间接补码阵列乘法器的设计组成原理课程设计报告
计算机组成原理课程设计报告,乘法,除法,
![计算机组成原理课程设计报告,乘法,除法,](https://img.taocdn.com/s3/m/8481e59ae518964bce847c3e.png)
成绩:课程设计报告课程名称:计算机组成原理课程设计实验项目:用微指令实现乘法和除法的程序姓名:专业:计算机科学与技术班级:计算机14-6班学号:计算机科学与技术学院实验教学中心2016年9 月1 日设计项目名称:用微指令实现乘法和除法的程序(2 学时)一.设计目的1、通过学习用微指令实现乘法和除法的程序,巩固课本知识,加深对所学知识的理解,综合理解计算机组成原理课程的核心知识并进一步建立整机系统的概念。
2、通过实际上机动手操作和亲自设计,锻炼自身的动手能力和实践能力,将课本的理论知识运用于实践,培养综合实践及独立分析、解决问题的能力,充分发挥理论联系实践的教学理念。
3、通过上机学习对微指令的设计,为以后走上工作岗位奠定一定的基础,同时也为以后学习其他相关的内容做铺垫。
4.在实验机上设计实现机器指令及对应的微指令(微程序)并验证,从而进一步掌握微程序设计控制器的基本方法并了解指令系统与硬件结构的对应关系。
二.设计内容针对COP2000实验仪,从详细了解该模型机的指令微指令系统入手,以实现乘法和除法运算功能为应用目标,在COP2000的集成开发环境下,设计全新的指令系统并编写对应的微程序,之后编写实现乘法和除法的程序进行设计的验证。
三.使用仪器cop2000计算机组成原理实验系统。
四.设计步骤1、理解试验系统自带的每一条微指令的含义和具体工作流程。
2、根据原有的微指令自己设计微指令。
3、微指令设计完成后调试所有的微指令确保没有错误。
4、用自己设计的微指令编写实现乘法和除法运算的程序。
5、编写程序完毕后调试并运行代码,观察是否能够满足需求。
五.微程序设计指令原理1.在微指令的控制字段中,每一位代表一个微命令,在设计微指令时,是否发出某个微命令,只要将控制字段中相应位置成"1"或"0",这样就可打开或关闭某个控制门。
2.详细了解并掌握COP 2000模型机的微程序控制器原理,通过综合实验来实现(1)该模型机指令系统的特点:①总体概述:COP2000模型机包括了一个标准CPU所具备所有部件,这些部件包括:运算器ALU、累加器A、工作寄存器W、左移门L、直通门D、右移门R、寄存器组R0-R3、程序计数器PC、地址寄存器MAR、堆栈寄存器ST、中断向量寄存器IA、输入端口IN、输出端口寄存器OUT、程序存储器EM、指令寄存器IR、微程序计数器uPC、微程序存储器uM,以及中断控制电路、跳转控制电路。
间接补码阵列乘法器地设计组成原理课程设计报告材料
![间接补码阵列乘法器地设计组成原理课程设计报告材料](https://img.taocdn.com/s3/m/f0e78e2002d276a201292e70.png)
航空航天大学课程设计报告课程设计名称:计算机组成原理课程设计课程设计题目:间接补码阵列乘法器的设计院(系):计算机学院专业:计算机科学与技术班级:学号:姓名:指导教师:完成日期:2015年1月16日目录第1章总体设计方案 (1)1.1设计原理 (1)1.2设计思路 (2)1.3设计环境 (2)第2章详细设计方案 (5)2.1顶层方案图的设计与实现 (5)2.1.1创建顶层图形设计文件 (5)2.1.2器件的选择与引脚锁定 (5)2.1.3编译、综合、适配 (6)2.2功能模块的设计与实现 (6)2.2.1 细胞模块的设计与实现 (6)2.2.2 全加器模块的设计与实现 (7)2.3仿真调试 (11)第3章编程下载与硬件测试 (13)3.1编程下载 (13)3.2硬件测试及结果分析 (13)参考文献 (15)附录(电路原理图) (16)第1章总体设计方案1.1 设计原理由于计算机采用补码做加减运算,所以设计阵列补码乘法器能避免码制转换,提高机器效率。
可以利用原码阵列乘法器来设计补码阵列乘法器,这时需要在计算前先进行原码--补码的转换。
乘法器的常规设计是适用“串行移位”和“并行加法”相结合的方法,这种方法并不需要很多器件。
然而串行方法毕竟太慢,不能满足科学技术对高速乘法所提出的要求。
自从大规模集成电路问世以来,高速的单元阵列乘法器应运而生,出现了各种形式的流水线阵列乘法器,它们属于并行乘法器。
阵列乘法器采用类似于人工计算的方法进行乘法运算。
人工计算方法是用乘数的每一位去乘被乘数,然后将每一位权值对应相加得出每一位的最终结果。
如图1.1所示,用乘数的每一位直接去乘被乘数得到部分积并按位列为一行,每一行部分积末位与对应的乘数数位对齐,体现对应数位的权值。
将各次部分积求和,即将各次部分积的对应数位求和即得到最终乘积的对应数位的权值。
011010* 001001____________011010000000000000011010000000000000_______________图1.1 人工计算乘法示例阵列乘法器采用类似人工的计算方法来完成乘法计算。
组成原理课设报告
![组成原理课设报告](https://img.taocdn.com/s3/m/5e90061f79563c1ec5da7144.png)
计算机组成原理课程设计目录1.1设计内容 (3)1.2 具体要求 (3)1.3 设计环境 (3)2、总体设计方案 (5)2.1 设计思路 (5)2.2 微指令格式 (5)2.3 设计的指令系统 (5)2.4 24个微指令的意义: (6)3、详细设计方案 (8)3.1 指令流程图及其微程序清单 (8)4、调试过程 (12)4.1 实验步骤 (12)4.2 出现的问题与解决办法 (25)5、小结 (26)6、参考资料 (26)1、设计任务与要求1.1设计内容实验一微程序控制器的设计与实现。
主要内容如下:⑴指令系统能够实现数据传送,进行加、减运算和无条件转移,具有累加器寻址、寄存器寻址、寄存器间接寻址、存储器直接寻址、立即数寻址等五种寻址方式。
⑵指令系统至少要包括六条指令,具有上述功能和寻址方式⑶根据微操作流程及给定的微指令格式写出相应的微程序⑷将所设计的微程序在虚拟环境中运行调试程序,并给出测试思路和具体程序段。
实验二定点原码一位乘的设计与实现。
主要内容如下:⑴利用计算机组成原理实验仪和仿真软件,实现定点原码一位乘⑵写出总体设计方案(包括设计原理和设计思路等)和详细设计方案⑶编写实现乘法的程序进行设计的验证1.2 具体要求1. 巩固和深刻理解“计算机组成原理”课程所讲解的原理,加深对计算机各模块协同工作的认识。
