微分方程数学模型

合集下载

微分方程模型(全)

微分方程模型(全)

第四步:了解问题中所涉及的原则或物理定律。
第五步:依据 第二、第三、第四步 建立微分 方程。 还有已知的对应某个 t 的 y 的值(可 能还有 y 的导数的值)就是求解微分方程所 需要的初始值。
第六步:求微分方程的解并给出问题的答案。 下面我们从易到难给出微分方程模型之应 用案例
例1 火车启动
例 1:火车启动
y ce .
kt
(2)
y( 24) 400.
初始值:
y(0) 100,
代入(2)求得: 因此:
c 100, k (ln 4) / 24.
t ln 4 / 24
y 100e
.
我们要求的是:
y(12) 100e
(12 / 24) ln 溶液浓度
如果有一个实际问题,要找一个量 y , 与另一个量 t(时间或其他变量)的关系, 这种关系涉及量 y 在每个 t 时的瞬时变化率, 而且这个瞬时变化率与量 y 与 t 的关系可以 确定,那么这样的问题通常可以通过微分 方程来解决。 利用微分方程解决这样的问题的一般 步骤如下: (分为六步)
第一步:
题目:一列火车从静止开始启动,均匀地加速,
五分钟时速度达到 300 千米。问:这段时间内 该火车行进了多少路程?
例1 火车启动
解 这个问题相对比较简单,问题与“加速”、 “速度”有关,所以与导数有关; 涉及的量为: “时间”(小时),“路程”(千米),“速 度”(千米/小时),“加速度”(常数 a );
例2 细菌增长
解 这个问题也比较简单。 问题与“增长率”有关,所以与导数有关;
涉及的量为: “时间”(小时),“细菌总数”(个), “速度”(个/小时); 有(待定)函数关系的两个量定为: 细菌总数 y ,时间 t ; 涉及的原则或物理定律: 导数=增长率.

微分方程(组)模型

微分方程(组)模型


(2) 方程③是一阶线性微分方程,通解为②当n>0时,有特解y=0.
求微分方程(组)的解析解命令: dsolve(‘方程1’, ‘方程2’,…‘方程n’, ‘初始条件’, ‘自 变量’) 符号说明:在表达微分方程时,用字母D表示求微分, D2、D3等表示求2阶、3阶等微分。任何D后所跟的 字母为因变量,自变量可以指定或由系统规则选定为 确省。 d2y
方法:
• 规律分析法:根据相关学科的定理或定律、规律(这些涉及 到某些函数变化率)建立微分方程模型,如曲线的切线性质. • 微元分析法:应用一些已知规律和定律寻求微元之间的关系式. • 近似模拟法:在社会科学、生物学、医学、经济学等学科的 实际问题中,许多现象的规律性不清楚,常常用近似模拟的 方法建立微分方程模型.
4.符号说明
• • • • • • • a---某人每天在食物中摄取的热量 b---某人每天用于新陈代谢(及自动消耗)的热量 α ---某人每天从事工作、生活每千克体重必需消耗的热量 β---某人每天从事体育锻炼每千克体重消耗的热量 w---体重(单位:千克) w0---体重的初始值 t---时间(单位:天)
若Q(x)≡0,则称为一阶线性齐次方程,一阶线性微分方程通解为 P ( x ) dx P ( x ) dx ② y ( x) e ( Q( x)e dx C )
从而可得
dz (1 n) P ( x) z (1 n)Q ( x) dx
dz dy (1 n) y n dx dx
一、微分方程模型 二、微分方程的数学形式 三、微分方程(组)的MATLAB解法 四、减肥的数学模型 五、人口增长数学模型 六、兰彻斯特(Lanchester)作战模型 七、硫磺岛战役案例

