苏科版八年级数学下册:第八章分式提优检测卷(含答案)

合集下载

2020—2021年最新苏科版八年级数学下册《分式2》单元测试题及答案解析.docx

2020—2021年最新苏科版八年级数学下册《分式2》单元测试题及答案解析.docx

(新课标)苏科版八年级下册第10章 分式 单元测试卷(2) (满分:100分 时间:60分钟)一、选择题(每题3分,共21分) 1.(成都)要使分式51x -有意义,则x 的取值范围是 ( )A .x ≠1B .x>1C .x<1D .x≠-12.(牡丹江)若2a -3b =4c ,且abc ≠0,则2a bc b+-的值是( )A .2B .-2C . 3D .-33.下列分式2155b ca-、()25x y y x--、()223a b a b ++、22442a b a b--、22a b b a--,其中最简分式的个数是 ( )A .1B .2C .3D .4 4.(荆州)解分式方程2132x x x-=++时,去分母后可得到 ( ) A .x(2+x)-2(3+x)=1 B .x(2+x)-2=2+x C .x(2+x)-2(3+x)=(2+x)(3+x) D .x -2(3+x)=3+x5.(泰安)某电子元件厂准备生产4 600个电子元件,甲车间独立生产一半后,由于要尽快投入市场,乙车间也加入了该电子元件的生产,若乙车间每天生产的电子元件个数是甲车间的1.3倍,则用33天即可完成任务,甲车间每天生产电子元件多少个?在这个问题中,设甲车间每天生产电子元件x 个,根据题意可列方程为 ( ) A .23002300331.3x x +=B .23002300331.3x x x+=+C .23004600331.3x x x +=+D .46002300331.3x x x+=+6.(枣庄)对于非零的两个实数a 、b ,规定11a b b a⊕=-,若2⊕(2x -1)=1,则x 的值为 ( ) A .56B .54C .32D .-167.若不论x 取何实数时,分式22ax x a-+总有意义,则a 的取值范围是 ( ) A .a ≥1B .a>1C .a ≤1D .a<1二、填空题(每题3分,共21分) 8.计算:x ·11yy÷·y =_______.9.使代数式3234x x x x ++÷--有意义的x 的取值范围是_______.10.化简()1111m m ⎛⎫-+ ⎪+⎝⎭的结果是_______.11.A 、B 两地相距10千米,甲、乙二人同时从A 地出发去B 地,甲的速度是乙的速度的3倍,结果甲比乙早到13小时.设乙的速度为x 千米/时,可列方程为_______.12.已知分式方程612ax a x+=-的解是x =1,则a =_______.13.(齐齐哈尔)已知关于x 的分式方程32122x a x x =---的解是非负数,则a 的取值范围是_______.14.(达州)如果实数x 满足x 2+2x -3=0,那么代数式21211x x x ⎛⎫+÷ ⎪++⎝⎭的值为_______. 三、解答题(共58分) 15. (10分)计算: (1)222b a ab a b a b b a +--+-;(2) (南京)221b aa b a b a b⎛⎫-÷⎪--+⎝⎭.16.(10分)解下面的方程: (1)213x x=+ (2)242111x x x++=---.17.(8分)(乌鲁木齐)先化简:2344111x x x x x -+⎛⎫-+÷⎪++⎝⎭,然后从-1≤x ≤2中选一个合适的整数作为x 的值代入求值.18.(8分)已知x +y =-4,xy =12,求1111y x x y +++++的值.19.(10分)某一项工程在招标时,接到甲、乙两个工程队的投标书,施工一天,需付甲工程队工程款1.2万元,付乙工程队工程款0.5万元,工程领导小组根据甲、乙两队的投标书测算,列出如下方案:①甲队单独完成这项工程刚好如期完成;②乙队单独完成这项工程要比规定工期多用6天;③若甲、乙两队合做3天,则余下的工程由乙队单独做也正好如期完成.那么在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由.20.(12分)(烟台)烟台享有“苹果之乡”的美誉.甲、乙两超市分别用3000元以相同的进价购进质量相同的苹果.甲超市的销售方案是:将苹果按大小分类包装销售,其中大苹果400千克,以进价的2倍价格销售,剩下的小苹果以高于进价的10%销售,乙超市的销售方案是:不将苹果按大小分类,直接包装销售,价格按甲超市大、小两种苹果售价的平均数定价,若两超市将苹果全部售完,其中甲超市获利2100元(其他成本不计).(1)苹果的进价为每千克多少元?(2)乙超市获利多少元?并比较哪种销售方案更合算.参考答案一、1.A 2.B 3.A 4.C 5.B 6.A 7.B二、8.xy 9.x ≠-2且x ≠3且x ≠4 10.m 11.1010133xx-=12.7 1 3.a ≥-43且a ≠2314.5三、15.(1)原式=a b a b +- (2)原式=1a b-16. (1) x =3 (2) x =1317.原式=-22x x +- 原式=318.原式=149-19.第③种施工方案20.(1)每千克5元 (2)甲超市的销售方案更合算。

八年级数学下册第八章分式检测试卷及答案苏科版

八年级数学下册第八章分式检测试卷及答案苏科版

适用精选文件资料分享八年数学下册第八章分式卷及答案( 科版)八年数学 ( 下) 第八章分式达卷分:100分:60分得分:_________ 一、 ( 每小 3分,共 24 分) 1.(2009?福州 ) 若分式有意, x 的取范是 () A.x≠1 B.x>1 C.x=1 D.x<1 2.若分式的 0, x 的 ( )A.1 B.- 1 C.± 1 D.2 3.以下分式中,属于最分式的是 () A.B.C.D.4.如果把分式中的 x 和 y 都大 5 倍,那么分式的 () A.大 5倍 B.大 10 倍 C.不 D.小 5 .(2009?西 ) 化的果是 () A.a -b B.a+b C.D.6 .以下运算中,正确的选项是 ( ) A.B . C.D.7 .方程的解 ( ) A.0 B.2 C.-2 D.无解 8 .某商店售一批衣饰,每件售价150 元,可利 25%,求种衣饰的成本价.种衣饰的成本价 x 元,可获得方程 ( ) A.B .150-x=25% C.x=150×25%D.25%?x=150 二、填空 ( 每小 2 分,共 20 分) 9.(2008?广州 )函数与的自量 x 的取范是 _________.10 .(2009?) 化:=_________. 11 .分式、和的最公分母是 _________. 12 .当m=________,分式方程会生增根.13.(2009?佳木斯)算:=__________. 14 .小从家到学校每小走m千米,从学校返回家里每小走 n 千米,他来回家里和学校的均匀速度是每小走_________千米. 15 .甲做 180 个部件与乙做 240 个部件所用的相等,假如两个人每小共做 140 个部件,那么甲、乙两个人每小各做多少个部件 ?若甲每小做 x 个部件,乙每小做 _________个部件,所列方程 _____________. 16 .(2009?庄 )a 、b 数,且 ab=1,,, P______Q( 填“>”、“<”或“ =”) .17 .若,,=_________. 18 .已知,,⋯⋯若 (a 、b 正整数 ) ,ab=__________.三、解答 ( 共 56 分) 19.(8 分) 算:(1);(2).20.(8 分) 解分式方程: (1);(2).21.(5 分)(2009 ?邵阳 ) 已知、,用“ +”或“-” 接 M、N,有三种不一样的形式: M+N、M-N、N-M,你任此中一种行算,并化求,此中 x:y=5:2.22.(5 分) 下边是小后作中的一道:算:.解:原式=.你赞同她的做法 ?假如赞同,明原由;假如不一样意,把你正确的做法写下来.23.(6 分) 在“村村通公路”建中,某决定一段公路行改造.已知工程由甲工程独做需要40 天完成;假如由乙工程先独做 10 天,那么剩下的工程需要两合做20 天才能完成. (1) 求乙工程独完成工程所需的天数.(2) 求两合做完成工程所需的天数.24.(8 分)(2008? 天津 ) 注意:了使同学更好地解答本,我供给了一种解思路,你可以依照个思路,填写表格,并完成本解答的全程.假如你用其余的解方案,此,不用填写表格,只需依照解答的一般要求,行解答即可.天津市奥林匹克中心体育――“水滴”位于天津市西南部的奥林匹克中心内,某校九年学生由距“水滴” 10 千米的学校出前去参.一部分同学自行先走,了 20 分后,其余同学乘汽出.果他同到达.已知汽的速度是自行同学速度的 2 倍,求自行同学的速度. (1) 同学的速度 x 千米/.利用速度、、行程之的关系填写下表. ( 要求:填上合适的代数式,完成表格 ) 速度/( 千米/ ) 所用/所走的行程/千米自行乘汽(2)列出方程 ( ) ,并求出的解.25.(8 分) 在数学学程中,平时是利用已有的知与,通研究象行察、、推理、抽象概括,数学律,揭露研究象的本特色.比方“同底数的乘法法”的学程是利用有理数的乘方看法和乘法合律,由“特别”到“一般” 行抽象概括的:22×23=25,23×24=27,22×26=28⋯ 2m×2n=2m+n⋯am×an=am+n(m、 n 都是正整数 ) .我亦知:,,,⋯⋯ (1)你依据上边的资料出a、b、c(a >b>0,c>0) 之的一个数学关系式. (2) 用 (1) 中你的数学关系式,解下边生活中的一个象:“若 m克糖水里含有n克糖,再加入k克糖(仍不和),糖水更甜了”.26.(8 分)(2008? 湛江 ) 先察以下等式,而后用你的律解答以下.,,⋯⋯ (1) 算: =__________. (2) 研究:=__________(用含有 n 的式子表示 ) . (3) 若,求 n 的值.参照答案 1 .A 2.D 3.B 4.C 5.B 6.D 7.D 8.A 9.x≠l 10.a+2 11.xy2 (m-n) 或 xy2 (n -m) 12.6 13. 14 . 15 .(140 -x) 16.= 17.3 18 .720 19 .(1)x -2 (2) 20 .(1) 无解 (2)x=3 21 .答案不独一,如选择,当 x:y=5:2 时,,原式 = 22.不一样意.正确的计算为:原式 = 23 .(1) 设乙工程队单独完成这项工程需要 x 天.依据题意,得.解得 x=60.经检验, x=60 是原方程的根.因此乙工程队单独完成这项工程所需的天数为 60 天 (2) 设两队合做完成这项工程需要 x 天.依据题意,得.解得 y=24.因此两个人合做完成这项工程所需的天数为 24 天 24 .(1) 2x (2) 依据题意,列方程得.解得x=15.经检验,x=15 是原方程的根.因此骑车同学的速度为每小时15 千米 25 .(1) 依据所给的式子之间的关系,可以用a、b、c 的数学关系式表示出一般的规律.考据:.由于a>b>0,c>0,所以.因此 (2) 由于,说明本来糖水中糖的质量分数小于加入k克糖后糖水中糖的质量分数,因此糖水更甜了26 .(1) (2) (3)由,得 n=17.经检验 n=17 是方程的根.因此n=17。

(word完整版)八年级数学下册分式方程应用题专题训练(答案)

(word完整版)八年级数学下册分式方程应用题专题训练(答案)

1.(2018•哈尔滨模拟)某市对一段全长2000米的道路进行改造,为了尽量减少施工对城市交通所造成的影响,实际施工时,若每天修路比原来计划提高效率25%,就可以提前5天完成修路任务.(1)求修这段路计划用多少天?(2)有甲、乙两个工程队参与修路施工,其中甲队每天可修路120米,乙队每天可修路80米,若每天只安排一个工程队施工,在保证至少提前5天完成修路任务的前提下,甲工程队至少要修路多少天?【解答】解:(1)设原计划每天修x米,由题意得﹣=5解得x=80,经检验x=80是原方程的解,则=25天,答:修这段路计划用20天。

