一定比劣弧长⑤长度相等的两条弧是等弧
4、弦:
经过圆心的弦叫做直径。
5、圆弧:圆上任意两点间的部分叫做圆弧,简称弧,“以A、C为端点的弧记作 ”,读作“圆弧 ”或“弧AC”.大于半圆的弧(如图所示 叫做优弧,小于半圆的弧(如图所示) 或 叫做劣弧.
明确:弧、弦、优弧、劣弧的概念与记法.
6.圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.半径相等的圆是等圆;能够完全重合的弧叫等弧。
A.4 B.6 C.7 D.8
7.如图3,在⊙O中,P是弦AB的中点,CD是过点P的直径,则下列结论中不正确的是()
A.AB⊥CD B. C. D.PO=PD
教后
反思
⑥长度相等的两条弧是等弧。()
2、选择题:
①如图:点A、O、D以及B、O、C分别在一条直线上。则圆中弦的条数为()
A、2 B、3 C、4 D、5
②已知:⊙O的半径为3,A为线段PO的中点。则当OP=6时,点A与⊙O的位置关系为()
A、点在圆内B、点在圆上C、点在圆外D、不能确定
3、填空:
①弧分为、和。
预习
作业
预习书P80_82有关内容.完成以下练习:
1.圆是轴对称图形吗?如果是,它的对称轴是什么?你能找到多少条对称轴?
2.请同学按下面要求完成下题:
人教版九年级数学上册《第二十四章圆24.1圆的有关性质》第1课时说课稿
人教版九年级数学上册《第二十四章圆24.1圆的有关性质》第1课时说课稿一. 教材分析《人教版九年级数学上册》第二十四章主要讲述圆的性质。
本章内容是整个初中数学的重要部分,也是学生对圆的认知的重要阶段。
通过本章的学习,学生可以深入理解圆的性质,为后续学习圆的方程和其他相关内容打下基础。
二. 学情分析九年级的学生已经具备了一定的几何基础,对平面几何图形有了一定的认识。
但是,对于圆的性质,学生可能还存在着一些模糊的认识,需要通过本节课的学习来纠正和加深理解。
此外,学生可能对圆的性质的理解停留在表面,需要通过实例分析和练习,加深对圆的性质的理解。
三. 说教学目标1.知识与技能:通过本节课的学习,学生能够理解圆的性质,并能够运用圆的性质解决实际问题。
2.过程与方法:通过观察、分析和推理,学生能够发现圆的性质,并能够运用圆的性质解决实际问题。
3.情感态度与价值观:通过本节课的学习,学生能够培养对数学的兴趣,提高对数学的认识。
四. 说教学重难点1.教学重点:圆的性质的理解和运用。
2.教学难点:圆的性质的证明和运用。
五. 说教学方法与手段本节课采用讲授法、提问法、小组讨论法等多种教学方法,并结合多媒体课件、实物模型等教学手段,以提高学生的学习兴趣和参与度。
六. 说教学过程1.导入:通过展示一些与圆相关的实际问题,引起学生对圆的性质的兴趣。
2.讲解:讲解圆的性质,并通过实例进行分析。
3.练习:学生进行练习,巩固对圆的性质的理解。
4.拓展:通过小组讨论,引导学生发现圆的性质的证明方法。
七. 说板书设计板书设计要清晰、简洁,能够突出圆的性质的关键点。
可以采用图示、列表等形式,帮助学生理解和记忆。
八. 说教学评价教学评价可以从学生的课堂表现、作业完成情况、测验成绩等方面进行。
通过评价,可以了解学生对圆的性质的理解程度,为后续教学提供参考。
九. 说教学反思在课后,教师应该对自己的教学进行反思,看学生是否掌握了圆的性质,教学过程中是否存在问题,以便于改进教学方法和手段,提高教学质量。
2022年九年级数学上册第二十四章圆24.1圆的有关性质第1课时教案新版新人教版
24.1圆的有关性质第1课时教学内容1.圆的有关概念.2.垂径定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧及其它们的应用. 教学目标了解圆的有关概念,理解垂径定理并灵活运用垂径定理及圆的概念解决一些实际问题. 从感受圆在生活中大量存在到圆形及圆的形成过程,讲授圆的有关概念.利用操作几何的方法,理解圆是轴对称图形,过圆心的直线都是它的对称轴.通过复合图形的折叠方法得出猜想垂径定理,并辅以逻辑证明加予理解. 重难点、关键1.重点:垂径定理及其运用.2.难点与关键:探索并证明垂径定理及利用垂径定理解决一些实际问题. 教学过程 一、复习引入(学生活动)请同学口答下面两个问题(提问一、两个同学) 1.举出生活中的圆三、四个.2.你能讲出形成圆的方法有多少种? 老师点评(口答):(1)如车轮、杯口、时针等.(2)圆规:固定一个定点,固定一个长度,绕定点拉紧运动就形成一个圆. 二、探索新知从以上圆的形成过程,我们可以得出: 在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点所形成的图形叫做圆.固定的端点O 叫做圆心,线段OA 叫做半径. 以点O 为圆心的圆,记作“⊙O ”,读作“圆O ”. 学生四人一组讨论下面的两个问题:问题1:图上各点到定点(圆心O )的距离有什么规律? 问题2:到定点的距离等于定长的点又有什么特点? 老师提问几名学生并点评总结.(1)图上各点到定点(圆心O )的距离都等于定长(半径r ); (2)到定点的距离等于定长的点都在同一个圆上.因此,我们可以得到圆的新定义:圆心为O ,半径为r 的圆可以看成是所有到定点O 的距离等于定长r 的点组成的图形. 同时,我们又把①连接圆上任意两点的线段叫做弦,如图线段AC ,AB ; ②经过圆心的弦叫做直径,如图24-1线段AB ;③圆上任意两点间的部分叫做圆弧,简称弧,“以A 、C 为端点的弧记作”,读作“圆弧”或“弧AC ”.