2. 通过设计实现机器指令及对应的微指令(微程序)并验证,从而掌握微程序设计的思想和具体流程、操作方法。
3. 通过控制器的微程序设计,综合理解计算机组成原理课程的核心知识,并进一步建立整机系统的概念。
4. 将所设计的微程序在虚拟环境中运行调试程序,并给出测试思路和具体程序段5. 培养学生独立工作和创新思维的能力,取得设计与调试的实践经验。
6. 撰写课程设计报告。
1.3 设计环境本实现采用伟福COP2000型计算机组成原理实验仪,微机,相关虚拟软件。
在COP2000试验仪上实现编程,所应用的编程语言为汇编语言。
组成原理课程设计报告
![组成原理课程设计报告](https://img.taocdn.com/s3/m/492a7b57240c844769eaeed1.png)
组成原理课程设计报告目录目录1.引言 (3)1.1课程设计的目的: (3)1.2课程设计的任务: (3)2 LogiSim基础 (3)2.1 LogiSim介绍 (3)2.2 LogiSim的功能与使用 (3)3 总体设计 (4)4 详细设计 (6)4.1运算器的组成及工作原理 (6)4.2存储器的组成及工作原理 (9)4.3微程序控制器的设计与实现 (10)5 课程设计总结 (20)6 参考文献 (20)1.引言1.1课程设计的目的:运用并整合计算机组成原理与体系结构课程所学的相关知识,一步步设计构造一台功能齐全的计算机整机系统----模型机,明确计算机各个组成部分及格组成部分的工作原理,巩固和灵活运用所学的理论知识,掌握计算机组成的一般设计和实现方法,培养学生的实验动手能力和创新意识,为以后进行计算机系统的设计与开发奠定基础。
1.2课程设计的任务:设计一个8位模型计算机系统,包括运算器,存储器,微程序控制器,简单输入和输出,时序和启停控制等电路。
定义一套简单的指令系统,制定系统的设计方案和实现方法,画出所设计的模型机的电路原理图。
在计算机组成原理与体系结构实验系统上搭建模型机系统,完成整机各个组成部分的实验调试过程,并用所设计的指令系统编写一个实现简单功能的程序,在搭建的模型机上输入、调试和运行程序。
2 LogiSim基础2.1 LogiSim介绍Logisim是一个用来设计和模拟数字逻辑电路的教学工具。
它带有简单的工具栏界面和内建的模拟电路,使得学习最基本的逻辑电路概念变得足够简单。
从大型电路到微型电路它都能构建,只用鼠标拖曳就可来画出很多的线缆。
Logisim 可以用来设计和模拟以教学为目标的完整的CPU。
2.2 LogiSim的功能与使用1、AND gate按钮。
这时鼠标附近会出现一个与门的图标,在主电路图窗口任意位置单击鼠标以放置与门。
2、Input Pin按钮。
在你的与门左侧放置两个输入(input pin)。
组成原理课设阵列乘法器
![组成原理课设阵列乘法器](https://img.taocdn.com/s3/m/255405ba05a1b0717fd5360cba1aa81144318fac.png)
组成原理课设阵列乘法器在现代科技的发展中,计算机和电子设备的性能提升日新月异。
而在这些设备中,乘法器是一个至关重要的组成部份。
乘法器的性能直接影响到整个系统的运算速度和效率。
因此,设计一个高效且可靠的乘法器是组成原理课程中的一项重要任务。
一、乘法器的基本概念乘法器是一种用于实现两个数相乘的电子电路。
在计算机中,乘法器的作用是进行大量的乘法运算,从而实现复杂的计算任务。
乘法器通常由多个逻辑门和触发器组成,其内部结构可以分为串行乘法器和并行乘法器两种类型。
二、串行乘法器的原理串行乘法器是一种逐位相乘的乘法器,它将两个数的每一位进行相乘,并将结果相加得到最终的乘积。
串行乘法器的原理可以通过以下步骤来说明:1. 将两个数的每一位进行相乘,得到部份积。
2. 将部份积与进位相加,得到新的部份积。
3. 重复以上步骤,直到所有位数都相乘完毕。
4. 将所有的部份积相加,得到最终的乘积。
串行乘法器的优点是结构简单,适合于小规模的乘法运算。
但是由于乘法运算是逐位进行的,所以串行乘法器的运算速度较慢。
三、并行乘法器的原理并行乘法器是一种同时进行多位乘法运算的乘法器,它可以大大提高乘法运算的速度。
并行乘法器的原理可以通过以下步骤来说明:1. 将两个数的每一位进行相乘,得到部份积。
2. 将所有的部份积同时进行相加,得到最终的乘积。
并行乘法器的优点是运算速度快,适合于大规模的乘法运算。
但是由于并行乘法器的结构复杂,所以其设计和实现难度较大。
四、阵列乘法器的原理阵列乘法器是一种基于并行乘法器的乘法器,它通过将乘法运算分解成多个子运算,并将这些子运算并行进行,从而提高乘法运算的速度。
阵列乘法器的原理可以通过以下步骤来说明:1. 将两个数的每一位进行相乘,得到部份积。
2. 将所有的部份积按照位数进行罗列,形成一个二维矩阵。
3. 将矩阵中的每一行进行相加,得到每一位的乘积。
4. 将所有的乘积相加,得到最终的乘积。
阵列乘法器的优点是结构简单、运算速度快,适合于大规模的乘法运算。
计算机组成原理-定点补码阵列乘法器(3x3)实验报告
![计算机组成原理-定点补码阵列乘法器(3x3)实验报告](https://img.taocdn.com/s3/m/35a1a88f376baf1ffd4fad20.png)
课程设计报告课程设计名称:计算机组成原理课程设计课程设计题目:定点补码阵列乘法器的设计院(系):专业:班级:学号:姓名:指导教师:完成日期:目录总体设计方案 (2)1.1 设计原理 (2)1.2 设计环境 (2)详细设计方案 (2)2.1 实验仪器及元件: (2)2.2 实验内容: (3)2.3 实验过程及结果记录: (3)2.4 实验结果分析: (4)总结 (5)3.1 思考: (5)3.2 收获总结: (5)总体设计方案1.1 设计原理乘法原理:两位乘法器的逻辑表达式:1.2 设计环境EDA环境:MAX+PLUSⅡ软件详细设计方案2.1 实验仪器及元件:4个INPUT 为A B C D;6个AND2;一个非门;一个XOR;4个OUTPUT2.2 实验内容:1.通过真值表设计一个两位乘法器;2.构造运行两位乘法器的仿真波形。
