电磁兼容基本知识整理
电磁兼容知识点总结
电磁兼容知识点总结一、电磁兼容概述电磁兼容(EMC)是指电子设备在电磁环境中正常运行,同时不对其他设备产生干扰的能力。
在现代电子设备中,电磁兼容性已成为一项至关重要的性能指标。
二、电磁兼容性标准与规范为了确保电磁兼容性,各种国际和地区标准与规范应运而生。
其中,最知名的包括国际电工委员会(IEC)的系列,以及美国联邦通信委员会(FCC)的Part 15系列。
这些标准与规范对电子设备的电磁辐射、抗干扰能力和静电放电等指标做出了详细规定。
三、电磁干扰源电磁干扰源多种多样,主要包括电源开关、无线电发射器、雷电等自然干扰源,以及各种电子设备的运行过程产生的干扰。
其中,电源开关是常见的电磁干扰源之一,其产生的谐波电流和电压波动可能对其他设备造成干扰。
四、电磁抗扰度要求为了确保电子设备的正常运行,电磁抗扰度要求应运而生。
这些要求主要包括对静电放电、电快速瞬变脉冲群、浪涌、电压跌落等干扰的抵抗能力。
在设计和生产过程中,应充分考虑这些因素,以确保设备在遭受这些干扰时仍能正常工作。
五、电磁屏蔽与滤波技术为了达到电磁兼容性要求,电磁屏蔽与滤波技术被广泛应用于电子设备中。
电磁屏蔽主要通过金属隔离材料将干扰源与外界隔离,而滤波技术则通过特殊设计的电路或器件,阻止或减弱干扰信号的传播。
这些技术对于提高设备的电磁抗扰度和降低电磁辐射具有重要意义。
六、电磁兼容性测试与认证为了验证电子设备的电磁兼容性,各种测试与认证机构应运而生。
这些机构通过模拟实际工作条件和电磁环境,对电子设备进行严格的测试和认证,以确保其符合相关标准和规范的要求。
获得电磁兼容性认证是电子产品进入市场的重要条件之一。
七、提高电磁兼容性的设计策略在设计阶段,采取一些策略可以提高电子设备的电磁兼容性。
例如,合理布局电路板上的元件和布线,选择合适的滤波器和电容,使用屏蔽材料等。
对于高频电路设计,还应考虑信号的完整性、反射和串扰等问题。
八、结论电磁兼容性是现代电子设备不可或缺的性能指标之一。
电磁兼容知识点总结(一)2024
电磁兼容知识点总结(一)引言概述:电磁兼容是指电子设备在共同工作环境中,能够互不干扰,同时保持自身功能不受到干扰的能力。
本文将总结电磁兼容的相关知识点,以帮助读者更好地理解和应用这一概念。
正文:一、电磁兼容的基本概念与原理1.1 电磁辐射与电磁感应的基本原理1.2 互相干扰的电磁场作用方式1.3 电磁兼容的基本目标和要求1.4 电磁兼容设计的基本原则1.5 电磁兼容性评估的方法和指标二、电磁兼容性设计原则2.1 地线设计原则2.2 信号传输线设计原则2.3 电磁场屏蔽原则2.4 电源线设计原则2.5 接地设计原则三、电磁干扰源的特征与分析3.1 传导干扰源的特征与分析3.2 辐射干扰源的特征与分析3.3 外界电磁环境的特征与分析3.4 电气场强的测量方法3.5 干扰源定位与分析方法四、电磁屏蔽技术与方法4.1 电磁屏蔽材料的基本原理与特性4.2 电磁屏蔽的设计方法与措施4.3 电磁屏蔽效果的评估与验证方法4.4 常见电磁屏蔽结构的设计要点4.5 电磁屏蔽在实际工程中的应用五、电磁抗干扰技术与方法5.1 模拟滤波器设计原则与方法5.2 数字滤波器设计原则与方法5.3 过电压保护技术与方法5.4 对抗电源变动的技术与方法5.5 抗电磁干扰设计的实践案例总结:通过本文对电磁兼容的知识点总结,我们了解了电磁兼容的基本概念、原理和设计原则。
我们还学习了电磁干扰源的特征与分析方法,电磁屏蔽技术与方法,以及电磁抗干扰技术与方法。
电磁兼容设计的实践应用对于维护电子设备的正常运行至关重要。
希望读者能够通过本文对电磁兼容的知识点有更深入的了解,以应对实际工程中可能遇到的电磁兼容问题。
电磁兼容课程知识点总结
电磁兼容课程知识点总结一、电磁兼容基础知识1.1 电磁兼容的基本概念电磁兼容是指在特定的电磁环境下,电子、通信设备和系统在不受到外来电磁辐射的干扰或干扰他人,保证其正常工作的能力。
1.2 电磁干扰的分类电磁干扰主要可以分为传导干扰和辐射干扰两大类。
传导干扰是通过导体传输,比如电源线传导电磁干扰。
辐射干扰是通过空气传输,比如无线电台产生的电磁辐射。
1.3 电磁兼容的重要性在现代电子设备和通信系统日益复杂的情况下,电磁兼容的重要性越来越突出。
如果设备没有良好的电磁兼容性,容易受到外界电磁干扰,影响其正常工作。
1.4 电磁兼容标准和法规为了确保电子设备和通信系统的电磁兼容性,在各国都有一系列的电磁兼容标准和法规,比如欧洲的CE标志、美国的FCC标准等。
二、电磁场理论2.1 麦克斯韦方程组麦克斯韦方程组是描述电磁场的基本方程,包括电场和磁场之间的相互关系,是电磁场理论的基础。
2.2 电磁波的特性电磁波是由电场和磁场振荡而产生的一种波动,具有传播速度快、能够在真空中传播、波长和频率可调节等特点。
2.3 电磁波的传播特性电磁波的传播特性包括波速、波长、频率、极化、幅度等,这些特性决定了电磁波的传播范围和传播方式。
三、电磁兼容的分析方法3.1 电磁兼容的测试方法电磁兼容的测试方法包括辐射测试、传导测试、电磁场强度测试、电磁脉冲测试等,用于评估设备的电磁兼容性能。
