电磁兼容基本知识介绍电磁耦合机理

合集下载

电磁波的耦合原理

电磁波的耦合原理

电磁波的耦合原理1 电磁波的基本概念电磁波是由振荡产生的一种能量,在空气、真空、空间等介质中以电场和磁场的形式进行传播。

电磁波在无线通信、电视、雷达等领域得到广泛应用。

根据频率范围,电磁波可分为射线、微波、红外线、可见光、紫外线、X射线和γ射线等不同种类。

2 电磁波的耦合电磁波的耦合指的是电磁波在传播过程中相互影响,其中包括电磁波的辐射、反射、透射、折射等现象。

电磁波的耦合现象是电磁波传播过程中必然发生的,因为电磁波的传播需要介质支持,而介质会对电磁波进行不同程度的影响。

3 电磁波的辐射耦合电磁波的辐射耦合指的是电磁波在发射源周围产生的电磁场对其他物体的干扰作用。

电磁波的辐射耦合是电磁波和其他物体之间最基本的相互作用,是产生干扰的主要原因。

4 电磁波的反射耦合电磁波的反射耦合指的是电磁波在碰撞物体表面发生反射后对其他物体产生的干扰。

反射是电磁波在传播过程中非常常见的现象,也是电磁波耦合产生的主要原因之一。

5 电磁波的透射耦合电磁波的透射耦合指的是电磁波在穿过介质时对介质内其他物体产生的影响。

当电磁波从一种介质穿过到另一种介质时,由于介质的不同性质和电磁波传播的能量差异,会在介质内产生干扰和损耗。

6 电磁波的折射耦合电磁波的折射耦合指的是电磁波从一种介质进入另一种介质,发生折射后对介质内其他物体产生的影响。

当电磁波从一种介质穿过到另一种介质时,会发生折射现象,其影响取决于介质的不同性质和电磁波传播的方向。

7 电磁波的耦合控制技术电磁波的耦合是电磁兼容性设计中需要考虑的问题之一。

为了减少电磁波的干扰和损耗,需要采用一些电磁波耦合控制技术,如:屏蔽技术、悬浮技术、减振技术、光纤通信技术等。

8 电磁波的屏蔽技术屏蔽技术是用来控制电磁波辐射和干扰的一类技术,包括屏蔽材料、屏蔽构件、屏蔽接口等。

屏蔽技术可以将电磁波辐射的能量限制在一个较小的区域内,从而减少干扰。

9 电磁波的悬浮技术悬浮技术是用来提高设备可靠性和稳定性的一种技术,通过悬浮装置将设备与地面隔离,减少电磁波和机械振动的干扰,从而提高设备的工作效率。

电磁兼容知识点总结

电磁兼容知识点总结

电磁兼容知识点总结一、电磁兼容概述电磁兼容(EMC)是指电子设备在电磁环境中正常运行,同时不对其他设备产生干扰的能力。

在现代电子设备中,电磁兼容性已成为一项至关重要的性能指标。

二、电磁兼容性标准与规范为了确保电磁兼容性,各种国际和地区标准与规范应运而生。

其中,最知名的包括国际电工委员会(IEC)的系列,以及美国联邦通信委员会(FCC)的Part 15系列。

这些标准与规范对电子设备的电磁辐射、抗干扰能力和静电放电等指标做出了详细规定。

三、电磁干扰源电磁干扰源多种多样,主要包括电源开关、无线电发射器、雷电等自然干扰源,以及各种电子设备的运行过程产生的干扰。

其中,电源开关是常见的电磁干扰源之一,其产生的谐波电流和电压波动可能对其他设备造成干扰。

四、电磁抗扰度要求为了确保电子设备的正常运行,电磁抗扰度要求应运而生。

这些要求主要包括对静电放电、电快速瞬变脉冲群、浪涌、电压跌落等干扰的抵抗能力。

在设计和生产过程中,应充分考虑这些因素,以确保设备在遭受这些干扰时仍能正常工作。

五、电磁屏蔽与滤波技术为了达到电磁兼容性要求,电磁屏蔽与滤波技术被广泛应用于电子设备中。

电磁屏蔽主要通过金属隔离材料将干扰源与外界隔离,而滤波技术则通过特殊设计的电路或器件,阻止或减弱干扰信号的传播。

这些技术对于提高设备的电磁抗扰度和降低电磁辐射具有重要意义。

六、电磁兼容性测试与认证为了验证电子设备的电磁兼容性,各种测试与认证机构应运而生。

这些机构通过模拟实际工作条件和电磁环境,对电子设备进行严格的测试和认证,以确保其符合相关标准和规范的要求。

获得电磁兼容性认证是电子产品进入市场的重要条件之一。

七、提高电磁兼容性的设计策略在设计阶段,采取一些策略可以提高电子设备的电磁兼容性。

例如,合理布局电路板上的元件和布线,选择合适的滤波器和电容,使用屏蔽材料等。

对于高频电路设计,还应考虑信号的完整性、反射和串扰等问题。