2.3 实验过程及结果记录:1、为设计乘法器新建一个文件夹作工作库,文件夹名不可用中文和空格;2、在MAX+PLUS II新建一个设计文件,选择打开原理图编辑器,然后双击空白处“Enter Symbol”输入各个实验所需元件,将所需元件连接起来形成两位乘法器原理图;3、将设计项目设置成工程文件(PROJECT);4、对工程文件进行编译、综合和适配等操作,编译后可能会有错误或警告的提醒,没有就证明原理图正确可用。
选择波形编辑器文件进行时序仿真,将相应的信号节点输入进去,并选择END TIME调试5、整仿真时间区域,两位乘法器选择800us比较合适,根据实验指导书的波形图我们调整出四个输入信号的电平,运行仿真器可得对应的四个输出引脚的波形;下面是本次实验我得出的两位乘法器仿真波形:为了精确测量乘法器输入与输出波形间的延时量,可打开时序分析器。
2.4 实验结果分析:根据两位乘法器的原理来看运行出来的乘法器波形图可以看到,当原理图准确无误的时候,输入信号A、B、C、D调整到所需的高、低电平,运行时序仿真后出来的Q1、Q2、Q3、Q4与原理是相一致的,即Q0=BD、Q1=(AD)异或(BC)、Q2=(AC)与(BD与非)、Q3=ABCD,ABCD 间的运算则与数字乘法运算一致,遇0为0,,1*1为1。
阵列乘法器课课程设计
![阵列乘法器课课程设计](https://img.taocdn.com/s3/m/de37569aaff8941ea76e58fafab069dc502247c5.png)
阵列乘法器课课程设计一、教学目标本节课的学习目标包括以下三个方面:1.知识目标:学生需要掌握阵列乘法器的基本原理和操作方法,了解其在工作中的应用和优势。
2.技能目标:学生能够熟练使用阵列乘法器进行计算,提高计算效率,培养学生解决实际问题的能力。
3.情感态度价值观目标:通过学习阵列乘法器,学生能够培养对科学知识的热爱和探索精神,增强对数学学科的信心和兴趣。
二、教学内容本节课的教学内容主要包括以下几个部分:1.阵列乘法器的基本原理:介绍阵列乘法器的概念、工作原理和数学基础。
2.阵列乘法器的操作方法:讲解如何使用阵列乘法器进行计算,包括基本操作和高级应用。
3.阵列乘法器在工作中的应用:通过实际案例,展示阵列乘法器在各个领域中的应用和优势。
4.练习和拓展:布置相应的练习题,让学生巩固所学知识,并进行拓展训练。
三、教学方法为了提高教学效果,本节课将采用以下几种教学方法:1.讲授法:教师通过讲解,引导学生了解阵列乘法器的基本原理和操作方法。
2.案例分析法:教师通过分析实际案例,让学生了解阵列乘法器在工作中的应用和优势。
3.实验法:学生动手操作阵列乘法器,加深对知识的理解和记忆。
4.讨论法:学生分组讨论,分享学习心得和经验,互相促进。
四、教学资源为了支持教学内容和教学方法的实施,本节课将准备以下教学资源:1.教材:为学生提供权威、系统的学习资料。
2.多媒体资料:通过图片、视频等形式,丰富教学手段,提高学生的学习兴趣。
3.实验设备:为学生提供实地操作的机会,增强实践能力。
4.网络资源:引导学生利用网络资源进行拓展学习,拓宽知识面。
五、教学评估为了全面、客观地评估学生的学习成果,本节课将采用以下几种评估方式:1.平时表现:通过观察学生在课堂上的参与程度、提问回答等情况,评估学生的学习态度和理解程度。
2.作业:布置适量的作业,要求学生在规定时间内完成,通过作业的完成质量评估学生的掌握程度。
3.考试:安排一次课堂小测或期中期末考试,测试学生对知识的掌握和应用能力。
计算机组成原理-定点补码阵列乘法器实验报告
![计算机组成原理-定点补码阵列乘法器实验报告](https://img.taocdn.com/s3/m/32b52143844769eae009edb0.png)
课程设计报告课程设计名称:计算机组成原理课程设计课程设计题目:定点补码阵列乘法器的设计院(系):专业:班级:学号:姓名:指导教师:完成日期:目录总体设计方案 (2)设计原理 (2)设计环境 (2)详细设计方案 (2)实验仪器及元件: (2)实验内容: (3)实验过程及结果记录: (3)实验结果分析: (4)总结 (5)思考: (5)收获总结: (5)总体设计方案设计原理乘法原理:两位乘法器的逻辑表达式:设计环境EDA环境:MAX+PLUSⅡ软件详细设计方案实验仪器及元件:4个INPUT 为A B C D;6个AND2;一个非门;一个XOR;4个OUTPUT实验内容:1.通过真值表设计一个两位乘法器;2.构造运行两位乘法器的仿真波形。
实验过程及结果记录:1、为设计乘法器新建一个文件夹作工作库,文件夹名不可用中文和空格;2、在MAX+PLUS II新建一个设计文件,选择打开原理图编辑器,然后双击空白处“Enter Symbol”输入各个实验所需元件,将所需元件连接起来形成两位乘法器原理图;3、将设计项目设置成工程文件(PROJECT);4、对工程文件进行编译、综合和适配等操作,编译后可能会有错误或警告的提醒,没有就证明原理图正确可用。
选择波形编辑器文件进行时序仿真,将相应的信号节点输入进去,并选择END TIME调试5、整仿真时间区域,两位乘法器选择800us比较合适,根据实验指导书的波形图我们调整出四个输入信号的电平,运行仿真器可得对应的四个输出引脚的波形;下面是本次实验我得出的两位乘法器仿真波形:为了精确测量乘法器输入与输出波形间的延时量,可打开时序分析器。
实验结果分析:根据两位乘法器的原理来看运行出来的乘法器波形图可以看到,当原理图准确无误的时候,输入信号A、B、C、D调整到所需的高、低电平,运行时序仿真后出来的Q1、Q2、Q3、Q4与原理是相一致的,即Q0=BD、Q1=(AD)异或(BC)、Q2=(AC)与(BD与非)、Q3=ABCD,ABCD间的运算则与数字乘法运算一致,遇0为0,,1*1为1。
《乘法器设计报告》word版
![《乘法器设计报告》word版](https://img.taocdn.com/s3/m/761bd8cca216147916112806.png)
有符号乘法器设计报告——VLSI课程设计2010年12月复旦大学专用集成电路与国家重点实验室第一章 设计要求完成16*16有符号乘法器的设计。
具体设计方案选择要求如下:1、 编码方式:non-booth 编码,Booth 编码,Booth2编码(任选一种)2、 拓扑结构:简单阵列,双阵列,二进制树,Wallace 树(任选一种)3、 加法器:Ripple Carry Adder ,Carry bypass ,Carry select ,Carrylook ahead (任选一种或采用混合方法)设计报告必须包含设计方案说明及选择该方案的理由、仿真和设计结构等。