3.2 电磁兼容的仿真模拟方法电磁兼容的仿真模拟方法包括有限元分析、电磁场求解和电磁兼容性分析软件等,可以用于预测设备在不同电磁环境下的性能。
3.3 电磁兼容的设计方法电磁兼容的设计方法包括布线设计、地线设计、屏蔽设计、滤波器设计等,用于提高设备的电磁兼容性能。
四、电磁兼容的干扰控制方法4.1 电磁辐射的控制方法电磁辐射的控制方法包括合理布局、优化线路、采用屏蔽结构等,用于减少设备产生的电磁辐射。
4.2 电磁传导的控制方法电磁传导的控制方法包括使用滤波器、采用平衡电路、采用防干扰接口等,用于减少设备对外界电磁干扰的敏感性。
电磁兼容详细讲解
电磁环境(electromagnetic environment)
存在于给定场所的所有电磁现象的综合。“给定场所”即“空间”,“所有电磁 现象”包括了全部“时间”与全部“频谱”。
三、电磁兼容性的实施
电磁兼容的控制技术
1、传输通道抑制:具体方法有滤波、屏蔽、搭接、接地、合理布线。 2、空间分离:地点位置控制、自然地形隔离、方位角控制、电场矢量方向 控制。 3、时间分离:时间共用准则、主动时间分隔、被动时间分隔等。 4、频谱管理:频谱规划/划分、制定标准规范、频率管制等。 5、电气隔离:变压器隔离、光电隔离、继电器隔离、DC/DC变换等。 6、其他技术。 15
第一章 绪论
二、电磁兼容技术的发展
1、电磁兼容技术发展史
1823年,安 培提出了电 流产生磁力 的基本定律。 1840年,美 国人亨利成 功地获得了 高频电磁振 荡。 1866年,第一台发电 机发电,利用电磁效 应工作的电气设备越 来越广泛,造成电磁 环境的“污染”。 1888年,德国物理学家赫兹首创了天 线,第一次把电磁波辐射到自由空间, 同时又成功接收到电磁波,用实验证 实了电磁波的存在,从此开始了对电 磁干扰问题的实验研究。
1966年由原第一机械工业部制定 的部级标准JB-854-66《船用电 气设备工业无线电干扰端子电压 测量方法与允许值》
1984年,中国通信学会、中国电 子学会、中国铁道学会和中国电 机工程学会在重庆召开了第一届 全国性电磁兼容学术会议。
1992.5,中国电子学会和中国通 信学会在北京成功地举办了“第 一届北京国际电磁兼容学术会议 (EMC’92/Beijing)”。
电磁兼容知识点总结
电磁兼容知识点总结一、电磁干扰的特点1.电磁干扰的来源电磁干扰主要来自于电子设备、无线通信设备、电源线、雷电放电、静电放电等。
其中电子设备是产生电磁干扰最主要的来源,包括计算机、通信设备、电视机、音响、照明设备等。
这些设备在工作时会产生电磁场,从而对其它设备产生干扰。
2.电磁干扰的传播电磁干扰的传播途径主要有辐射传播和传导传播两种方式。
辐射传播是指电磁波以空间传播的方式传播干扰,主要影响范围是设备本身周围的空间。
传导传播是指电磁波通过导体传播干扰,通常是通过电源线、信号线、地线等传导到其它设备。
3.电磁干扰的特点电磁干扰的特点包括频率广泛、能量巨大、传播速度快、影响范围广等。
由于电磁干扰的这些特点,一旦产生干扰就会对其它设备产生不同程度的影响,从而影响设备的正常工作。
二、电磁兼容的基本原理和方法1.基本原理电磁兼容的基本原理是通过设计、测试和控制减小设备产生的电磁干扰和提高设备抗干扰能力,使设备在电磁环境中能够共存共存。
为了实现这一目标,需要对设备进行整体设计,考虑其电磁兼容性,包括电源线滤波、辐射和导体电磁干扰控制、接地系统设计等。
2.基本方法电磁兼容的基本方法主要包括以下几种:a.增加滤波器滤波器是电磁兼容的重要手段,它能够有效地减小电磁干扰并提高设备对外部干扰的抵抗能力。
常见的滤波器有电源线滤波器、信号线滤波器、天线滤波器等。
b.增加屏蔽屏蔽是减小电磁辐射和提高设备抗干扰能力的重要手段,主要包括电磁屏蔽罩、屏蔽涂料、屏蔽隔板等。
通过在设备内部或外部增加屏蔽,可以有效减小电磁干扰。
c.合理设计接地系统接地系统是提高设备抗干扰能力的关键因素,通过合理设计接地系统可以减小设备对外部干扰的敏感性和提高设备对外部干扰的抵抗能力。
d.改善功率供应改善功率供应是减小电磁干扰的重要手段,包括选择优质的电源装置、增加稳压器、提高电源线的质量等。
e.系统整体设计系统整体设计是电磁兼容的关键环节,通过对系统整体进行电磁兼容性的考虑,可以有效地减小系统产生的电磁干扰并提高其抗干扰能力。
电磁兼容基础知识
电磁兼容基础知识
源网络),它接受从待测设备发射出来的信 号,再把这个信号传给接收机,接收机检测 并显示出干扰信号的电平.接收机必须足够 灵敏能读出低电平的信号,并且不发生失真. 此外,接收机的带宽和检波特性也必须确定. 所有上述因素都必须满足要求才能确保测量 的结果是有意义和可重复的,而且能同在另 一地方测量的结果相比较. 其次,对设备抗扰度测量装置的要求, 它的关键件是一个高功率的信号源.从现时
电磁兼容基础知识
一,电磁兼容基础 (一)概述 一 概述 随着科学技术的发展,越来越多的电气和电子 进入了社会各领域,它推动了社会物质的丰富和 精神文明的进步.但伴随电气和电子设备应用而 产生的电磁兼容骚扰问题又给人们带来了无穷的 烦恼. 电气和电子设备所产生的电磁骚扰,可以以 辐射和传导的形式进行传播.电磁骚扰可以干扰 广播,电视和通讯的接收,可以造成仪器和设备 工作的失常,失效甚至损坏.