大于半圆的弧(如图所示叫做优弧,小于半圆的弧(如图所示)或叫做劣弧.AC AC ABC AC BC④圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆. (学生活动)请同学们回答下面两个问题.1.圆是轴对称图形吗?如果是,它的对称轴是什么?你能找到多少条对称轴? 2.你是用什么方法解决上述问题的?与同伴进行交流.(老师点评)1.圆是轴对称图形,它的对称轴是直径,我能找到无数多条直径. 3.我是利用沿着圆的任意一条直径折叠的方法解决圆的对称轴问题的. 因此,我们可以得到:(学生活动)请同学按下面要求完成下题:如图,AB 是⊙O 的一条弦,作直径CD ,使CD ⊥AB ,垂足为M .(1)如图是轴对称图形吗?如果是,其对称轴是什么? (2)你能发现图中有哪些等量关系?说一说你理由. (老师点评)(1)是轴对称图形,其对称轴是CD .(2)AM=BM ,,,即直径CD 平分弦AB ,并且平分及. 这样,我们就得到下面的定理:下面我们用逻辑思维给它证明一下: 已知:直径CD 、弦AB 且CD ⊥AB 垂足为M 求证:AM=BM ,,.分析:要证AM=BM ,只要证AM 、BM 构成的两个三角形全等.因此,只要连结OA 、OB 或AC 、BC 即可.证明:如图,连结OA 、OB ,则OA=OB在Rt △OAM 和Rt △OBM 中 ∴Rt △OAM ≌Rt △OBM∴AM=BMAC BC =AD BD =AB ADB AC BC =AD BD =OA OBOM OM =⎧⎨=⎩B∴点A 和点B 关于CD 对称 ∵⊙O 关于直径CD 对称∴当圆沿着直线CD 对折时,点A 与点B 重合,与重合,与重合. ∴,进一步,我们还可以得到结论:(本题的证明作为课后练习)例1.如图,一条公路的转弯处是一段圆弦(即图中,点O 是的圆心,其中CD=600m ,E 为上一点,且OE ⊥CD ,垂足为F ,EF=90m ,求这段弯路的半径.分析:例1是垂径定理的应用,解题过程中使用了列方程的方法,这种用代数方法解决几何问题即几何代数解的数学思想方法一定要掌握. 解:如图,连接OC设弯路的半径为R ,则OF=(R-90)m∵OE ⊥CD ∴CF=CD=×600=300(m ) 根据勾股定理,得:OC 2=CF 2+OF 2即R 2=3002+(R-90)2解得R=545 ∴这段弯路的半径为545m . 三、巩固练习 教材练习 四、应用拓展例2.有一石拱桥的桥拱是圆弧形,如图24-5所示,正常水位下水面宽AB=60m ,水面到拱顶距离CD=18m ,当洪水泛滥时,水面宽MN=32m 时是否需要采取紧急措施?请说明理由. 分析:要求当洪水到来时,水面宽MN=32m 是否需要采取紧急措施,只要求出DE 的长,因此只要求半径R ,然后运用几何代数解求R . 解:不需要采取紧急措施设OA=R ,在Rt △AOC 中,AC=30,CD=18R 2=302+(R-18)2 R 2=900+R 2-36R+324解得R=34(m )连接OM ,设DE=x ,在Rt △MOE 中,ME=16342=162+(34-x )2162+342-68x+x 2=342 x 2-68x+256=0 解得x 1=4,x 2=64(不合设) ∴DE=4∴不需采取紧急措施.五、归纳小结(学生归纳,老师点评) 本节课应掌握:1.圆的有关概念;AC BC AD BD AC BC =AD BD =CD CD CD 12122.圆是轴对称图形,任何一条直径所在直线都是它的对称轴. 3.垂径定理及其推论以及它们的应用. 六、布置作业1.教材复习巩固1、2、3. 2.车轮为什么是圆的呢? 3.垂径定理推论的证明. 4.选用课时作业设计.第一课时作业设计一、选择题.1.如图1,如果AB 为⊙O 的直径,弦CD ⊥AB ,垂足为E ,那么下列结论中,错误的是().A .CE=DEB .C .∠BAC=∠BAD D .AC>AD(1) (2) (3)2.如图2,⊙O 的直径为10,圆心O 到弦AB 的距离OM 的长为3,则弦AB 的长是()A .4B .6C .7D .83.如图3,在⊙O 中,P 是弦AB 的中点,CD 是过点P 的直径,则下列结论中不正确的是()A .AB ⊥CD B .∠AOB=4∠ACDC .D .PO=PD 二、填空题1.如图4,AB 为⊙O 直径,E 是中点,OE 交BC 于点D ,BD=3,AB=10,则AC=_____.(4) (5)2.P 为⊙O 内一点,OP=3cm ,⊙O 半径为5cm ,则经过P 点的最短弦长为________;最长弦长为_______.3.如图5,OE 、OF 分别为⊙O 的弦AB 、CD 的弦心距,如果OE=OF ,那么_______(只需写一个正确的结论) 三、综合提高题1.如图24-11,AB 为⊙O 的直径,CD 为弦,过C 、D 分别作CN ⊥CD 、DM ⊥CD ,分别交AB 于N 、M ,请问图中的AN 与BM 是否相等,说明理由.BC BD =CAD BD =BC BA2.如图,⊙O 直径AB 和弦CD 相交于点E ,AE=2,EB=6,∠DEB=30°,求弦CD 长.3.(开放题)AB 是⊙O 的直径,AC 、AD 是⊙O 的两弦,已知AB=16,AC=8,AD=8,求∠DAC 的度数.答案:一、1.D 2.D 3.D二、1.8 2.8 10 3.AB=CD三、1.AN=BM 理由:过点O 作OE ⊥CD 于点E ,则CE=DE ,且CN ∥OE ∥DM . ∴ON=OM ,∴OA-ON=OB-OM ,∴AN=BM .2.过O 作OF ⊥CD 于F ,如右图所示 ∵AE=2,EB=6,∴OE=2,∴,OF=1,连结OD ,在Rt △ODF 中,42=12+DF 2,.3.(1)AC 、AD 在AB 的同旁,如右图所示:∵AB=16,AC=8,∴AC=(AB ),∴∠CAB=60°, 同理可得∠DAB=30°, ∴∠DAC=30°.(2)AC 、AD 在AB 的异旁,同理可得:∠DAC=60°+30°=90°.121212。