第二章 设计分析在微控制器(MCU )、微处理器(MPU )、数字信号处理器(DSP )、滤波器(FIR/IIR )等各种电路中都会用到乘法器,乘法器是最基本、最重要的运算模块之一。
并且乘法器往往还是处在关键路径上,所以乘法器的性能就显得更加重要。
伴随着现在工艺水平的提高,模块的面积也随着减小,在一定程度下以面积为代价来追求性能的提升,这也是允许的。
本设计是以追求性能为设计目标的,采用全并行的乘法器电路,设计指标设为传播延时为5ns 。
第三章 乘法器原理分析乘法器通常有三种结构形式,全串行乘法器、串并行乘法器以及全并行乘法器。
全串行乘法器都可以是串行的,需要多个时钟周期,速度很慢;串并行乘法器的一个输入是并行的,另一输入是串行的,乘积串行输出;全并行乘法器,输入和输出都是并行的,电路较为复杂,但是速度极快。
本设计追求的就是速度,所以采用全并行乘法器机构。
16位有符号乘法器可以分为三个部分:根据输入的被乘数和乘数产生部分积、部分积压缩产生和和进位、将产生的和和进位相加。
这三个部分分别对应着编码方式、拓扑结构以及加法器。
3.1 编码方式本设计采用booth2编码。
Booth 算法的提出主要是为了解决有符号数乘法运算中的复杂的符号修正的问题,所以采用booth2编码对于补码表示的两数就不需要考虑符号的问题。
计算机组成原理_阵列乘法器的设计
![计算机组成原理_阵列乘法器的设计](https://img.taocdn.com/s3/m/f9d6de3bd0d233d4b14e69f0.png)
沈阳航空航天大学课程设计报告课程设计名称:计算机组成原理课程设计课程设计题目:阵列乘法器的设计与实现院(系):计算机学院专业:计算机科学与技术班级:学号:姓名:指导教师:完成日期:2014年1月10日目录第1章总体设计方案 (1)1.1设计原理 (1)1.2设计思路 (2)1.3设计环境 (3)第2章详细设计方案 (3)2.1总体方案的设计与实现 (4)2.1.1总体方案的逻辑图 (4)2.1.2器件的选择与引脚锁定 (4)2.1.3编译、综合、适配 (5)2.2功能模块的设计与实现 (5)2.2.1一位全加器的设计与实现 (6)2.2.2 4位输入端加法器的设计与实现 (7)2.2.3 阵列乘法器的设计与实现 (10)第3章硬件测试 (13)3.1编程下载 (13)3.2 硬件测试及结果分析 (13)参考文献 (15)附录(电路原理图) (16)第1章总体设计方案1.1 设计原理阵列乘法器采用类似人工计算的方法进行乘法运算。
人工计算方法是用乘数的每一位去乘被乘数,然后将每一位权值对应相加得出每一位的最终结果。
如图1.1所示,用乘数的每一位直接去乘被乘数得到部分积并按位列为一行,每一行部分积末位与对应的乘数数位对齐,体现对应数位的权值。
将各次部分积求和,即将各次部分积的对应数位求和即得到最终乘积的对应数位的权值。
为了进一步提高乘法的运算速度,可采用大规模的阵列乘法器来实现,阵列乘法器的乘数与被乘数都是二进制数。
可以通过乘数从最后一位起一个一个和被乘数相与,自第二位起要依次向左移一位,形成一个阵列的形式。
这就可将其看成一个全加的过程,将乘数某位与被乘数某位与完的结果加上乘数某位的下一位与被乘数某位的下一位与完的结果再加上前一列的进位进而得出每一位的结果,假设被乘数与乘数的位数均为4位二进制数,即m=n=4,A×B可用如下竖式算出,如图1.1所示。
X 4 X3X2X1=A× Y4 Y3Y2Y1=BX4Y1X3Y1X2Y1X1Y1X4Y2X3Y2X2Y2X1Y2X4Y3X3Y3X2Y3X1Y3(进位) X4Y4 X3Y4 X2Y4 X1Y4Z8 Z7Z6Z5Z4Z3Z2Z1图1.1 A×B计算竖式X4 ,X3,X2,X1,Y4,Y3,Y2,Y1为阵列乘法器的输入端,Z1-Z8为阵列乘法器的输出端,该逻辑框图所要完成的功能是实现两个四位二进制既A(X)*B(Y)的乘法运算,其计算结果为C(Z) (其中A(X)=X4X3X2X1,B(Y)=Y4Y3Y2Y1,C(Z)=Z8Z7Z6Z5Z4Z3Z2Z1而且输入和输出结果均用二进制表示 )。
计算机组成原理阵列乘法器课程设计报告.
![计算机组成原理阵列乘法器课程设计报告.](https://img.taocdn.com/s3/m/f0ad9664c850ad02de80413e.png)
课程设计教学院计算机学院课程名称计算机组成原理题目4位乘法整列设计专业计算机科学与技术班级2014级计本非师班姓名唐健峰同组人员黄亚军指导教师2016 年10 月 5 日1 课程设计概述1.1 课设目的计算机组成原理是计算机专业的核心专业基础课。
课程设计属于设计型实验,不仅锻炼学生简单计算机系统的设计能力,而且通过进行设计及实现,进一步提高分析和解决问题的能力。
同时也巩固了我们对课本知识的掌握,加深了对知识的理解。
在设计中我们发现问题,分析问题,到最终的解决问题。
凝聚了我们对问题的思考,充分的锻炼了我们的动手能力、团队合作能力、分析解决问题的能力。
1.2 设计任务设计一个4位的二进制乘法器:输入信号:4位被乘数A(A1,A2,A3,A4), 4位乘数B(B1,B2,B3,B4),输出信号:8位乘积q(q1,q2,q3,q4,q5,q6,q7,q8).1.3 设计要求根据理论课程所学的至少设计出简单计算机系统的总体方案,结合各单元实验积累和课堂上所学知识,选择适当芯片,设计简单的计算机系统。
(1)制定设计方案:我们小组做的是4位阵列乘法器,4位阵列乘法器主要由求补器和阵列全加器组成。
(2)客观要求要掌握电子逻辑学的基本内容能在设计时运用到本课程中,其次是要思维灵活遇到问题能找到合理的解决方案。
小组成员要积极配合共同达到目的。
2 实验原理与环境2.1 1.实验原理计算机组成原理,数字逻辑,maxplus2是现场可编程门阵列,它是在PAL、GAL、CPLD等可编程器件的基础上进一步发展的产物。
它是作为专用集成电路(ASIC)领域中的一种半定制电路而出现的,既解决了定制电路的不足,又克服了原有可编程器件门电路数有限的缺点。
用乘数的每一位去乘被乘数,然后将每一位权值直接去乘被乘数得到部分积,并按位列为一行每一行部分积末位与对应的乘数数位对齐,体现对应数位的权值,将各次部分积求和得到最终的对应数位的权值。
2.2 2.实验环境2.2.1双击maxplu2II软件图标,启动软件(1).新建工程,flie->new project ....,出现存储路径的选项框,指定项目保存路径并且为工程命名,第三行设置实体名,保持与工程名一致。