(2)设甲工程队至少要修路a天,则乙工程队要修路20﹣a天,根据题意得120a+80(20﹣a)≥2000,解得a≥10,所以a最小等于10.答:甲工程队至少要修路10天.2.(2018•南岗区一模)某商店用640元钱购进水果销售,过了一段时间,又用1600元钱购进这种水果,所购数量是第一次购进数量的2倍,但每千克水果的价格比第一次购进的贵了2元.(1)该商店第一次购进水果多少千克?(2)假设该商店两次购进的水果按相同的标价销售,最后剩下的50千克水果按标价的六折优惠销售.若两次购进水果全部售完,利润不低于400元,则每千克水果的标价至少是多少元?注:每千克水果的销售利润等于每千克水果的销售价格与每千克水果的购进价格的差,两批水果全部售完的利润等于两次购进水果的销售利润之和.【解答】解:(1)设该商店第一次购进水果x千克,根据题意得:﹣=2,解得:x=80,经检验,x=80是原方程的解,答:该商店第一次购进水果80千克.(2)设每千克水果的标价是y元,则(80+160﹣50)y+50×60%y﹣640﹣1600≥400,解得:y≥12,答:每千克水果的标价至少是12元.3.(2018•雨城区校级模拟)为了迎接“五•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:运动鞋价格甲乙进价(元/双)m m﹣20售价(元/双)240160已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?该专卖店要获得最大利润应如何进货?【解答】解:(1)依题意得,=,整理得,3000(m﹣20)=2400m,解得:m=100,经检验,m=100是原分式方程的解,所以,m=100;(2)设购进甲种运动鞋x双,则乙种运动鞋(200﹣x)双,根据题意得,不等式组的解集是95≤x≤105,∵x是正整数,105﹣95+1=11,∴共有11种方案.设总利润为W,则W=(240﹣100)x+80(200﹣x)=60x+16000(95≤x≤105),所以,当x=105时,W有最大值,即此时应购进甲种运动鞋105双,购进乙种运动鞋95双.4.(2018•松北区一模)某学校九年级举行乒乓球比赛,准备发放一些奖品进行奖励,奖品设为一等奖和二等奖.已知购买一个一等奖奖品比购买一个二等奖奖品多用20元.若用400元购买一等奖奖品的个数是用160元购买二等奖奖品个数的一半.(1)求购买一个一等奖奖品和一个二等奖奖品各需多少元?(2)经商谈,商店决定给予该学校购买一个一等奖奖品即赠送一个二等奖奖品的优惠,如果该学校需要二等奖奖品的个数是一等奖奖品个数的2倍还多8个,且该学校购买两个奖项奖品的总费用不超过670元,那么该学校最多可购买多少个一等奖奖品?【解答】解:(1)设购买一个二等奖奖品需x元,则购买一个一等奖奖品需(x+20)元,根据题意得:=•,解得:x=5,经检验,x=5是原分式方程的解,∴x+20=25.答:购买一个二等奖奖品需5元,购买一个一等奖奖品需25元.(2)设该学校可购买a个一等奖奖品,则可购买(2a+8)个二等奖奖品,根据题意得:15a+5(2a+8﹣a)≤670,解得:a≤21.答:该学校最多可购买21个一等奖奖品.5.(2018•黄岛区一模)学校计划选购甲、乙两种图书作为校园图书节的奖品,已知甲种图书的单价是乙种图书单价的1.5倍,用600元单独购买甲种图书比单独购买乙种图书要少10本.(1)甲、乙两种图书的单价分别为多少元?(2)若学校计划购买这两种图书共40本,要使购买的甲种图书数量不少于乙种图书的数量的一半,如何购买使得所需费用最少?最少费用是多少?【解答】解:(1)设乙种图书的单价为x元/本,则甲种图书的单价为1.5x元/本,根据题意得:﹣=10,解得:x=20,经检验,x=20是原方程的根,且符合题意,∴1.5x=30.答:甲种图书的单价为30x元/本,乙种图书的单价为20元/本.(2)设购买甲种图书m本,则购买乙种图书(40﹣m)本,根据题意得:m≥(40﹣m),解得:m≥,∵m为整数,∴m≥14.设购书费用为y元,则y=30m+20(40﹣m)=10m+800,∵10>0,∴y随m的增大而增大,∴当m=14时,y取最小值,最小值=10×14+800=940.答:购买14本甲种图书、26本乙种图书费用最少,最少费用为940元.6.(2018•道外区一模)某工厂签了1200件商品订单,要求不超过15天完成.现有甲、乙两个车间来完成加工任务.已知甲车间的加工能力是乙车间加工能力的1.5倍,并且加工240件需要的时间甲车间比乙车间少用2天.(1)求甲、乙每个车间的加工能力每天各是多少件?(2)甲、乙两个车间共同生产了若干天后,甲车间接到新任务,留下乙车间单独完成剩余工作,求甲、乙两车间至少合作多少天,才能保证完成任务.【解答】解:(1)设乙车间的加工能力每天是x件,则甲车间的加工能力每天是1.5x 件.根据题意得:﹣=2,解得:x=40.经检验x=40是方程的解,则1.5x=60.答:甲、乙每个车间的加工能力每天分别是60件和40件;(2)设甲、乙两车间合作m天,才能保证完成任务.根据题意得:m+[1200﹣(40+60)m]÷40≤15,解得m≥10.答:甲、乙两车间至少合作10天,才能保证完成任务.7.(2018•东莞市校级一模)人民商场准备购进甲、乙两种牛奶进行销售,若甲种牛奶的进价比乙种牛奶的进价每件少5元,其用90元购进甲种牛奶的数量与用100元购进乙种牛奶的数量相同.(1)求甲种牛奶、乙种牛奶的进价分别是多少元?(2)若该商场购进甲种牛奶的数量是乙种牛奶的3倍少5件,该商场甲种牛奶的销售价格为49元,乙种牛奶的销售价格为每件55元,则购进的甲、乙两种牛奶全部售出后,可使销售的总利润(利润=售价﹣进价)等于371元,请通过计算求出该商场购进甲、乙两种牛奶各自多少件?【解答】解:(1)设乙种牛奶的进价为x元/件,则甲种牛奶的进价为(x﹣5)元/件,根据题意得:=,解得:x=50,经检验,x=50是原分式方程的解,且符合实际意义,∴x﹣5=45.答:乙种牛奶的进价是50元/件,甲种牛奶的进价是45元/件.(2)设购进乙种牛奶y件,则购进甲种牛奶(3y﹣5)件,根据题意得:(49﹣45)(3y﹣5)+(55﹣50)y=371,解得:y=23,∴3y﹣5=64.答:该商场购进甲种牛奶64件,乙种牛奶23件.8.(2018•阿城区模拟)某文具店用1050元购进第一批某种钢笔,很快卖完,又用1440元购进第二批该种钢笔,但第二批每支钢笔的进价是第一批进价的1.2倍,数量比第一批多了10支.(1)求第一批每支钢笔的进价是多少元?(2)第二批钢笔按24元/支的价格销售,销售一定数量后,根据市场情况,商店决定对剩余的钢笔全按8折一次性打折销售,但要求第二批钢笔的利润率不低于20%,问至少销售多少支后开始打折?【解答】解:(1)设第一批每只文具盒的进价是x元,根据题意得:﹣=10,解得:x=15,经检验,x=15是方程的解,答:第一批文具盒的进价是15元/只;(2)设销售y只后开始打折,根据题意得:(24﹣15×1.2)y+(﹣y)(24×80%﹣15×1.2)≥1440×20%,解得:y≥40.答:至少销售40只后开始打折.9.(2018•铁西区模拟)A,B两地间仅有一长为180千米的平直公路,若甲,乙两车分别从A,B两地同时出发匀速前往B,A两地,乙车速度是甲车速度的倍,乙车比甲车早到45分钟.(1)求甲车速度;(2)乙车到达A地停留半小时后以来A地时的速度匀速返回B地,甲车到达B地后立即提速匀速返回A地,若乙车返回到B地时甲车距A地不多于30千米,求甲车至少提速多少千米/时?【解答】解:(1)设甲车速度为x千米/时,则乙车的速度是x千米/时,依题意得:=+,解得:x=60.经检验:x=60是原方程的解.答:设甲车速度为60千米/时;(2)设甲车提速y千米/时,依题意得:180﹣(×2+)(60+y)≤30,解得:y≥15.所以甲车至少提速15千米/时.10.(2018•长春模拟)甲乙两地相距72千米,李磊骑自行车往返两地一共用了7小时,已知他去时的平均速度比返回时的平均速度快,求李磊去时的平均速度是多少?小芸同学解法如下:解:设李磊去时的平均速度是x千米/时,则返回时的平均速度是(1﹣)x千米/时,由题意得:+=7,…你认为小芸同学的解法正确吗?若正确,请写出该方程所依据的等量关系,并完成剩下的步骤;若不正确,请说明原因,并完整地求解问题.【解答】解:小芸同学的解法不正确.理由为:“去时的平均速度比返回时的平均速度快”并不等于“返回时的平均速度比去时的平均速度慢”.正确的解法是:设返回时的平均速度为x千米/时,则去时的平均速度为(1+)x 千米/时,根据题意得:+=7,解得:x=18,经检验,x=18是原分式方程的解,∴(1+)x=(1+)×18=24.答:李磊去时的平均速度是24千米/时.11.(2017秋•福州期末)在“双十二”期间,A,B两个超市开展促销活动,活动方式如下:A超市:购物金额打9折后,若超过2000元再优惠300元;B超市:购物金额打8折.某学校计划购买某品牌的篮球做奖品,该品牌的篮球在A,B两个超市的标价相同,根据商场的活动方式:(Ⅰ)若一次性付款4200元购买这种篮球,则在B商场购买的数量比在A商场购买的数量多5个,请求出这种篮球的标价;(Ⅱ)学校计划购买100个篮球,请你设计一个购买方案,使所需的费用最少.(直接写出方案)【解答】解:(Ⅰ)设这种篮球的标价为x元.由题意:﹣=5,解得:x=50,经检验:x=50是原方程的解.答:这种篮球的标价为50元.(Ⅱ)购买购买100个篮球,所需的最少费用为3850元.方案:在A超市分两次购买,每次45个,费用共为3450元,在B超市购买10个,费用400元,两超市购买100个篮球,所需的最少费用为3850元.12.(2017秋•青山区期末)张明和李强两名运动爱好者周末相约到东湖绿道进行跑步锻炼.(1)周日早上6点,张明和李强同时从家出发,分别骑自行车和步行到离家距离分别为4.5千米和1.2千米的绿道落雁岛入口汇合,结果同时到达,且张明每分钟比李强每分钟多行220米,求张明和李强的速度分别是多少米/分?(2)两人到达绿道后约定先跑6千米再休息,李强的跑步速度是张明跑步速度的m倍,两人在同起点,同时出发,结果李强先到目的地n分钟.①当m=12,n=5时,求李强跑了多少分钟?②张明的跑步速度为米/分(直接用含m,n的式子表示).【解答】解:(1)设李强的速度为x米/分,则张明的速度为(x+220)米/分,根据题意得:=,解得:x=80,经检验,x=80是原方程的根,且符合题意,∴x+220=300.答:李强的速度为80米/分,张明的速度为300米/分.(2)①∵m=12,n=5,∴5÷(12﹣1)=(分钟).故李强跑了分钟;②李强跑了的时间:分钟,张明跑了的时间:+n=分钟,张明的跑步速度为:6000÷=米/分.故答案为:.13.(2017秋•汶上县期末)元旦晚会上,王老师要为她的学生及班级的六位科任老师送上贺年卡,网上购买贺年卡的优惠条件是:购买50或50张以上享受团购价.王老师发现:零售价与团购价的比是5:4,王老师计算了一下,按计划购买贺年卡只能享受零售价,如果比原计划多购买6张贺年卡就能享受团购价,这样她正好花了100元,而且比原计划还节约10元钱;(1)贺年卡的零售价是多少?(2)班里有多少学生?【解答】解:(1)设零售价为5x元,团购价为4x元,则解得,,经检验:x=是原分式方程的解,5x=2.5答:零售价为2.5元;(2)学生数为=38(人)答:王老师的班级里有38名学生.。

2020-2021学年苏科版八年级下册 分式和分式方程提优试卷

2020-2021学年苏科版八年级下册 分式和分式方程提优试卷

八年级下分式和分式方程提优试卷考试范围:分式和分式方程;考试时间:100分钟;满分100分一、单选题(每题2分,共24分) 1.下列运算中,正确的是( )A .211a a a+=+B .21111a a a -⋅=-+C .1b a a b b a +=-- D .0.22100.7710++=--a b a ba b a b2.将分式方程5231(1)1x x x x --=++去分母,整理后得( )A .830x -=B .2410x x --=C .2720x x -+=D .2720x x --=3.若关于x 的分式方程3111m x x-=--的解是非负数,则m 的取值范围是( ) A .4m ≥-,1m ≠ B .4m ≥-且3m ≠- C .2m ≥且3m ≠D .4m >-4.已知x +1x =3,那么分式24221x x x -+的值为( ) A .19B .17C .15D .135.下列各式中,分式的个数有( )13x -、21b a +、2x y π+、﹣12m -、22()()x y x y -+、2﹣1x . A .2个B .3个C .4个D .5个6.小明通常上学时走上坡路,通常的速度为m 千米时,放学回家时,原路返回,通常的速度为n 千米时,则小明上学和放学路上的平均速度为( )千米/时 A .2m n+ B .mnm n+ C .2mnm n+ D .m nnm + 7.关于x 的分式方程23311a xx x--=--的解为整数,关于x 的一次函数()423y a x a =-++不经过第三象限,则符合上述两个条件的整数a 有( )个. A .2B .3C .4D .58.已知关于x 的分式方程12111m x x--=--的解是非负数,则m 的取值范围是( ) A .4m ≤ B .4m ≤且3m ≠ C .0m ≤ D .0m ≤且1m ≠-9.关于x 的方程11x a x a +=+的两个解为1x a =,21x a =,22x a x a +=+的两个解为1x a =,22x a=;33x a x a +=+的两个解为1x a =,23x a =,则关于x 的方程101011x a x a +=+--的两个解为( ) A .1x a =,22x a =B .1x a =,281a x a +=- C .1x a =,2101x a =- D .1x a =,291a x a +=- 10.在今年抗震赈灾活动中,小明统计了自己所在学校的甲、乙两班的捐款情况,得到三个信息:(1)甲班捐款2500元,乙班捐款2700元;(2)乙班平均每人捐款数比甲班平均每人捐款数多 15;(3)甲班比乙班多5人,设甲班有x 人,根据以上信息列方程得( )A .25001270055x x +=- B .250012700(1)55x x ⨯+=-C .25001270055x x ⨯=- D .25001270055x x+=+ 11.某市要筑一水坝,需要在规定天数内完成,如果由甲队去做,恰能如期完成;如果由乙队去做,需超过规定天数三天.现由甲、乙两队合作2天后,余下的工程由乙队独自做,恰好在规定天数内完成.设规定的天数为x ,下面所列方程正确的是( ) A .213x x x +=+ B .23xx x =+ C .1()2(2)133x xx xx x +⨯+⋅-=++ D .113x x x +=+ 12.甲,乙两人分别骑车从,A B 两地相向而行,甲先行1小时后,乙才出发,又经过4小时两人在途中的C 地相遇.相遇后两人按原来的方向继续前进,乙在由C 地到达A 地的途中因故障停了20分钟,结果乙由C 地到达A 地比甲由C 地到达B 地还提前了40分钟.已知乙比甲每小时多行驶4千米,则甲、乙两人骑车的速度分别为( )千米/时. A .2,6B .12,16C .16,20D .20,24二、填空题(每空2分,共24分)130=,则23x y -=_____________.14.若分式方程23-2x a x x -+12x -=2x有增根,则实数a 的取值是__________.15.若以x 为未知数的方程()22111232a ax x x x +-=---+无解,则a =______. 16.下列有四个结论:①()2(1)1x x ax -⋅++运算结果中不含2x 项,则1a =;②若10a b +=,24ab =,则2a b -=;③若4x a =,8y b =,则232x y -可表示为-a b ;④已知2100x =,5100y =,则11x y +的值为12,其中正确的是_______. 17.若关于x 的方程211333x kx x x x +-=--有增根,k 的值是_____;若关于x 的方程211333x kx x x x +-=--无解,k 的值是_____. 18.已知关于x 的方程212326x x m xx x x x +--=-+--的解是正数,则m 的取值范围是______. 19.若x 、y 、z 满足3x +7y +z =1和4x +10y +z =2001,则分式2000200020003x y zx y+++的值为___.20.若240x y z -+=,4320x y z +-=.则222xy yz zx x y z++++的值为______ 21.已知三个数,x ,y ,z 满足443,,33xy yz zx x y y z z x =-==-+++,则y 的值是______ 22.要使分式2441513a a a a+-+-+没有意义,则a 的值为__________.23.设a ,b ,c ,d 都是正数,且S =a b a b d a b c ++++++c db c d a c d+++++,那么S 的取值范围是____________.24.下列方程是关于x 的方程,其中是分式方程的是_______(只填序号)①52ax b +=;②15()243x x b +++=;③2m x m x a a +-+=;④2221x x x =-;⑤1312x x +=-;⑥a b a b x a ++=;⑦111b a x b x -=-;⑧2x b x b a a -+=+;⑨2x n x mx m x n-++=+-.三、解答题(共52分)25.(3分)若345x y z==,求22223232x xy z x xy z -++-的值26.(3分)已知114y x-=,求2322x xy yx xy y +---的值.27.(3分)关于x 的方程225111m x x x +=+--去分母转化为整式方程后产生增根,求m 的值.28.(6分)已知分式2218x 3x -+ (1)当x 取什么值时,分式有意义? (2)当x 取什么值时,分式为零? (3)当x 取什么值时,分式的值为负数?29.(5分)已知,关于x 的分式方程1235a b xx x --=+-. (1)当1,0a b ==时,求分式方程的解;(2)当1a =时,求b 为何值时分式方程1235a b xx x --=+-无解;30.(6分)某项工程,乙队单独完成所需天数是甲队单独完成所需天数的1.5倍;若由甲队先做10天,剩下的工程再由甲、乙两队合作30天刚好如期完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)已知甲队每天的施工费用为2.5万元,乙队每天的施工费用为2万元,工程预算的施工费用为160万元.①若在甲、乙工程队工作效率不变的情况下使施工时间最短,问安排预算的施工费用是否够用?若不够用,需追加预算多少万元?②若要求施工总费用不超预算又要如期完工,问甲工程队至少需要施工几天?31.(6分)在某市实施城中村改造的过程中,某工程队承包了一项210000m的拆迁工程.由于准备工作充分,实际拆迁效率比原计划提高了25%,且提前2天完成了任务.(1)求工程队平均每天实际拆迁的工程量;(2)为了尽量减少拆迁工作给市民带来的不便,在拆迁了2天后,工程队决定加快推进拆迁工作,确保将余下的拆迁任务在5天内完成,那么工程队平均每天至少再多拆迁的工程量是多少?32.(6分)为了防控新冠肺炎,某校积极进行校园环境消毒,第一次购买甲、乙两种消毒液分别用了240元和540元,每瓶乙种消毒液的价格是每瓶甲种消毒液价格的32,购买的乙种消毒液比甲种消毒液多20瓶.(1)求甲、乙两种消毒液每瓶各多少元?(2)该校准备再次购买这两种消毒液,使再次购买的乙种消毒液瓶数是甲种消毒液瓶数的一半,且再次购买的费用不多于1050元,求甲种消毒液最多能再购买多少瓶?33.(8分)某手机专卖店的一张进货单上有如下信息:A款手机进货单价比B款手机多800元,花38400元购进A款手机的数量与花28800元购进B款手机的数量相同.(1)求A,B两款手机的进货单价分别是多少元?(2)某周末两天销售单上的数据,如表所示:求A ,B 两款手机的销售单价分别是多少元?(3)根据(1)(2)所给的信息,手机专卖店要花费28000元购进A ,B 两款手机若干部,问有哪几种进货方案?根据计算说明哪种进货方案获得的总利润最高.34.(6分)阅读:对于两个不等的非零实数,a b ,若分式x a x b x(-)(-)的值为零,则x a =或x b =.又因为2()()()()x a x b x a b x ab abx a b x x x---++==+-+,所以关于x 的方程ab x a b x +=+有两个解,分别为12,x a x b ==.应用上面的结论解答下列问题: (1)方程86x x+=有两个解,分别为1x =_____,2x =______. (2)关于x 的方程42m n m mn nx mnx mn-+-+=的两个解分别为()1212,x x x x <,若1x 与2x 互为倒数,则1x =_____,2x =______;(3)关于x 的方程22221n nx n x -+=-的两个解分别为()1212,x x x x <,求12212x x -的值.。