人教版九年级上册数学24.1.圆教案
24.1.1 圆(第一课时)一、内容和内容解析1. 内容圆的定义,以及弦、直径、弧、半圆、等圆、等弧等相关概念.2. 内容解析本课是人教版九年级上册第二十四章《圆》第一节内容,隶属于“图形与几何”领域.本章是在学习了多边形的有关概念和性质,以及轴对称和旋转变换的基础上,研究圆这种特殊的曲线图形.圆是常见的几何图形之一,它不仅在几何中有重要地位,而且是进一步学习数学以及其他科学重要的基础.本节的重点内容是圆的定义,首先在小学画圆的基础上,用“发生法”给出圆的描述性定义.然后分析圆上每一点与圆心的距离都等于定长,同时到定点的距离等于定长的点都在圆上,从集合的角度对圆进一步刻画,把圆看成是所有到定点的距离等于定长的点的集合.在认识圆的概念的基础上,结合图形认识半径、直径、弦、弧、等圆、等弧等相关概念,并能够利用圆的定义解析实际生活的一些问题.在学习概念的过程中,经历了观察、操作、推理、归纳、想象的过程,感受从具体到抽象的数学思想方法.基于以上分析,确定本课的重点:探究生成圆的概念,结合图形理解弦、直径、弧、等圆、等弧等相关元素的概念.二、目标和目标解析1. 目标(1)理解圆的概念;(2)理解弧、弦的概念,了解等圆、等弧的概念;(3)在经历圆的概念的形成过程中,体验从具体到抽象的数学思想;用点与集合进一步刻画圆时,渗透集合的思想;(4)利用圆的定义解释生活的问题,感受圆与生活的密切联系,体会圆蕴含的数学美,感受数学文化的魅力.2. 目标解析达成目标(1)的标志是:能够在动手画圆的基础上归纳出圆的描述性定义.在一个平面内,由线段OA绕着它固定的一个端点O,另一个端点A所形成的图形叫做圆.然后通过分析探究,从点和集合的角度进一步认识圆.在同一平面内,所有到定点的距离等于定长的点的集合叫做圆.达成目标(2)的标志是:结合图形认识弧、弦、等圆、等弧的相关概念,并能够把握它们的区别与联系,理解等圆等弧都是基于全等、重合的基础上的,仅仅长度相等不能说它们是等弧.达成目标(3)的标志是:经历圆的定义形成的过程,体会观察、操作、思考、归纳等数学活动,体悟由具体到抽象的思想方法,感受数学的概念生成是自然的.能够用集合的思想来理解圆的定义,体会把一个图形看成满足某种条件的点的集合.达成目标(4)的标志是:能够用圆的概念去解释生活的问题,感受数学与生活的密切联系,体会圆蕴含的数学美,提高数学审美能力及数学文化素养,提升学生民族自豪感.三、教学问题诊断分析学生在小学中学过圆的一些知识,对于圆已经有初步的了解,并会利用圆规画圆,可以用自己的语言加以简单的描述,初步具备了有条理地思考和表达的能力,为本课的学习奠定了认知基础和活动经验基础.本课的重点是抽象出圆的概念,但学生的抽象逻辑能力仍较弱,需要进一步的启发引导.此外,要用点与集合的角度理解圆,学生会感觉比较困难,需要老师点拨.本节课需要学习的圆的相关概念非常多,并且要学习新的符号语言.可能会出现混淆不清的情况,因此教学的关键应该是引导学生分辨它们的区别与联系.基于以上分析,确定本节课教学难点:探究生成圆的概念及圆的概念的理解.四、教学支持条件分析为了有效实现教学目标,根据问题诊断分析和学习行为分析,采取了以下教学支持条件:1.本课采用课件演示每一个步骤,让学生明白每一个环节的任务和学习内容.2.制作微视频让学生欣赏生活中的圆,感受圆的美.激发学生学习的兴趣.3.准备了两端打结的棉线和橡皮筋若干,充分让学生感受画圆过程.4.用几何画板制作了画圆的动画,让学生直观感受圆的形成过程,从而归纳出圆的概念,突破重难点.5.制作剪辑微课讲授圆的相关概念,提高课堂效率.五、教学过程设计教学程序教学内容教师活动学生活动设计意图1.问题驱动,引入新知创设情景,激趣引入校运会趣味抢球游戏游戏规则:全班同学站在球场的边上,当裁判说游戏开始,立即跑去球场中心抢球,抢到球者获胜.游戏规则是否公平合理?出示问题情境,引导学生修改规则.引出本节学习的课题——圆.思考游戏是否公平,讨论怎么样修改规则才公平.通过创设生活的问题情境,让学生感受学习圆的必要性,激发学生学习的兴趣,感受数学与生活紧密联系.2.探究圆的概念1.说一说小学就学习过圆,你对“圆”有哪些认识?引导学生发掘已有的圆的认识.回忆学过的圆的相关知识.通过挖掘学生对圆已有的认识,能够根据学生已有的经验基础和认知基础,寻找切合的知识的生长点,为本课学习作铺垫.2.欣赏圆的美引出毕达哥欣赏微视频通过微视频呈现生活古希腊的数学家毕达哥拉斯认为:“一切立体图形中最美的是球,一切平面图形中最美的是圆”.欣赏微视频,感受圆的图形之美.3.画一画小组合作操作:1.用一段棉线和笔在画板上画出一个圆.2.用一段皮筋和笔在画板上画出一个圆.并交流作法和体会.4.想一想观察画圆的过程,你能说一说圆是如何形成的吗?5.归纳概括,形成概念圆的概念:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A 所形成的图形叫做圆.固定的端点O叫做圆心,线段OA叫做半径.以点O为圆心的圆记为,读作确定一个圆的两个的要素:①圆心确定其位置②半径确定其大小.6. 从点与集合的角度进一步认识圆(1)学以致用——用定义解释实际问题修改规则后为什么就公平合理呢?结论1:圆上各点到定点(圆心O )的距离都等于定长(半径r).