八、结论电磁兼容性是现代电子设备不可或缺的性能指标之一。

电磁兼容知识点总结(一)2024

电磁兼容知识点总结(一)2024

电磁兼容知识点总结(一)引言概述:电磁兼容是指电子设备在共同工作环境中,能够互不干扰,同时保持自身功能不受到干扰的能力。

本文将总结电磁兼容的相关知识点,以帮助读者更好地理解和应用这一概念。

正文:一、电磁兼容的基本概念与原理1.1 电磁辐射与电磁感应的基本原理1.2 互相干扰的电磁场作用方式1.3 电磁兼容的基本目标和要求1.4 电磁兼容设计的基本原则1.5 电磁兼容性评估的方法和指标二、电磁兼容性设计原则2.1 地线设计原则2.2 信号传输线设计原则2.3 电磁场屏蔽原则2.4 电源线设计原则2.5 接地设计原则三、电磁干扰源的特征与分析3.1 传导干扰源的特征与分析3.2 辐射干扰源的特征与分析3.3 外界电磁环境的特征与分析3.4 电气场强的测量方法3.5 干扰源定位与分析方法四、电磁屏蔽技术与方法4.1 电磁屏蔽材料的基本原理与特性4.2 电磁屏蔽的设计方法与措施4.3 电磁屏蔽效果的评估与验证方法4.4 常见电磁屏蔽结构的设计要点4.5 电磁屏蔽在实际工程中的应用五、电磁抗干扰技术与方法5.1 模拟滤波器设计原则与方法5.2 数字滤波器设计原则与方法5.3 过电压保护技术与方法5.4 对抗电源变动的技术与方法5.5 抗电磁干扰设计的实践案例总结:通过本文对电磁兼容的知识点总结,我们了解了电磁兼容的基本概念、原理和设计原则。

我们还学习了电磁干扰源的特征与分析方法,电磁屏蔽技术与方法,以及电磁抗干扰技术与方法。

电磁兼容设计的实践应用对于维护电子设备的正常运行至关重要。

希望读者能够通过本文对电磁兼容的知识点有更深入的了解,以应对实际工程中可能遇到的电磁兼容问题。

电磁兼容原理

电磁兼容原理

电磁兼容原理电磁兼容(Electromagnetic Compatibility,EMC)是指在电子设备和系统中,各种电磁现象之间相互协调、相互兼容的能力。

在现代社会中,各种电子设备和系统已经广泛应用于生产、生活和军事等方面,而这些设备和系统之间的电磁干扰问题也越来越突出。

因此,了解电磁兼容原理对于保障设备的正常运行至关重要。

一、电磁干扰在了解电磁兼容原理之前,我们需要先了解什么是电磁干扰。

简单来说,电磁干扰是指由于各种原因导致的不同频率的电磁场相互作用引起的现象。

这种现象可能会导致信号失真、误码率增加或者设备损坏等问题。

二、电磁场要想理解电磁兼容原理,我们还需要了解什么是电磁场。

简单来说,任何带有电荷或者运动的物体都会产生一个周围的电场和一个垂直于运动方向的磁场。

这个组合就被称为“电磁场”。

三、辐射与传导电磁干扰可以通过辐射和传导两种方式进行传播。

辐射是指电磁波向外传播,例如无线电波、微波等。

传导是指电磁波沿着导体传播,例如电缆、PCB板等。

四、抑制辐射干扰为了抑制辐射干扰,我们可以采取以下措施:1. 设计合理的天线:天线的设计应该避免在高频段产生谐振现象,同时也要避免在低频段产生共模模式。

2. 降低信号上升沿速度:信号上升沿速度越快,其所产生的谐振频率也越高,从而会增加辐射干扰。

因此,在设计过程中应该尽量降低信号上升沿速度。

3. 使用屏蔽材料:屏蔽材料可以有效地吸收和反射电磁波,从而减少辐射干扰。

常用的屏蔽材料包括金属、碳纤维等。

4. 设计合理的接地系统:接地系统是减少辐射干扰的关键。

在设计过程中需要注意接地点的选择和布局。

五、抑制传导干扰为了抑制传导干扰,我们可以采取以下措施:1. 使用合适的屏蔽材料:同样,屏蔽材料也可以用来减少传导干扰。

在设计过程中需要选择合适的屏蔽材料,并且要注意屏蔽的完整性。

2. 设计合理的布局:在设计过程中需要注意信号线和电源线的布局。

信号线和电源线应该尽量分开布局,从而避免互相干扰。

电磁兼容课程知识点总结

电磁兼容课程知识点总结

电磁兼容课程知识点总结一、电磁兼容基础知识1.1 电磁兼容的基本概念电磁兼容是指在特定的电磁环境下,电子、通信设备和系统在不受到外来电磁辐射的干扰或干扰他人,保证其正常工作的能力。