2020—2021年最新苏科版八年级数学下册《分式》单元检测题及答案解析.doc

2020—2021年最新苏科版八年级数学下册《分式》单元检测题及答案解析.doc

(新课标)苏科版八年级下册第10章 分式检测题【本检测题满分:100分,时间:90分钟】一、选择题(每小题3分,共30分) 1.下列各式中,分式的个数为( )3x y-,21a x -,π1x +错误!未找到引用源。

,3ab -,12x y+,12x y +,2123x x =-+. A.5 B.4 C.3 D.22.下列各式正确的是( ) A.c ca b a b=---- B.c ca b a b =---+ C.c ca b a b=--++ D.c ca b a b-=----3.下列分式是最简分式的是( ) A.11m m-- B.3xy y xy- C.22x yx y -+ D.6132m m-4.将分式2x x y+中x 、y 的值同时扩大到原来的2倍,则分式的值( )A.扩大到原来的2倍B.缩小到原来的12C.保持不变 D.无法确定 5.若分式211x x -+的值为零,则x 的值为( )A.-1或 1B.0C.1D.-16.(2013•南京中考)计算231•a a ⎛⎫⎪⎝⎭的结果是( ) A.aB.3a C.6aD.9a7.对于下列说法,错误的个数是( )①2πx y -错误!未找到引用源。

是分式;②当1x ≠时,2111x x x -=+-成立;③当3x =-错误!未找到引用源。

时,分式33x x +-的值是零;④11a b a a b ÷⨯=÷=;⑤2a a a x y x y +=+;⑥3232x x-=-•. A.6 B.5 C.4 D.38.计算2111111x x ⎛⎫⎛⎫+÷+ ⎪ ⎪--⎝⎭⎝⎭的结果是( )A.1B.1x +错误!未找到引用源。

C.1x x +D.1x x +9.下列各式变形正确的是( )A.x y x yx y x y -++=---B.22a b a bc d c d--=++ C.0.20.03230.40.0545a b a bc d c d--=++D.a b b a b c c b--=--10.(2013•辽宁锦州中考)为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款.已知第一次捐款总额为4800元,第二次捐款总额为5 000元,第二次捐款人数比第一次多20人,而且两次人均捐款额恰好相等,如果设第一次捐款人数是x 人,那么x 满足的方程是( )A.4 800 5 00020xx -= B.4 800 5 00020xx += C.4 800 5 00020x x-= D.4 800 5 00020x x+=二、填空题(每小题3分,共24分) 11.(2013•江苏盐城中考)使分式121x x +-的值为零的条件是x =.12.将下列分式约分:(1)528x x=错误!未找到引用源。

八年级下册数学第八章分式单元测试卷苏科版带答案

八年级下册数学第八章分式单元测试卷苏科版带答案

八年级下册数学第八章分式单元测试卷(苏科版带答案)第八章分式单元测试卷(时间:100分钟总分120分)一、相信你一定能选对!(每题2分,计20分)1.无论x取什么数时,总是有意义的分式是()A.B.C.D.2.如果分式的值为为零,则a的值为()A.B.2C.D.以上全不对3.若分式与的值相等,则为()A.0B.C.1D.不等于1的一切实数4.下列式子正确的是()A.B.C.D.5.如果,那么的结果是()A.正数B.负数C.零D.正数或负数6.设,则的值是()A.B.0C.1D.7.若,则a是()A.正数B.负数C.零D.任意有理数8.已知梯形面积S、a、b、h都大于零,下列变形错误是()A.B.C.D.9.已知,则M与N的关系为()A.MNB.M=NC.MND.不能确定.10.甲、乙两种茶叶,以x:y(重量比)相混合制成一种混合茶.甲种茶叶的价格每斤50元,乙种茶叶的价格每斤40元,现在甲种茶叶的价格上调了10%,乙种茶叶的价格下调了10%,但混合茶的价格不变,则x:y等于()A.1:1B.5:4C.4:5D.5:6二、你能填得又对又快吗?(每题2分,计16分)11.当x=_______时,分式与互为相反数.12.如果成立,则a的取值范围是______________.13.在比例尺为1:800000的地图上,量得太原到北京的距离为64cm,将实际距离用科学记数法表示为千米(保留两位数字).14.若且,则15.计算:=_____________16.已知:,则a,b之间的关系式是_____________17.若方程的解为正数,则的取值范围是___________.18.已知,则的值是______________.三、认真解答,一定要细心哟!22.(6分)解方程:23.(6分)解关于x的方程:24.(6分)当a为何值时,的解是负数?25.(6分)先化简,再求值:,其中x,y满足方程组26.(6分)有160个零件,平均分给甲、乙两车间加工,由于乙另有任务,所以在甲开始工作3小时后,乙才开始工作,因此比甲迟20分钟完成任务,已知乙每小时加工零件的个数是甲的3倍,问甲、乙两车间每小时各加工多少零件?27(6分).某班进行个人投篮比赛,受污损的下表记录了在规定时间内投进个球的人数分布情况:进球数012345投进个球的人数1272同时,已知进球3个或3个以上的人平均每人投进3.5个球;进4个或4个以下的人平均每人投进2.5球,问投进3个球和4个球的各有多少人?28.(8分)甲、乙两位采购员同去一家肥料公司购买两次肥料.两次肥料的价格有变化,两位采购员的购货方式也不同:甲每次购买800千克;乙每次用去600元,而不管购买多少肥料.(1)甲、乙所购肥料的平均价格是多少元?(2)谁的购货方式更合算?29.(12分)某班13位同学参加每周一次的卫生大扫除,按学校的卫生要求需要完成总面积为80m2的三个项目的任务,三个项目的面积比例和每人每分钟完成各项目的工作量如下图所示:(1)从上述统计图中可知:每人每分钟能擦课桌椅_________m2;擦玻璃,擦课桌椅,扫地拖地的面积分别是______m2,________m2,___________m2;(2)如果每人每分钟擦玻璃的面积是m2,那么关于的函数关系式是____________(3)他们一起完成扫地和拖地的任务后,把这13人分成两组,一组去擦玻璃,一组去擦课桌椅.如果你是卫生员,该如何分配这两组的人数,才能最快的完成任务.参考答案1.A.2.B3.B4.B5.B6.D7.B8.D9.B10.C11.1213.14.15.16.17.18.421.①②22.23.2425.化简结果,所以结果是:.26.甲每小时加工20个,乙每小时小时加工60个.27.投进3个球的有9人,投进4个球的有3人.28.(1)甲两次购买肥料的平均单价为(元/千克),乙两次购买肥料的平均单价为(元/千克).(2)乙的购买方式更合算一些.29.(1),16,20,44;(2)(3)设分配人去擦玻璃,那么去擦课桌椅,得, 解之得.。