(2)如图,若OA=OB=OC=OD=OE=5, 则点A、B、C、D、E在以O为圆心.若OA=OB=OC=OD=OE=r,则点A、B、C、拉斯的这句话.播放微视频引导学生小组分组合作画圆,引导学生交流画圆的作法与体会.播放几何画板制作的画圆动画,引导学生思考圆的形成过程,从而给圆下定义.用圆规演示画圆过程,形成图形语言.类比三角形的记法得到圆的记法,形成符号语言.引导学生发现圆的两个要素,圆心和半径.引导学生用圆的定义解决生活中的问题,深切感受半径处处都相等.引导学生发现到定点距离等于定长的点都在同四人一小组合作,其中两人人用棉线画圆,另两人用皮筋画圆.画好后全班展示交流作法与体会.小组内交流.学习圆的概念.全班同学用圆规画圆.学习圆的圆的记法、读法.全班思考,共同回答个别回答,并说明理由.个别回答.中美丽的圆形,让学生体会生活中圆的无处不在,感受圆中蕴含数学美.设置小组内用不同的工具(棉线和皮筋)分别画圆,充分感受画圆的过程.这样设置让学生对比感受定点和定长的作用.通过观察画圆动画,直观感受圆的形成过程,小组讨论、思考、归纳用“发生法”得出圆的概念,体悟由具体到抽象的数学思想.让学生理解圆的概念.通过规范画圆,形成图形语言,学习记法和读法形成符号语言.让学生发现圆的两个要素,圆心定位置,半径定大小.让学生活学活用,感受数学知识是有用的.并且让学生直观地理解圆上各点到定点的距离等于定长.通过设置有梯度的题目,由特殊到一般,让学生易理解到定点的距离等于定长的点都D 、E在以O为圆心.结论2:到定点的距离等于定长的点都在同一个圆上.由结论1,2知,圆心为O、半径为r的圆可以看成是.结论:所有到定点O的距离等于定长r的点的集合.一个圆上.引导学生用集合的思想来描述圆.小组讨论,全班交流在同一个圆上.用点与集合的角度进一步认识圆,渗透集合思想,突破难点.3.应用圆的概概念,拓展提升1.感受数学文化战国时期《墨经》的记载:“圆,一中同长也”.你能理解这句话吗?2.巩固应用,提升演练例1矩形ABCD的对角线相交于点O.求证:A,B,C,D四个点在以点O为圆心的同一个圆上.分析:要证明四个顶点共圆,只需证明归纳步骤:1.找圆心;2.找半径练习:在ABC∆中,o90=∠C.求证:A, B ,C三点在同一个圆上.归纳:证明几个点在同一个圆上:关键确定和,确保这几个点到的距离相等.展示我国的关于圆的数学文化.引导学生解读这句话的含义.出示题目,引导学生分析证明四点共圆的关键.及分析证明的思路.教师板演规范的证明过程.出示题目.先让学生独立思考完成,然后让学生分享不同的证明方法,学生证明过程通过手机拍照即时呈现.了解圆的数学文化.个别回答,全班交流.引导学生归纳证明几点共圆的关键和步骤.学生独立思考,寻求证明思路,写出完整的证明过程.然后小组交流.提高学生的数学文化素养,提升民族自豪感.进一步巩固圆的概念.证明几点共圆,关键要找到圆心和半径.巩固证明几点共圆问题.若题中无圆心时,启发学生应先找到圆心,再找半径.归纳证明此类问题的关键.4.探究圆的相关概念1.微视频学习,介绍弦、直径、弧、等圆、等弧的概念.2.我的疑惑.3.课堂检测如图,弦有.劣弧有:.优弧有:.播放微视频引导学生提出疑问,学生先回答,教师再引导学生归纳概括.让学生完成学案课堂检测并提问.学习微视频学生提出疑惑.完成课堂检测.微视频简短有趣,引导学生根据视频学习提出疑问,师生共同解答,充分调动学生发现问题、提出问题的能力.通过师生互辩,区分弦弧、等圆、等弧等概念.考察学生是否掌握了弦、弧的概念和表示方法.5.小结 1.本节课学习了哪些数学知识?学生发表总结,教师补充归梳理数学内容、方法、反思 2.学习了哪些思想方法? 3.你还有什么疑惑吗?纳.思路,养成系统整理知识的习惯.6.布置作业作业设计 必做题:1: 81页练习第1,2题做在书上 2:89页1,2题做在作业本上 选做题:已知:如图,BD 、CE 是△ABC 的高,M 为BC 的中点.试说明点 B 、C 、D 、E 在以点M 为圆心的同一圆上.布置作业. 课下独立完成作业.课后进一步巩固所学的知识,将本节课的知识升华.六、板书设计24.1.1圆(第一课时)一.数学知识 例1 学生活动区域1.圆的概念记法 读法 圆的两要素: 2. 圆相关概念 二. 数学思想方法:①由具体到抽象 ②由未知转化到已知七、目标检测设计 1. 如图所示,MN 为⊙O 的弦,,o 52=∠N 则MON ∠的度数为( ) A. o 38 B .o 52 C .o 76 D .o 104设计意图:考查学生对圆的概念的掌握,半径处处相等.2.如图,在四边形ABCD 中,o 90=∠=∠DCB DAB ,则A,B,C,D 四个点是否在同一个圆上,若在,说出圆心的位置,并画出这个圆. 设计意图:考查学生对几点共圆证明的掌握.3.练习:如图所示,以O 为圆心的圆记作 , 圆中有 条直径,记作 ;圆中有 条弦,记作弦 ; 圆中劣弧有 条,记作 ;圆中以B 为一个端点的优弧有 条,记作. 设计意图:考查学生对圆及圆的相关概念几何语言的的掌握.。
人教版九年级数学上册24.1.1圆一等奖优秀教学设计
人教版义务教育课程标准实验教科书九年级上册24.1.1圆(第1课时)教学设计一、教材分析1、地位作用:“圆”是学生在学习了线段、角、三角形以及四边形等简单平面图形,并研究了轴对称图形与图形的旋转之后进一步研究的简单基本图形,圆的有关概念是继续学习圆的计算和证明的基础。
2、教学目标:1. 圆的有关概念。
2.从感受圆在生活中大量存在及圆的形成过程,讲授圆的有关概念。
利用几何操作的方法,理解圆是轴对称图形,过圆心的直线都是它的对称轴。