微分方程模型方法

微分方程模型方法

物理现象模型
总结词
物理现象模型是利用微分方程来描述物理现象的动态变化过程,如力学、电磁学、光学 等。
详细描述
物理现象模型可以帮助科学家深入理解物理现象的本质和规律,预测新现象和新技术的 发展。例如,通过建立微分方程来描述电磁波的传播过程,可以研究电磁波的传播规律
和特性。
05 微分方程模型的发展趋势 与挑战
人口动态模型
总结词
人口动态模型是利用微分方程来描述人 口数量随时间变化的规律,预测未来人 口规模和结构。
VS
详细描述
人口动态模型可以用来研究人口增长、出 生率、死亡率、迁移率等指标的变化趋势 ,为政策制定者提供依据,以制定合理的 计划生育政策。例如,Logistic模型是一 种常用的人口动态模型,通过建立微分方 程来描述人口数量的增长规律。
THANKS FOR WATCHING
感谢您的观看
数学软件
选择适合的数学软件,如MATLAB、 Python等,以便进行模型建立和求解。
建立微分方程模型
模型类型
根据问题类型和目标,选择合适的微分方程模型类型,如常微分方程、偏微分方 程等。
参数估计
根据收集到的数据和信息,估计模型中的参数,使模型能够更好地描述实际问题 。
03 微分方程模型的求解方法
确定研究范围
根据问题与目标,确定研究的范围和 边界条件,为建立模型提供基础。
收集数据与信息
数据来源
根据研究问题,确定合适的数据来源,如实验数据、观测数据、历史数据等。
数据处理
对收集到的数据进行预处理,包括数据清洗、缺失值处理、异常值剔除等,以 确保数据质量。
选择合适的数学工具
数学基础
根据问题类型和目标,选择合适的数 学基础,如线性代数、微积分、常微 分方程等。

第四章 微分方程数学模型

第四章 微分方程数学模型
s 0 在轨线方程中,令t知 1 s ln s0 s是[0, ]中的单根 1 1
3)、若s0
1

, 则i(t )先增加,当 s
1
1

时,i(t )达到最大
im 1

(1 ln s0 ), 然后减小趋于0, s(t ) s
若s0
1

, 则i(t )单调趋于0,(i)单调趋于s s
i0
i0
1
i
1
i
1

O
1
1

1
t
i0
O
t
O
t
1 1 i ( ) 0 1
1 1
1 ~ 阈值
1 i (t )
感染期内有效接触感染的 i0小 i(t )按S曲线增长 健康人数不超过病人数
直接求解方程,亦可得到上述结果
di i (1 i ) i dt i (0) i0

i0 i (t ) i0 t 1
1

1 ( ) t e i(t ) i 0
x s0
i0小, 0 1 s
x x ln(1 ) 0 s0 1
x x2 x ( 2)0 s0 2 s 0 1
x 2s0 ( s0
1

)
令 s0 1 , 又 较小, s0 1)
x 2
模型检验 医疗机构一般依据r(t)来统计疾病的波及人数 ,从广 义上理解,r(t)为t时刻已就医而被隔离的人数,是康 复还是死亡对模型并无影响。
代数方程组 f ( x, y ) 0, g ( x, y ) 0. 的实根x = x0, y = y0称为方程(4-3)的平衡点, 记作P0 (x0, y0). 它也是方程(4-3)的解.

第3章 微分方程模型

第3章 微分方程模型

第三章 微分方程建模在许多实际问题的研究中,要直接导出变量之间的函数关系较为困难,但要导出包含未知函数的导数或微分的关系式却较为容易,此时即可用建立微分方程模型的方法来研究实际问题。

例如,根据自由落体运动的重力加速度g 为常数及初始条件即可得出自由落体运动的公式、根据单摆的受力分析及牛顿第二定理即可得到单摆运动满足的方程等等就是典型的实例。

本章除了介绍一些来自经典力学的物理及一些几何方面的微分方程问题以外,也介绍了一些稍有不同的微分方程应用题。

这些模型研究的主要是来自于非物理领域的实际问题,对这些问题,我们将分析其特征,根据具体情况进行类比,提出假设条件并建立微分方程模型加以研究。

提出的假设条件不同,将会导出不同的微分方程。

最后还要将求解的结果与实际现象进行对比,如果差异较大还应反复修改假设建立新的模型。

因此,在这类模型中,微分方程被当成了研究问题的工具。

事实上,在连续变量问题的研究中,微分方程或微分方程组还是十分常用的数学工具之一。

§3.1 几个简单实例例3.1 (理想单摆运动的周期)本例的目的是建立理想单摆运动满足的微分方程,由该微分方程即可得出理想单摆运动的周期公式。

(图3-1)从图3-1中不难看出,小球所受的合力为 sin mg ,根据牛顿第二定律可得:θθsin mg ml -= 从而得出两阶微分方程:sin 0(0)0,(0)g l θθθθθ⎧+=⎪⎨⎪==⎩ (3.1) 这就是理想单摆运动满足的微分方程。