1.2 电磁干扰的分类电磁干扰主要可以分为传导干扰和辐射干扰两大类。

传导干扰是通过导体传输,比如电源线传导电磁干扰。

辐射干扰是通过空气传输,比如无线电台产生的电磁辐射。

1.3 电磁兼容的重要性在现代电子设备和通信系统日益复杂的情况下,电磁兼容的重要性越来越突出。

如果设备没有良好的电磁兼容性,容易受到外界电磁干扰,影响其正常工作。

1.4 电磁兼容标准和法规为了确保电子设备和通信系统的电磁兼容性,在各国都有一系列的电磁兼容标准和法规,比如欧洲的CE标志、美国的FCC标准等。

二、电磁场理论2.1 麦克斯韦方程组麦克斯韦方程组是描述电磁场的基本方程,包括电场和磁场之间的相互关系,是电磁场理论的基础。

2.2 电磁波的特性电磁波是由电场和磁场振荡而产生的一种波动,具有传播速度快、能够在真空中传播、波长和频率可调节等特点。

2.3 电磁波的传播特性电磁波的传播特性包括波速、波长、频率、极化、幅度等,这些特性决定了电磁波的传播范围和传播方式。

三、电磁兼容的分析方法3.1 电磁兼容的测试方法电磁兼容的测试方法包括辐射测试、传导测试、电磁场强度测试、电磁脉冲测试等,用于评估设备的电磁兼容性能。

3.2 电磁兼容的仿真模拟方法电磁兼容的仿真模拟方法包括有限元分析、电磁场求解和电磁兼容性分析软件等,可以用于预测设备在不同电磁环境下的性能。

3.3 电磁兼容的设计方法电磁兼容的设计方法包括布线设计、地线设计、屏蔽设计、滤波器设计等,用于提高设备的电磁兼容性能。

四、电磁兼容的干扰控制方法4.1 电磁辐射的控制方法电磁辐射的控制方法包括合理布局、优化线路、采用屏蔽结构等,用于减少设备产生的电磁辐射。

4.2 电磁传导的控制方法电磁传导的控制方法包括使用滤波器、采用平衡电路、采用防干扰接口等,用于减少设备对外界电磁干扰的敏感性。

电磁兼容原理

电磁兼容原理

电磁兼容原理电磁兼容(Electromagnetic Compatibility,EMC)是指电子设备在电磁环境中能够正常工作,并且不会对周围的其他设备造成干扰。

在现代电子设备日益增多、电磁环境日益复杂的情况下,电磁兼容性的重要性日益凸显。

本文将从电磁兼容的基本原理入手,介绍电磁兼容的相关知识。

首先,了解电磁兼容的基本原理是十分重要的。

电磁兼容的基本原理可以归结为两个方面,电磁干扰和电磁抗扰。

电磁干扰是指电磁场对设备的干扰,可能导致设备工作异常甚至损坏;而电磁抗扰则是设备对电磁场的抵抗能力,包括抗干扰和抗辐射。

理解这两个方面的原理,有助于我们更好地理解电磁兼容的相关知识。

其次,我们需要了解电磁兼容的相关标准和测试方法。

电磁兼容的相关标准包括国际电工委员会(IEC)发布的IEC 61000系列标准、美国联邦通信委员会(FCC)发布的FCC Part 15标准等。

这些标准规定了电磁兼容的测试方法和限值要求,对于确保设备在电磁环境中的正常工作起到了重要的作用。

同时,了解这些标准也有助于我们在产品设计和测试过程中更好地遵循相关规定,确保产品的电磁兼容性。

另外,了解电磁兼容的相关技术手段也是至关重要的。

在电磁兼容设计中,常用的技术手段包括屏蔽技术、滤波技术、接地技术等。

屏蔽技术可以有效地减少电磁辐射和电磁感应,提高设备的抗干扰能力;滤波技术可以有效地抑制电磁干扰,提高设备的抗扰能力;而良好的接地技术可以有效地减小接地电阻,提高设备的抗干扰和抗辐射能力。

了解这些技术手段,有助于我们在产品设计和制造过程中更好地应用相关技术,确保产品的电磁兼容性。

最后,我们需要重视电磁兼容在实际应用中的重要性。

电磁兼容性不仅关乎产品的质量和性能,也关乎到产品的市场准入和用户体验。

在实际应用中,我们需要充分考虑电磁兼容性的相关要求,从产品设计、制造到测试和认证等各个环节都需要重视电磁兼容性的相关要求,确保产品在电磁环境中的正常工作。

电磁兼容原理

电磁兼容原理

电磁兼容原理电磁兼容是指不同电子设备之间能够协调共存,不互相干扰,并能在同一电磁环境中正常工作的能力。

在现代电子技术高度发达的时代,电磁兼容成为了一个重要的问题。

本文将介绍电磁兼容的原理以及如何通过适当的设计来提高设备的电磁兼容性。

一、电磁兼容的原理1. 电磁耦合电子设备之间的互相干扰主要是通过电磁耦合传递的。

电磁耦合可以分为导线耦合和空间耦合两种形式。

导线耦合是指电磁干扰通过导线传递,例如电源线、信号线、地线等。

当一个设备产生电磁辐射时,通过导线就会传递到其他设备,造成干扰。

空间耦合是指电磁波通过空气传播,直接干扰其他设备。

这种干扰主要通过电磁波的辐射或者敏感部件的接收来实现。

2. 电磁辐射任何电子设备在工作时都会产生电磁辐射。

这些电磁波会以一定的频率振荡并传播到空气中。

不同频率的电磁波对其他设备的干扰程度也不同。

电磁辐射可以通过适当的设计进行控制。

例如,在电路板布局上可以采用良好的地线规划、信号和电源线的分离等方法来减少辐射。

3. 电磁感应电子设备在接收到其他设备的电磁波时也会产生干扰。

这是因为电磁波产生的电场和磁场可以感应到设备中的导线、元器件等。

对于感应干扰,可以采取屏蔽、过滤等措施来减少干扰。

例如,在信号线上可以添加屏蔽层,以减少外部电磁波对信号线的感应。

二、提高电磁兼容性的设计原则1. 地线设计良好的地线设计是提高电磁兼容性的重要手段。

地线应该具有低的阻抗,以便将电磁干扰引流至地。

同时,地线应该规划合理,避免形成地线回路,增加传导噪声的可能性。

2. 信号和电源线分离在电路板布局设计中,将信号和电源线分离是减少电磁耦合的有效方法。

信号线和电源线在布线时应尽量保持距离,并采用交错敷铜等技术来减少彼此之间的相互影响。

3. 屏蔽和过滤对于敏感的信号线或电路,可以采用屏蔽或过滤器来减少外部电磁波的干扰。

屏蔽层可以采用金属材料制作,对电磁波进行屏蔽。

过滤器则可以针对特定频率的干扰进行滤波,以保证信号的准确传输。

【EMC系列课程】01-电磁兼容三要素及耦合途径

【EMC系列课程】01-电磁兼容三要素及耦合途径

2. 电磁干扰源及其特征
Q:干扰源为何会产生电磁干扰?