3、教学重、难点教学重点:直径、弦、半圆、等圆的概念。
教学难点:圆的形成。
突破难点的方法:合作探究、讲授。
二、教学准备:多媒体投影仪三、教学过程三、巩固训练1.过圆上一点可以作圆的最长弦有( )条.A. 1B. 2C. 3D.无数条2.图中有____条直径,____条非直径的弦,圆中以A为一个端点的优弧有____条,劣弧有____条.3.如图, ⊙O中,点A、O、D以及点B、O、C分别在一直线上,图中弦的条数为_____。
4.CD为⊙O的直径,∠EOD=72°,AE交⊙O于B,且AB=OC,则∠A=_______. 学生独立思考解决问题。
在学习完圆的有关概念之后,做几道题及时巩固所学知识,有利于加深对概念的理解和识别。
四、知识梳理布置作业这节课你有什么收获和体会?作业布置、课后延伸必做题:课本81页练习第1、2题;选做题:课本81页练习第3题梳理知识,理解记忆.独立完成.总结回顾所学知识。
分为必做题和选做题的目的在于关注不同类型的学生。
板书设计: 24.1.1 圆的有关概念圆圆弦直径例题展示半圆弧优弧劣弧教学反思。
九年级数学上册(人教版)24.1.4圆周角(第一课时)优秀教学案例
1. 引导探究:引导学生观察、分析圆周角与圆心角的关系,引导学生归纳总结圆周角定理;
2. 解决问题:让学生运用圆周角定理解决实际问题,提高解决问题的能力;
3. 拓展思考:设计拓展性问题,如“圆周角定理在其他几何图形中的应用”,引导学生深入思考,提高逻辑思维能力。
问题导向环节是本节课的核心部分。在这一环节,我会引导学生观察、分析圆周角与圆心角的关系,让学生通过自主探究,归纳总结出圆周角定理。在解决问题环节,我会设计不同难度的题目,让学生运用所学知识解决实际问题,提高解决问题的能力。此外,我还会设计拓展性问题,激发学生的思考兴趣,提高学生的逻辑思维能力。
2. 问题情境:设计具有启发性的问题,如“圆周角与圆心角有什么关系?”,引导学生主动探究,引发思考;
3. 实践情境:让学生亲自动手作图,体验圆周角定理的应用,提高实践能力。
在情景创设环节,我会注重引导学生观察生活中的圆形物体,让学生感受到数学与生活的紧密联系。通过设计具有启发性的问题,激发学生的求知欲,引导学生主动探究。同时,我会组织学生进行实践操作,让学生在动手实践中体验圆周角定理的应用,提高实践能力。
(三)学生小组讨论
1. 讨论问题:让学生分组讨论如何运用圆周角定理解决实际问题;
2. 分享讨论成果:鼓励学生分享讨论过程中的收获和感悟,互相学习;
3. 教师指导:针对学生的讨论情况进行点评,引导学生进一步思考。
在学生小组讨论环节,我会提出讨论问题,让学生分组讨论如何运用圆周角定理解决实际问题。在讨论过程中,我会巡回指导,关注学生的讨论情况。讨论结束后,鼓励学生分享讨论成果,互相学习。最后,我会针对学生的讨论情况进行点评,引导学生进一步思考。
2. 问题导向的教学方式:通过设计具有启发性的问题,如“圆周角与圆心角有什么关系?”引导学生主动探究,引发思考。这种问题导向的教学方式,能够有效地激发学生的求知欲,培养学生的逻辑思维能力,并且能够让学生在学习过程中始终保持积极的状态。
人教版九年级数学上册《圆(第1课时)》优秀教学设计
人教版九年级数学上册《圆(第1课时)》优秀教学设计一. 教材分析人教版九年级数学上册《圆(第1课时)》主要包括圆的定义、圆心和半径、圆的周长和面积等基础知识。
本节课的内容是学生对圆的初步认识,为后续学习圆的性质和应用打下基础。
教材通过生动的实例和图示,引导学生探索圆的特点,培养学生的观察能力和逻辑思维能力。
二. 学情分析九年级的学生已经具备了一定的几何基础知识,对图形的认识和简单的几何运算能力。
但针对圆这一概念,学生可能在生活中有所接触,但对其本质特征和数学定义的理解还有待提高。
因此,在教学过程中,需要注重培养学生对圆的认识,引导学生通过观察、操作、思考、探究等方式,掌握圆的基本知识。
三. 教学目标1.知识与技能:使学生理解圆的定义,掌握圆心和半径的概念,会计算圆的周长和面积。
2.过程与方法:通过观察、操作、思考、探究等活动,培养学生的观察能力、逻辑思维能力和动手实践能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神,使学生感受数学与生活的紧密联系。
四. 教学重难点1.重点:圆的定义、圆心和半径的概念,圆的周长和面积的计算。
2.难点:圆的周长和面积公式的推导,以及灵活运用。
五. 教学方法1.情境教学法:通过生活中的实例,引导学生认识圆,激发学生的学习兴趣。
2.探究教学法:引导学生分组讨论,自主探索圆的性质,培养学生的观察能力和逻辑思维能力。
3.实践教学法:让学生动手操作,实际测量和计算,提高学生的动手实践能力。
六. 教学准备1.准备圆的模型、图片等教具,用于引导学生观察和认识圆。
2.准备圆的周长和面积的计算练习题,用于巩固所学知识。
3.准备黑板、粉笔等教学工具,用于板书和讲解。
七. 教学过程1.导入(5分钟)利用生活中的实例,如硬币、轮子等,引导学生观察和认识圆。
提问:你们对这些圆有什么特点的认识?让学生发表自己的看法,从而引出圆的定义。
2.呈现(10分钟)呈现圆的模型和图片,让学生观察圆的特点。
人教版数学九年级上册24.1.1圆1优秀教学案例
1.教师讲解圆的定义、性质和运算方法,如圆的周长、直径、半径等。
2.通过示例,讲解圆的画法,如用圆规和直尺画圆。
3.教师演示圆的面积计算方法,让学生理解圆的面积与半径的关系。
(三)学生小组讨论
1.教师提出讨论话题:“圆的直径和半径有什么关系?圆的周长和直径、半径有什么关系?”