组成原理课设阵列乘法器
![组成原理课设阵列乘法器](https://img.taocdn.com/s3/m/373f66276ad97f192279168884868762caaebb22.png)
组成原理课设阵列乘法器一、引言阵列乘法器是一种常用的数字电路,用于实现乘法运算。
在计算机和其他数字系统中,乘法运算是一项基本操作,因此阵列乘法器具有广泛的应用。
本文将详细介绍阵列乘法器的组成原理、工作原理和设计要点。
二、组成原理阵列乘法器由多个乘法单元组成,每个乘法单元负责一位乘法运算。
常见的阵列乘法器有二进制乘法器和十进制乘法器两种。
1. 二进制乘法器二进制乘法器采用二进制数的乘法算法,将乘法运算分解为多个位的乘法运算。
每个乘法单元由两个输入端和一个输出端组成。
输入端分别连接两个乘数的对应位,输出端连接乘积的对应位。
乘法单元内部采用逻辑门电路实现乘法运算。
2. 十进制乘法器十进制乘法器采用十进制数的乘法算法,将乘法运算分解为多个位的乘法运算。
每个乘法单元由四个输入端和两个输出端组成。
输入端分别连接两个乘数的对应位,输出端连接乘积的对应位。
乘法单元内部采用BCD码(二进制编码的十进制数)和逻辑门电路实现乘法运算。
三、工作原理阵列乘法器的工作原理与乘法运算的原理相同。
以二进制乘法器为例,假设有两个乘数A和B,每个乘数的位数为n。
阵列乘法器将乘法运算分解为n个位的乘法运算,每个位的乘法运算由一个乘法单元完成。
1. 二进制乘法器(1) 初始化:将所有乘法单元的输出置为0。
(2) 逐位运算:从最低位到最高位,依次对A和B的对应位进行乘法运算,并将结果累加到乘法单元的输出上。
(3) 输出结果:将所有乘法单元的输出按位连接起来,得到最终的乘积。
2. 十进制乘法器(1) 初始化:将所有乘法单元的输出置为0。
(2) 逐位运算:从最低位到最高位,依次对A和B的对应位进行乘法运算,并将结果累加到乘法单元的输出上。
同时,将进位信号传递给下一位的乘法单元。
(3) 输出结果:将所有乘法单元的输出按位连接起来,得到最终的乘积。
四、设计要点设计阵列乘法器时需要考虑以下几个要点:1. 乘法单元的选择:根据乘法运算的需求,选择合适的乘法单元。
计算机组成原理》课程设计报告
![计算机组成原理》课程设计报告](https://img.taocdn.com/s3/m/9802b6bdcc175527062208b0.png)
课程设计说明书《计算机组成原理》算法实现(五)专业 计算机科学与技术学生夏晶晶 班级 M 计算机101 学号1051401122指导教师花小朋完成日期2013年6月21日目录1 课程设计目的 (2)2 课程设计容与要求 (2)2.1课程设计的容 (2)2.2 课程设计的要求 (2)3 实现方法 (2)3.1 系统目标 (2)3.2 主体设计 (4)3.2.1 主窗体的设计 (4)3.2.2 定点整数真值还原窗体的设计 (6)3.2.3 定点整数单符号位补码加减法 (8)3.2.4 定点整数的原码乘法 (10)3.2.5 浮点数的加减运算 (12)4 设计小结 (13)参考文献 (13)1 课程设计目的本课程设计是在学完本课程教学大纲规定的全部容、完成所有实践环节的基础上,旨在深化学生学习的计算机组成原理课程基本知识,进一步领会计算机组成原理的一些算法,并进行具体实现,提高分析问题、解决问题的综合应用能力。
2 课程设计容与要求2.1课程设计的容计算机组成原理算法实现(五)2.2 课程设计的要求能够实现机器数的真值还原(定点整数)、定点整数的单符号位补码加减运算、定点整数的原码乘法运算和浮点数的加减运算。
3 实现方法3.1 系统目标本程序含有以下几个功能模块,分别能够实现如设计容所设计的功能。
共有5个类,各类之间的关系如图3-1所示:系统流程图:3.2 主体设计3.2.1 主窗体的设计程序菜单需要在输入口令正确后方可使用,若口令输入错误需给出重新输入口令的提示,三次口令输入错误则禁止使用。
登陆算法的流程图:输入密码判断密码计数器减1激活菜单栏隐藏登陆显示欢迎界面弹出错误窗口判断计数器值是否大于零结束开始3.2.2 定点整数真值还原窗体的设计选择主窗体中“机器数的真值还原(定点整数)”时进入下图所示的窗体。
在上面的窗体中按“输入”按扭时,将输入焦点设置为最上面的一个文本框上。
输入一个机器数(如10001000)后,按“原->真值”、“反->真值”、“补->真值”或“移->真值”按扭中的任一个后,将在第二文本框中显示对应操作的结果。
组成原理课设阵列乘法器
![组成原理课设阵列乘法器](https://img.taocdn.com/s3/m/1b1606ee370cba1aa8114431b90d6c85ec3a88f2.png)
组成原理课设阵列乘法器一、引言阵列乘法器是计算机中常用的数字电路之一,用于高速乘法运算。
本文将详细介绍组成原理课设阵列乘法器的设计原理、架构和实现方法。
二、设计原理阵列乘法器的设计原理基于乘法运算的基本规则,即将两个数的每一位相乘并相加得到最终结果。
具体来说,阵列乘法器将一个数拆分成多个部分,然后与另一个数的每一位相乘,最后将所有部分的乘积相加得到结果。
三、架构设计1. 输入和输出阵列乘法器的输入包括两个乘数和一个控制信号,输出为乘积。
乘数通常采用二进制表示,控制信号用于控制乘法器的工作模式。
2. 乘法单元乘法单元是阵列乘法器的核心组成部分,用于实现乘法运算。
每个乘法单元可以将两个二进制位相乘得到一个部分乘积,并将其输出给加法器。
3. 加法器加法器用于将所有部分乘积相加得到最终的乘积结果。
可以采用串行加法器或并行加法器,具体选择取决于设计需求和性能要求。
4. 控制逻辑控制逻辑用于生成控制信号,控制乘法器的工作模式。
常见的控制信号包括启动信号、停止信号和清零信号等。
四、实现方法1. 基于门电路的实现方法基于门电路的实现方法是最基础的方法,可以使用与门、或门和非门等基本逻辑门电路来实现乘法器的各个组成部分。
这种方法的优点是简单直观,适用于小规模的乘法器设计。
2. 基于逻辑单元的实现方法基于逻辑单元的实现方法使用逻辑单元来实现乘法器的各个组成部分。
逻辑单元可以是半加器、全加器或者其他逻辑门的组合。
这种方法的优点是灵活性高,适用于大规模的乘法器设计。
3. 基于专用芯片的实现方法基于专用芯片的实现方法使用现成的数字集成电路芯片来实现乘法器。