苏科版 八年级数学下册尖子生培优必刷题 专题10.6分式的混合运算大题专练(重难点培优30题)(原卷

苏科版 八年级数学下册尖子生培优必刷题 专题10.6分式的混合运算大题专练(重难点培优30题)(原卷

【拔尖特训】2023-2024学年八年级数学下册尖子生培优必刷题【苏科版】专题10.6分式的混合运算大题专练(重难点培优30题)班级:___________________ 姓名:_________________ 得分:_______________ 注意事项:本试卷试题解答30道,共分成三个层组:基础过关题(第1-10题)、能力提升题(第11-20题)、培优压轴题(第21-30题),每个题组各10题,可以灵活选用.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一.解答题(共30小题)1.(2023秋•苏州期末)化简:(1)a 2a−1−1a−1;(2)(m −3−7m+3)÷m 2−4m 2m+6.2.(2023•泉山区校级三模)(1)计算(π−3.14)0+(13)−2−(−2)3;(2)化简:(1a+1−1a 2−1)÷a−3a+1. 3.(2023春•六合区校级月考)计算.(1)4a 3b ⋅b 2a 3;(2)1−a−2a ÷a 2−4a 2+a. 4.(2023秋•崇川区校级月考)计算:(1)(π−3)0+(−13)−1−√(−2)2;(2)6a 6b 4÷3a 3b 4+a 2⋅(﹣5a );(3)(2y x )−2⋅xy x 2−xy 2xy 2÷2x ; (4)(a −1−2a−1a+1)÷a 2−4a+42+2a5.(2023春•宜兴市校级期中)计算(1)x 2x+2−x +2; (2)x 2−16x+4÷2x−84x .6.(2023春•梁溪区校级期中)计算:(1)6xy 2÷2y 2x ;(2)2x−1x−1−1x−1; (3)x x 2−4−12x−4; (4)x−y x ÷(x −2xy−y 2x) 7.(2023•徐州)计算:(1)(﹣1)2022+|√3−3|﹣(13)﹣1+√9; (2)(1+2x )÷x 2+4x+4x 2. 8.(2023春•溧阳市期中)计算:(1)a 2bc ⋅(−bc 2a ); (2)a−2a+3×2a+6a 2−4; (3)a 22a−4−2a−2; (4)(4x−2−x +2)÷(x−4x−2). 9.(2023•兴化市开学)(1)计算:(√3)2﹣(π−√5)0−√27−|√3−2|;(2)化简:ba 2−b 2÷(1−a a+b ). 10.(2023春•滨湖区校级期中)化简:(1)b 2−27a 3÷2b 9a ⋅3ab b 4; (2)4x 22x−3+93−2x ; (3)m 2m+2−m +2.11.(2023春•东海县期末)计算:(1)a 2bc ⋅(−bc 2a ); (2)a 22a−4−2a−2. 12.(2023春•丹阳市期末)化简:(1)2xx 2−4−1x−2;(2)(1−1a )÷a 2−2a+1a 2−1.13.(2023春•常州期末)计算:(1)8x 3÷32x 2; (2)a−c a−b −c−b b−a. 14.(2023春•溧阳市期末)化简:(1)(−m n 2)•n m; (2)a a−1÷(a 2a 2−1−a a+1).15.(2023秋•环翠区校级月考)分式计算:(1)3x 2y ⋅512ab 2÷(−5a 4b ); (2)(−a 2bc )3⋅(−c 2a 2)2÷(−bc a )4; (3)a+31−a ÷a 2+3aa 2−2a+1; (4)(ab −b 2)÷a 2−b 2a+b. 16.(2023秋•张店区校级月考)分式的计算:(1)(1x−1−1x 2−1)÷x 2−x x 2−2x+1; (2)2x−6x−2÷(5x−2−x −2).17.(2023春•南关区校级月考)计算:(1)x x 2−1⋅x+1x 2; (2)(a+b)2ab −a 2+b 2ab. 18.(2023秋•和平区校级期末)计算:(1)(−4m 3n 3t )2÷n mt(2)x 2−4x 2−4x+4÷x+2x+1−x x−219.(2023春•罗湖区校级期末)计算(1)3x (x−3)2−x 3−x (2)1x+1+1x−1−x 2+1x 2−1x −1x−120.(2023春•南阳月考)化简:(1)(a ﹣1−4a−1a+1)÷a 2−8a+16a+1; (2)(x+2x 2−2x −x−1x 2−4x+4)÷x−4x . 21.(2023秋•青龙县期中)计算:(1)a 2a−b +b 2a−b −2ab a−b ;(2)(1−1a+1)÷a a 2+2a+1. 22.(2023春•沈北新区期末)化简:(1)(x 2﹣4y 2)÷2y+x xy •1x(2y−x); (2)2x x 2−4−1x−2.23.(2023•九龙坡区校级开学)分式化简:(1)16−x 2x 2+4x+4÷x 2x+4⋅x+2x+4; (2)1a+1−3−aa 2−6a+9÷a 2+a a−3. 24.(2023秋•寻甸县期末)计算与化简(1)32m−n −2m−n(2m−n)2;(2)(a +2−5a−2)÷3−a 2a−4. 25.(2023秋•沂水县期末)化简:(1)x x−1+3x−11−x 2; (2)(2m m−1−m m+1)÷m m 2−1. 26.(2023秋•天津期末)计算:(1)(﹣3xy )÷2y 23x •(y x)2; (2)(x x+y −2y x+y )÷x−2y xy •(1x +1y ). 27.(2023春•沙坪坝区校级月考)计算:(1)2y−x x−y +y y−x +x x−y ;28.(2023秋•沙坪坝区校级期末)计算:(1)(a +b )2+a (a ﹣2b );(2)(1−x x+2)÷x 2−4x+4x 2−4. 29.(2023秋•荔湾区期末)计算:(1)a−1a−b −1+b b−a ;(2)(4−a 2a−1+a )÷a 2−16a−1. 30.(2023秋•永年区期末)上课时老师在黑板上书写了一个分式的正确化简结果,随后用手掌盖住了一部分,形式如下: •y 2x 2−xy −y 2−x 2x 2−2xy+y 2=x x−y(1)聪明的你请求出盖住部分化简后的结果;(2)当x =2时,y 等于何值时,原分式的值为5.【拔尖特训】2023-2024学年八年级数学下册尖子生培优必刷题【苏科版】专题10.6分式的混合运算大题专练(重难点培优30题) 班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷试题解答30道,共分成三个层组:基础过关题(第1-10题)、能力提升题(第11-20题)、培优压轴题(第21-30题),每个题组各10题,可以灵活选用.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一.解答题(共30小题)1.(2023秋•苏州期末)化简:(1)a 2a−1−1a−1;(2)(m −3−7m+3)÷m 2−4m 2m+6.【分析】(1)根据分式的减法法则进行计算,再化成最简分式即可;(2)先根据分式的减法法则进行计算,再根据分式的除法法则把除法变成乘法,最后根据分式的乘法法则进行计算即可.【解答】解:(1)原式=a 2−1a−1=(a+1)(a−1)a−1 =a +1;(2)原式=[(m−3)(m+3)m+3−7m+3]•2(m+3)m(m−4) =m 2−9−7m+3•2(m+3)m(m−4)=(m+4)(m−4)m+3•2(m+3)m(m−4)=2(m+4)m=2m+8m . 2.(2023•泉山区校级三模)(1)计算(π−3.14)0+(13)−2−(−2)3;(2)化简:(1a+1−1a 2−1)÷a−3a+1. 【分析】(1)根据零指数幂、负整数指数幂和有理数的乘方计算即可;(2)先算括号内的式子,再计算括号外的除法即可.【解答】解:(1)(π−3.14)0+(13)−2−(−2)3=1+9﹣(﹣8)=1+9+8=18;(2)(1a+1−1a 2−1)÷a−3a+1 =a−1−1(a+1)(a−1)•a+1a−3=a−2(a−1)(a−3)=a−2a 2−4a+3. 3.(2023春•六合区校级月考)计算. (1)4a 3b ⋅b 2a 3;(2)1−a−2a ÷a 2−4a 2+a. 【分析】(1)根据分式的乘法运算即可求出答案.(2)根据分式的乘除运算以及加减运算法则即可求出答案.【解答】解:(1)原式=4ab 6a 3b =23a 2. (2)原式=1−a−2a ×a 2+a a 2−4 =1−a−2a ×a(a+1)(a+2)(a−2)=1−a+1a+2=a+2a+2−a+1a+2=1a+2. 4.(2023秋•崇川区校级月考)计算:(1)(π−3)0+(−13)−1−√(−2)2;(2)6a 6b 4÷3a 3b 4+a 2⋅(﹣5a );(3)(2y x )−2⋅xy x 2−xy 2xy 2÷2x; (4)(a −1−2a−1a+1)÷a 2−4a+42+2a 【分析】(1)利用零指数幂,负指数幂和算术平方根的性质进行计算即可;(2)先利用整式的除法法则,乘法法则进行计算,然后再进行合并即可;(3)先分别利用负指数幂,分式的乘方,分式的乘法法则,除法法则进行计算,然后再进行减法运算;(4)先算括号内的减法,然后再将括号外分式的分子分母进行因式分解,将除法化为乘法再进行约分,最后化为最简分式即可.【解答】解:(1)(π−3)0+(−13)−1−√(−2)2=1+(﹣3)﹣2=﹣4;(2)6a 6b 4÷3a 3b 4+a 2⋅(﹣5a )=2a 3﹣5a 3=﹣3a 3;(3)(2y x )−2⋅xy x 2−xy 2xy 2÷2x =x 24y 2⋅xy x 2−xy 2xy 2⋅x 2=x 4y −x 4y=0;(4)(a −1−2a−1a+1)÷a 2−4a+42+2a=(a+1)(a−1)−(2a−1)a+1÷(a−2)22(a+1) =a(a−2)a+1⋅2(a+1)(a−2)2 =2a a−2. 5.(2023春•宜兴市校级期中)计算(1)x 2x+2−x +2; (2)x 2−16x+4÷2x−84x .【分析】(1)先通分再加减即可;(2)先因式分解,再根据除法法则计算即可.【解答】解:(1)x 2x+2−x +2 =x 2x+2−x 2+2x x+2+2x+4x+2 =4x+2;(2)x 2−16x+4÷2x−84x =(x+4)(x−4)x+4•4x 2(x−4)=2x .6.(2023春•梁溪区校级期中)计算:(1)6xy 2÷2y 2x ; (2)2x−1x−1−1x−1; (3)x x 2−4−12x−4; (4)x−y x ÷(x −2xy−y 2x) 【分析】(1)把除法转为乘法,再约分即可;(2)利用分式的减法法则进行运算即可;(3)先通分,再进行运算即可;(4)先通分,把能分解的进行分解,除法转为乘法,再约分即可.【解答】解:(1)6xy 2÷2y 2x=6xy 2⋅x 2y 2 =3x 2;(2)2x−1x−1−1x−1 =2x−1−1x−1=2(x−1)x−1=2;(3)x x 2−4−12x−4 =2x 2(x−2)(x+2)−x+22(x−2)(x+2) =x−22(x−2)(x+2)=12(x+2)=12x+4;(4)x−y x ÷(x −2xy−y 2x ) =x−y x ÷x 2−2xy+y 2x =x−y x ⋅x(x−y)2 =1x−y .7.(2023•徐州)计算:(1)(﹣1)2022+|√3−3|﹣(13)﹣1+√9; (2)(1+2x )÷x 2+4x+4x 2. 【分析】(1)根据有理数的乘方、绝对值和负整数指数幂可以解答本题;(2)先算括号内的式子,然后计算括号外的除法即可.【解答】解:(1)(﹣1)2022+|√3−3|﹣(13)﹣1+√9 =1+3−√3−3+3=4−√3;(2)(1+2x )÷x 2+4x+4x 2=x+2x •x 2(x+2)2=x x+2.8.(2023春•溧阳市期中)计算:(1)a 2bc ⋅(−bc 2a ); (2)a−2a+3×2a+6a 2−4; (3)a 22a−4−2a−2;(4)(4x−2−x +2)÷(x−4x−2).【分析】(1)根据分式的约分可以解答本题;(2)先对分式的分子分母分解因式,再约分即可;(3)先通分,然后再分解因式,最后约分即可;(4)先对括号内的式子通分,然后计算括号外的除法即可.【解答】解:(1)a 2bc ⋅(−bc 2a )=−a 2; (2)a−2a+3×2a+6a 2−4=a−2a+3•2(a+3)(a+2)(a−2) =2a+2;(3)a 22a−4−2a−2=a 2−42(a−2)=(a+2)(a−2)2(a−2)=a+22;(4)(4x−2−x +2)÷(x−4x−2) =4−(x−2)(x−2)x−2•x−2x−4=4−x 2+4x−4x−4=−x(x−4)x−4 =﹣x .9.(2023•兴化市开学)(1)计算:(√3)2﹣(π−√5)0−√27−|√3−2|;(2)化简:ba 2−b 2÷(1−a a+b). 【分析】(1)先化简各式,然后再进行计算即可解答;(2)先利用异分母分式加减法计算括号里,再算括号外,即可解答.【解答】解:(1)原式=3﹣1﹣3√3−2+√3=﹣2√3;(2)原式=b (a+b)(a−b)÷(a+b−a a+b ) =b (a+b)(a−b)⋅a+b b=1a−b. 10.(2023春•滨湖区校级期中)化简: (1)b 2−27a 3÷2b 9a ⋅3ab b 4; (2)4x 22x−3+93−2x ; (3)m 2m+2−m +2.【分析】(1)先把除法转化为乘法,然后约分化简即可;(2)把第二个分母变形后根据同分母分式的加减法法则计算;(3)先通分,然后根据同分母分式的加减法法则计算.【解答】解:(1)原式=b 2−27a 3⋅9a 2b ⋅3ab b 4 =−12ab 2;(2)原式=4x 22x−3−92x−3=4x 2−92x−3=(2x−3)(2x+3)2x−3=2x +3; (3)原式=m 2m+2−(m −2)=m 2m+2−m 2−4m+2=m 2−m 2+4m+2=4m+2. 11.(2023春•东海县期末)计算:(1)a 2bc ⋅(−bc 2a ); (2)a 22a−4−2a−2. 【分析】(1)根据分式的乘法运算即可求出答案.(2)根据分式的加减运算即可求出答案.【解答】解:(1)原式=−a 2.(2)原式=a 22(a−2)−42(a−2)=a 2−42(a−2) =(a−2)(a+2)2(a−2)=a+22.12.(2023春•丹阳市期末)化简:(1)2xx 2−4−1x−2;(2)(1−1a )÷a 2−2a+1a 2−1. 【分析】(1)原式通分并利用同分母分式的减法法则计算,约分即可得到结果;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:(1)原式=2x (x+2)(x−2)−x+2(x+2)(x−2)=2x−(x+2)(x+2)(x−2)=2x−x−2(x+2)(x−2)=x−2(x+2)(x−2)=1x+2;(2)原式=a−1a ÷(a−1)2(a+1)(a−1) =a−1a •(a+1)(a−1)(a−1)2=a+1a .13.(2023春•常州期末)计算:(1)8x 3÷32x 2; (2)a−c a−b −c−b b−a. 【分析】(1)根据分式的除法运算进行化简即可求出答案.(2)根据分式的加减运算进行化简即可求出答案.【解答】解:(1)原式=8x 3⋅x 232 =14x. (2)原式=a−c+b−c a−b =a+b a−b . 14.(2023春•溧阳市期末)化简:(1)(−m n 2)•n m; (2)a a−1÷(a 2a 2−1−a a+1).【分析】(1)根据分式的乘法计算即可;(2)先算括号内的式子,然后计算括号外的除法即可.【解答】解:(1)(−m n 2)•n m =﹣(m n 2•n m ) =−1n ;(2)a a−1÷(a 2a 2−1−a a+1) =a a−1÷a 2−a(a−1)(a+1)(a−1)=a a−1⋅(a+1)(a−1)a 2−a 2+a=a a−1⋅(a+1)(a−1)a =a +1.15.(2023秋•环翠区校级月考)分式计算:(1)3x 2y ⋅512ab 2÷(−5a 4b ); (2)(−a 2b c )3⋅(−c 2a 2)2÷(−bc a )4; (3)a+31−a ÷a 2+3aa 2−2a+1; (4)(ab −b 2)÷a 2−b 2a+b .【分析】(1)按照从左到右的顺序,进行计算即可解答;(2)先算乘方,再算乘除,即可解答;(3)先把除法转化为乘法,进行计算即可解答;(4)先把除法转化为乘法,进行计算即可解答.【解答】解:(1)3x 2y ⋅512ab 2÷(−5a 4b ) =15x 2y12ab 2•(−4b 5a ) =−x 2y a 2b; (2)(−a 2b c )3⋅(−c 2a 2)2÷(−bc a )4; =−a 6b 3c 3•c 4a 4÷b 4c 4a 4 =−a 6b 3c 3•c 4a 4•a 4b 4c 4 =−a 6c 3b; (3)a+31−a ÷a 2+3aa 2−2a+1=a+31−a •(a−1)2a(a+3)=1−a a ;(4)(ab −b 2)÷a 2−b 2a+b =b (a ﹣b )•a+b (a+b)(a−b)=b .16.(2023秋•张店区校级月考)分式的计算:(1)(1x−1−1x 2−1)÷x 2−x x 2−2x+1; (2)2x−6x−2÷(5x−2−x −2).【分析】(1)分式的加减运算以及乘除运算法则即可求出答案.(2)分式的加减运算以及乘除运算法则即可求出答案.【解答】解:(1)原式=x+1−1(x−1)(x+1)•(x−1)2x(x−1)=x (x−1)(x+1)•x−1x=1x+1.(2)原式=2(x−3)x−2÷5−(x+2)(x−2)(x−2) =2(x−3)x−2•x−29−x 2=−2(x−3)(x+3)(x−3) =−2x+3. 17.(2023春•南关区校级月考)计算: (1)x x 2−1⋅x+1x 2; (2)(a+b)2ab −a 2+b 2ab. 【分析】(1)先分解因式,然后再约分.(2)同分母相减,分母不变,分子相减即可求出答案.【解答】解:(1)原式=x (x+1)(x−1)•x+1x 2=1x(x−1). (2)原式=a 2+2ab+b 2−a 2−b 2ab =2ab ab=2. 18.(2023秋•和平区校级期末)计算:(1)(−4m 3n 3t )2÷n mt(2)x 2−4x 2−4x+4÷x+2x+1−x x−2【分析】(1)先计算乘方,再计算除法即可;(2)先按分式除法法则计算,再按分式减法法则计算即可.【解答】解:(1)原式=16m 6n 29t 2÷n mt=16m 6n 29t 2×mt n =16m 7n 9t; (2)原式=(x+2)(x−2)(x−2)2−x+1x+2−x x−2 =x+1x−2−x x−2=1x−2. 19.(2023春•罗湖区校级期末)计算(1)3x (x−3)2−x 3−x (2)1x+1+1x−1−x 2+1x 2−1(3)(x+1x 2−1+x x−1)÷x+1x 2−2x+1【分析】(1)直接进行通分运算进而得出答案;(2)直接进行通分运算进而得出答案;(3)直接利用分式的性质化简,再利用分式的混合运算法则计算得出答案.【解答】解:(1)3x (x−3)2−x 3−x =3x (x−3)2+x(x−3)(x−3)2 =x 2(x−3)2;(2)1x+1+1x−1−x 2+1x 2−1=x−1x 2−1+x+1x 2−1−x 2+1x 2−1=−x 2+2x−1(x+1)(x−1)=−(x−1)2(x+1)(x−1)=−x−1x+1;(3)(x+1x 2−1+x x−1)÷x+1x 2−2x+1 =1+x x−1•(x−1)2x+1=x ﹣1.20.(2023春•南阳月考)化简:(1)(a ﹣1−4a−1a+1)÷a 2−8a+16a+1; (2)(x+2x 2−2x −x−1x 2−4x+4)÷x−4x . 【分析】(1)先算括号内的减法,把除法变成乘法,再算乘法即可;(2)先算括号内的减法,把除法变成乘法,再算乘法即可.【解答】解:(1)原式=(a−1)(a+1)−(4a−1)a+1•a+1(a−4)2=a 2−1−4a+1a+1=a 2−4a a+1•a+1(a−4)2 =a(a−4)a+1•a+1(a−4)2=a a−4;(2)原式=[x+2x(x−2)−x−1(x−2)2]•x x−4 =(x+2)(x−2)−x(x−1)x(x−2)2•x x−4 =x 2−4−x 2+x x(x−2)2 =x−4x(x−2)2⋅x x−4 =1(x−2)2 =1x 2−4x+4. 21.(2023秋•青龙县期中)计算: (1)a 2a−b +b 2a−b −2ab a−b; (2)(1−1a+1)÷a a 2+2a+1. 【分析】(1)根据同分母分式加减法则进行计算;(2)先通分计算括号内的减法,再把除法转化为乘法,约分计算便可.【解答】解:(1)a 2a−b +b 2a−b −2ab a−b=a 2+b 2−2ab a−b=(a−b)2a−b =a ﹣b ;(2)(1−1a+1)÷aa 2+2a+1 =a a+1×(a+1)2a =a +1.22.(2023春•沈北新区期末)化简:(1)(x 2﹣4y 2)÷2y+x xy •1x(2y−x); (2)2xx 2−4−1x−2.【分析】(1)先算小括号里面的,然后再算括号外面的;(2)先通分,然后按同分母分式加减法法则进行计算求解.【解答】解:(1)原式=(x +2y )(x ﹣2y )•xy 2y+x ⋅1x(2y−x) =﹣y ;(2)原式=2x (x+2)(x−2)−x+2(x+2)(x−2)=2x−x−2(x+2)(x−2) =1x+2. 23.(2023•九龙坡区校级开学)分式化简: (1)16−x 2x 2+4x+4÷x 2x+4⋅x+2x+4; (2)1a+1−3−aa 2−6a+9÷a 2+a a−3. 【分析】(1)根据分式的乘除法可以解答本题;(2)根据分式的除法和减法可以解答本题.【解答】解:(1)16−x 2x 2+4x+4÷x 2x+4⋅x+2x+4 =(4+x)(4−x)(x+2)2⋅2(x+2)x ⋅x+2x+4 =2(4−x)x=8−2x x ;(2)1a+1−3−aa 2−6a+9÷a 2+a a−3=1a+1−3−a (a−3)2⋅a−3a(a+1) =1a+1+1a(a+1) =a+1a(a+1)=1a .24.(2023秋•寻甸县期末)计算与化简(1)32m−n −2m−n (2m−n)2; (2)(a +2−5a−2)÷3−a 2a−4.【分析】(1)先约分,再根据分式的减法法则进行计算即可;(2)先算括号内的加减,把除法变成乘法,再根据分式的乘法法则求出答案即可.【解答】解:(1)原式=32m−n −12m−n=3−12m−n=22m−n ;(2)原式=(a+2)(a−2)−5a−2÷−(a−3)2(a−2) =a 2−9a−2•2(a−2)−(a−3) =(a+3)(a−3)a−2•2(a−2)−(a−3)=﹣2(a +3)=﹣2a ﹣6.25.(2023秋•沂水县期末)化简:(1)x x−1+3x−11−x 2; (2)(2m m−1−m m+1)÷m m 2−1. 【分析】(1)先通分,再根据同分母分式相加法则求出答案即可;(2)先算括号内的减法,把除法变成乘法,再算乘法即可.【解答】解:(1)x x−1+3x−11−x 2 =x(x+1)(x+1)(x−1)−3x−1(x+1)(x−1)=x 2+x−3x+1(x+1)(x−1)=x 2−2x+1(x+1)(x−1)=(x−1)2(x+1)(x−1) =x−1x+1; (2)(2m m−1−m m+1)÷m m 2−1 =2m(m+1)−m(m−1)(m+1)(m−1)•(m+1)(m−1)m =m 2+3m (m+1)(m−1)•(m+1)(m−1)m =m(m+3)(m+1)(m−1)•(m+1)(m−1)m=m +3.26.(2023秋•天津期末)计算:(1)(﹣3xy )÷2y 23x •(y x)2; (2)(x x+y −2y x+y )÷x−2y xy •(1x +1y ). 【分析】(1)先算乘方,把除法变成乘法,最后根据分式的乘法法则求出答案即可;(2)先算括号内的加减,再把除法变成乘法,最后根据分式的乘法法则求出答案即可.【解答】解:(1)原式=(﹣3xy )÷2y 23x •y 2x 2 =(﹣3xy )•3x 2y 2•y 2x 2=−9y 2;(2)原式=x−2y x+y ÷x−2y xy •x+y xy=x−2y x+y •xy x−2y •x+y xy =1.27.(2023春•沙坪坝区校级月考)计算:(1)2y−x x−y +y y−x +x x−y ;(2)(x +1−8x−1)÷x 3−9x x 2−2x+1. 【分析】(1)先变形为同分母分式的加减运算,再根据法则计算即可;(2)先计算括号内分式的减法、将除式的分子、分母因式分解,继而将除法转化为乘法,然后约分即可.【解答】解:(1)原式=2y−x x−y −y x−y +x x−y =2y−x−y+x x−y=y x−y ;(2)原式=(x 2−1x−1−8x−1)÷x(x+3)(x−3)(x−1)2=(x+3)(x−3)x−1•(x−1)2x(x+3)(x−3)=x−1x .28.(2023秋•沙坪坝区校级期末)计算:(1)(a +b )2+a (a ﹣2b );(2)(1−x x+2)÷x 2−4x+4x 2−4. 【分析】(1)根据完全平方公式.单项式乘多项式可以解答本题;(2)先算括号内的减法,然后计算括号外的除法即可.【解答】解:(1)(a +b )2+a (a ﹣2b );=a 2+2ab +b 2+a 2﹣2ab=2a 2+b 2;(2)(1−x x+2)÷x 2−4x+4x 2−4=x+2−x x+2×(x+2)(x−2)(x−2)2 =2x−2. 29.(2023秋•荔湾区期末)计算: (1)a−1a−b −1+b b−a ;(2)(4−a 2a−1+a )÷a 2−16a−1. 【分析】(1)原式变形后,利用同分母分式的加法法则计算即可求出值;(2)原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:(1)原式=a−1a−b +1+b a−b=a+b a−b;(2)原式=4−a2+a2−aa−1•a−1(a+4)(a−4)=−a−4a−1•a−1 (a+4)(a−4)=−1a+4.30.(2023秋•永年区期末)上课时老师在黑板上书写了一个分式的正确化简结果,随后用手掌盖住了一部分,形式如下:•y2x2−xy−y2−x2x2−2xy+y2=xx−y(1)聪明的你请求出盖住部分化简后的结果;(2)当x=2时,y等于何值时,原分式的值为5.【分析】(1)根据被减数、减数、差及因数与积的关系,化简分式求出盖住的部分即可;(2)根据x=2时分式的值是5,得关于y的方程,求解即可.【解答】解:(1)∵(xx−y +y2−x2x2−2xy+y2)÷y2x2−xy=[xx−y +(y+x)(y−x)(x−y)2]×x(x−y)y2=−y x−y ×x(x−y)y2=−x y∴盖住部分化简后的结果为−x y;(2)∵x=2时,原分式的值为5,即22−y=5,∴10﹣5y=2解得y=8 5经检验,y=85是原方程的解.所以当x=2,y=85时,原分式的值为5.。