电磁兼容基础知识
由雷电产生的大气噪声,其频率在10MHz以 下. 10MHz以上的自然噪声是由宇宙射电 噪声和太阳辐射引起的. 人为造成的噪声又分为有意和无意的两 种.所谓有意的是指那些必须发射电磁波的 电子设备,例如调幅波,调频波,电视以及 其他的广播发射机,还有雷达和导航用发射 机,移动无线电通讯机等.所谓无意噪声源 包括计算机设备,继电器,开关,荧光照明 灯,电弧焊机等.有意无意的噪声源与日俱 增,尤其在城市已经到了相当严重的地步.
电磁兼容基础知识
电磁兼容基础知识
⑷干扰功率的测量 一般认为试品产生的30MHz以上干扰,其 能量是通过辐射传播到被干扰设备去的.而 且干扰能量最主要是通过靠近试品的那部分 电源线(仅指裸露在试品外的部分)来辐射 的.因此试品所产生的干扰能量可以用一个 环绕电源线的吸收装置吸收到的最大功率来 衡量.这个吸收装置被称为干扰功率吸收钳 (铁氧体钳). 图3.2.4是干扰功率的测量简图.
电磁兼容(EMC)基础知识
电磁兼容(EMC)基础知识电磁兼容性问题一般都包含两个因素,骚扰发射源和对这个骚扰敏感的受害者。
如果骚扰源和受害者在同一设备单元内,称“系统内”电磁兼容性问题;如果是两个不同的设备,则称为“系统间”问题。
大部分电磁兼容标准都是针对系统间电磁兼容的。
同一设备在一种情况下是骚扰源,而在另一种情况下或许是受害者。
骚扰源和受害者在一起时,就有从一方到另一方的潜在干扰路径。
遵守已出版的发射和敏感度标准并不能保证解决系统的电磁兼容性问题。
标准的编写是从保护特殊服务的观点出发的,并要求骚扰源和受害者之间有最小的隔离。
许多电子硬件包含着具有天线能力的元件,这些元件可以以电场、磁场或电磁场方式传输能量并耦合到线路中。
在实际中,系统内部耦合和设备间的外部耦合,可以通过屏蔽、电缆布局以及距离控制得到改善。
地线面或屏蔽面既可以因反射而增大干扰信号,也可以因吸收而衰减干扰信号。
电缆之间的耦合既可以是电容性的,也可以是电感性的,这取决于其走向、长度和相互距离。
绝缘材料也可以因吸收而减小场强。
公共阻抗耦合 公共阻抗耦合是由于骚扰源与受害者共用一个线路阻抗而产生的。
最明显的公共阻抗是阻抗实际存在的场合,公共阻抗也可以是由两个电流回路之间的互感耦合,或者由于两个电压节点之间的电容耦合产生的。
理论上,每个节点和每个回路通过空间都能耦合到另一节点和回路。
实际上耦合程度随距离增大而急剧下降。
1、导电连接 当骚扰源与受害者共用一个地时,公共阻抗仅仅是由一段导线或印制板走线产生的。
因为导线的阻抗呈感性,因此输出中的高频或高di/dt分量将更容易耦合。
当输出和输人在同一系统时,公共阻抗构成反馈通路,这可能导致振荡。
分别连接两个电路,在两个电路之间没有公共通路,也就没有公共阻抗。
这个方法的代价是多用一根导线。
这个方法可用于任何包含公共阻抗的电路,例如电源汇流条连接。
大地是公认的最常见的公用阻抗因素。
2、磁场感应 导体中流动的交流电流会产生磁场,这个磁场将与相临的导体耦合,在其上感应出电压。
电磁兼容设计知识点
电磁兼容设计知识点电磁兼容(Electromagnetic Compatibility,简称EMC)是指电子设备在相互连接的电磁环境下能够正确地工作,并且不会对周围电磁环境造成任何不良的影响。
在现代社会中,电子设备的普及与日俱增,各种电子产品频繁操作,因而电磁兼容设计就显得尤为重要。
本文将介绍电磁兼容设计的一些重要知识点。
1. 泄漏辐射(Radiated Emissions)泄漏辐射是指电子设备在操作过程中产生的电磁辐射,如果超过一定的限制,就可能对周围的其他设备或电子产品产生干扰。
为了防止泄漏辐射,设计人员需要:- 采用良好的地线和电源线布局,以减少辐射;- 使用屏蔽材料和屏蔽罩来隔离电磁波;- 注意电源线的滤波和抑制干扰。
2. 传导干扰(Conducted Emissions)传导干扰是指电子设备中的电流和信号通过导线或电源线传播到其他设备中,从而引起干扰。
为了防止传导干扰,设计人员需要:- 使用滤波器和抑制器来减少传导干扰;- 选择合适的电源线和导线,以降低传导噪声;- 合理布局电子元件,减少互连线的长度。
3. 抗干扰能力(Immunity)抗干扰能力是指电子设备在外部电磁场的干扰下仍然能够正常工作的能力。
为了提高设备的抗干扰能力,设计人员需要:- 使用屏蔽技术来防止外界电磁场的干扰;- 采用合适的滤波电路来减少干扰;- 在设计中考虑设备的抗干扰能力,选择合适的元件和材料。
4. 地线设计(Grounding)地线设计在电磁兼容设计中占据重要地位。
一个良好的地线设计可以有效减少电磁辐射、提高抗干扰能力。
设计人员需要注意以下几点:- 使用独立的地线和电源地线,防止互相干扰;- 利用地面平面和聚集电流来提高地线的效果;- 按照电路的功能要求选择合适的地线类型。