2.学生分组讨论,运用转化、归纳等数学方法,探讨圆的相关性质。
2.鼓励学生提出自己的疑问,如“圆的周长和直径有什么关系”,引导学生主动寻求答案。
3.教师引导学生总结圆的性质和运算方法,让学生在解决问题的过程中,形成完整的知识体系。
(三)小组合作
1.划分学习小组,让学生在小组内讨论圆的相关问题,培养学生的团队合作意识和沟通能力。
2.设计小组合作任务,如探究圆的性质、制作圆形物品等,让学生在实践中学习圆的相关知识。
2.学生完成作业后,教师及时批改,给予评价和指导。
3.教师根据作业完成情况,了解学生在圆的认识方面的掌握程度,为后续教学提供参考。
五、案例亮点
1.生活实例导入:通过展示生活中常见的圆形物品,如硬币、车轮等,引导学生关注圆在生活中的应用,激发学生的学习兴趣,增强学生对圆的直观认识。这种教学方式体现了“从生活中来,到生活中去”的教育理念,使学生深刻体会到数学与生活的紧密联系。
4.通过对圆的相关知识的学习,使学生认识到数学在生活中的重要性,培养学生的责任感和使命感。
5.引导学生树立正确的价值观,认识到努力学习数学知识,对国家、对社会、对个人的发展都具有重要意义。
三、教学策略
(一)情景创设
1.利用多媒体展示与圆相关的生活实例,如圆形桌面、车轮等,引导学生关注圆在生活中的应用,激发生的学习兴趣。
3.引导学生运用转化、归纳、类比等数学方法,探讨圆与直线、圆与圆的位置关系,培养学生的数学思维能力。
人教版九年级数学上册24.1.1 圆精品教案
续表
探索新知合作探究5.认识圆的有关概念
(1)弦和直径:连接圆上任意两点的线段叫做弦,一个圆上可画出多少条弦?
你能找到圆中最长的弦吗?它与其他弦有何不同?
经过圆心的弦叫做直径.一个圆有几条直径?
思考:直径是弦,弦是直径,这句话对吗?
注:1.弦和直径都是线段.
2.直径是弦,是经过圆心的特殊弦,是圆中最长的弦,但弦不一定是直径.
(2)弧:圆上任意两点间的部分叫做圆弧,简称弧.
半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.
优弧:大于半圆的弧叫做优弧.
劣弧:小于半圆的弧叫做劣弧.
(3)等圆:能够完全重合的两个圆是等圆.
(4)等弧:在同圆或等圆中能够互相重合的弧叫等弧.
6.讨论:车轮为什么做成圆形?如果做成正方形会有什么结果?
学生活动设计:学生首先根据对圆的概念的理解独立思考,然后进行分组讨论,最后进行交流.
教师活动设计:引导学生进行如下分析:把车轮做成圆形,车轮上各点到车轮中心(圆心)的距离都等于车轮的半径,当车轮在平面上滚动时,车轮中心与平面的距离保持不变,因此当车辆在平坦的路上行驶时,坐车的人会感觉到非常平稳;如果做成正方形,正方形的中心(对角线的交点)距离地面的距离随着正方形的滚动而改变,因此中心到地面的距离就不是保持不变,因此不稳定.
当
堂训练已知:如图,矩形ABCD的对角线AC和BD相交于点O.求证:A,B,C,D4个点在以O为圆心,OA为半径的圆上.
归
纳
小
结
教师引导学生总结圆的两种定义以及相关概念.
板书设计
24.1.1圆
1.圆的描述性定义.
2.圆的集合定义.
3.与圆有关的其他概念:弦、直径、弧、半圆、等圆、等弧.