2020—2021年最新苏科版八年级数学下册《分式》单元测试题及答案解析一.docx

2020—2021年最新苏科版八年级数学下册《分式》单元测试题及答案解析一.docx

(新课标)苏科版八年级下册第10章 分式 测试题(时间: 满分:120分) (班级: 姓名: 得分: ) 一、选择题(每小题3分,共24分) 一、选择题(每小题3分,共30分)1.下列各式:51(1 – x ),34-πx,222y x -,xx 25,其中分式有( )A .1个B .2个C .3个D .4个2.如果分式13-x 有意义,则x 的取值范围是( )A .全体实数B .x ≠1C .x=1D .x >1 3.下列约分正确的是( ) A .313mm m +=+ B .212y x y x -=-+ C .123369+=+a ba b D .yx a b y b a x =--)()( 4.若x ,y 的值均扩大为原来的2倍,则下列分式的值保持不变的是( ) A .y x 23B .223y x C .y x 232D .2323yx5.计算xx -++1111的正确结果是( ) A .0B .212x x -C .212x -D .122-x 6.在一段坡路,小明骑自行车上坡时的速度为v 1千米/时,下坡时的速度为v 2千米/时,则他在这段坡路上、下坡的平均速度是( )A .221v v +千米/时 B .2121v v v v +千米/时 C .21212v v v v +千米/时D .无法确定 7.若关于x 的方程x mx m x -+-+333=3的解为正数,则m 的取值范围是( )A .m <29B .m <29且m ≠23 C .m >49- D .m >49-且m ≠43-8.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,每天多做x 件才能按时交货,则x 满足的方程为( )A .54872048720=-+x B .x+=+48720548720C .572048720=-xD .54872048720=+-x9.对于实数a ,b ,定义一种新运算“⊗”为:a ⊗b=21a b -,这里等式右边是通常的实数运算.例如:81311312-=-=⊗.则方程142)2(--=-⊗x x 的解是( ) A .x=4B .x=5C .x=6D .x=710.张华在一次数学活动中,利用“在面积一定的长方形中,正方形的周长最短”的结论,推导出“式子x+x1(x >0)的最小值是2”.其推导方法如下:在面积是1的长方形中,设长方形的一边长为x ,则另一边长是x1,长方形的周长是2(x+x1);当长方形成为正方形时,就有x=x 1(x >0),解得x=1,这时长方形的周长2(x+x1)= 4最小,因此x+x1(x >0)的最小值是2.模仿张华的推导,你求得式子xx 92+(x >0)的最小值是( )A .1B .2C .6D .10 二、填空题(每小题4分,共32分) 11.分式x21,221y ,xy51-的最简公分母为____________. 12.约分:①ba ab2205=____________,②96922+--x x x =____________.13.用科学记数法表示:0.000 002 016=____________. 14.要使15-x 与24-x 的值相等,则x=____________.15.计算:(a 2b )-2(a -1b -2)-3=____________. 16.若关于x 的方程12123++=+-x mx x 无解,则m 的值为____________.17.已知1424122-+-+=-y y y y x x ,则y 2+ 4y + x 的值为____________.18.如果记 221x y x =+ = f (x ),并且f (1)表示当x=1时y 的值,即f (1)=2211211=+;f(12)表示当x=12时y 的值,即f(12)=221()12151()2=+;那么f (1)+ f (2)+f(12)+f (3)+f(13)+…+ f (n )+f(1n)=____________.(结果用含n 的式子表示) 三、解答题(共58分)19.(每小题6分,共12分)计算:(1)224816x xx x --+;(2)2m n m nn m m n n m-++---. 20.(每小题6分,共12分)解下列方程:(1)1123x x=-; (2)2124111x x x +=+--. 21.(10分)先化简,再求值:2222a a a b a ab b ⎛⎫- ⎪--+⎝⎭÷222a a a b a b ⎛⎫- ⎪+-⎝⎭+1,其中a=23,b = –3.22.(10分)已知x 为整数,且222218339x x x x ++++--为整数,求所有符合条件的x 的值.23.(14分)甲、乙两同学的家与学校的距离均为3000米.甲同学先步行600米,然后乘公交车去学校,乙同学骑自行车去学校.已知甲步行的速度是乙骑自行车速度的21,公交车的速度是乙骑自行车速度的2倍.甲、乙两同学同时从家出发去学校,结果甲同学比乙同学早到2分钟.(1)求乙骑自行车的速度;(2)当甲到达学校时,乙同学离学校还有多远?附加题(15分,不计入总分) 24.一列按一定顺序和规律排列的数: 第1个数是112⨯; 第2个数是123⨯; 第3个数是134⨯;……对任何正整数n ,第n个数与第(n+1)个数的和等于2(2)n n +.(1)经过探究,我们发现:112⨯=1112-,123⨯=1123-,134⨯=1134-, 设这列数的第5个数为a ,那么a >1156-,a =1156-,a <1156-,哪个正确?请你直接写出正确的结论;(2)请你观察第1个数、第2个数、第3个数,猜想这列数的第n 个数(即用正整数n 表示第n 个数),并且证明你的猜想满足“第n个数与第(n+1)个数的和等于2(2)n n +”;(3)设M 表示211,212,213,…,212016这2016个数的和,即M=211+212+213+…+212016,求证:2016403120172016M <<.参考答案一、1. A 2. B 3. C 4. A 5. C 6. C 7. B 8.D 9. B 10.C二、11. 10xy 2 12.①a 41②33-+x x 13.2.016×10-6 14.6 15.4b a16. -5 17. 2 18. 21-n 三、19.解:(1)224816x xx x --+=2(4)(4)4x x x x x -=--;(2)2m n m nn m m n n m -++---=2m n m n m n m n m n m n m--+=----. 20.解:(1)方程两边乘3x (x -2),得3x=x -2. 解得x=-1.检验:当x=-1时,3x (x -2)≠0. 所以,原分式方程的解为x=-1.(2)方程两边乘(x+1)(x -1),得x -1+2(x+1)=4. 解得x=1.检验:当x=1时,(x+1)(x -1)=0,因此x=1不是原分式方程的解.所以,原分式方程无解. 21.解:原式=2()()1()ab a b a b a b ab -+-⋅+--=1a b a b ++-=2a a b-. 当a=23,b=-3时,原式=411.22.解:原式=2(3)2(3)2182(3)(3)(3)(3)(3)x x x x x x x x --++++=+-+-=23x -. ∵x 为整数,且23x -为整数, ∴x -3=±2或x -3=±1,解得x=1或x=2或x=4或x=5. ∴所有符合条件的x 的值为1、2、4、5.23.解:(1)设乙骑自行车的速度为x 米/分,则甲步行的速度是12x米/分,公交车的速度是2x 米/分,根据题意,得60012x+30006002x -=3000x-2.解得x=300.经检验,x=300是原方程的解.答:乙骑自行车的速度为300米/分.(2)300×2=600(米).答:当甲到达学校时,乙同学离学校还有600米.24.解:(1)由题意知第5个数a=156⨯=1156-.(2)∵第n个数为1(1)n n+,第(n+1)个数为1(1)(2)n n++,∴1(1)n n++1(1)(2)n n++=2(1)(2)n nn n n++++=()()()2112nn n n+++=2(2)n n+,即第n个数与第(n+1)个数的和等于2(2)n n+.(3)∵112-=112⨯<211=1,12-13=123⨯<212<112⨯=1-12,13-1 4=134⨯<213<123⨯=12-13,…,12015-12016=120152016⨯<212015<120142015⨯=12014-12015,12016-1 2017=120162017⨯<212016<120152016⨯=12015-12016,∴1-12017<211+212+213+…+212015+212016<122016-,即2016 2017<211+212+213+…+212015+212016<40312016.∴20162017<M<40312016.。

苏科版八年级下第八章分式单元测试卷及答案-推荐下载

苏科版八年级下第八章分式单元测试卷及答案-推荐下载

D.不能确定.
a
D.正数或负数
D.任意有理数
2(a b)
10.甲、乙两种茶叶,以 x:y(重量比)相混合制成一种混合茶.甲种茶叶的价格每斤 50 元,乙种茶叶的
价格每斤 40 元,现在甲种茶叶的价格上调了 10%,乙种茶叶的价格下调了 10%,但混合茶的价格不变,
则 x:y 等于( )
A.1:1
A. h 2S ab
aa
C.零
)
B. a 2S b C. b 2S a D. h S
h
9.已知 ab 1, M 1 1 , N a b ,则 M 与 N 的关系为( ) 1 a 1b 1 a 1b
A.M>N
B.M=N
N
h
)
D. 1
第 1 页(共 6 页)
(时间:100 分钟 总分 120 分)
C. 2
的值相等,则 a 为(
)
)
C.1
B. a y 1 a y
3x
C.
x3 1
x5
D.
x2
D.以上全不对 )
D.不等于 1 的一切实数
D. c d c d c d c d 0
C.1
C.零
8.已知梯形面积 S 1 (a b)h, S、a、b、h 都大于零,下列变形错误是( ) 2
x 1 b 0 x
D.5: 6
,则 a,b 之间的关系式是_____________
的解为正数,则 a 的取值范围是___________.
18.已知 1 4 3 ,则 23 ( y x) 的值是______________. x 2y y x 2x 1 3

八年级数学下册 分式综合特训(压轴30题)(原卷版)

八年级数学下册  分式综合特训(压轴30题)(原卷版)