5. 屏蔽设计(Shielding Design)屏蔽设计是电磁兼容设计中常用的方法,通过使用屏蔽材料和屏蔽罩来隔离电磁波,减少干扰。
设计人员需要注意以下几点:- 选择合适的屏蔽材料,如金属、导电橡胶等;- 在关键区域使用屏蔽罩,确保信号的完整性;- 设计良好的接地方式,提高屏蔽效果。
电磁兼容知识点总结_电磁兼容基础知识全面详解
电磁兼容知识点总结_电磁兼容基础知识全面详解什么是电磁兼容电磁兼容性(EMC)是指设备或系统在其电磁环境中符合要求运行并不对其环境中的任何设备产生无法忍受的电磁干扰的能力。
因此,EMC包括两个方面的要求:一方面是指设备在正常运行过程中对所在环境产生的电磁干扰不能超过一定的限值;另一方面是指器具对所在环境中存在的电磁干扰具有一定程度的抗扰度,即电磁敏感性。
电磁干扰源种类电磁干扰源种类繁多,可按不同的方法进行分类。
对测量环境中直接影响测量及测量设备的干扰来源可分为自然干扰源和人为干扰源。
自然干扰源包括:(1)大气噪声干扰:如雷电产生的火花放电、属于脉冲宽带干扰,其覆盖从数Hz到100MHz 以上.传播的距离相当远。
(2)太阳噪声干扰:指太阳黑子的辐射噪声。
在太阳黑子活动期.黑子的爆发.可产生比平稳期高数千倍的强烈噪声.致使通信中断。
(3)宁宙噪声:指来自宇宙天体的噪声。
(4)静电放电:人体、设备上所积累的静电电压可高达几万伏直到几十万伙.常以电晕或火花方式放掉,称为静电放电。
静电放电产生强大的瞬间电流和电磁脉冲,会导致静电敏感器件及设备的损坏。
静电放电属脉冲宽带干扰、频谱成分从直流一直连续剑中频频段。
人为干扰源指而电气电子设备和其他人工装置产生的电磁干扰。
这里所说的人为干扰源都是指无意识的干扰。
至于为了达到某种目的而有意施放的干扰,如电子对抗等不属于本文讨论范围。
任何电子电气设备都可能产生人为干扰。
在此,只是提到一些常见的干扰测量环境的干扰源。
(1)无线电发射设备:包括移动通信系统、广播、电视、雷达、导航及无线电接力通信系统.如微波接力,卫星通信等。
因发射的功率大,其基波信号可产生功能性干扰;谐波及乱真发射构成非功能性的无用信号干扰。
电磁兼容(EMC)基础知识全面详解
电磁兼容(EMC)基础知识全面详解一、电磁兼容概念电磁兼容EMC(Electromagnetic compatibility)对于设备或系统的性能指标来说,直译为“电磁兼容性” ;但作为一门学科来说,应该译为“电磁兼容”。
国家标准GB/T4365-1995《电磁兼容术语》对电磁兼容所下的定义为“设备或系统在其电磁环境中能正常工作且不对该环境中任何事物构成不能承受的电磁骚扰的能力。
”简单的说,就是抗干扰的能力和对外骚扰的程度。
电磁兼容是研究在有限的空间、有限的时间、有限的频谱资源条件下,各种用电设备(分系统、系统;广义的还包括生物体)可以共存并不致引起降级的一门科学。
二、基本概念Electromagnetic compatibility(EMC)电磁相容—电子产品能够在一电磁环境中工作而不会降低功能或损害之能力;Electromagnetic interference(EMI)电磁干扰—电子产品之电磁能量经由传导或辐射之方式传播出去的过程;由干扰源、耦合通道及被干扰接收机三要素组成。
Radio frequency(RF)无线电频率,射頻—通訊所用的频率范围,大约是10kHz 到100GHz。
这些能量可以是有意产生的,如无限电传发射器,或者是被电子产品无意产生的;RF能量经由两种模式传播:Radiated emissions(RE)—此种RF 能量的电磁场经由媒介而传输;RF 能量一般在自由空间(free space)內传播,然而,其他种类也有可能发生。
Conducted emissions(CE)—此种RF 能量的电磁场经由道题媒介而传播,一般是经由电线或内部连接电缆;Line Conducted interference(LCI)指的是在电源线上的RF 能量。
Susceptibility 容忍度,耐受性—相对的测量产品暴露在EMI环境中混乱或损害的程度。
Immunity 免疫力—一相对的测量产品承受EMI的能力;Electrical overstress(EOS)电子过度高压—当遇到高压突波产品承受到的损坏或只是功能丧失;EOS包括雷击以及静电放电的事件。
电磁兼容基本理论(整理)
EMC 要求
元器件
电路
设备
系统
都必须互不干扰,正常工作, 达到电磁兼容。
构成干扰三要素
骚扰源 传输途径 敏感设备
空间辐射的电磁波
EUT
导线传导的电压电流
EUT
• 必须同时具备三个基本要素才会发生电磁干扰。如果 去除了其中之一,就不会发生电磁干扰。所以,工程 师的任务就是要决定哪一个因素是最容易消除的。
振荡器体及变压器:工作时会在周围辐射高频电磁 波。