(3.1)是一个两阶非线性常微分方程,不容易求解。

根据微积分知识,当θ很小时,有sin θ≈θ,此时,为简单起见,我们可考察(3.1)的近似线性方程:⎪⎩⎪⎨⎧===+∙∙∙0)0(,0)0(0ϑϑϑϑϑl g (3.2)(3.2)的特征方程为02=+lg λ 对应的特征根为i lg =λ,(其中i 为虚单位),故(3.2)中的微分方程的通解为: t c t c t ωωϑcos sin )(21+=,其中lg =ω 代入初始条件,即可求得满足初始条件的微分方程问题(3.2)的解θ(t )= θ0cos ωt注意到当4T t =时,θ(t ) = 0,即可得出 24πω==T l g t 故有 l g T π2=这就是中学物理中理想单摆运动周期的近似公式。

微分方程(模型)

微分方程(模型)

dx 2 或 x 0.03 dt 100 t 这是一阶线性非齐次方程,且有初值条件 x(0) 10,;利用8.3节的公式(5),可得此 C 方程的通解:x (t ) 0.01(100 t ) (100 t ) 2 有初值条件可得C 9 10 4,所以容器内含盐 量x随时间t的变化规律为 9 10 4 x 0.01(100 t ) 2 (100 t )
微分方程模型
重庆邮电大学
数理学院
引言
微分方程模型
当我们描述实际对象的某些特性随时间(空 间)而演变的过程、分析它的变化规律、预测它 的未来形态、研究它的控制手段时。通常要建立 对象的动态模型。

在研究某些实际问题时,经常无法直接得 到各变量之间的联系,问题的特性往往会给出关 于变化率的一些关系。利用这些关系,我们可以 建立相应的微分方程模型。在自然界以及工程技 术领域中,微分方程模型是大量存在的。它甚至 可以渗透到人口问题以及商业预测等领域中去, 其影响是广泛的。
四. 悬链线方程问题
将一均匀柔软的绳索两端固定,使之仅受重力的作 用而下垂,求该绳索在平衡状态下的曲线方程(铁塔 之间悬挂的高压电缆的形状就是这样的曲线)。 解 以绳索所在的平面为xoy 平面,设绳索最低点 为y轴上的P点,如图8-1所示。考察绳索上从点p到 l 另一点Q(x,y)的一段弧 PQ ,该段弧长为 ,绳索线密 度为 l ,则这段绳索所受重力为gl 。由于绳索是软 的,
y x 2 2.
微分方程的几个应用实例
许多实际问题的解决归结为寻找变量间的函数关 系。但在很多情况下,函数关系不能直接找到,而只 能间接的得到这些量及其导数之间的关系,从而使得 微分方程在众多领域都有非常重要的应用。本节只举 几个实例来说明微分方程的应用。进一步的介绍见第 十章。 一. 嫌疑犯问题

微分方程的经典模型

微分方程的经典模型

模型分析
问题中并未出现“变化率”、“导数”这样的关键词,但要寻找的是体重 (记为W)关于时间t的函数。如果我们把体重W看作是时间t的连续可微函数, 我们就能找到一个含有的
dW 微分方程。 dt
模型假设
W0 ; 1.W ( t ) 表示 t 时刻某人的体重,并设一天开始时人的体重为 2. W ( t ) 关于 t 连续而且充分光滑;
模型建立
游击作战模型的形式:

(t) f (x, y) x (t) g(x, y) y x(0) x , y(0) y 0 0
, 由假设2、3,甲乙双方的战斗减员率分别为
f(x ,y ) c x y
g (x ,y )dxy
结合以上两表达式,并代入 c、d 的值,可得游击作战的数学模型
或被歼灭)的一方为败。因此,如果 K K0 ,则乙的兵力减少到
甲方兵力降为“零”,从而乙方获胜。同理可知, K0
K0 胜。而当
a

时,甲方获
时,双方战平。
2 2 bx ay 0 甲方获胜的充要条件为 0 0
代入a 、b 的表达式,进一步可得甲方获胜的充要条件为
2 2 r p x r p y x x 0 y y 0
模型建立 根据假设得到一般的战争模型
x ( t) f( x ,y ) x u ( t) y ( t) g ( x ,y ) y v ( t) x ( 0 )x , y ( 0 )y 0 0
正规作战模型
模型假设
1.不考虑增援,并忽略非战斗减员;
得:
其解为:
i(t) i0e
k0t
模型分析与解释
这个结果与传染病初期比较吻合,但它表明病人人数将按指数规律 无限增加,显然与实际不符