专题07分式综合特训(压轴30题)一.选择题(共2小题)1.如果关于x 的不等式组有且仅有四个整数解,且关于y 的分式方程﹣=1有非负数解,则符合条件的所有整数m 的和是()A .13B .15C .20D .222.已知方程﹣a =,且关于x 的不等式组只有4个整数解,那么b 的取值范围是()A .﹣1<b ≤3B .2<b ≤3C .8≤b <9D .3≤b <4二.填空题(共10小题)3.已知a ,b ,c 是不为0的实数,且,那么的值是.4.(1)已知,则=;(2)已知,则=.5.有正整数x <y <z ,且k 为整数,,则(y +z )x =.6.已知abc ≠0,且,则的值是或.7.某校在“3.12”植树节来临之际,特从初一、初二、高一、高二四个年级中抽调若干学生去植树.已知初一、初二抽调的人数之比为5:3,高一、高二抽调的人数之比为4:3.上午,初一、高一年级平均每人植树的棵数相同且大于3棵小于10棵,高二年级平均每人植树的棵数为初一、初二平均每人植树的棵数之和的2倍,上午四个年级平均每人植树的棵数总和大于30棵小于40棵,上午四个年级一共植树714棵.下午,初二年级因为要回校参加活动不再参与植树活动,高一、高二年级平均每人植树的棵数都有所降低,高一年级平均每人植树的棵数降低50%,高二年级平均每人植树的棵数降为原来的.若初一年级人数及人均植树的棵数不变,高一高二年级人数不变,且四个年级平均每人植树的棵数为整数,则四个年级全天一共植树棵.8.已知a2﹣3a﹣1=0,求a6+120a﹣2=.9.一个容器装有1升水,按照如下要求把水倒出:第1次倒出升水,第2次倒出的水量是升的,第3次倒出的水量是升的,第4次倒出的水量是升的,…按照这种倒水的方法,倒了10次后容器内剩余的水量是.10.式子“1+2+3+4+5+…+100”表示从1开始的100个连续自然数的和,由于上述式子比较长,书写也不方便,为了简便起见,我们可以将“1+2+3+4+5+…+100”表示为,这里的符号“”是求和的符号,如“1+3+5+7+…+99”即从1开始的100以内的连续奇数的和,可表示为.通过对以上材料的阅读,请计算:=(填写最后的计算结果).11.a是不为1的有理数,我们把称为a的差倒数,如:2的差倒数是=﹣1,﹣1的差倒数是.已知a1=3,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…,以此类推,则a2012=.12.对于正数x,规定,例如:,,则=.三.解答题(共18小题)13.先化简,再求值:+÷,其中x=3.14.巴西世界杯正在激战中,周六晚上小明打算和朋友乘出租车去某大型酒吧观看世界杯,有两条路线可供选择:路线一的全程25千米,但交通比较拥堵,路线二的全程是30千米,平均速度比走路线一时的平均速度能提高80%,因此能比走路线一少用10分钟到达.求小明走路线一时的平均速度.15.如果一个分式的分子或分母可以因式分解,且这个分式不可约分,那么我们称这个分式为“和谐分式”.(1)下列分式:①;②;③;④.其中是“和谐分式”是(填写序号即可);(2)若a为正整数,且为“和谐分式”,请写出a的值;(3)在化简时,小东和小强分别进行了如下三步变形:小东:==小强:==显然,小强利用了其中的和谐分式,第三步所得结果比小东的结果简单,原因是:,请你接着小强的方法完成化简.15.解关于x的方程﹣=时产生了增根,请求出所有满足条件的k 的值.17.某服装店购进一批甲、乙两种款型时尚T恤衫,甲种款型共用了9200元,乙种款型共用了6400元,甲种款型的件数是乙种款型件数的2倍,甲种款型每件的进价比乙种款型每件的进价少30元.(1)甲、乙两种款型的T恤衫各购进多少件?(2)商店按照进价提高m%标价,要使利润不低于10920,请问m最少是多少?18.定义:如果一个分式能化成一个整式与一个分子为常数的分式的和的形式,则称这个分式为“和谐分式”.如:==+=1+,==+=2+,则和都是“和谐分式”.(1)下列式子中,属于“和谐分式”的是(填序号);①;②;③;④(2)将“和谐分式”化成一个整式与一个分子为常数的分式的和的形式为:=+;(3)应用:先化简﹣÷,并求x取什么整数时,该式的值为整数.19.为改善南宁市的交通现状,市政府决定修建地铁,甲、乙两工程队承包地铁1号线的某段修建工作,从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的3倍;若由甲队先做20天,剩下的工程再由甲、乙两队合作10天完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)已知甲队每天的施工费用为15.6万元,乙队每天的施工费用为18.4万元,工程预算的施工费用为500万元,为缩短工期,拟安排甲、乙两队同时开工合作完成这项工程,那么工程预算的施工费用是否够用?若不够用,需增加多少万元?20.已知=++,试求A+B+2C的值.21.某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B 款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?22.先阅读下列解法,再解答后面的问题.已知=+,求A、B的值.解法一:将等号右边通分,再去分母,得:3x﹣4=A(x﹣2)+B(x﹣1),即:3x﹣4=(A+B)x﹣(2A+B),∴.解得.解法二:在已知等式中取x=0,有﹣A+=﹣2,整理得2A+B=4;取x=3,有+B=,整理得A+2B=5.解,得:.(1)已知,用上面的解法一或解法二求A、B的值.(2)计算:[](x+11),并求x取何整数时,这个式子的值为正整数.23.已知a+a﹣1=3,求a4+的值.24.对于正数x,规定:f(x)=.例如:f(1)==,f(2)==,f()==.(1)求值:f(3)+f()=;f(4)+f()=;(2)猜想:f(x)+f()=,并证明你的结论;(3)求:f()+f()+…+f()+f(1)+f(2)+…+f(2016)+f(2017)的值.25.某工厂承接了一批纸箱加工任务,用如图1所示的长方形和正方形纸板(长方形的宽与正方形的边长相等)加工成如图所示的竖式与横式两种无盖的长方形纸箱.(加工时接缝材料不计)(1)该工厂原计划用若干天加工纸箱200个,后来由于对方急需要货,实际加工时每天加工速度时原计划的1.5倍,这样提前2天超额完成了任务,且总共比原计划多加工40个,问原计划每天加工纸箱多少个;(2)若该厂购进正方形纸板1000张,长方形纸板2000张.问竖式纸盒,横式纸盒各加工多少个,恰好能将购进的纸板全部用完.26.观察下面的变形规律:=﹣;=﹣;=;…解答下面的问题:(1)若n为正整数,若写成上面式子形式,请你猜想=;(2)说明你猜想的正确性;(3)计算:+++…+=;(4)解关于n的分式方程:+++…+=.27.阅读下面材料,并解答问题.材料:将分式拆分成一个整式与一个分式(分子为整数)的和的形式.解:由分母为﹣x2+1,可设﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b则﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b=﹣x4﹣(a﹣1)x2+(a+b)∵对应任意x,上述等式均成立,∴,∴a=2,b=1∴==+=x2+2+这样,分式被拆分成了一个整式x2+2与一个分式的和.解答:(1)将分式拆分成一个整式与一个分式(分子为整数)的和的形式.(2)试说明当﹣1<x<1时,的最小值为10.28.学校计划选购甲、乙两种图书作为“校园读书节”的奖品.已知甲图书的单价是乙图书单价的1.5倍;用600元单独购买甲种图书比单独购买乙种图书要少10本.(1)甲、乙两种图书的单价分别为多少元?(2)若学校计划购买这两种图书共40本,且投入的经费不超过1050元,要使购买的甲种图书数量不少于乙种图书的数量,则共有几种购买方案?29.已知=3,求分式的值.30.列方程解应用题:某一工程进行招标时,接到了甲、乙两个工程队的投标书,施工1天需付甲工程队工程款1.5万元,付乙工程队工程款1.1万元,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案:方案(1):甲工程队单独完成这项工程,刚好如期完成;方案(2):乙工程队单独完成这项工程,要比规定日期多5天;方案(3):若甲、乙两队合作4天,余下的工程由乙工程队单独做,也正好如期完成;如果工程不能按预定时间完工,公司每天将损失3000元,在不耽误工期的情况下,你觉得哪种方案最省钱?请说明理由.。

数学:第八章《分式》单元自测卷(苏科版八年级下)

数学:第八章《分式》单元自测卷(苏科版八年级下)

第八章 分式 单元自测卷(满分:100分 时间:60分钟)一、选择题(每题3分,共30分)1.下列各式:11,,,1,,52235a n a a b y m b zπ++-,其中分式有 ( ) A .2个 B .3个 C .4个 D .5个2.把分式3xy x y-中的x 和y 都扩大2倍,则分式的值 ( ) A .不变 B .扩大2倍 C .缩小12 D .扩大4倍 3.化简2244xy y x x --+的结果是 ( ) A .2x x + B .2x x - C .2y x + D .2y x - 4.下列分式中,与22n m n mn m -+-相等的是 ( ) A .22m n m mn n --- B .22n m m mn n--- C .22m n m mn n -+- D .22n m m mn n -+- 5.分式方程112x x =+的解是 ( ) A .x =1 B .x =-1 C .x =2 D .x =-26.若分式33x x -+的值为零,则x 的值是 ( ) A .3 B .-3 C .±3 D .07.方程012n m x x +=--可能产生的增根是 ( ) A .1 B .2 C .1或2 D .-1或28.若()()412121a m n a a a a -=++-+- ,则 ( ) A .m -4,n = -l B .m =5,n =-1 C .m -3,n =1 D .m =4,n =19.若13x x+=,则2421x x x ++的值是 ( ) A .18 B .110 C .12 D .1410.已知0a b c ++=,则111111()()()a b c b c a c a b +++++的值是 ( ) A .0 B .1 C .-1 D .-3二、填空题(每题2分,共16分)11.当x =________时,11x +有意义. 12.化简:2222444m mn n m n -+=-________. 13.若实数x 、y 满足xy ≠0,则y x m x y =+的最大值是________. 14.下列三个不为零的式子:x 2-4,x 2-2x ,x 2-4x +4,从中任选两个你喜欢的式子组成一个分式是________________,把这个分式化简所得的结果是________.15.若关于x 的分式方程212x a x x--=-无解,则a =________. 16.如果114a b a b +=+,那么b a a b +=________. 17.若2112378y y =++,则21469y y +-=________. 18.某车间加工120个零件后,采用了新工艺,工效是原来的1.5倍,这样加工同样多的零件就少用1小时,采用新工艺前每小时加工多少个零件?若设采用新工艺前每小时加工x 个零件,则根据题意可列方程为______________________.三、解答题(共54分)19.(每题4分,共8分)计算:(1)a b a b b a a +⎛⎫-÷ ⎪⎝⎭ (2)22391x x x x --⎛⎫-÷ ⎪⎝⎭20.(7分) 化简,求值:22211111m m m m m m -+-⎛⎫÷-- ⎪-+⎝⎭,其中m21.(每题4分,共8分)解方程:(1)11122x x x -+=-- (2)21411x x x +---=122.(8分)“五一”期间,九年级(l)班同学从学校出发,去距学校6千米的本溪水洞游玩,同学们分为步行和骑自行车两组,在去水洞的全过程中,骑自行车的同学比步行的同学少用40分钟,已知骑自行车的速度是步行速度的3倍.(1)步行的同学每分钟走多少千米?(2)如图是两组同学前往水洞时的路程y (千米)与时间x (分钟)的函数图象.完成下面的填空:①表示骑车同学的函数图象是线段________ ;②已知点A 的坐标为(30,0),则点B 的坐标为(________).23.(6分)已知关于x 的方程233x m x x=---有一个正数解,求m 的取值范围.24.(9分)某电脑公司经销甲种型号电脑,今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.(1)今年三月份甲种型号电脑每台售价为多少元?(2)为了增加收入,电脑公司决定再经销乙种型号电脑.已知甲种型号电脑每台的进价为3500元,乙种型号电脑每台的进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种型号的电脑共15台,有几种进货方案?(3)如果乙种型号电脑每台的售价为3800元,为打开乙种型号电脑的销路,公司决定每售出一台乙种型号电脑,返还顾客现金a 元,要使(2)中所有方案获利相同,a 值应是多少?25.(8分) 先观察下列等式,然后用你发现的规律解答下列问题.111122=-⨯ 1112323=-⨯ 1113434=-⨯ ┅┅(1) 计算111111223344556++++=⨯⨯⨯⨯⨯ . (2)探究1111......122334(1)n n ++++=⨯⨯⨯+ .(用含有n 的式子表示) (3)若1111......133557(21)(21)n n ++++⨯⨯⨯-+的值为1735,求n 的值.参考答案一、1.B 2.B 3.D 4.A 5.A 6.A 7.C 8.C 9.A 10.D二、11.≠-1 12.22m n m n -+ 13.2 14.答案不惟一 如2242x x x -- 2x x+15.0或2 16.1m 3 17.17- 18.12012011.5x x -= 三、19.(1)a b b - (2)13x + 20.11a - 答案不惟一,如a=2,原式=1 21. (1) x =1 (2)无解22. (1)0.1千米/分钟 (2)①AM ②(50,0)23. m<6且m ≠324. (1)4 000元 (2)共有5种进货方案 (3)当a =300时(2)中所有方案获利相同25.(1)56 (2)1+n n (3)1111......133557(21)(21)n n ++++⨯⨯⨯-+ =)7151(21)5131(21)311(21-+-+-+ ┄ +)121121(21+--n n =)1211(21+-n =12+n n 由12+n n =3517 解得17=n 经检验17=n 是方程的根,∴17=n。

数学知识点苏科版初中数学八年级下册全册教案及各章练习题(1)-总结

数学知识点苏科版初中数学八年级下册全册教案及各章练习题(1)-总结

初中数学、数学课件、数学综合练习题、数学教学教案、试卷数学阜宁县陈集中学八年级期末复习(1)第七章第七章 一元一次不等式一元一次不等式复习目标与要求:复习目标与要求:(1)了解不等式的意义,掌握不等式的基本性质。

(2)会解一元一次不等式(组),能正确用轴表示解集。

(3)能够根据具体问题中的数量关系,用一元一次不等式(组),解决简单的问题。

知识梳理:知识梳理:(1)不等式及基本性质;)不等式及基本性质;(2)一元一次不等式(组)及解法与应用;(3)一元一次不等式与一元一次方程与一次函数。

基础知识练习:基础知识练习:1、用适当的符号表示下列关系:(1)X 的2/3与5的差小于1; (2)X 与6的和不大于9 (3)8与Y 的2倍的和是负数倍的和是负数 2. 已知a <b,b,用“<”或“>”号填空:用“<”或“>”号填空:用“<”或“>”号填空:①a-3 b-3 ②6a 6b ③-a -b ④a-b 0 3. 当0<<a x 时,2x 与ax 的大小关系是的大小关系是 4. 如果121<<x ,则()()112--x x _______05. 63->x 的解集是的解集是___________,___________,x 41-≤-8的解集是的解集是_________________________________。

6. 函数xx y 21-=中自变量x 的取值范围是(的取值范围是() A 、x ≤21且x ≠0 B 、x 21->且x ≠0 C 、x ≠0 D 、x 21<且x ≠07. 三个连续自然数的和小于1515,这样的自然数组共有(,这样的自然数组共有(,这样的自然数组共有() A 、6组 B 、5组 C 、4组 D 、3组 8. 当x 取下列数值时,能使不等式01<+x ,02>+x 都成立的是(都成立的是( ) A 、-2.5 B 、-1.5 C 、0 D 、1.51.5 典型例题分析:典型例题分析:例1. 解下列不等式(组),并将结果在数轴上表示出来:(1) 634123+£-+x x (2). ïïîïíì-<--+£--).3(3)3(232,521123x x x x x例2. 已知关于x 的方程3k -5x =-9的解是非负数,求k 的取值范围。

苏科版2023年八年级下册数学期末测试模拟卷【含答案】

苏科版2023年八年级下册数学期末测试模拟卷【含答案】

菱形的性质有:四条边相等;对角线互相垂直平分;
因此正方形具有而菱形不一定具有的性质是:对角线相等.
故选 C.
n m 0 6. 关于 x 的方程 x 1 x 2 可能产生的增根是 ( )
A. x =1
B. x =2
C. x =1 或 x =2
D. x =一 1 或=2
【答案】C
【解析】
【详解】分析:增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的
1 4
2 125
25. 已知 AB=2,AC= 2 ,Bc= 5
,在图中的 4×4 的方格内画△ABC,使它的顶点都在格点上.
(1)求△ABC 的面积;
(2)求点 A 到 BC 边的距离.
26. 如图,在 Rt△ABC 中,∠B=90°,BC=5 3 ,∠C=30°.点 D 从点 C 出发沿 CA 方向以每秒 2 个单位长 的 速度向点 A 匀速运动,同时点 E 从点 A 出发沿 AB 方向以每秒 1 个单位长的速度向点 B 匀速运动,当其 中一个点到达终点时,另一个点也随之停止运动.设点 D、E 运动的时间是 t 秒(t>0).过点 D 作 DF⊥BC 于点 F,连接 DE、EF. (1)求证:AE=DF; (2)四边形 AEFD 能够成为菱形吗?如果能,求出相应的 t 值;如果不能,说明理由. (3)当 t 为何值时,△DEF 为直角三角形?请说明理由.
乙的解法: x y
x y
.下列判断中,正确的是( )
A. 甲的解法正确,乙的解法不正确
B. 甲的解法不正确,乙的解法正确
C. 甲、乙的解法都正确
D. 甲、乙的解法都不正确
二、填空题
11. 某商场为了解本商场的服务质量,随机调查了本商场的 100 名顾客,调查的结果如图所示,根据图中