静电放电和I/O端的干扰:经过信号线和连接器,外界 的电磁干扰进入电子设备,内部干扰源向外辐射。
传输途径
• 一. 空间辐射 差模电流辐射和共模电流辐射 远场
2
电磁感应
近场
2
电磁耦合
• 二. 导线传导 共阻抗耦合 共电源线 共地线 地环路干扰 地电位差 周围强场
差模电流辐射和共模电流辐射 的比较示例
• 扁平馈线中抽取相邻的两根导线,线长1米, 导线对上分别加以共模和差模电流,在离 导线对3米处按GB 9254规定测量骚扰场强。 • 实验表明如果该处场强要达到B类设备的限 值(30~230 MHz时为40 dBμV/m),则差 模电流要求为20 mA,而共模电流只要8μA, 两者相差2500倍。
此外,还要满足特定用户应用环境下的要求
常见的电磁干扰源及特性 · 自然界的电磁干扰源:雷电放电、太阳黑子爆发、日 辉和地球磁暴等 · 人为的电磁干扰源: 连续干扰源— 设备有很宽的频谱,向空间辐射 间接干扰源— 与机械运动工作时产生的,辐射或传导干扰 脉冲干扰源— 电磁瞬态过程,有关,如车,船和飞机的壳体 与空气中的尘粒、烟尘、雪片等摩擦起电。 接触干扰源— 金属的接触面具有复阻抗特性,振动、颠 簸、撞击时,接触阻抗是可变的。外界强辐射场产生 感应电流,由于接触阻抗的作用会产二次辐射。辐射 频谱为原辐射频谱加接触阻抗变化的调制,产生附加频 率分量。停止运动时这种干扰便消逝。
电磁兼容(EMC)基础知识
电磁兼容(EMC)基础知识本文思维导图:01EMC(Electro Magnetic Compatibility,电磁兼容)是指电子、电气设备或系统在预期的电磁环境中,不会因为周边的电磁环境而导致性能降低、功能丧失或损坏,也不会在周边环境中产生过量的电磁能量,以致影响周边设备的正常工作。
EMI(Electro Magnetic Interference,电磁干扰):自身产生的电磁干扰不能超过一定的限值。
EMS(Electro Magnetic Susceptibility,电磁抗扰度):自身承受的电磁干扰在一定的范围内。
电磁环境:同种类的产品,不同的环境就有着不同的标准。
需要说明的是,以上都基于一个前提:一定环境里,设备或系统都在正常运行下。
02电磁干扰的产生原因:电压/电流的变化中不必要的部分。
电磁干扰的耦合途径有两种:导线传导和空间辐射。
导线传导干扰原因是电流总是走“最小阻抗”路径。
以屏蔽线为例,低频(f<1kHz)时,导线的电阻起到主要作用,大部分电流从导线的铜线中流过;高频(f>10kHz)时,环路屏蔽层的感抗小于导线的阻抗,因此信号电流从屏蔽层上流过。
干扰电流在导线上传输有两种方式:共模和差模。
一般有用的信号为差模信号,因此共模电流只有转变为差模电流才能对有用信号产生干扰。
阻抗平衡防止共模电流向差模转变,可以通过多点接地用来降低地线公共阻抗,减小共地线阻抗干扰。
空间辐射干扰分近场和远场。
近场又称为感应场,与场源的性质密切相关。
当场源为高电压小电流时,主要表现为电场;当场源为低电压大电流时,主要表现为磁场。
无论是电场还是磁场,当距离大于λ/2π时都变成了远场。
远场又称为辐射场。
远场属于平面波,容易分析和测量,而近场存在电场和磁场的相互转换问题,比较复杂。
这里面有问题的是如果导线变成天线,有时候就分不清是传导干扰还是辐射干扰?低频带下特别是30 MHz以下的主要是传导干扰。
或者可以估算当设备和导线的长度比波长短时,主要问题是传导干扰,当它们的尺寸比波长长时,主要问题是辐射干扰。
EMC基础必学知识点
EMC基础必学知识点
1. 什么是EMC? EMC是电磁兼容的缩写,指的是电子设备在电磁环境中正常工作,不产生不可接受的干扰,也不受其他设备的干扰。
2. 电磁辐射和电磁感应:电磁辐射是指电磁波在空间中的传播,而电磁感应是指电磁波对接收器件产生的电磁场效应。
3. 电磁兼容测试:包括辐射发射测试、辐射抗干扰测试、传导发射测试、传导抗干扰测试、静电放电测试、浪涌电流测试等测试方法。
4. 电磁波频谱:电磁波频谱是指电磁波在频率上的分布,从低频到高频分别是直流、低频、射频、微波、红外线、可见光、紫外线、X射线和伽马射线。
5. 辐射发射:是指电子设备在工作过程中通过电磁波在空间中传播,例如无线电、电视、手机等无线通信设备。
6. 辐射抗干扰:是指电子设备在电磁环境中受到其他设备的干扰时仍能正常工作,例如家用电器受到电信号干扰而不受影响。
7. 传导发射:是指电子设备在工作过程中通过电源线、信号线等传导方式将电磁波传递到其他设备上。
8. 传导抗干扰:是指电子设备在电磁环境中受到其他设备的传导干扰时仍能正常工作,例如高频电磁场对电子设备的传播线进行干扰。
9. 静电放电:是指电子设备在操作过程中由于电荷的不平衡而引起的电流突然释放,例如人体静电放电对电子元件造成的损坏。