常见的微分方程模型

常见的微分方程模型

常见的微分方程模型微分方程是数学的一个重要分支,广泛应用于自然科学和工程领域。

它描述了物理现象、社会问题和自然现象的变化规律,能够帮助我们理解和预测各种现象的发展趋势。

下面将介绍一些常见的微分方程模型。

1. 一阶线性微分方程一阶线性微分方程是最简单且常见的微分方程之一。

它可以描述许多实际问题,比如放射性衰变、人口模型等。

一阶线性微分方程的一般形式可以写为dy/dt = f(t) * y + g(t),其中f(t)和g(t)是已知函数,y是未知函数。

2. 指数衰减模型指数衰减模型是描述某种变化过程的常见微分方程。

它可以用来描述放射性物质的衰变、人口增长的趋势等。

指数衰减模型的一般形式是dy/dt = -ky,其中k是常数。

这个方程表示y的变化速率与y本身成比例,且反向。

3. 扩散方程扩散方程是描述物质或能量传递过程的微分方程。

它可以用来研究热传导、扩散现象等。

扩散方程的一般形式是∂u/∂t = D ∇²u,其中u是未知函数,D是扩散系数,∇²是Laplace算子。

这个方程表示u 的变化率与u的二阶导数成正比。

4. 多体问题多体问题是描述多个物体之间相互作用的微分方程模型。

它可以用来研究天体运动、分子碰撞等问题。

多体问题的方程通常包括牛顿第二定律和对应的初始条件,如F = ma和相关的速度、位置初值条件。

5. 随机微分方程随机微分方程是考虑了随机因素的微分方程模型。

它可以用来研究金融市场的波动、生态系统的不确定性等。

随机微分方程的方程形式通常会引入一个随机项,如dy/dt = f(t, y) dt + g(t, y) dW,其中dW是布朗运动,表示随机项。

以上介绍的是一些常见的微分方程模型,它们在理论和实际应用中都具有重要的地位。

通过研究这些模型,我们可以深入理解各种现象背后的数学规律,并且为实际问题提供解决方案。

微分方程模型不仅有助于推动数学的发展,还在科学研究、工程设计和技术创新等领域中发挥着重要作用。

数学建模微分方程模型

数学建模微分方程模型

数学建模微分方程模型在数学建模的旅程中,微分方程模型扮演了至关重要的角色。

它们在描述和解决各种实际问题中,从物理学到社会科学,都起到了关键的作用。

在本章中,我们将探讨微分方程模型的基本概念、类型和应用。

微分方程是一种方程,它包含未知函数的导数。

这种方程在描述变化率时非常有用,例如,描述物体的速度或加速度。

在形式上,微分方程可以表示为 y'(x) = f(x, y),其中 y'表示 y的导数,f是一个给定的函数。

根据方程的特点,微分方程可以划分为多种类型,如线性微分方程、非线性微分方程、常微分方程、偏微分方程等。

每种类型的方程都有其特定的求解方法和应用领域。

微分方程在众多领域中都有应用,如物理学、工程学、经济学等。

例如,牛顿第二定律就是一个微分方程,它描述了物体的加速度如何由作用力决定。

人口增长模型、传染病模型等也都依赖于微分方程。

建立微分方程模型通常需要以下步骤:确定模型的目标和变量;然后,根据问题背景和物理规律建立数学模型;通过数值计算或解析解法得出结果。

求解微分方程的方法主要有两种:数值方法和解析方法。

数值方法是通过计算机程序或软件进行数值计算得到近似解,而解析方法是通过求解方程得到精确解。

对于某些类型的微分方程,可能需要结合使用这两种方法。

建立微分方程模型后,我们需要对模型进行评估和检验,以确保其有效性和准确性。

这通常包括对模型的假设进行检验、对模型的预测结果进行验证以及对模型的参数进行估计和调整等。

随着科学技术的发展,微分方程模型的应用前景越来越广阔。

例如,在生物学中,微分方程被用来描述疾病的传播动态;在经济学中,微分方程被用来分析市场供需关系的变化;在工程学中,微分方程被用来模拟复杂系统的行为等。

未来,随着大数据和人工智能等技术的发展,微分方程模型将在更多领域得到应用和发展。

微分方程模型是数学建模中一个极其重要的部分。

通过学习和掌握微分方程的基本概念、类型、应用以及求解方法等,我们可以更好地理解和解决现实生活中的各种问题。

lesson7微分方程模型(2)