电磁 场
安培:电
法拉第:磁
麦克斯韦:电磁场
变化的电压电流产生交变的磁场,可以产生EMI问题; 交变的电磁场,又容易在闭合回路由于磁通量的变化,产生感应电压与电流,又带来EMS抗扰度问题;
电磁干扰举例1:
从场的角度进行分析,假如回路1变化的电流I,产生一个变化的电磁场,它会对外辐射,产生辐射干扰,如果这个变化的 电磁场,又恰好穿过了回路1周边的其他闭合回路,那么,根据法拉第电磁感应定律:变化的磁场穿过回路2,在回路2产 生感应电动势,则回路1就对回路2产生了干扰。
如果,电路1的电压是不变的,那么,电容隔直,也起不到耦合的作用,此时,也不存在电路1对电路2的电磁干扰。(注: 此时虽然不存在电磁干扰,但若电路1电压很高,则有可能会产生电场的干扰影响);
二、电磁干扰耦合途径
1. 耦合途径分类
总结: ① 电磁干扰耦合途径,分为两类:传导耦合、辐射耦合。从上图可以看出,任何产品,任何干扰,耦合途径都
电磁干扰举例2:
从电路的角度分析,比如上面的图,电路1和电路2,两个电路之间有分布电容,在这里,我们假设电路1是强干扰的电路, 电路2是敏感的电路,电路1在工作的时候,它的导线上面会有一个电压,这个电压如果是交变的,那么,根据电容隔直 通交的特性,电路1的干扰就会通过分布电容,传递到电路2上,那么,电路1就对电路2产生了干扰;
电磁兼容( EMC--Electro Magnetic Compatibility)是一门新兴的综合性学科,主要研究电磁干扰和抗干扰 的问题。其定义为“设备和系统在其电磁环境中能正常工作且不对环境中任何事物构成不能承受的电磁骚扰的 能力”。

电磁兼容第3章-干扰耦合机理

电磁兼容第3章-干扰耦合机理

当 R
1
时, (3-11)式可简化为:
j(C12 C2G C2S )
U N jRC12U1
(3-12)
(3-12)式和(3-4)式的形式完全一样, 但是由于导体2此时被
屏蔽体屏蔽, C12的值取决于导体2延伸到屏蔽体外的那一 部分的长度, 因此C12大大减小, 从而降低了UN。
第3章 干扰耦合机理
RG2 RL2 RG2 RL2
,
XC
1
jC
U2=jωCR2U1
(3-2)
第3章 干扰耦合机理
U2=jωCR2U1
(3-2)
从 (3-2) 式可以看出, 电容性耦合引起的感应电压
正比于骚扰源的工作频率ω、 敏感电路对地的电阻
R2(一般情况下为阻抗)、 分布电容C、 骚扰源电压U1。 电容性耦合主要在射频频率形成骚扰, 频率越高, 电容
下面我们继续分析另一个电容性耦合模型。 该模 型是在前一模型的基础上除了考虑两导线(两电路)间 的耦合电容外, 还考虑每一电路的导线与地之间所存 在的电容。 地面上两导体之间电容性耦合的简单表示 如图3-2所示。
第3章 干扰耦合机理
骚扰源电压
图 3-2 地面上两导线间电容性耦合模型
原RL1与U1并联,省掉之;原RG2//RL2这里用R代之
双绞线
第3章 干扰耦合机理
图3-7表示了由(3-17)式描述的两电路之间的电感性耦合。
第3章 干扰耦合机理
欲减少B值, 可利用加大电路间的距离或将导线绞绕, 使绞线产生的磁通密度B能互相抵消掉。 至于受干扰电路 的面积S, 可将导线尽量置于接地面上, 使其减至最小; 或利 用绞线的其中一条为地电流回路, 使地电流不经接地平面, 以减少回路所围的面积。 cosθ的减小则可利用重新安排干 扰源与受干扰者的位置来实现。