10. 浪涌电流:是指电子设备在电源启动、断电、过电压等情况下突然产生的大电流脉冲,容易对电子设备造成损坏。
以上是EMC的基础必学知识点,有助于了解电磁兼容的相关概念和测试方法。
电磁兼容知识点总结
电磁兼容知识点什么是电磁兼容?电磁兼容(Electromagnetic Compatibility, EMC)是指在特定的电磁环境中,各种电子设备能够在不相互干扰的情况下正常工作并共存的能力。
在现代社会中,电子设备的日益普及给我们的生活带来了很多便利,但同时也带来了电磁干扰的问题。
电磁兼容的研究旨在避免电磁干扰对设备正常工作和通信造成的负面影响,确保设备之间的互相兼容性。
电磁干扰的来源电磁干扰是指各种电子设备之间或设备与电磁环境之间的相互干扰现象。
电磁干扰的来源可以分为内部干扰和外部干扰两种。
内部干扰内部干扰是指同一个设备内部各个部件之间的相互干扰。
这种干扰常常是由于设备内部电路设计不当、接地不良或信号线的不正确布局而导致的。
例如,高频信号线和低频信号线交叉布局就会引起串扰干扰。
外部干扰外部干扰是指来自于其他电子设备、天线、电力系统、雷电等外部电磁源对设备产生的干扰。
这种干扰主要通过空气传播,也可以通过传导、辐射等方式产生。
常见的外部干扰源有电压干扰、电流干扰、电磁波干扰等。
电磁兼容的评价指标为了保证设备之间的互相兼容性,我们需要依据一些评价指标来对电磁兼容性进行评估。
以下是一些常见的电磁兼容评价指标:电磁敏感性电磁敏感性是指设备对外部电磁场的响应能力。
如果设备对外部电磁场的响应过于敏感,就容易受到外部干扰而产生故障。
一般来说,电磁敏感性越低,设备的抗干扰能力越强。
电磁辐射电磁辐射是指设备在工作过程中向外部环境辐射出的电磁波。
当设备辐射的电磁波超过一定限值时,会对周围的其他设备造成干扰。
因此,减小电磁辐射是提高电磁兼容性的重要手段之一。
入射抑制比入射抑制比是指设备对外部电磁场的抑制能力。
当设备工作时,它的内部电路产生的电磁场可能会干扰周围的其他设备。
入射抑制比越高,设备对外部干扰的影响越小。
传导抑制比传导抑制比是指设备内部电路之间相互干扰的抑制能力。
当设备内部的高频信号线和低频信号线相交布局时,容易产生串扰干扰。
电磁兼容详细讲解
电磁兼容(Electromagnetic Compatibility,EMC)是指在电磁环境中,电子设备能够在不产生或受到有害电磁干扰的情况下,正常工作、与其他设备共存的能力。
它包括两个方面:电磁干扰(EMI,Electromagnetic Interference)和抗干扰性能(EMS,Electromagnetic Susceptibility)。
1. 电磁干扰(EMI):定义: 指电子设备的工作可能对周围的电子设备或电磁环境造成的有害影响。
来源: 来自各种电磁辐射、电磁感应和传导的电磁波。
防范措施: 使用屏蔽、滤波、绕线等技术来减小设备的辐射和提高其抗干扰能力。
2. 抗干扰性能(EMS):定义: 指电子设备在电磁环境中正常工作的能力,即设备不受到外界电磁干扰的影响。
测试: 通过将设备置于模拟或真实的电磁干扰环境中,检测设备的性能是否受到干扰。
提高抗干扰性能的方法:(1)使用合格的电磁屏蔽材料。
(2)优化电路布局,减小电磁敏感部件的面积。
(3)使用抑制电磁噪声的滤波器。
(4)使用合适的接地和屏蔽手段。
3. 国际电工委员会(IEC)的标准:IEC 61000系列标准为电磁兼容提供了一系列规范,包括测量方法、限值等内容。
4. 电磁兼容的重要性:保障电子设备在复杂的电磁环境中稳定可靠地工作。
避免设备之间互相干扰,保持通信的稳定性。
符合国际和国内的法规要求,确保产品上市和销售的合规性。
5. 应用领域:电子通信设备、计算机设备、医疗设备、汽车电子等。
综合而言,电磁兼容是电子设备设计和制造中的一个重要考虑因素,它涉及到电磁干扰的防范和设备抗干扰性能的提升。
通过遵循相关的标准和规范,制造商可以确保其产品在各种电磁环境中都能够安全、可靠地运行。
电磁兼容考点总结材料
第二章电磁兼容基本原理1.电磁兼容三要素:骚扰源,对骚扰敏感的接收单元,把能量从骚扰源耦合到接收单元的传输通道,成为电磁干扰三要素。
2.电路受干扰程度S=WC/I3.从来源分:自然骚扰和人为骚扰。
从骚扰属性分;功能性骚扰和非功能性骚扰从耦合方式分:传导骚扰和辐射骚扰从频谱宽度分:宽带骚扰和窄带骚扰从频率X围分:甚低频骚扰(30Hz以下)、工频与音频骚扰(50Hz及其谐波)、载频骚扰(10kHz一300kHz)、射频及视频骚扰(300kHz一300MHz)、微波骚扰(300MHz一100GHz)。
4.电磁骚扰传播方式:传导耦合:指一个电路中的骚扰电压或骚扰电流通过公共电路流通到另一个电路中的欧和方式。