lesson7微分方程模型(2)
解: x0 5 1
案例2
房屋管理部门想在房顶的边缘 安装一个檐槽,其目的是为了雨天 出入方便。简单说来,从屋脊到屋檐的房顶可以看 成是一个12米长,6米宽的矩形平面,房顶与水平方向的 倾斜角度要视具体的房屋而定,一般说来,这个角度通常 在200~500之间。
现在有一个公司想承接这项业务,他们允诺:提供一 种新型的可持久的檐槽,它包括一个横截面为半圆形(半径 为7.5厘米)的水槽和一个竖直的排水管(直径为10厘米), 并且不管天气情况如何,这种檐槽都能排掉房顶的雨水.
质点在这曲线上用最短的时间由A滑至B点 (介质的摩擦力和阻力忽略不计)。
速降线问题实验
速降线是否连接A和B的直线段?
X
牛顿的实验(1630年) 在铅垂平面内,取同样的两个球,其中一个
沿圆弧从A滑到B,另一个沿直线从A滑到B。发 现沿圆弧的球先到B。伽利赂也曾研究过这个问 题,他认为速阵线是圆弧线。
在生物、经济等学科中,许多现象所满足的 规律并不很清楚,而且现象也相当复杂,因而需 根据实际资料或大量的实验数据,提出各种假设, 在一定的假设下,给出实际现象所满足的规律, 然后利用适当的数学方法得出微分方程。
5、一个考古问题
(1)问题分析与模型的建立
1、
2、
(2)解
(3)一个事实
6、堂上问答
因为镭-226衰变为铅一210
问题:y0既不能直接测量,计算也有困难
鉴别油画的方法:
要区别17世纪的油画和现代膺品,可根据下 述简单事实:如果颜料的年头比起铅的半哀期22 年长得多,那么颜料中铅-210的放射作用量就几 乎接近于颜料中镭的放射作用量,即两者每克铅 白中每分钟蜕变的原子数应非常接近。另一方面, 如果油画是现代作品(大约20年左右),那么铅-210 的放射作用量就要比镭的放射作用量大得多。

【生物数学】!生物数学-微分方程模型

【生物数学】!生物数学-微分方程模型

28生物数学-微分方程数学模型微分方程模型是一类十分重要的生物数学模型,其中包括经典的Malthusian 模型、Logistic 模型和Lotka-Volterra 模型。

获诺贝尔奖的神经膜传导H-H 方程,以及获诺贝尔奖的侧抑制神经网络Hartline 方程,都是数学与生物学结合研究—即生物数学的结晶。

微分方程模型在神经生理学、流行病学、生态学、微生物学、酶动力学、药用动力学等领域都已产生了重要的理论与应用价值。

第一节 单种群增长的数学模型种群增长研究中人口增长是最古老的课题之一,我们就以此开始讨论。

美国的人口记录是世界上最完整的记录之一,表3-1给出了美国人口增长的部分记录。

从1790年的610929.3⨯人,到1800年的610038.5⨯人,10年中:66101379.01017901800929.3308.5⨯⨯--=人口平均增长率=人/年665.308 3.929100.0351103.929(18001790)-⨯⨯-人口平均相对增长率==人/年表3.1美国人口调查数据28增长率以单位时间 (单位:一般指年)内人口增长的比例来描述,它与时间t 及当时的人口数量有关。

相对增长率则以增长率相对于当时人口的数量来衡量,在一定的时间范围和一定条件下,相对增长率是一个稳定的常数。

现论述这一思想。

设某种群在t 时刻的数量(亦称为种群密度)为)(t N ,其中t 代表时间,则从t 到t +△t 时间间隔中:平均种群增长速率tNt t N t t N ∆∆=∆-∆+=)()( 平均种群相对增长速率tN Nt t N t N t t N ∆∆=∆-∆+=)()()(令t ∆→0取极限,得到在时刻t 的种群增长速率和种群相对增长速率分别为:种群增长速率dtdNt N t =∆∆=→∆0lim28种群相对增长速率dtdNN t N N t 1lim0=∆∆=→∆ 今后也将dtdN记为 )(t N ' 或 N ',对三者不加区分。