例如,可以使用FPGA(现场可编程门阵列)来实现乘法器的功能。
这种方法的优点是高度集成化,可以提高设计的效率和性能。
五、总结组成原理课设阵列乘法器是一项重要的设计任务,本文详细介绍了阵列乘法器的设计原理、架构和实现方法。
通过合理选择设计方法和优化电路结构,可以实现高效、稳定的阵列乘法器。
组成原理乘法器课程设计
![组成原理乘法器课程设计](https://img.taocdn.com/s3/m/ebc3d559a7c30c22590102020740be1e640ecc68.png)
组成原理乘法器课程设计一、课程目标知识目标:1. 学生理解乘法器的组成原理,掌握不同类型的乘法器设计方法。
2. 学生掌握二进制乘法运算规则,能够运用乘法器原理进行相关计算。
3. 学生了解乘法器在数字信号处理和计算机系统中的应用。
技能目标:1. 学生能够运用所学知识,设计简单的乘法器电路。
2. 学生能够分析乘法器性能,提出优化方案,提高运算效率。
3. 学生通过实际操作,培养动手能力和团队协作能力。
情感态度价值观目标:1. 学生培养对电子技术和计算机科学的兴趣,激发创新意识。
2. 学生在学习过程中,培养严谨、求实的科学态度,提高解决问题的自信心。
3. 学生了解我国在乘法器领域的发展状况,增强民族自豪感,树立为我国科技事业贡献力量的志向。
课程性质:本课程为电子技术与计算机科学相结合的学科,注重理论与实践相结合,培养学生的动手能力和创新能力。
学生特点:学生具备一定的电子技术基础知识,具有较强的求知欲和动手能力,但缺乏实际操作经验。
教学要求:教师应采用启发式教学,引导学生主动探究乘法器原理,结合实际案例进行分析,提高学生的实践能力。
同时,注重培养学生的团队合作精神,提高学生的综合素质。
通过本课程的学习,使学生在知识、技能和情感态度价值观方面取得具体的学习成果。
二、教学内容1. 乘法器基本概念:介绍乘法器的定义、分类及其在数字系统中的应用。
- 教材章节:第三章第二节- 内容:二进制乘法器、算术逻辑单元(ALU)中的乘法器等。
2. 乘法器组成原理:讲解不同类型乘法器的工作原理及电路组成。
- 教材章节:第三章第三节- 内容:串行乘法器、并行乘法器、Booth算法乘法器等。
3. 二进制乘法运算规则:阐述二进制乘法的运算过程及规则。
- 教材章节:第三章第四节- 内容:二进制与十进制的乘法运算对比,二进制乘法运算步骤。
4. 乘法器设计方法:介绍乘法器的设计方法及优化策略。
- 教材章节:第三章第五节- 内容:乘法器电路设计流程,优化方法(如部分积生成、压缩技术等)。
计算机组成原理课程设计报告
![计算机组成原理课程设计报告](https://img.taocdn.com/s3/m/d47d73e92b160b4e767fcfc2.png)
电子信息学院实验报告书课程名:《计算机组成原理》题目:实验类别【验证】班级:学号:姓名:1.2 实训任务第二章设计内容............................... 错误!未指定书签。
2.1 指令的执行流程........................ 错误!未指定书签。
2.1.1“异或”指令..................... 错误!未指定书签。
2.1.2读取指令........................ 错误!未指定书签。
2.1.3 “ADD”指令..................... 错误!未指定书签。
2.2 储存器................................ 错误!未指定书签。
2.3 运算器................................ 错误!未指定书签。
2.4 硬件系统.............................. 错误!未指定书签。
2.4.1计算机硬件组成................... 错误!未指定书签。
2.4.2 采用门电路设计一个8位的全加器电路错误!未指定书签。
2.4.3 定点补码加减法装置逻辑框图..... 错误!未指定书签。
2.5 模型机综合实验....................... 错误!未指定书签。
2.5.2 转移实验........................... 错误!未指定书签。
第三章图表格式............................... 错误!未指定书签。
3.1“异或”指令........................... 错误!未指定书签。
3.2 读取指令.............................. 错误!未指定书签。
3.3“ADD ”指令........................... 错误!未指定书签。
3.4 储存器................................ 错误!未指定书签。
乘法器实验报告
![乘法器实验报告](https://img.taocdn.com/s3/m/650ee0534531b90d6c85ec3a87c24028915f8506.png)
乘法器实验报告乘法器实验报告引言:乘法器是计算机中常用的一种算术逻辑单元,用于实现多位数的乘法运算。
在计算机的运算过程中,乘法运算是十分常见的,因此乘法器的设计和性能对计算机的整体性能具有重要影响。
本实验旨在通过设计和实现一个乘法器电路,探究其工作原理和性能。
一、乘法器的原理乘法器是一种复杂的电路,其主要功能是将两个输入数相乘,并输出乘积。
乘法器的实现方式有很多种,其中常用的有布斯乘法器和Wallace树乘法器等。
布斯乘法器是一种逐位相乘并累加的方法,而Wallace树乘法器则采用了并行计算的思想,能够提高计算速度。
二、乘法器的设计与实现本实验中,我们采用了布斯乘法器的设计方法。
首先,我们需要将输入的两个乘数进行分解,将每个乘数分解为若干个位数和权重的乘积。
然后,通过逐位相乘并累加的方法,得到最终的乘积。
乘法器的设计需要考虑到位数的扩展和进位的处理,以确保计算的准确性和稳定性。
三、乘法器的性能评估在设计乘法器的过程中,我们需要考虑到其性能指标,如计算速度和资源占用等。
计算速度是指乘法器完成一次乘法运算所需的时间,而资源占用则是指乘法器所需要的硬件资源数量。
在实验中,我们通过测试乘法器在不同位数和输入数据下的计算速度和资源占用情况,来评估其性能。
四、乘法器的应用领域乘法器在计算机科学和工程领域有着广泛的应用。
在计算机芯片设计中,乘法器是必不可少的组件之一。