电路电磁耦合与互感设计如何设计电磁耦合电路

电路电磁耦合与互感设计如何设计电磁耦合电路

电路电磁耦合与互感设计如何设计电磁耦合电路电路电磁耦合与互感设计电磁耦合是电路设计中的重要概念之一,它描述了电路中不同部分之间通过电磁力产生的相互作用。

在电路设计中,互感是一种常见的电磁耦合方式,通过设计合适的互感电路可以实现信号传输、干扰隔离、功率传输等多种功能。

本文将介绍电磁耦合的基本原理和互感电路设计的关键要点,帮助读者更好地理解和应用电路电磁耦合。

一、电磁耦合的基本原理电磁耦合是指电流通过导线产生的磁场与其他线圈或导体相互作用的现象。

当电流通过一根导线时,会形成一个闭合电路并产生磁场。

如果这个磁场穿过另一个线圈,那么线圈内就会感应出电流。

电磁耦合可以通过互感来实现,互感是指两个电路之间通过磁场相互影响的现象。

通过在电路中引入互感元件(如电感器、变压器等),可以实现不同电路之间的电磁耦合。

互感的效应可以用互感系数来度量,互感系数越大,则表示两个电路之间的耦合效应越强。

二、互感电路设计的关键要点1. 了解电磁耦合的需求在进行互感电路设计之前,首先需要确定应用场景和所需的电气特性。

例如,在通信系统中,可能需要设计一个能够实现信号传输的互感电路;在电源系统中,可能需要设计一个能够实现功率传输的互感电路。

了解电磁耦合的具体需求,有助于选择合适的设计方案。

2. 确定耦合方式和互感电路结构根据电路的需求,确定合适的耦合方式和互感电路结构。

常见的耦合方式有电感耦合、电容耦合和变压器耦合等。

不同的耦合方式有不同的特点,根据实际需求选择合适的耦合方式。

3. 计算和选择互感元件参数互感电路设计中关键的一步是计算和选择互感元件的参数。

根据设计需求,计算所需的互感系数,并选择合适的互感元件。

在选取互感元件时,需要考虑频率响应、功率容量、尺寸等因素。

可以通过软件模拟或实验验证来优化互感元件的参数选择。

4. 考虑电磁兼容性和抗干扰设计在设计互感电路时,需要考虑电磁兼容性和抗干扰设计。

电磁辐射和电磁敏感性是电磁耦合电路设计中常见的问题,需要采取合适的屏蔽和滤波措施来减少干扰。

电磁兼容(EMC)基础知识全面详解

电磁兼容(EMC)基础知识全面详解

电磁兼容(EMC)基础知识全面详解一、电磁兼容概念电磁兼容EMC(Electromagnetic compatibility)对于设备或系统的性能指标来说,直译为“电磁兼容性” ;但作为一门学科来说,应该译为“电磁兼容”。

国家标准GB/T4365-1995《电磁兼容术语》对电磁兼容所下的定义为“设备或系统在其电磁环境中能正常工作且不对该环境中任何事物构成不能承受的电磁骚扰的能力。

”简单的说,就是抗干扰的能力和对外骚扰的程度。

电磁兼容是研究在有限的空间、有限的时间、有限的频谱资源条件下,各种用电设备(分系统、系统;广义的还包括生物体)可以共存并不致引起降级的一门科学。

二、基本概念Electromagnetic compatibility(EMC)电磁相容—电子产品能够在一电磁环境中工作而不会降低功能或损害之能力;Electromagnetic interference(EMI)电磁干扰—电子产品之电磁能量经由传导或辐射之方式传播出去的过程;由干扰源、耦合通道及被干扰接收机三要素组成。

Radio frequency(RF)无线电频率,射頻—通訊所用的频率范围,大约是10kHz 到100GHz。

这些能量可以是有意产生的,如无限电传发射器,或者是被电子产品无意产生的;RF能量经由两种模式传播:Radiated emissions(RE)—此种RF 能量的电磁场经由媒介而传输;RF 能量一般在自由空间(free space)內传播,然而,其他种类也有可能发生。

Conducted emissions(CE)—此种RF 能量的电磁场经由道题媒介而传播,一般是经由电线或内部连接电缆;Line Conducted interference(LCI)指的是在电源线上的RF 能量。

Susceptibility 容忍度,耐受性—相对的测量产品暴露在EMI环境中混乱或损害的程度。

Immunity 免疫力—一相对的测量产品承受EMI的能力;Electrical overstress(EOS)电子过度高压—当遇到高压突波产品承受到的损坏或只是功能丧失;EOS包括雷击以及静电放电的事件。

电磁兼容(EMC)基础知识

电磁兼容(EMC)基础知识

电磁兼容(EMC)基础知识本文思维导图:01EMC(Electro Magnetic Compatibility,电磁兼容)是指电子、电气设备或系统在预期的电磁环境中,不会因为周边的电磁环境而导致性能降低、功能丧失或损坏,也不会在周边环境中产生过量的电磁能量,以致影响周边设备的正常工作。

EMI(Electro Magnetic Interference,电磁干扰):自身产生的电磁干扰不能超过一定的限值。

EMS(Electro Magnetic Susceptibility,电磁抗扰度):自身承受的电磁干扰在一定的范围内。

电磁环境:同种类的产品,不同的环境就有着不同的标准。

需要说明的是,以上都基于一个前提:一定环境里,设备或系统都在正常运行下。

02电磁干扰的产生原因:电压/电流的变化中不必要的部分。

电磁干扰的耦合途径有两种:导线传导和空间辐射。

导线传导干扰原因是电流总是走“最小阻抗”路径。

以屏蔽线为例,低频(f<1kHz)时,导线的电阻起到主要作用,大部分电流从导线的铜线中流过;高频(f>10kHz)时,环路屏蔽层的感抗小于导线的阻抗,因此信号电流从屏蔽层上流过。