微分方程模型

微分方程模型
人口将按指数规律无 限增长!
r0
r0
x(t ) x0
x(t ) 0
人口将始终保持不变! 人口将按指数规律减少直 至绝灭!
2 T ln r
人口倍增时间
Malthus模型预测美国人口
Malthus模型预测美国人口
Malthus模型预测的优缺点
优点 缺点 原因 短期预报比较 准确 不适合中长期预报 预报时假设人口增长率 r 为常数。没有考虑环 境对人口增长的制约作用。
机动
目录
上页
下页
返回
结束
医学(流行病,传染病问题)模型,经济(商业销 售,财富分布,资本主义经济周期性危机)模 型,战争(正规战,游击战)模型等。 下面,我们给出如何利用方程知识建立 数学模型的几种方法。
机动
目录
上页
下页
返回
结束
1.利用题目本身给出的或隐含的等量 关系建立微分方程模型。这就需要我们仔 细分析题目,明确题意,找出其中的等量关 系,建立数学模型。 2.从一些已知的基本定律或基本公式出 发建立微分方程模型.我们要熟悉一些常用 的基本定律,基本公式.例如力学中的牛顿第 二运动定律,电学中的基尔霍夫定律等.从 这些知识出发我们可以建立相应的微分方 程模型。
到t t时刻, 除去死亡的人外 , 活着的都变成了
r dr1 , r dr dr1 区间内的人, t t时刻年龄在
即p(r dr 1 , t dt) dr.这里dr 1 dt.
而在这段时间內死去的 人数为 r , t pr , t drdt, 它们之间的关系为 : pr , t dr pr dr 1 , t dt dr r , t p r , t drdt r , t pr , t drdt

微分方程数学模型应用举例

微分方程数学模型应用举例

微分方程数学模型应用举例
1. 生物学模型:微分方程可以用于描述生物系统中的各种动态过程。

例如,Lotka-Volterra模型是一种描述捕食者和被捕食者之间相互作用的微分方程模型,可以用于研究食物链中物种的数量和相互关系。

2. 经济学模型:微分方程可以用于描述经济系统中的各种变化和趋势。

例如,Solow增长模型是一种描述经济增长和资本积累的微分方程模型,可以用于分析国家经济发展的长期趋势。

3. 物理学模型:微分方程可以用于描述物理系统中的各种动态过程。

例如,带有阻尼和驱动力的简谐振动可以用二阶线性常微分方程来描述,可以用于研究机械系统中的振动现象。

4. 化学反应动力学模型:微分方程可以用于描述化学反应中物质浓度随时间变化的关系。

例如,化学反应速率方程可以用一阶或二阶线性微分方程来描述,可以用于研究化学反应速率的变化规律。

5. 环境科学模型:微分方程可以用于描述环境系统中的各种变化和相互作用。

例如,Black-Scholes模型是一种描述金融市场中期权价格变化的微分方程模型,可以用于分析金融市场的波动和风险。

6. 工程科学模型:微分方程可以用于描述工程系统中的各种动态过程。

例如,控制系统中的传递函数可以用微分方程表示,可以用于研究系统的稳定性和响应特性。

这些只是微分方程在数学模型中的一些应用举例,实际上微分方程在各个学科领域中都有广泛的应用。

数学建模公选课:第五讲-微分方程模型

数学建模公选课:第五讲-微分方程模型
一种高精度的数值求解微分方程的方法,通过迭代逼近微分方程的解。
详细描述
龙格-库塔方法具有较高的精度和稳定性,适用于求解各种复杂的一阶和二阶常微分方程。
04
微分方程模型的应用实例
人口增长模型
总结词
描述人口随时间变化的规律
详细描述
人口增长模型通常使用微分方程来描述人口随时间变化的规律。该模型基于假设,如人口增长率与当 前人口数量成正比,来建立微分方程。通过求解该微分方程,可以预测未来人口数量。
模型建立
如何根据实际问题建立合适的微分方 程模型是一个挑战。
02
高维问题
对于高维微分方程,如何求解是一个 难题。
01
03
非线性问题
非线性微分方程的求解更加复杂和困 难。
未来展望
随着科学技术的发展,微分方程模型 的应用领域将更加广泛,求解技术也 将更加成熟和多样化。
05
04
多尺度问题
如何处理不同时间尺度的微分方程是 一个挑战。
数学建模公选课:第五讲 -微分方程模型
• 微分方程模型简介 • 微分方程模型的建立 • 微分方程模型的求解方法 • 微分方程模型的应用实例 • 微分方程模型的发展趋势与展望
01
微分方程模型简介
微分方程的基本概念
微分方程是描述数学模型中变量随时间变化的数学表达式,通常表示为包含未知函 数及其导数的等式。
05
微分方程模型的发展趋势与展望
微分方程模型在各领域的应用前景
物理领域
描述物体的运动规律,如牛顿 第二定律、波动方程等。
经济领域
分析市场供需关系和预测经济 趋势。
工程领域
预测和控制系统的动态行为, 如电路、机械系统等。
生物医学领域