乘法器的性能和效率直接影响到计算机的整体性能。
此外,在信号处理、图像处理和通信系统中,乘法器也扮演着重要的角色。
因此,对乘法器的研究和优化具有重要的意义。
结论:通过本次实验,我们了解了乘法器的原理、设计和性能评估方法。
乘法器作为一种常见的算术逻辑单元,对计算机的性能具有重要影响。
在今后的学习和研究中,我们将进一步探索乘法器的优化和应用,以提高计算机的整体性能。
注:本实验报告仅为虚拟写作,实际内容仅供参考,不涉及实际实验操作。
阵列乘法器设计实验报告
![阵列乘法器设计实验报告](https://img.taocdn.com/s3/m/23b9ad2011a6f524ccbff121dd36a32d7375c7dd.png)
阵列乘法器设计实验报告
首先,我们对4位数字乘法运算进行了分析。
两个4位数相乘的结果为一个8位数,即最多需要8位的加法器来实现。
因此,我们将阵列乘法器划分为3个模块:乘法单元、加法器单元以及结果输出单元。
乘法单元是阵列乘法器中最核心的部分。
我们采用了一种基于乘法器意义的设计方法,将乘法运算分解为一系列的AND门和全加器。
具体地,我们将两个4位数的每一位相乘得到16个乘积,然后利用8个全加器将这16个乘积进行累加得到结果。
通过使用层层递进的方式,我们可以保证乘法运算的正确性。
加法器单元负责将乘法单元的结果进行累加。
在本实验中,我们使用了一个8位全加器来实现8位数的加法运算。
通过将乘法单元的结果与加法器单元的进位相连,可以保证每一位的进位都被正确地累加到下一位。
结果输出单元将加法器单元的结果进行输出。
由于乘法结果的有效位数是8位,因此我们只需要将加法器单元的前8位进行输出即可。
通过使用Verilog HDL对阵列乘法器进行了仿真和验证。
我们设计了一个测试平台,使用不同的输入进行了对阵列乘法器进行了测试。
实验结果表明,设计的阵列乘法器具有良好的性能和准确的计算结果。
总结来说,本实验设计了一种4位乘法器的阵列乘法器电路,并通过Verilog HDL进行了仿真和验证。
通过设计和测试,我们验证了该电路的正确性和高效性。
阵列乘法器是一种重要的数字逻辑电路,对于实现高速的数字乘法运算具有很高的实用价值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
沈阳航空航天大学课程设计报告课程设计名称:计算机组成原理课程设计课程设计题目:间接补码阵列乘法器的设计院(系):计算机学院专业:计算机科学与技术班级:学号:姓名:指导教师:完成日期:2015年1月16日沈阳航空工业学院课程设计报告目录第1章总体设计方案 (1)1.1设计原理 (1)1.2设计思路 (2)1.3设计环境 (2)第2章详细设计方案 (5)2.1顶层方案图的设计与实现 (5)2.1.1创建顶层图形设计文件 (5)2.1.2器件的选择与引脚锁定 (5)2.1.3编译、综合、适配 (6)2.2功能模块的设计与实现 (6)2.2.1 细胞模块的设计与实现 (6)2.2.2 全加器模块的设计与实现 (7)2.3仿真调试 (11)第3章编程下载与硬件测试 (13)3.1编程下载 (13)3.2硬件测试及结果分析 (13)参考文献 (15)附录(电路原理图) (16)第1章总体设计方案1.1 设计原理由于计算机采用补码做加减运算,所以设计阵列补码乘法器能避免码制转换,提高机器效率。
可以利用原码阵列乘法器来设计补码阵列乘法器,这时需要在计算前先进行原码--补码的转换。
乘法器的常规设计是适用“串行移位”和“并行加法”相结合的方法,这种方法并不需要很多器件。
然而串行方法毕竟太慢,不能满足科学技术对高速乘法所提出的要求。
自从大规模集成电路问世以来,高速的单元阵列乘法器应运而生,出现了各种形式的流水线阵列乘法器,它们属于并行乘法器。
阵列乘法器采用类似于人工计算的方法进行乘法运算。
人工计算方法是用乘数的每一位去乘被乘数,然后将每一位权值对应相加得出每一位的最终结果。
如图1.1所示,用乘数的每一位直接去乘被乘数得到部分积并按位列为一行,每一行部分积末位与对应的乘数数位对齐,体现对应数位的权值。
将各次部分积求和,即将各次部分积的对应数位求和即得到最终乘积的对应数位的权值。
011010* 001001____________011010000000000000011010000000000000_______________00011101010图1.1 人工计算乘法示例阵列乘法器采用类似人工的计算方法来完成乘法计算。
阵列的每一行送入乘数的每一位数位,而各行错开形成的每一斜列送入被乘数的每一数位。
该方案所用加法器数量很多,但内部结构规则性强,标准化程度高, 适于用超大规模集成电路的批量生产。
1.2 设计思路一、整体部分:阵列乘法器采用的是先逐位求解部分积,由于求解每一位的部分积是并行完成的,因此可以节省很多的计算时间,由于本课程设计要求的是设计一个六位乘六位的阵列乘法器,最高位为符号位,因此此阵列乘法器的整体设计包括25个加法器模块,加法器模块中由一个与门和一个全加器构成,由四个与门、两个异或门、一个三端接口的或门构成的全加器为底层设计,采用原理图设计输入方式,所谓的全加器就是就是两个数X、Y及进位输入CIN相加可得全加和POUT和进位输出COUT,三个补码转换模块。
二、单元部分:设计整体框图中的每个细胞模块,每个模块实现的功能是计算部分积和向高位的进位。
三、仿真部分:将整个电路连好之后即可进行仿真,用以验证设计是否正确。
四、下载部分:仿真成功之后即可进行此部分,在编译、调试之后形成的*.bit 文件即可下载到XCV200可编程逻辑芯片中,经硬件测试验证设计的正确性。
设被乘数和乘数(均为补码)分别为A=(a6)a5a4a3a2a1,B=(b6)b5b4b3b2b1,其中a6和b6为符号位,用括号括起来表示这一位有负的位权值。
根据补码和真值的转换可以知道(如图1.2所示):图1.2 补码和真值转换公式1.3设计环境(1)硬件环境•伟福COP2000型计算机组成原理实验仪COP2000计算机组成原理实验系统由实验平台、开关电源、软件三大部分组成实验平台上有寄存器组R0-R3、运算单元、累加器A、暂存器B、直通/左移/右移单元、地址寄存器、程序计数器、堆栈、中断源、输入/输出单元、存储器单元、微地址寄存器、指令寄存器、微程序控制器、组合逻辑控制器、扩展座、总线插孔区、微动开关、逻辑笔、脉冲源、20个按键、字符式LCD、RS232口。