干扰电流在导线上传输有两种方式:共模和差模。

一般有用的信号为差模信号,因此共模电流只有转变为差模电流才能对有用信号产生干扰。

阻抗平衡防止共模电流向差模转变,可以通过多点接地用来降低地线公共阻抗,减小共地线阻抗干扰。

空间辐射干扰分近场和远场。

近场又称为感应场,与场源的性质密切相关。

当场源为高电压小电流时,主要表现为电场;当场源为低电压大电流时,主要表现为磁场。

无论是电场还是磁场,当距离大于λ/2π时都变成了远场。

远场又称为辐射场。

远场属于平面波,容易分析和测量,而近场存在电场和磁场的相互转换问题,比较复杂。

这里面有问题的是如果导线变成天线,有时候就分不清是传导干扰还是辐射干扰?低频带下特别是30 MHz以下的主要是传导干扰。

或者可以估算当设备和导线的长度比波长短时,主要问题是传导干扰,当它们的尺寸比波长长时,主要问题是辐射干扰。

2024版年度关于电磁兼容(EMC)的基础知识解析

2024版年度关于电磁兼容(EMC)的基础知识解析

电磁干扰现象
电磁干扰(EMI)是指电磁骚扰引起的设备、传输通道或系统 性能的下降。常见的电磁干扰现象包括辐射干扰和传导干扰。
危害
电磁干扰可能导致设备性能下降、误动作、数据丢失等,严重 时甚至可能损坏设备或系统。此外,电磁干扰还可能对人体健 康产生不良影响,如引起头痛、失眠、心悸等症状。
5
电磁兼容研究历史与发展趋势
2024/2/2
6
2024/2/2
02
电磁兼容基本原理
7
电磁场理论基础
麦克斯韦方程组
描述电场、磁场与电荷密 度、电流密度之间关系的 基本方程,是电磁场理论
的基础。
2024/2/2
电磁场波动方程
由麦克斯韦方程组推导出 的描述电磁波在空间中传
播的方程。
电磁场边界条件
描述电磁波在不同媒质分 界面上传播时,场量应满
测试标准
2024/2/2
13
抗扰度测试方法及标准
测试方法
抗扰度测试是通过模拟设备或系统在实际 工作环境中可能遇到的电磁干扰情况,来 评估其抗干扰能力。测试时,需使用合适 的干扰源和耦合装置对设备或系统施加干 扰信号,并观察其性能变化情况。
VS
测试标准
抗扰度测试的标准主要包括IEC的相关标准, 如IEC 61000-4系列标准等,以及各国或地 区的特定标准。这些标准规定了不同设备 或系统应能承受的电磁干扰类型、干扰强 度及测试方法。同时,还规定了设备或系 统在受到干扰时应保持的性能水平或允许 的性能降级范围。
21
医疗设备EMC特殊要求及实现方法
特殊要求
医疗设备对电磁兼容性有严格要 求,以确保设备在复杂电磁环境 中正常工作,同时不对其他设备
产生干扰。

电磁兼容原理和技术讲解

电磁兼容原理和技术讲解

随着科学技术的发展,对电磁兼容和标准不断提 出新的要求,其研究范围也日益扩大,现在的电磁兼 容已不限于电子和电气设备本身,还涉及到信息泄漏 及电磁污染、电磁饥饿等一系列生态效应及其它一些 学科领域。所以某些学者已将电磁兼容改称为环境电 磁学。联合国确定电磁污染是继环境中的空气、水质、 噪声等污染之后的第四大环境污染。
电磁兼容原理和技术讲解
第一章 概论
电磁兼容的含义
根据我国军用标准(GJB72-85)中给出的定义: “设备(分系统、系统)在共同的电磁环境中能一起执
行 各自功能的共存状态。即:该设备不会由于受到处于同 一电磁环境中其它设备的电磁发射导致或遭受不允许的 降级;它也不会使同一电磁环境中其它设备(分系统、 系统)因受其电磁发射导致或遭受不允许的降级。”
电磁兼容理论和技术的发展历史
1881年英国人希维赛德发表“论干扰”;
1833年法拉弟发现电磁感应定律,指出变化的磁场在导线 中产生电动势;
1864年麦克斯韦引入位移电流的概念,指出变化的电场将 激发磁场,并由此预言电磁波的存在。电磁场的相互激发并在 空间传播,是电磁干扰的理论基础;
1887年柏林电气协会成立了全部干扰问题研究委员会;
如果对所有的电子产品不进行综合设计和 规划,任其发展下去,其后果将是带来史无前 例的大灾难。
有关国际组织和许多国家对电子、电气产品规定了电 磁兼容质量标准,不满足电磁兼容要求的产品不准进 入市场。电磁兼容性标准已成为西方发达国家限制进 口产品的一道坚固的技术壁垒。入世后,这种技术壁 垒对我们的障碍更大。
根据国际电工技术委员会(IEC)所给出的定义: “ 电磁兼容是设备的一种能力,它在其电磁环境中能完 成它的功能,而不至于在其电磁环境中产生不能容忍的 结果,电子设备的密集度已成为衡量现 代化程度的一个重要指标,大量的电子设备在同一电磁环境中 工作,电磁干扰的问题呈现出前所未有的严重性。现代电子产 品的一个主要特征是数字化、集成化和密集化越来越高,随之 而来的是宽频干扰和对电磁脉冲很高的敏感性。在电子系统、 设备以及元器件的生产中必须进行电磁兼容设计才能保证正常 工作; 据统计,世界范围内的工业、科学和医疗(ISM)设备的数 量已经接近3亿台,并以每年5%的速度逐年递增。这些设备的 输出功率多为千瓦或兆瓦级,而且有相当数量的ISM 设备工作 在国际电信联盟(ITU)指定的频段之外,或者超过国际无线电 干扰特别委员会(CISPR)对 ISM设备所规定的辐射干扰极限值 的要求,其功率泄漏及高次谐波将造成强烈的干扰。在一些发 达国家,电子设备的数量每4到5年增加一倍。

电磁兼容原理

电磁兼容原理

电磁兼容原理1. 什么是电磁兼容电磁兼容(Electromagnetic Compatibility,EMC)是指在同一电磁环境中,电气设备能够共存并正常工作的能力。