八年级数学(下)第八章分式综合测试卷及答案

八年级数学(下)第八章分式综合测试卷及答案

八年级数学(下)第八章分式综合测试卷及答案八年级数学(下)第八章分式综合测试卷(时间:90分钟总分值:100分)班级_________ 姓名__________ 得分___________一、填空题(每空2分,共24分)1.假定分式的值为0,那么x的值为________;当x=________时,分式没有意义.2.当x=________,2x-3与的值互为倒数.3.写出一个含有字母x的分式(要求:不论x取任何实数,该分式都有意义)_________.4. 的根为1,那么m=__________.5.当m=________时,关于x的分式方程无解.6.在分式中,f1-f2,那么F=_________.7.a、b为实数,且ab=1,设,,那么P_________Q.8. ,那么代数式的值为_________.9.某商店经销一种商品,由于进货价降低6.4%,使得利润率提高了8%,那么原来经销这种商品的利润率是_________.10.关于恣意不相等的两个数a,b,定义一种运算※如下:a※b= ,如3※2= ,那么12※4=__________.11. ,那么整式A-B=_________.二、选择题(每题3分,共27分)12.在式子,,,,,中,分式的个数是 ( )A.2B.3C.4D.513.假设把分式的x和y都扩展k倍,那么分式的值应 ( )A.扩展k倍B.不变C.扩展k2倍D.增加k倍14.假设方程有增根,那么k的值 ( )A.1B.-1C.1D.715.分式、与的最简公分母是 ( )A.24a2b2c2B.24a6b4c3C.24a3b2c3D.24a2b3c316.假定分式的值是正数,那么x的取值范围是 ( )A. B. C.x0 D.不能确定17.以下各分式中,最简分式是 ( )A. B. C. D.18.假定分式不论m取何实数总有意义,那么m的取值范围是 ( )A.m1B.m1C.m1D.m119.A、B两地相距48千米,一艘轮船从A地逆流飞行至B地,又立刻从B地逆流前往A地,共用去9小时,水流速度为4千米/时,假定设该轮船在静水中的速度为x千米/时,那么可列方程 ( )A. B.C. D.20. ,那么的值是 ( )A.1B.-1C.-3D.3三、解答题(49分)21.化简.(每题5分,共10分)(1) ; (2) .22.解以下分式方程.(每题5分,共10分)(1) ; (2) .23.(7分)设,m+n=2,求的值.24.(7分)假定关于x的方程有增根,求增根和k的值.25.(7分)某一工程,在工程招标时,接到甲、乙两个工程队的招标书.施工一天,需付甲工程队工程款1.2万元,乙工程队工程款0.5万元.工程指导小组依据甲、乙两队的招标书测算,有如下方案:(1)甲队独自完成这项工程刚好如期完成;(2)乙队独自完成这项工程要比规则日期多用6天;(3)假定甲、乙两队协作3天,余下的工程由乙队独自做也正好如期完成.试问:在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由.26.(8分)跃壮五金商店预备从宁云机械厂购进甲、乙两种零件停止销售.假定每个甲种零件的进价比每个乙种零件的进价少2元,且用80元购进甲种零件的数量与用100元购进乙种零件的数量相反.(1)求每个甲种零件、每个乙种零件的进价区分为多少元?(2)假定该五金商店本次购进甲种零件的数量比购进乙种零件的数量的3倍还少5个,购进两种零件的总数量不超越95个,该五金商店每个甲种零件的销售价钱为12元,每个乙种零件的销售价钱为15元,那么将本次购进的甲、乙两种零件全部售出后,可使销售两种零件的总利润(利润=售价-进价)超越371元,经过计算求出跃壮五金商店本次从宁云机械厂购进甲、乙两种零件有几种方案?请你设计出来.参考答案1.2 02.33.答案不独一如4.35.-66.7.=8.49.17% 10.1/2 11.-112.B 13.A 14.A 15.C 16.A 17.C 18.B 19.D 20.C21.(1) (2)a22.(1)x=3 (2)x=-1 23.24.K=5,增根是x=125.解:设规则日期为x天.由题意,得 .x=6是原方程的根.方案(1):1.26=7.2(万元);方案(3):1.23+0.56=6.6(万元).由于7.26.6,所以在不耽误工期的前提下,选第三种施工方案最节省工程款.26.(1)甲8元,乙10元,(2)甲67个,乙24个;甲70个,乙25个.。

苏科版八年级数学下册 分式提优训练

苏科版八年级数学下册 分式提优训练

苏科版八年级数学下册 第10章《分式》综合提高卷 1.用换元法解分式方程x 13x 10x x 1--+=-时,如果设x 1y x-=,将原方程化为关于y 的整式方程,那么这个整式方程是( )A .2y y 30+-=B .2y 3y 10-+=C .23y y 10-+=D .23y y 10--= 【答案】A【解析】【分析】 换元法即是整体思想的考查,解题的关键是找到这个整体,此题的整体是x 1x -,设x 1y x-=,换元后整理即可求得. 【详解】 解:把x 1y x -=代入方程x 13x 10x x 1--+=-,得:3y 10y -+=. 方程两边同乘以y 得:2y y 30+-=.故选A.【点睛】用换元法解分式方程时常用方法之一,它能够把一些分式方程化繁为简,化难为易,对此应注意总结能用换元法解的分式方程的特点,寻找解题技巧.2.已知关于x 的分式方程a 21x 1+=+的解是非正数,则a 的取值范围是 A .a≤﹣1B .a≤﹣1且a≠﹣2C .a≤1且a≠﹣2D .a≤1 【答案】B【解析】试题分析:分式方程去分母得:a+2=x+1,解得:x=a+1,∵分式方程的解为非正数,∴a+1≤0,解得:a≤﹣1。

又当x=﹣1时,分式方程无意义,∴把x=﹣1代入x=a+1得a 2=-。

∴要使分式方程有意义,必须a≠﹣2。

∴a 的取值范围是a≤﹣1且a≠﹣2。

故选B 。

3.甲车行驶30千米与乙车行驶40千米所用时间相同,已知乙车每小时比甲车多行驶15千米,设甲车的速度为x 千米/小时,依据题意列方程正确的是( )A .304015x x =-B .304015x x =-C .304015x x =+D .304015x x=+ 【答案】C【解析】由实际问题抽象出方程(行程问题).【分析】∵甲车的速度为x 千米/小时,则乙甲车的速度为15x +千米/小时∴甲车行驶30千米的时间为30x,乙车行驶40千米的时间为4015x +, ∴根据甲车行驶30千米与乙车行驶40千米所用时间相同得304015x x =+.故选C . 4.一列数a 1,a 2,a 3,…,其中a 1=12,a n =111n a --(n 为不小于2的整数),则a 2015=( ) A .12B .2C .﹣1D .﹣2 【答案】B【解析】试题解析:因为111n n a a -=- ,所以22a = , 31a =- , 412a = ,……, 20152a = ,故本题应选B.5.化简21(1)211x x x x ÷-+++的结果是( ) A .11x + B .1x x + C .x +1 D .x ﹣1 【答案】A【解析】根据分式混合运算法则计算即可:原式=2211(1)1(1)1x x x x x x x x x +÷=⋅=++++ 点睛:本题考查的是分式的混合运算,熟知分式混和运算的法则是解答本题的关键. 6.已知2340x x --=,则代数式24x x x --的值是( ) A .3 B .2 C .13 D .12【答案】D【解析】x 2.3x .4=0.(x .4)(x +1)=0,解得x 1=4.x 2=.1.∴当x =4时,24x x x --=12;当x =.1时,24x x x --=12. 故选D.点睛:本题在解出x 代入分式的时候一定要考虑分式有意义的条件即分母不为0.7.已知230.5x y z ==,则32x y z x y z +--+的值是( ) A .17 B .7 C .1 D .13【答案】B【解析】 试题分析:设230.5x y z ===k ,则x=2k ,y=3k ,z=0.5k ,所以32x y z x y z +--+=290.5430.5k k k k k k+--+=7. 故选B .考点:求代数式的值.8.已知226a b ab +=,且a>b>0,则a b a b +-的值为( )A B . C .2 D .±2【答案】A【解析】【分析】已知a 2+b 2=6ab ,变形可得(a+b.2=8ab..a-b.2=4ab ,可以得出(a+b )和(a-b )的值,即可得出答案.【详解】∵a 2+b 2=6ab.∴.a+b.2=8ab..a-b.2=4ab.∵a.b.0.∴∴a b a b +-=故选A.【点睛】本题考查了分式的化简求值问题,观察式子可以得出应该运用完全平方式来求解,要注意a.b的大小关系以及本身的正负关系.9.若关于x的方程333x m mx x++--=3的解为正数,则m的取值范围是()A.m<92B.m<92且m≠32C.m>﹣94D.m>﹣94且m≠﹣34【答案】B【解析】【详解】解:去分母得:x+m﹣3m=3x﹣9,整理得:2x=﹣2m+9,解得:x=292m-+,已知关于x的方程333x m mx x++--=3的解为正数,所以﹣2m+9>0,解得m<92,当x=3时,x=292m-+=3,解得:m=32,所以m的取值范围是:m<92且m≠32.故答案选B.二、填空题10.若关于x的分式方程311x ax x--=-有增根,则a=___.【答案】1 【解析】根据解分式方程的步骤得:311x ax x--=-,解得:32xa=+,关于x的分式方程311x ax x--=-有增根,则31+2=a或3+2=a(无解),解得a=1,故答案为1.11.若21()9x x +=,则21()x x-的值为___________.【答案】5【解析】 解:22129x x ++=,2217x x +=,22211()272x x x x-=+-=-=5.故答案为5. 12.若112a b -=,则422a ab b a ab b +---的值是________ 【来源】2015-2016学年江苏无锡南闸实验学校八年级下第一次月考数学试卷(带解析) 【答案】2-5. 【解析】 解:∵1a ﹣1b =2,∴a ﹣b =﹣2ab ,∴原式=42a b ab a b ab -+--()()=244ab ab ab ab -+--=25ab ab -=﹣25.故答案为﹣25. 13.已知关于x 的方程3x n 22x 1+=+的解是负数,则n 的取值范围为 . 【答案】n <2且3n 2≠-【解析】 分析:解方程3x n 22x 1+=+得:x=n ﹣2, ∵关于x 的方程3x n 22x 1+=+的解是负数,∴n﹣2<0,解得:n <2. 又∵原方程有意义的条件为:1x 2≠-,∴1n 22-≠-,即3n 2≠-. ∴n 的取值范围为n <2且3n 2≠-. 14.已知2242141x y y x y y +-=-+-,则24y y x ++值为____________. 【答案】2【解析】对公式进行化解变换:去分母,移项合并同类项的15.的值为0的x 值是___________.【答案】【解析】解:根据题意得:|x |=0且(x +1)(x0,解得:x =.故答案为﹣.16.若22440,x y x xy y x y--+=+则等于________. 【答案】13【解析】解:∵x 2﹣4xy +4y 2=0,∴(x ﹣2y )2=0,∴x =2y ,∴x y x y -+=22y y y y -+=13.故答案为13. 点睛:根据已知条件x 2﹣4xy +4y 2=0,求出x 与y的关系是解答本题的关键.17.当a.1.b .1时,代数式22222a ab b a b-+-的值是________. 【解析】分析:根据已知条件先求出a +b 和a ﹣b的值,再把要求的式子进行化简,然后代值计算即可.详解:∵a 1b ,=1,∴a +b+11=,a ﹣b+1﹣1=2,∴22222a ab b a b-+-=2a b a b a b -+-()()()=ab a b -+=2.故答案为2. 点睛:本题考查了分式的值,用到的知识点是完全平方公式、平方差公式和分式的化简,关键是对给出的式子进行化简.18.某农场原计划用m 天完成2bhm 的播种任务,如果要提前a 天结束,那么平均每天比原计划要多播种 ___________2hm . 【答案】()b b m a m-- 【解析】 解:按原计划每天播种2 b hm m ,实际每天播种2 b hm m a-,故每天比原计划多播种b b m a m --().故答案为b b m a m --(). 点睛:本题考查了列代数式问题,解决问题的关键是读懂题意,找到所求的量的等量关系.三、解答题19.先化简,后求值:(1)211(1)22a a a --÷++,其中3a =. .2.222()2a a ab a ab b ---+ ÷ 222()a a a b a b-+-+1 ,其中a=23,b=-3 【答案】(1)12 (2)411 【解析】 试题分析.先用分式混合运算法则化简分式.然后代入求值即可.试题解析.解.(1)原式1212111a a a a a a ++=⨯=++--()(). 当3a =时,原式11312==-. .2..222221a a a a b a a b a b a b a b a b ⎡⎤--÷-+⎢⎥--+--⎣⎦()()()()() .22221a ab a a a b a a b a b a b ⎡⎤----÷+⎢⎥-+-⎣⎦()()()().21ab a b a b a b ab -+-÷+--()()() .a b a b a b a b +-+--.2a a b-当233a b ==-,时,原式=223233⨯--().43113.411. 20.解下列方程 .1.51141022233x x x x +++=-- .2.214111x x x +-=-- 【答案】.1.2x = (2)1x =,为增根,原方程无解【解析】【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:(1)去分母得:15x +3+3x ﹣3=8x +20,移项合并得:10x =20,解得:x =2,经检验x =2是原方程的解,∴分式方程的解为x =2;(2)去分母得:x 2+2x +1﹣4=x 2-1,解得:x =1,经检验x =1是增根,分式方程无解.【点睛】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.21.计算 .1.2411241111x x x x +++-+++ (2)221(1)11x x x x +-÷--; 【答案】(1)881x - (2)3(x+1) 【解析】试题分析..1)用逐步通分的方法计算..2)括号内的先通分.然后用分式除法法则计算即可.试题解析.解..1)原式=241124111111x x x x x x x x +-+++-+-+++()()()().224224111x x x ++-++.22222242121411111x x x x x x x+-++-++-+()()()()()() .2222422224111x x x x x ++-+-++()().444411x x +-+.44444441411111x x x x x x +-+-++-()()()()()().44841411x x x++--()().881x - (2)原式()211211133111x x x x x x x x x x x+-+-+-=⋅=⋅=+--()()=3x +3. 点睛:本题考查了分式的混合运算.要注意运算顺序.22.当m 为何值时,关于x 的方程223242mx x x x +=--+有增根? 【答案】m=−4或m=6.【解析】分析:增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母(x+2)(x-2)=0,得到x=-2或2,然后代入化为整式方程的方程算出a 的值.本题解析: 原方程化为()()232222mx x x x x +=-+-+, 方程两边同时乘以(x+2)(x −2)得2(x+2)+mx=3(x −2),整理得(m −1)x+10=0,∵关于x 的方程 223242mx x x x +=--+会产生增根, ∴(x+2)(x −2)=0,∴x=−2 或x=2,∴当x=−2时,(m −1)×(−2)+10=0,解得m=6,当x=2时,(m −1)×2+10=0,解得m=−4,∴m=−4或m=6时,原方程会产生增根.23.已知x 为整数,且222218339x x x x ++++--为整数,求所有符合条件的x 值的和. 【答案】12【解析】【分析】 本题考查的是分式的性质,先对分式通分、化简,再根据分式的特征即可得到结果.【详解】原式=2221833(3)(3)x x x x x -++++-+- =2(3)2(3)218(3)(3)(3)(3)(3)(3)x x x x x x x x x --+++++-+-+- =2626218(3)(3)x x x x x ---+++- =262(3)2(3)(3)(3)(3)3x x x x x x x ++==+-+--, 显然,当x-3=2,1,-2或-1,即x=5,4,2或1时,23x -的值是整数, 所以满足条件的数只有5,4,2,1四个,5+4+2+1=12.24.五月初,我市多地遭遇了持续强降雨的恶劣天气,造成部分地区出现严重洪涝灾害,某爱心组织紧急筹集了部分资金,计划购买甲、乙两种救灾物品共2000件送往灾区,已知每件甲种物品的价格比每件乙种物品的价格贵10元,用350元购买甲种物品的件数恰好与用300元购买乙种物品的件数相同(1)求甲、乙两种救灾物品每件的价格各是多少元?(2)经调查,灾区对乙种物品件数的需求量是甲种物品件数的3倍,若该爱心组织按照此需求的比例购买这2000件物品,需筹集资金多少元?【答案】(1)甲、乙两种救灾物品每件的价格各是70元、60元;(2) 需筹集资金125000元.【解析】试题分析:(1)设每件乙种物品的价格是x 元,则每件甲种物品的价格是(x+10)元,根据“用350元购买甲种物品的件数恰好与用300元购买乙种物品的件数相同”列出方程,求解即可;(2)设甲种物品件数为m 件,则乙种物品件数为3m 件,根据”该爱心组织按照此需求的比例购买这2000件物品”列出方程,求解即可.试题解析:(1)设每件乙种物品的价格是x元,则每件甲种物品的价格是(x+10)元,根据题意得,=,解得:x=60.经检验,x=60是原方程的解.答:甲、乙两种救灾物品每件的价格各是70元、60元;(2)设甲种物品件数为m件,则乙种物品件数为3m件,根据题意得,m+3m=2000,解得m=500,即甲种物品件数为500件,则乙种物品件数为1500件,此时需筹集资金:70×500+60×1500=125000(元).答:若该爱心组织按照此需求的比例购买这2000件物品,需筹集资金125000元.考点:分式方程的应用;一元一次方程的应用.。

2020年春苏科版八年级数学下册第十章《分式》 中考真题单元提优测试(含答案解析)

2020年春苏科版八年级数学下册第十章《分式》   中考真题单元提优测试(含答案解析)