磁场耦合:是指一个回路中的骚扰电流通过磁通在另一个回路中感应电动势,以传播骚扰的耦合方式。
电场耦合:是指一个电路中导体的骚扰电压通过与其临近的另一电路中导体之间相互的电容耦合产生骚扰电流,以传播骚扰的耦合方式。
辐射耦合:是指电磁骚扰在空间中以电磁波的形式传播,耦合至被干扰电路。
5.在产品电磁兼容设计时,要注意以下几方面:①跟据使用环境获取对系统的电磁兼容性要求;②在方案论证初期就提出产品的电磁兼容性指标;③把电磁兼容性设计融入产品的功能设计中,而不是采取事后的补救措施;④通过试验、测量确认系统已达到电磁兼容性要求;⑤对产品进行跟踪调查,保证其寿命期内的电磁兼容问题。
第四章滤波1.滤波器作用:就是要限制接收装置的频带,使得在不影响有用信号的前提下抑制无用信号。
2.吸收式滤波器:又称有损滤波器,它采用有损耗的滤波元件,使骚扰信号的能量消耗在滤波器中,以达到抑制干扰的目的。
常见的有:铁氧体磁芯,抗干扰电缆。
3.电源线滤波器作用:抑抑制设备的传导发射或提高对电网中骚扰的抗扰度,虽然同为抑制骚扰,但两者的方向不同,前者是防止骚扰从设备流入电网(称为电源EMI滤波器),后者是防止电网中的骚扰进入设备。
安装应注意的问题:1滤波器的安装位置设备的入口/出口处2滤波器输入和输出引线的隔离输入与输出分开3滤波器的接地与设备外壳的大面积导电接触第六章瞬态骚扰抑制1.开关操作瞬态骚扰的抑制可在感性负载两端或开关触点两端采取抑制措施,也可以两种方法同时采用,具体措施应根据实际情况而定。
电磁兼容基本理论(整理)课件
印制电路板设计中的电磁兼容
总结词
在印制电路板设计中,应考虑布局、布线和接地等因素,以减小电磁干扰和提高 电磁兼容性。
详细描述
首先,合理安排元器件的布局,特别是敏感元器件和干扰源的位置,以减小相互 间的电磁干扰。其次,优化布线方式和间距,避免长距离平行布线,减小信号间 的耦合和干扰。最后,优化接地方式,减小接地电阻和电感。
电磁场基本理论
01
02
03
电磁场的概念
电磁场是由变化的电场和 磁场组成的统一体,是电 磁作用的媒介。
麦克斯韦方程组
描述电磁场基本规律的方 程组,包括电场、磁场和 电荷、电流之间的关系。
电磁波的传播
电磁波在空间传播的方式, 包括横波和纵波,以及它 们的传播速度和偏振状态。
电磁干扰的传播途径
传导干扰
辐射骚扰测试
测量设备对外发射的电磁辐射。
传导骚扰测试
测量设备通过电源线等传导途 径产生的电磁干扰。
静电放电抗扰度测试
模拟人体或物体与设备接触时 产生的静电放电现象。
雷击浪涌抗扰度测试
模拟雷击和电网浪涌对设备的 影响。
电磁兼容测试设备
信号发生器
功率放大器
频谱分析仪
静电放电模拟器
用于产生电磁干扰信号。
04
电磁兼容设计技术
电路设计中的电磁兼容
总结词
在电路设计中,应考虑信号线、电源线和接地线的布局和布线方式,以减小电磁干扰和 提高电磁兼容性。
详细描述
首先,合理安排信号线的走线方向和间距,避免长距离平行走线,以减小信号间的耦合 和干扰。其次,电源线应尽量宽,以减小线路电阻和电感,同时应采用多层板设计,优 化电源平面和接地平面。最后,接地是提高电磁兼容性的重要手段,应选择合适的接地
电磁兼容基础知识
电磁兼容基础知识引言电子电器产品的电磁兼容性能是一项非常重要的技术指标,它不仅关系到产品本身的安全性、可靠性,也关系到电磁环境的保护问题。
国内外现都十分重视产品的电磁兼容质量管理。
这就要求从事相关产品设计、制造和品质管理的人员均应该掌握电磁兼容的一些基本理论、标准要求和设计技术。
一、电磁兼容现象及基本理论电磁兼容(Electromagnetic Compatibility——EMC),其定义是:设备或系统在其所处的电磁环境中能正常工作,且不对该环境中任何事物构成不能承受的电磁骚扰的能力。
从上述定义可以看出,一台设备或一个系统的电磁兼容性都包括两个方面,一是它对同一电磁环境中其它设备的抗干扰能力或称敏感性,二是它对其它产品的电磁骚扰特性。
电磁骚扰(Electromagnetic Disturbance——EMI)定义为“任何可能引起装置、设备或系统性能降低或者对有生命或无生命物质产生损害作用的电磁现象”。
电磁骚扰可能是电磁噪声、无用信号或传播媒介自身的变化。
(注:一般意义上的“有用的电磁信号或电磁能量”在电磁兼容领域也有可能被认为是电磁骚扰源。
)电磁骚扰的表现形式一般有两种,一是通过导体传播骚扰电压、电流,一是通过空间传播骚扰电磁场。
前者称为传导骚扰,后者称为辐射骚扰。
例如,电视机的电磁骚扰主要有:对公用电网的无线电骚扰和低频骚扰(如注入谐波电流)、对公用电视天线系统的骚扰、向空间辐射的电磁场等。
抗扰度(Immunity to a Disturbance)定义为“装置、设备或系统面对电磁骚扰不降低运行性能的能力”。