电气设备指的是任何电子、电气设备、系统或者其他设施,而电磁环境则是指电磁辐射、电磁感应、电磁传输等各种电磁现象的总和。

电磁兼容是现代社会中电子设备与电磁环境相互作用的重要问题,它涉及到电磁辐射、电磁感应、电磁传输等各种电磁现象,特别是随着电子技术的高速发展和电磁环境的日益恶化,电磁兼容问题变得越来越突出。

2. 电磁兼容原理的重要性在现代通信、交通、工业控制等领域,各种电子设备和系统被广泛应用。

这些设备和系统在工作时都会产生电磁干扰,如果不进行有效的电磁兼容设计,就会导致设备之间相互干扰,甚至引起系统故障、通信中断或者性能下降。

电磁兼容原理是解决电磁兼容问题的基础,它通过合理的设计和控制,使得各种电子设备在电磁环境中能够共存并正常工作,确保设备和系统的可靠性、安全性和稳定性。

因此,了解和应用电磁兼容原理对于保障电子设备和系统的正常运行至关重要。

3. 电磁兼容原理的基本概念为了理解电磁兼容原理,我们首先需要了解几个基本概念:(1) 电磁辐射电磁辐射是指电子设备在工作时产生的电磁波,它通过空间传播并可能对其他设备或系统产生干扰。

常见的电磁辐射源包括发射天线、开关电路、电机、高速信号线等。

电磁辐射的强度与频率、功率、天线特性等因素有关。

(2) 电磁感应电磁感应是指电磁辐射对其他设备或系统产生的干扰。

当电磁波通过导体附近时,会在导体内感应出电流或电压,从而造成设备或系统的误动作、误指令或性能下降。

常见的电磁感应问题包括共模干扰、差模干扰、接地干扰等。

(3) 电磁传输电磁传输是指电磁辐射从辐射源传播到其他设备或系统的过程。

在传播过程中,电磁波会受到传播路径、介质特性、干扰源特性等因素的影响。

电磁传输的目标是将电磁辐射的干扰降低到可以接受的水平,以保证设备和系统的正常工作。

电磁兼容基本理论(整理)课件

电磁兼容基本理论(整理)课件
方式和位置,减小接地电阻和电感。
印制电路板设计中的电磁兼容
总结词
在印制电路板设计中,应考虑布局、布线和接地等因素,以减小电磁干扰和提高 电磁兼容性。
详细描述
首先,合理安排元器件的布局,特别是敏感元器件和干扰源的位置,以减小相互 间的电磁干扰。其次,优化布线方式和间距,避免长距离平行布线,减小信号间 的耦合和干扰。最后,优化接地方式,减小接地电阻和电感。
电磁场基本理论
01
02
03
电磁场的概念
电磁场是由变化的电场和 磁场组成的统一体,是电 磁作用的媒介。
麦克斯韦方程组
描述电磁场基本规律的方 程组,包括电场、磁场和 电荷、电流之间的关系。
电磁波的传播
电磁波在空间传播的方式, 包括横波和纵波,以及它 们的传播速度和偏振状态。
电磁干扰的传播途径
传导干扰
辐射骚扰测试
测量设备对外发射的电磁辐射。
传导骚扰测试
测量设备通过电源线等传导途 径产生的电磁干扰。
静电放电抗扰度测试
模拟人体或物体与设备接触时 产生的静电放电现象。
雷击浪涌抗扰度测试
模拟雷击和电网浪涌对设备的 影响。
电磁兼容测试设备
信号发生器
功率放大器
频谱分析仪
静电放电模拟器
用于产生电磁干扰信号。
04
电磁兼容设计技术
电路设计中的电磁兼容
总结词
在电路设计中,应考虑信号线、电源线和接地线的布局和布线方式,以减小电磁干扰和 提高电磁兼容性。
详细描述
首先,合理安排信号线的走线方向和间距,避免长距离平行走线,以减小信号间的耦合 和干扰。其次,电源线应尽量宽,以减小线路电阻和电感,同时应采用多层板设计,优 化电源平面和接地平面。最后,接地是提高电磁兼容性的重要手段,应选择合适的接地