微分方程模型——数学建模真题解析

微分方程模型——数学建模真题解析
练习:如果例2中的桶是漏斗形的(倒圆锥)或球形 的,计算水深的变化规律。
练习题: 1、在一所大学,某个教师每天从图书馆借出一本 书,而图书馆每周收回所借图书的10%。2年后, 这个教师手中有大约多少本图书馆的书? 2、某学院的教育基金,最初投资P元,以后按利 率r的连续复利增长。另外,每年在基金开算的时 间,都要投入新的资本A/年求7年的累计资金数 量。 另外,如果每年在基金开算的时间,把其中20% 用于奖学金的发放,求7年后累计资金数量。 3、一场降雪开始于中午前的某个时刻,降雪量稳 定。某人从正午12点开始清扫人行道,他的铲雪 速度(m3/小时)和路面宽度都不变,到下午2点他 扫了1000米,到下午4点又清扫了500米。雪是什 么时间开始下的?另外,如果他在下午4点开始回 头清扫,什么时间回到开始清扫的地点?
2004C题 饮酒驾车 据报载,2003年全国道路交通事故死亡人数为 10.4372万,其中因饮酒驾车造成的占有相当的比例。 针对这种严重的道路交通情况,国家质量监督检验检 疫局2004年5月31日发布了新的《车辆驾驶人员血液、 呼气酒精含量阈值与检验》国家标准,新标准规定, 车辆驾驶人员血液中的酒精含量大于或等于20毫克/ 百毫升,小于80毫克/百毫升为饮酒驾车(原标准是 小于100毫克/百毫升),血液中的酒精含量大于或 等于80毫克/百毫升为醉酒驾车(原标准是大于或等 于100毫克/百毫升)。 大李在中午12点喝了一瓶啤酒,下午6点检查时符合 新的驾车标准,紧接着他在吃晚饭时又喝了一瓶啤酒, 为了保险起见他呆到凌晨2点才驾车回家,又一次遭 遇检查时却被定为饮酒驾车,这让他既懊恼又困惑, 为什么喝同样多的酒,两次检查结果会不一样呢?
微分方程基础
微分方程是含有函数及其导数的方程。 如果方程(组)只含有一个自变量(通常是时间t),则 称为常微分方程。否则称为偏微分方程。

微分方程模型

微分方程模型

微分方程模型引言微分方程是描述自然界中很多现象和问题的数学模型。

通过建立微分方程模型,我们可以定量地描述和预测各种物理、化学、生物和工程问题的演化和变化。

本文将介绍微分方程模型的基本概念、常见类型和求解方法,并给出一些应用实例。

基本概念微分方程是含有未知函数及其导数的方程。

通常用符号形式表示如下:F(x, y, y', y'', ..., y^(n)) = 0其中,y是未知函数,x是自变量,n是方程中最高阶导数的阶数。

微分方程模型是以微分方程为基础,结合具体物理、化学、生物和工程问题的特点所建立的数学模型。

通过对问题的建模,我们可以将真实世界中复杂的问题简化为数学形式,从而利用微分方程的性质和解析方法求解或近似解。

常见类型微分方程可以分为多种类型,常见的包括:•一阶常微分方程:包含一个未知函数的一阶导数的方程,形式如下:y' = f(x, y)•高阶常微分方程:包含一个未知函数的高阶导数的方程,形式如下:F(x, y, y', y'', ..., y^(n)) = 0•偏微分方程:包含多个未知函数及其偏导数的方程,形式如下:F(x, y, z, ∂u/∂x, ∂u/∂y, ∂u/∂z, ∂^2u/∂x^2, ∂^2u/∂y^2, ∂^2u/∂z^2, ..., ∂^nu/∂x^n, ∂^nu/∂y^n, ∂^nu/∂z^n) = 0求解方法求解微分方程模型的方法包括解析解和数值解。