COP2000计算机组成原理实验系统各单元部件都以计算机结构模型布局,清晰明了,系统在实验时即使不借助PC 机,也可实时监控数据流状态及正确与否, 实验系统的软硬件对用户的实验设计具有完全的开放特性,系统提供了微程序控制器和组合逻辑控制器两种控制器方式,系统还支持手动方式、联机方式、模拟方式三种工作方式,系统具备完善的寻址方式、指令系统和强大的模拟调试功能。
(2)EDA环境Xilinx foundation f3.1设计软件是Xilinx公司的可编程期间开发工具,该系统由设计入口工具、设计实现工具、设计验证工具三大部分组成(如图1.3所示)。
设计入口工具包括原理图编辑器、有限状态机编辑器、硬件描述语言(HDL)编辑器、LogiBLOX模块生成器、Xilinx内核生成器等软件。
其功能是:接收各种图形或文字的设计输入,并最终生成网络表文件。
设计实现工具包括流程引擎、限制编辑器、基片规划器、FPGA编辑器、FPGA写入器等软件。
设计实现工具用于将网络表转化为配置比特流,并下载到器件。
设计验证工具包括功能和时序仿真器、静态时序分析器等,可用来对设计中的逻辑关系及输出结果进行检验。
图 1.3 Xilinx foundation f3.1设计平台•COP2000集成调试软件COP2000集成开发环境是为COP2000实验仪与PC机相连进行高层次实验的配套软件,它通过实验仪的串行接口和PC机的串行接口相连,提供汇编、反汇编、编辑、修改指令、文件传送、调试FPGA实验等功能,该软件在Windows 下运行。
COP2000集成开发环境界面如图1.4所示。
图 1.4 COP2000计算机组成原理集成调试软件第2章详细设计方案2.1 顶层方案图的设计与实现顶层方案图实现阵列乘法器的输入/输出、以及乘法器的芯片连接等逻辑功能,采用原理图设计输入方式完成,电路实现基于XCV200可编程逻辑芯片。
在完成原理图的功能设计后,把输入/输出信号安排到XCV200指定的引脚上去,实现芯片的引脚锁定。
2.1.1创建顶层图形设计文件顶层图形文件的设计实体主要由一个由全加器器和与门组成的芯片(CELL)等模块组装而成的一个完整的可编程逻辑芯片U37。
而以上顶层图形文件的设计可利用Xilinx foundation f3.1中逻辑器件实现,顶层图形文件结构如图2.1所示。
图2.1 阵列乘法器的设计图形文件结构2.1.2器件的选择与引脚锁定(1)器件的选择由于硬件设计环境是基于伟福COP2000型计算机组成原理实验仪和XCV200实验板,故采用的目标芯片为Xilinx XCV200可编程逻辑芯片。
(2)引脚锁定把顶层图形文件中的输入/输出信号安排到Xilinx XCV200芯片指定的引脚上去,实现芯片的引脚锁定,各信号及Xilinx XCV200芯片引脚对应关系如表2.1所示。
表2.1 信号和芯片引脚对应关系2.1.3编译、综合、适配利用Xilinx foundation f3.1的原理图编辑器对顶层图形文件进行编译,并最终生成网络表文件,利用设计实现工具经综合、优化、适配,生成可供时序仿真的文件和器件下载编程文件。
2.2 功能模块的设计与实现定点原码一位乘法器的底层设计包括控制器(运算控制电路)、一个由寄存器和与门组成的芯片、加法器及两个寄存器的实现由Xilinx XCV200可编程逻辑芯片分别实现。
2.2.1 细胞模块的设计与实现该模块主要用于求解部分积、低位的进位的输入求和、向高位的进位以及本位积。
(1)创建细胞模块设计原理图。
控制器原理结构如图2.2所示:图2.2 细胞模块逻辑框图(2)创建元件图形符号为能在图形编辑器(原理图设计输入方式)中调用CONTROLER芯片,需要为CONTROLER模块创建一个元件图形符号,可利用Xilinx foundation f3.1编译器中的如下步骤实现:Tools=>Symbol Wizard=>下一步。
其中X、Y为被乘数与乘数,CI为地位的进位,CO为向高位的输出。
PAT为部分积。
该元件图形符号如图2.3所示:图2.3 细胞模块元件图形符号2.2.2 全加器模块的设计与实现本设计需要用到全加器,目前在数字计算机中实现两个二进制之间的算术运算无论是加、减、乘、除,都是化做若干步加法运算进行的。
因此,加法器是构成算术运算器的基本单元。
将两个多位二进制数相加时,除了最低位以外,每一位都应考虑来自低位的进位,即将两个对应位的加数和来自低位的进位3个数相加,这种运算成为全加,所用电路称为全加器。
由于在Xilinx foundation f3.1的元件库中未找到单全加器芯片,因此需要自行设计全加器并封装成芯片使用。
(1)全加器的逻辑设计。
首先先要写出全加器的真值表,根据真值表设计逻辑电路。
表2.2 全加器真值表(2)列出逻辑表达式并化简列出表2.1对应S 、CO 的卡诺图,如图2.4所示:图2.4 全加器卡诺图采用合并零并求反的化简方法化简。
得到S 和CO 的逻辑表达式:S=(A B CI +A B CI+A BCI+AB CI ) CO=(A B +B CI +A CI )COS(3)全加器的逻辑电路选用基本的逻辑元件,按照上面两个表达式连接电路,如图2.5所示:图2.5 全加器逻辑电路图(4)创建元件图形符号完成了全加器的逻辑电路设计之后,为方便在其它电路模块里应用,可将逻辑电路图封装成全加器芯片,该全加器芯片为三输入二输出芯片。
该芯片符号如图2.5所示。
图2.6 全加器图形符号(5)加法器逻辑电路(6)功能仿真对创建的全加器器模块进行功能仿真,验证其功能的正确性,可用Xilinx Foundation f3.1编译器Simulator模块实现。
仿真结果如图2.7所示:图2.7 全加器仿真结果2.3 仿真调试仿真调试主要验证设计电路逻辑功能的正确性,本设计中主要采用功能仿真方法对设计的电路进行仿真。
(1)建立仿真波形文件及仿真信号选择功能仿真时,首先建立仿真波形文件,选择仿真信号,对选定的输入信号设置参数,对波形的现实比例进行调整。
(2)功能仿真结果与分析功能仿真波形结果如图2.8所示,仿真数据结果如表2.3所示。
通过对输入数据进行人工计算并与仿真结果进行对比,可以看出功能仿真结果是正确的,进而说明电路设计的正确性。
但是仅仅凭借波形的正确与否不能完全判定设计的合理性,因此在下载到硬件实现的过程中,还要考虑硬件配置的问题,例如硬件的时钟脉冲是上升沿还是下降沿,因此在仿真时,要以硬件配置为依据,根据芯片的引脚,以及其它的硬件参数在设计好的电路的基础上进行模拟,这样才能保证或者说减小下载到实际芯片后失败的几率。