电磁兼容的基础知识

电磁兼容的基础知识

一、电磁兼容的定义电磁兼容一词源于英语Electromagnetic Compatibility,简称EMC。

国标《电磁兼容术语》中定义为:设备或系统在其电磁环境中能正常工作且不对该环境中任何事物枸成不能承受的电磁骚扰的能力。

军标《电磁干扰与电磁兼容性名词术语》中定义为:设备在共同的电磁环境中能一起执行各自的功能的共存状态。

即该设备不会由于受到处于同一电磁环境中其他设备的电磁发射导致或遭受不允许的降级;它也不会使同一电磁环境中其他设备因受其电磁发射导致或遭受不允许的降级。

电磁环境是由空间时间和频谱三要素组成的。

二、电磁兼容的研究领域•骚扰源特性。

包括电磁骚扰的产生机理,频域与时域的特性,表征其特性的参数,抑制其发射强度的方法等。

•敏感设备的抗干扰性能。

被干扰的设备或可能受电磁骚扰影响的设备称为敏感设备,在系统分析中称为骚扰接收器。

•电磁骚扰的传播特性。

即严究电磁骚扰如何从骚扰源传播到敏感设备上去,包括辐射与传导。

电磁骚扰的传播特性的特点在于源的非理想化以及宽的频率范围。

•电磁兼容测量。

包扩测量设备、测量方法、数据处理方法、测量结果的评价等。

由于电磁兼容的复杂性,理论的结果和实际相距较远,使得电磁兼容测量尤为重要。

为了各国测量结果之间的可比性,必须详细规定测量仪器的各方面指标。

•系统内与系统间的电磁兼容性。

如欲解决电磁兼容问题,分别严究源、传播以及被干扰对象是不够的。

在一个系统内与系统间,干扰源可能同时是敏感设备;传播的途径往往是多通道的;干扰源与敏感设备不只一个等。

这就需要对系统内的或系统间的电磁兼容问题进行分析和预测。

由于系统间的电磁兼容的复杂性,不可能要求分析系统内与系统间的问题达到非常高的精度,但预测误差过大又失去了实际意义。

三、电磁干扰的危害。

•干扰电视的收看、广播收音机的收听。

•数字系统与数据传输过程中数据的丢失。

•在设备分系统或系统级正常工作的破环。

•医疗电子设备的工作失常。

•自动化微处理器控制系统的工作失控。

电磁兼容中的电场耦合原理

电磁兼容中的电场耦合原理

电磁兼容中的电场耦合原理电磁兼容(Electromagnetic Compatibility,简称EMC)是指在电子系统中,各种电子设备能够在相同的电磁环境下同时工作,互相之间不会产生干扰或损害。

电磁兼容主要关注两种耦合方式,即电场耦合和磁场耦合。

本文将重点介绍电场耦合原理。

电场耦合是指当一个发射器发出电磁信号时,其电场部分通过非电路线损经过一段距离后,再投射到另一个电路上产生干扰的一种现象。

这个距离可以达到数十米,而且不受电磁波的频率限制。

电场耦合的原理可以通过电场的辐射和接收两个部分来解释。

首先,电场辐射是指当电路中有电流流过时,就会产生一个周围空间中不断扩展的电场。

这个电场就像是一个扩散的波纹,会辐射到周围的空间中,形成一个电磁场。

这个电磁场会沿着空间传播,直到碰到其他电路,然后在其他电路上诱发电流。

接收端的电路会接收到这个电磁场,并且在其表面产生感应电流。

这个感应电流会由于接收端电路的特性而产生电压峰值和电流幅度的变化,导致电路运行不稳定,进而产生电磁干扰。

电场耦合的干扰机制主要包括互容性和共模效应。

互容性是指当两个电路相距较近时,如果一个电路上有电流或电压发生变化,就会通过电磁感应耦合到另一个电路上,并产生干扰。

共模效应是指两个电路之间的共同引线或地线等电路元件的耦合现象,会导致其它线路受到共同模式电流的影响。

为了解决电场耦合产生的干扰问题,可以采取以下措施:1.提高线路的屏蔽性能:在设计电子系统时,需要使用电磁屏蔽材料和屏蔽结构,以减少电场的辐射和接收。

2.增强接地设计:良好的接地系统能够有效地分散和吸收电磁辐射和感应电流。

3.降低信号传输速度:通过降低信号传输速度,可以减少信号辐射和接收到的干扰。

4.采用滤波器:使用适当的滤波器可以有效地滤除干扰信号,保证系统的正常运行。

5.合理布线:合理布线可以减少电路之间的耦合效应,降低干扰的产生。

总之,电场耦合是电磁兼容中一种常见的干扰机制。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、传导耦合
导线经过有干扰的环境,即拾取干扰信号并经导线传导到电路而造成对电路的干扰,称为传导耦合,或者叫直接耦合。

在音频和低频的时候由于电源线、接地导体、电缆的屏蔽层呈现低阻抗,故电流注入这些导体时容易传播,当噪声传导到其他敏感电路的时候,就能产生干扰作用。

在高频的时候:导体的电感和电容将不容忽视,感抗随着频率的增加而增加,容抗随着频率的增加而减小。

jwL,1/jwC
解决方法:防止导线的感应噪声,即采用适当的屏蔽和将导线分离,或者在骚扰进入明暗电路之前,用滤波的方法将其从导线中除去;
2、共阻抗耦合
当两个电路的电流经过一个公共阻抗时,一个电路的电流在该公共阻抗上形成的电压就会影响到另一个电路。

3、感应耦合
a)电感应容性耦合
干扰电路的端口电压会导致干扰回路中的电荷分布,这些电荷产生电场的一部分会被敏感电路拾取,当电场随时间变化,敏感回路中的时变感应电荷就会在回路中形成感应电流,这种叫做电感应容性耦合。

解决方法:减小敏感电路的电阻值,改变导线本身的方向性屏蔽或者分隔来实现。

b)磁感应耦合
干扰回路中的电流产生的磁通密度的一部分会被其他回路拾取,当磁通密度随时间变化时就会在敏感回路中出现感应电压,这种回路之间的耦合叫做磁感应耦合。

主要形式:线圈和变压器耦合、平行双线间的耦合等。

铁心损耗常常使得变压器的作用类似于抑制高频干扰的低通滤波器。

平行线间的耦合是磁感应耦合的主要形式
要想减少干扰,必须尽量减少两导线之间的互感。

4、辐射耦合
辐射源向自由空间传播电磁波,感应电路的两根导线就像天线一样,接受电磁波,形成干扰耦合。

干扰源距离敏感电路比较近的时候,如果辐射源有低电压大电流,则磁场起主要作用;如果干扰源有高电压小电流,则电场起主要作用。

对于辐射形成的干扰,主要采用屏蔽技术来抑制干扰。

相关文档
最新文档