电磁敏感性(Electromagnetic Susceptibility——EMS)定义为“在存在电磁骚扰的情况下,装置、设备或系统不能避免性能降低的能力”。
实际上,抗扰度与敏感性都反映的是对电磁骚扰的适应能力,仅仅是从不同的角度而言,敏感性高即意味着抗扰度低。
对应电磁骚扰的两种表现形式,设备对电磁骚扰的抗扰性也同样分为传导抗扰性和辐射抗扰性。
电磁兼容复习要点
电磁兼容的含义电磁兼容是研究在有限的空间、有限的时间、有限的频谱资源条件下,各种用电设备(系统、分系统,广义的还包扌舌生物体)可以共存并不致引起降级的一门科学。
电磁兼容的基本概念►信号:对电子电气电路工作“有用”的电信号,包括待处理的电信号、希望产生的输出等。
►噪声:除“有用”电信号以外的所有电信号,均是噪声。
噪声对电路的工作多少都有些影响。
►干扰:由噪声导致的“不希望”出现的结果称为干扰。
电磁兼容的三要素电磁环境、EMS电磁敏感度、EMI电磁干扰电磁干扰的三要素干扰源,传播途径,敏感设备电磁兼容设计时应注意的原则1.不单纯追求抗干扰性能:2.自始至终,全程参与;3.从源头下手,标本兼治;4.全局考虑,不留死角;5.与时俱进:6.因地制宜,充分考虑性能、成本、可靠性等之间的综合效益;7.根据系统特点,对症下药;第二章抗干扰技术按传播途径不同的干扰分类方法根据干扰进入系统途径的不同,干扰常被分为两人类类:传导干扰是通过导线,阻容,变压器等传播干扰,即“路”的干扰;另一种是辐射干扰,通过空间进行传播,即“场”的干扰。
细分又分为直接传导干扰、公共阻抗干扰、电场耦合干扰、磁场耦合干扰、电磁场耦合干扰。
传导干扰的特点及抑制方法特点:干扰进入设备的途径是电气连线。
>传导干扰是普遍存在的>传导干扰极易在系统内部通过电气连线传递>系统间的设备会通过电气连线相互传导干扰(传导干扰)利用源阻抗的差异对传导干扰进行抑制…•降低敏感设备的输入阻抗。
一般而言,干扰源的阻抗较大,而信号源的阻抗较小。
实例:(1)MOS管经常发生过压损坏MOS管是高输入阻抗器件(人于100MQ),任何一点微小的干扰信号都会在其输入端产生很高的电压幅值,干扰MOS管的工作,甚至击穿。
在MOS管栅极和源极之间并小电阻,降低栅源之间的输入阻抗,并联稳压管,限制其输入幅值。
(2)光耦光耦一般只适于传递数字信号信号+干扰分布电容的存在,会为高频传导噪声提供一条进入系统的途径。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁兼容基础知识
1.电磁兼容性基本概念
电磁兼容性:(EMC,即Electromagnetic Compatibility,)是指设备或系统在其电磁环境中符合要求运行并不对其环境中的任何设备产生无法忍受的电磁骚扰的能力。
EMC其实就是包含了干扰性、抗干扰性与电磁环境三部分内容。
(1)EMI(电磁干扰)
即处在一定环境中的设备或系统,在正常运行时,不应产生超过相应标准所要求的电磁能量。
相对应的测试项目有:
·电源线传导骚扰(CE)
·信号、控制线传导骚扰(CE)
·辐射骚扰(RE)
·谐波电流测量(Harmonic)
·电压波动和闪烁测量(Fluctuation and Flicker)
(2)EMS(电磁抗扰度)
即处在一定环境中的设备或系统,在正常运行时,设备或系统能承受相应标准规范范围内的电磁能量干扰。
相对应的测试项目有:
·静电放电抗扰度(ESD)
·电快速瞬变脉冲群抗扰度(EFT/B)
·浪涌(SURGE)
·辐射抗扰度(RS)
·传导抗扰度(CS)
·电压跌落与中断(DIP)
(3)电磁环境
即系统或设备的工作环境。
2.传导、辐射与瞬态
(1)传导干扰
由一个设备中产生的电压/电流通过电源线、信号线传导并影响其他设备时,
这个电压/电流的变化被称为“传导干扰”。
通过给发生源及被干扰设备的电源线等安装滤波器,阻止传导干扰的传输。
另外,当信号线上出现噪声时,将信号线改为光纤,也可隔断传输途径。
(2)辐射干扰
通过空间传播,并对其他设备电路产生无用电压/电流,造成危害的干扰称为“辐射干扰”。
辐射现象的产生必然存在着天线与源。
由于传播途径是空间,因此屏蔽也是解决辐射干扰的有效方法。
注:当设备和导线的长度比波长短时,主要问题是传导干扰;当它们的尺寸比波长长时,主要问题是辐射干扰。
(3)瞬态干扰
环境中存在的一些短暂的高能脉冲干扰,这些干扰对电子设备的危害很大,一般称这种干扰为“瞬态干扰”。
瞬态干扰可以通过电缆进入设备,也可以以宽带辐射干扰的形式对设备造成影响。
产生瞬态干扰的原因主要有:雷电、静电放电、电力线上的负载通/断(特别是感性负载)和核电磁脉冲。
可见,瞬态干扰是指时间很短,但幅度较大的电磁干扰。
常见的瞬态干扰有三种:电快速脉冲(EFT)、浪涌(SURGE)和静电放电(ESD)。