2020年苏科版八年级数学(下)第十单元《分式》中考真题单元提优测试(含答案解析)同的硬面笔记本(两人的钱恰好用完),已知每本硬面笔记本比软面笔记本贵3元,且小明和小丽买到相同数量的笔记本,设软面笔记本每本售价为x 元,根据题意可列出的方程为( ) A.32415+=x x B.32415-=x x C.x x 24315=+ D.x x 24315=-3. (2019·衡阳)如果分式11x +在实数范围内有意义,则x 的取值范围是( ) A. x ≠- 1 B. x >-1 C. 全体实数 D. x =-1 4. (2019·聊城) 如果分式11x x -+的值为0,那么x 的值为A.-1B.1C.-1或1D.1或05.(2019·天津)计算121a 2+++a a 的结果等于( ) A. 2 B. 2a+2 C. 1 D. 1a 4+a6. (2019·宁波) 若分式12x -有意义,则x 的取值范围是( ) A.x>2B.x ≠2C.x ≠0D.x ≠-27.(2019·眉山) 化简2b a ba a a ⎛⎫--÷ ⎪⎝⎭的结果是()A .a -bB .a +bC .1a b-D .1a b+ 8.(2019·江西)计算)1(12aa -÷的结果为( ) A.a B. -a C.31a - D.31a9.(2019·陇南)下面的计算过程中,从哪一步开始出现错误( )A .①B .②C .③D .④10.(2019·重庆A 卷)若关于x 的一元一次不等式组11(42)423122x a x x ⎧--≤⎪⎪⎨-⎪<+⎪⎩的解集是x ≤a ,且关于y 的分式方程24111y a y y y---=--有非负整数解,则符合条件的所有整数a 的和( )A .0B .1C .4D .6 二、填空题11.(2019·泰州) 若分式121x -有意义,则x 的取值范围是______. 12.(2019·山西)化简211x xx x---的结果是________. 13.(2019·衡阳)计算:11x -+11x -= .14.(2019·武汉) 计算411622---a a a 的结果是___________. 15. (2019.宿迁)关于x 的分式方程+=1的解为正数,则a 的取值范围是 . 三、解答题 16.化简(1)(2019.扬州)化简:aa a -+-1112;(2)(2019.徐州)÷.17.(2019.扬州)解不等式组()⎪⎩⎪⎨⎧--+≤+38413714x x x x <,并写出它的所有负整数解 18.(2019.盐城)解不等式组:19.(2019.无锡)解方程1421+=-x x . 20.(2019.镇江)(1)解方程:=+1;(2)解不等式:4(x ﹣1)﹣<x21.(2019.徐州)(1)解方程:+1=(2)解不等式组:22.(2019.烟台)先化简2728(3)33x xx x x -+-÷--,再从0≤x ≤4中选一个适合的整数代入求值.2020年苏科版八年级数学(下)第十单元《分式》中考真题单元提优测试解析【答案】:故选B.2.(2019.苏州)小明用15元买售价相同的软面笔记本,小丽用24元买售价相同的硬面笔记本(两人的钱恰好用完),已知每本硬面笔记本比软面笔记本贵3元,且小明和小丽买到相同数量的笔记本,设软面笔记本每本售价为x 元,根据题意可列出的方程为( ) A.32415+=x x B.32415-=x x C.x x 24315=+ D.x x 24315=-选A3. (2019·衡阳)如果分式11x +在实数范围内有意义,则x 的取值范围是( ) A. x ≠- 1 B. x >-1 C. 全体实数 D. x =-1 【答案】A . 【解析】由分式11x +在实数范围内有意义,得x +1≠0,所以x ≠-1故选A . 4. (2019·聊城) 如果分式11x x -+的值为0,那么x 的值为A.-1B.1C.-1或1D.1或0 【答案】B【解析】要想使分式的值为零,应使分子为零,即|x|-1=0,分母不为零,即x+1≠0,∴x =1,故选B.5. (2019·天津)计算121a 2+++a a 的结果等于( ) A. 2 B. 2a+2 C. 1 D. 1a 4+a【答案】A【解析】先同分母分式计算,分母不变把分子相加减;再把公因式(a+1)进行约分,故选A.6. (2019·宁波) 若分式12x -有意义,则x 的取值范围是( ) A.x>2 B.x ≠2 C.x ≠0 D.x ≠-2 【答案】B【解析】要使分式有意义,需要使分母不为零,即x -2≠0,∴x ≠2,故选B.7. (2019·眉山) 化简2b a ba a a ⎛⎫--÷ ⎪⎝⎭的结果是( )A .a -bB .a +bC .1a b-D .1a b+ 【答案】B【解析】原式=22a b aa a b-⨯-=a+b ,故选B. 8. (2019·江西)计算)1(12a a -÷的结果为( ) A.a B. -a C.31a - D.31a【答案】B【解析】a a aa a -=-⋅=-÷)(1)1(122.9. (2019·陇南)下面的计算过程中,从哪一步开始出现错误( )A .①B .②C .③D .④ 222222()()()()()()()()x y x x y y x y x xy xy y x y x y x y x y x y x y x y x y x y x y +-+-++-=-==-+-+-+-+-,故第②步出现问题,故选:B .10.(2019·重庆A 卷)若关于x 的一元一次不等式组11(42)423122x a x x ⎧--≤⎪⎪⎨-⎪<+⎪⎩的解集是x ≤a ,且关于y 的分式方程24111y a y y y---=--有非负整数解,则符合条件的所有整数a 的和为 ( )A .0B .1C .4D .6原不等式组可化为5x ax ≤⎧⎨<⎩,而它的解集是x ≤a ,从而a <5;对于分式方程两边同乘以y -1,得2y -a +y -4=y -1,解得y =32a +.而原方程有非负整数解,故302312a a +⎧≥⎪⎪⎨+⎪≠⎪⎩且32a +为整数,从而在a ≥-3且a ≠-1且a <5的整数中,a 的值只能取-3、1,3这三个数,它们的和为1,因此选B . 二、填空题11.(2019·泰州) 若分式121x -有意义,则x 的取值范围是______. 【解析】要使分式121x -有意义,需要使2x -1≠0,所以x ≠12.12.(2019·山西)化简211x xx x---的结果是________. 【答案】31xx -【解析】2231111x x x x xx x x x +-==----.13.(2019·衡阳)计算:11x -+11x-= . 【答案】1 【解析】1x x -+11x -=1x x --11x -=11x x --=1,故答案为1. 14.(2019·武汉) 计算411622---a a a的结果是___________.【答案】14a + 【解析】原式=()()244444a a a a a a +-+-+-()()= ()2444a a a a --+-()=()444a a a -+-()= 1a (+4). 15. (2019.宿迁)关于x 的分式方程+=1的解为正数,则a 的取值范围是 .解:去分母得:1﹣a +2=x ﹣2, 解得:x =5﹣a , 5﹣a >0, 解得:a <5,当x =5﹣a =2时,a =3不合题意, 故a <5且a ≠3.故答案为:a <5且a ≠3. 三、解答题 16.化简(1)(2019.扬州)aa a -+-1112 解原式 =112--a a=a+1(2)原式=÷=(x ﹣4)•=2x .17.(2019.扬州)解不等式组()⎪⎩⎪⎨⎧--+≤+38413714x x x x <,并写出它的所有负整数解 解:23-23-429-3812313744<<<<x x x x x x x x x ≤⇒⎩⎨⎧≥⇒⎩⎨⎧≥⇒⎩⎨⎧--+≤+∴负整数解为-3,-2,-118.(2019.盐城)解不等式组:【分析】分别求出各不等式的解集,再求出其公共解集即可. 【解答】解:解不等式①,得x >1, 解不等式②,得x ≥﹣2, ∴不等式组的解集是x >1.19.(2019.无锡)1421+=-x x . 解:)2(41-=+x x (去分母) 841-=+x x 184--=-x x 93-=-x 3=x经检验:3=x 是分式方程的根. 20.(2019.镇江)(1)解方程:=+1;(2)解不等式:4(x ﹣1)﹣<x 解;(1)方程两边同乘以(x ﹣2)得 2x =3+x ﹣2 ∴x =1检验:将x =1代入(x ﹣2)得1﹣2=﹣1≠0 x =1是原方程的解. ∴原方程的解是x =1. (2)化简4(x ﹣1)﹣<x 得4x ﹣4﹣<x∴3x < ∴x <∴原不等式的解集为x <.21.(2019.徐州)(1)解方程:+1=(2)解不等式组:解:(1)+1=,两边同时乘以x ﹣3,得 x ﹣2+x ﹣3=﹣2,∴x =;经检验x =是原方程的根;(2)由可得,∴不等式的解为﹣2<x ≤2;22.(2019.烟台)先化简2728(3)33x x x x x -+-÷--,再从0≤x ≤4中选一个适合的整数代入求值. 【解题过程】2728(3)33x xx x x -+-÷--2(3)(3)73)3328x x x x x x x +--⎡⎤=-⨯⎢⎥---⎣⎦ (4)(4)332(4)x x x x x x +--=⨯-- 42x x+= 因为23028020x x x x -≠⎧⎪-≠⎨⎪≠⎩,所以x 不能取0, 3,4,考虑到0≤x ≤4中选一个整数,故x 只能取1或2,①当1x =时,原式145212+==⨯②当2x =时,原式243222+==⨯。

数学:第八章《分式》单元测试(苏科版八年级下)

数学:第八章《分式》单元测试(苏科版八年级下)

第八章《分式》单元测试一、选择题(2分×8=16分)1、在x 1、21、212+x 、πxy 3、y x +3、ma 1+中分式的个数有( ) A 、5个 B 、4个 C 、3个 D 、2个2、 与分式-x+y x+y相等的是( ). A 、x+y x-y B 、x-y x+y C 、- x-y x+y D 、x+y -x-y3、下列各分式中,最简分式是( )A 、()()y x y x +-8534B 、y x x y +-22C 、()222y x y x +- D 、2222xy y x y x ++ 4、下列各式正确的是( )A 、()0,≠=a ma na m nB 、22x y x y =C 、11++=++b a x b x aD 、am a n m n --= 5、下列各式的约分运算中,正确的是( ).A 、x 6x 2 =x 3B 、a+c b+c = a bC 、a+b a+b = 0D 、a+b a+b=1 6、若把分式xyy x 2+中的x 和y 都扩大3倍,那么分式的值( ) A 、扩大3倍 B 、缩小3倍 C 、不变 D 、缩小6倍7、若0414=----xx x m 无解,则m 的值是( ) A 、-2B 、2C 、3D 、-3 8、某农场开挖一条480米的渠道,开工后,每天比原计划多挖结果提前4天完成任务,若设原计划每天挖x 米,那么求x 时所列方程正确的是( )A 、448020480=--x xB 、204480480=+-x xC 、420480480=+-x xD 、204804480=--xx 二、填空题(3分×6=18分)9、当x 时,分式51-x 有意义;当x 时,分式11x 2+-x 的值为零。

10、①())0(10 53≠=a axy xy a ②()1422=-+a a 。

11、xyzx y xy 61,4,13-的最简公分母是 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学试卷
2013.12 一、选择题
1.(2012.湖州)要使分式1
x
有意义,x 的取值应满足 ( ) A .x -0 B .x ≠0 C .x>0 D .x<0
2.若分式
2
2
1
x x --的值为0,则x 的值为 ( ) A .1 B .-1 C .±1 D .2
3.下列分式中,属于最简分式的是 ( )
A .42x
B .221
x x + C .211x x --
D .
11
x
x -- 4.如果把分式
2x
x y
-中的x 和y 都扩大5倍,那么分式的值 ( ) A .扩大5倍 B .扩大10倍
C .不变
D .缩小为原来的
5.化简2
b a
a a a
b ⎛⎫-
⎪-⎝

g 的结果是 ( ) A .a -b
B .a +b
C .
1
a b
- D .
1
a b
+ 6.下列运算中,正确的是 ( )
A .y y
x y x y
=----
B .
22
33
x y x y +=+ C .
22
x y x y x y
+=++ D .
22
1
y x x y x y
-=--+ 7.(2012.宜宾)分式方程
2
1221
933
x x x -=--+的解为 ( )
A .3
B .-3
C .3或-3
D .无解
8.(2012.达州)为了保证达万高速公路在2012年年底全线顺利通车,某路段规定在若干天内完成修建任务.已知甲队单独完成这项工程比规定时间多用10天,乙队单独完成这项工程比规定时间多用40天,如果甲、乙两队合做,那么可比规定时间提前14天完成任务.设规定时间为x 天,由题意,可列方程为 ( )
A .
111
104014x x x +=
--+ B .
111
104014x x x +=
++- C .111
104014
x x x -=
++-
D .111101440
x x x +=
++- 9.已知实数a 、b 、c 满足a+b+c=0,abc=4,那么111
a b c
++( ) A .是正数
B .是零
C .是负数
D .可正可负
10.若2
10x x --=,则45
21
x x x
++的值是 ( ) A .1 B .2 C .-1 D .0 二、填空题
1.函数1x
y x =-的自变量x 的取值范围是_______. 2.化简:22a a
a
+=_______.
3.分式
2
1xy 、()c x m n -和()1y n m -的最简公分母是_______. 4. (2012.连云港)化简:22
11121m m m m -⎛
⎫+÷= ⎪-+⎝⎭
_______. 5. (2012.佳木斯)已知关于x 的分式方程1
12
a x -=+有增根,则a =_______. 6.a 、
b 为实数,且ab =1,设P =11a b a b +++,Q =11
11
a b +
++,则P_______Q(填“>”、“<”或“=”).
7.若
1235x y z ++=,3217x y z ++=,则111
x y z
++=_______. 8.小华从家到学校每小时走m 千米,从学校返回家里每小时走n 千米,则他往返家里和学校的平均速度是_______千米/时.
9.甲做180个零件与乙做240个零件所用的时间相等,如果两个人每小时共做140个零
件,那么甲、乙两个人每小时各做多少个零件?若设甲每小时做x 个零件,则乙每小时做_______个零件,所列方程为_______.
10.已知2+23=22×23,3+38=32×38
,4+415=42×415……若9+a b =92
×a b (a 、b 为正整数),则ab =_______. 三、解答题 1.计算:
(1)213422x x x x
+--
--
(2)222
1122442x x x x x x
⎛⎫-÷ ⎪--+-⎝⎭
2.解方程:
(1)(2012.呼伦贝尔)24
204121x x -
=-- (2)(2012.大连)21133
x x
x x =-
++
3. (1)已知22
2xy
M x y
=-、2222x y N x y +=-,用“+”或“-”连接M 、N ,有三种不同的形式:M +N 、M -N 、N -M ,请你任选其中一种进行计算,并化简求值,其中x :y =5:2;
(2)(2012.莱芜)对于非零的两个实数a 、b ,规定a ⊕b 11
b a
=-,若2⊕(2x -1)=1,求x 的值. 4.已知y z x z x y x y z
p x y z y z x z x y
+-+-+-===+++-+-,求23p p p ++的值.
5.(2012.遂宁)经过建设者们三年多艰苦努力地施工,贯通我市的又一条高速公路——遂内高速公路于2012年5月9日全线通车.已知原来从遂宁到内江公路长150 km,高速公路路程缩短了30 km,如果一辆小汽车从遂宁到内江走高速公路的平均速度可以提高到原来的1.5倍,那么需要的时间可,以比原来少用1小时10分钟.小汽车原来和走高速公路的平均速度分别是多少?
①该商场有哪几种进货方式?
②若该商场将购进的冰箱、彩电全部售出,获得的最大利润为⊥元,请用所学的函数知识求出W的值.
7.在数学学习过程中,通常是利用已有的知识与经验,通过对研究对象进行观察、实验、推理、抽象概括.发现数学规律,揭示研究对象的本质特征.
比如“同底数幂的乘法法则”的学习过程是利用有理数的乘方概念和乘法结合律,由“特殊”到“一般”进行抽象概括的:
22×23=25,23×24=27,22×26=28……⇒2m×2n=2m+n……⇒a m×a n=a m+n(m、n都是正整数).
我们亦知:2
3

21
31
+
+

2
3

22
32
+
+

2
3

23
33
+
+

2
3

24
34
+
+
……
(1)请你根据上面的材料归纳出a、b、c(a>b>0,c>0)之问的一个数学关系式,请通过验证说明;
(2)试用(1)中归纳的数学关系式,解释下面生活中的一个现象:若m克糖水里含有n 克糖.再加入k克糖(仍不饱和),则糖水更甜了.。

相关文档
最新文档