教学反思。
人教版数学九年级上册24.1《圆(1)》教学设计
人教版数学九年级上册24.1《圆(1)》教学设计一. 教材分析人教版数学九年级上册第24.1节《圆(1)》主要介绍了圆的基本概念、圆的半径和直径以及圆的周长和面积。
这部分内容是学生对平面几何学习的进一步拓展,对于培养学生的空间想象能力和抽象思维能力具有重要意义。
教材通过生动的实例和丰富的练习,使学生能够熟练掌握圆的相关知识,并能在实际问题中灵活运用。
二. 学情分析九年级的学生已经具备了一定的几何知识基础,对平面几何图形有一定的了解。
但是,圆作为一种特殊的平面图形,其相关概念和性质较为抽象,学生可能难以理解和掌握。
因此,在教学过程中,需要关注学生的认知基础,通过生动的实例和形象的图形,激发学生的学习兴趣,帮助学生理解和掌握圆的相关知识。
三. 教学目标1.知识与技能:使学生掌握圆的基本概念,理解圆的半径和直径的关系,掌握圆的周长和面积的计算方法。
2.过程与方法:通过观察、操作、思考、交流等过程,培养学生的空间想象能力和抽象思维能力。
3.情感态度与价值观:激发学生学习圆的兴趣,培养学生积极思考、克服困难的意志,提高学生解决问题的能力。
四. 教学重难点1.圆的基本概念的建立。
2.圆的半径和直径的关系。
3.圆的周长和面积的计算方法的掌握。
五. 教学方法1.情境教学法:通过生动的实例和形象的图形,激发学生的学习兴趣,帮助学生理解和掌握圆的相关知识。
2.合作学习法:学生进行小组讨论和实践操作,培养学生的团队协作能力和解决问题的能力。
3.引导发现法:教师引导学生发现问题、分析问题、解决问题,培养学生的抽象思维能力。
六. 教学准备1.教学课件:制作课件,包括圆的图片、实例、动画等,帮助学生形象地理解圆的相关知识。
2.练习题:准备一些有关圆的练习题,用于巩固所学知识。
3.教学工具:圆规、直尺、铅笔等,用于学生的实践操作。
七. 教学过程1.导入(5分钟)利用课件展示一些生活中的圆形物体,如硬币、篮球等,引导学生发现这些物体都有一个共同的特点——圆形。
人教版数学九年级上册24.1《圆(1)》教案
人教版数学九年级上册24.1《圆(1)》教案一. 教材分析人教版数学九年级上册第24.1节《圆(1)》主要介绍了圆的定义、圆心和半径的概念。
本节内容是学生对圆的基本知识的掌握,为后续学习圆的周长、面积等知识打下基础。
教材通过生活中的实例,引导学生认识圆,并探索圆的性质,从而培养学生的观察、思考和动手能力。
二. 学情分析九年级的学生已经掌握了初中阶段的基本数学知识,具备一定的逻辑思维和空间想象能力。
但对于圆的概念和性质,部分学生可能还较为陌生。
因此,在教学过程中,教师需要注重引导学生从生活实际中发现圆的规律,激发学生的学习兴趣,并通过实例让学生体会圆在生活中的广泛应用。
三. 教学目标1.知识与技能:使学生了解圆的定义,掌握圆心和半径的概念,能运用圆的性质解决实际问题。
2.过程与方法:通过观察、操作、思考、交流等过程,培养学生探索圆的性质的能力。
3.情感态度与价值观:激发学生学习圆的兴趣,体验数学与生活的紧密联系,培养学生的团队协作精神。
四. 教学重难点1.重点:圆的定义,圆心和半径的概念。
2.难点:圆的性质的探索和应用。
五. 教学方法采用问题驱动法、合作学习法、实例教学法等,引导学生从实际问题中发现圆的规律,培养学生的动手操作能力和团队协作精神。
六. 教学准备1.教具:圆形的实物,如硬币、圆规等。
2.学具:每人一份圆形的实物,如硬币、圆规等。
七. 教学过程1. 导入(5分钟)教师通过展示生活中常见的圆形物体,如硬币、圆桌等,引导学生观察并思考:这些物体有什么共同的特点?学生思考后,教师总结出圆的定义:在同一平面内,到定点的距离等于定长的点的集合。
2. 呈现(10分钟)教师提问:圆心在哪里?半径是什么?学生通过观察手中的圆形实物,思考并回答问题。
教师进行点评并总结:圆心是圆的中心点,半径是从圆心到圆上任意一点的线段。
3. 操练(10分钟)学生分组进行讨论,尝试找出圆的性质。
教师巡回指导,给予提示和指导。
人教版九年级数学上册教案:24.1 圆的有关性质
数学教学设计人教版九年级数学第二十四章《圆》——24.1圆的有关性质(一)课题:圆圆一、教学设计思想本节课是九年义务制教育九年级上册第二十四章第一节的内容,选用的是人民教育出版社教材。
圆是初中几何中重要的内容之一。
本节通过第一课时建立圆的概念,认识圆的轴对称性与中心对称性。
讲解时将观察与思考、操作与实践等活动贯穿于教学全过程,使学生积累一定的数学活动经验。
《新课程标准》提出“使数学教育面向全体学生,实现人人学有价值的数学,人人都能获得必要的数学,不同的人在数学上得到不同的发展。
”本节课在遵循这一基本理念下,尽量实现几何课程的教育价值。
数学源于生活,又服务于生活,最终要解决生活中的问题。
利用现代多媒体帮助学生理解和学习数学,探索与分析,讨论与归纳等数学活动是学习的主要方式。
形成应用数学意识和创新思维,进而使学生获得对数学知识理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。
二、教学背景分析(一)教学内容分析圆是继三角形、四边形等基本图形后的又一个重要内容。
圆的知识在科学技术和日常生活中有广泛应用。
圆是平面几何中最基本的图形之一,它在几何中有重要的地位。
圆的有关概念是圆这一章的起始课,在本节课之前学生小学已经学习了圆的初步知识,联系学生实际,整合课外资源来充实课堂教学内容。
圆的有关概念是中学阶段应用圆知识解决实际问题的开端,也是为今后学习圆的知识奠定基础.通过对实际问题的探索让学生初步感受从实际问题中抽象出数学问题的过程,培养学生的数学价值观,增强学数学、用数学的意识。
(二)学生情况分析初三年级的学生是初中阶段的高年级的学生,课堂中的学习行为趋于理性化,思维的成熟度,内心深处探求真理的欲望比初二年级高,因此要引导轻松和谐的课堂气氛,充分激活学生的创造欲望,让学生在教师创设的情境中充满好奇心的学,留给学生充分的自主活动和相互交往的空间,在观察中不断地发现数学问题,在实践中日益领悟数学思想,在评价中逐步形成数学价值观。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
24.1 圆
第一课时
教学内容
1.圆的有关概念.
2.垂径定理:平分弦(不是直径)的直径垂直于弦,•并且平分弦所对的两条弧及其它们的应用.
教学目标
了解圆的有关概念,理解垂径定理并灵活运用垂径定理及圆的概念解决一些实际问题.从感受圆在生活中大量存在到圆形及圆的形成过程,讲授圆的有关概念.利用操作几何的方法,理解圆是轴对称图形,过圆心的直线都是它的对称轴.通过复合图形的折叠方法得出猜想垂径定理,并辅以逻辑证明加予理解.
重难点、关键
1.重点:垂径定理及其运用.
2.难点与关键:探索并证明垂径定理及利用垂径定理解决一些实际问题.
教学过程
一、复习引入
(学生活动)请同学口答下面两个问题(提问一、两个同学)
1.举出生活中的圆三、四个.
2.你能讲出形成圆的方法有多少种?
老师点评(口答):(1)如车轮、杯口、时针等.(2)圆规:固定一个定点,固定一个长度,绕定点拉紧运动就形成一个圆.
二、探索新知
从以上圆的形成过程,我们可以得出:
在一个平面内,线段OA绕它固定的一个端点O旋转一周,•另一个端点所形成的图形叫做圆.固定的端点O叫做圆心,线段OA叫做半径.
以点O为圆心的圆,记作“⊙O”,读作“圆O”.
学生四人一组讨论下面的两个问题:
问题1:图上各点到定点(圆心O)的距离有什么规律?
问题2:到定点的距离等于定长的点又有什么特点?
老师提问几名学生并点评总结.
(1)图上各点到定点(圆心O)的距离都等于定长(半径r);
(2)到定点的距离等于定长的点都在同一个圆上.
因此,我们可以得到圆的新定义:圆心为O,半径为r的圆可以看成是所有到定点O 的距离等于定长r的点组成的图形.
同时,我们又把
①连接圆上任意两点的线段叫做弦,如图线段AC,AB;
②经过圆心的弦叫做直径,如图24-1线段AB;
AC
③圆上任意两点间的部分叫做圆弧,简称弧,“以A、C为端点的弧记作”,读作“圆
弧”或“弧AC ”.大于半圆的弧(如图所示叫做优弧,•小于半圆的弧(如图所示)
或叫做劣弧.
④圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆. (学生活动)请同学们回答下面两个问题.
1.圆是轴对称图形吗?如果是,它的对称轴是什么?•你能找到多少条对称轴? 2.你是用什么方法解决上述问题的?与同伴进行交流.
(老师点评)1.圆是轴对称图形,它的对称轴是直径,•我能找到无数多条直径. 3.我是利用沿着圆的任意一条直径折叠的方法解决圆的对称轴问题的. 因此,我们可以得到:
如图,AB 是⊙O 的一条弦,作直径CD ,使CD ⊥AB ,垂足为M .
(1)如图是轴对称图形吗?如果是,其对称轴是什么? (2)你能发现图中有哪些等量关系?说一说你理由. (老师点评)(1)是轴对称图形,其对称轴是CD .
(2)AM=BM ,,,即直径CD 平分弦AB ,并且平分及.
已知:直径CD 、弦AB 且CD ⊥AB 垂足为M 求证:AM=BM ,,.
分析:要证AM=BM ,只要证AM 、BM 构成的两个三角形全等.因此,只要连结OA 、•OB 或AC 、BC 即可.
证明:如图,连结OA 、OB ,则OA=OB 在Rt △OAM 和Rt △OBM 中
∴Rt △OAM ≌Rt △OBM ∴AM=BM
∴点A 和点B 关于CD 对称 ∵⊙O 关于直径
CD 对称
AC ABC AC BC AC BC =AD BD =AB ADB AC BC =AD BD =OA OB
OM OM =
⎧⎨
=⎩
B
∴当圆沿着直线CD 对折时,点A 与点B 重合,与重合,与重合. ∴,
例1. 如图,一条公路的转弯处是一段圆弦(即图中,点 例2. O 是的圆心,•其中CD=600m ,E 为上一点, 例3. 且OE ⊥CD ,垂足为F ,EF=90m ,求这段弯路的半径.分析:例1 解:如图,连接OC
设弯路的半径为R ,则OF=(R-90)m ∵OE ⊥CD ∴CF=
CD=×600=300(m ) 根据勾股定理,得:OC 2=CF 2+OF 2 即R 2=3002+(R-90)2 解得R=545 ∴这段弯路的半径为545m . 三、巩固练习
教材 练习 四、应用拓展
例2.有一石拱桥的桥拱是圆弧形,如图24-5所示,正常水位下水面宽AB=•60m ,水面到拱顶距离CD=18m ,当洪水泛滥时,水面宽MN=32m 时是否需要采取紧急措施?请说明理由.
分析:要求当洪水到来时,水面宽MN=32m•是否需要采取紧急措施,•只要求出DE 的长,因此只要求半径R ,然后运用几何代数解求R . 解:不需要采取紧急措施
设OA=R ,在Rt △AOC 中,AC=30,CD=18 R 2=302+(R-18)2 R 2=900+R 2-36R+324 解得R=34(m )
连接OM ,设DE=x ,在Rt △MOE 中,ME=16 342=162+(34-x )2
162+342-68x+x 2=342 x 2-68x+256=0 解得x 1=4,x 2=64(不合设) ∴DE=4
∴不需采取紧急措施.
五、归纳小结(学生归纳,老师点评) 本节课应掌握:
AC BC AD BD AC BC =AD BD =CD CD CD 121
2
1.圆的有关概念;
2.圆是轴对称图形,任何一条直径所在直线都是它的对称轴.3.垂径定理及其推论以及它们的应用.
六、布置作业
1.教材复习巩固1、2、3.。