解析解对于一些简单的微分方程模型,可以通过解析方法求得解析解。

解析解是指能够用数学公式精确表示的解。

解析解求解的基本思路是尝试找到满足微分方程的函数形式,并通过代入求导的方式得到方程中的常数。

一些经典的微分方程模型如线性微分方程、齐次线性微分方程、可分离变量的微分方程等可以通过解析方法求解。

数值解对于一些复杂的微分方程模型,无法找到解析解或解析解难以求得,我们可以采用数值解法进行近似求解。

数学建模之微分方程模型

数学建模之微分方程模型
看,在种群的发展初期种群数的变化是和指 数增长模型大致吻合的(甚至可能出现年
增长率递增的现象),但是随着人口数的 增加,人口的年增长率将呈现逐年递减的 现象。再考虑到环境适应程度的制约,想 象人口的增长不可能超过某个度。
(2)对于其中常数增长率r 的估计可以使用 拟合或者参数估计的方法得到。
(3)在实际情况下,可以使用离散的近似 表达式 N(t) N0 (1 r)t 作为人口的预测表 达式。
人口模型
人口数量以及和次类似的动植物种群 的个体数量都是离散变量,不具有连续可 微性。但由于短时间内改变的是少数个体, 与整体数量相比,这种变化是很微小的。 基于此原因,为了成功应用数学工具,我 们通常假定大规模种群的个体数量是时间 的连续可微函数。此假设条件在非自然科 学的问题中常常用到。
指数增长模型(Malthus 人口模型)
(程2可)以注看意到到,NddN(tt
0 ,并且从最终的人口方
)
N m,以及
lim
t
N
(t)
N m,
(这人3说口)dd明 的2tN2人增口 长r(随速1着 度2N时 最/间 快Nm的 ,) 增 从0加 而表递 可明增以当地得N趋到 于人N2mN口时m。
曲线上的一个拐点。
(4) 模型中所涉及到的两个参数 r, Nm 的估
模型假设:
(1)人口的增长率r 是当前人口数的减函 数 r r(N) r(N)' 0 。
(2) r(N) r sN ,其中r 是人口的固有增长
率,而s 决定了所能容纳的最大人口量 Nm 。
当 N Nm 时,人口的增长速度将降为0,从而 可以得到 s r / N。m 这样可以得到
r(N) r(1 N / Nm ) 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

P1
0 s
1/
s 0
s
s0 - 1/ = x2
小, s0 1
提高阈值1/ 降低 被传染人数比例 x
5.2 经济增长模型
增加生产 发展经济 增加投资 增加劳动力 提高技术
• 建立产值与资金、劳动力之间的关系
• 研究资金与劳动力的最佳分配,使投资效益最大
• 调节资金与劳动力的增长率,使经济(生产率)增长
dt
si
i
ds
dt
si
di
ds
1 1
s
i
s s0
i0
i
1s
1
i(s)(si)s ln
00
s
0
D
i(0 ) i0 , s (0 ) s0
P4
s(t)单调减相轨线的方向 im
s1/,iim t,i0
P2
P1
P3
s 满s足 0i0s1lnss 0 0 0 s S0 1/ s0
i0小
1
i(t)按S形曲线增长感健康染者期人内数有不效超接过触病感人染数的
模型2(SI模型)如何看作模型3(SIS模型)的特例
模型4
传染病有免疫性——病人治愈 后即移出感染系统,称移出者
SIR模型
假设 1)总人数N不变,病人、健康人和移
出者的比例分别为 i(t),s(t),r(t)
2)病人的日接触率 , 日治愈率, 接触数 = /
建模
区分已感染者(病人)和未感染者(健康人)
1)总人数N不变,病人和健康
人的 比例分别为 i(t),s(t)
SI 模型
2)每个病人每天有效接触人数 ~ 日
为, 且使接触的健康人致病
接触率
N [ i( t t) i( t) [ ]s ( t)N ] ( t) ti
di si
dt
s(t)i(t)1
模型1 已感染人数 (病人) i(t)
假设 • 每个病人每天有效接触
(足以使人致病)人数为
建模 i(t t) i(t)i(t) t
di i dt i(0 ) i0
i(t)i0et
t i ?
若有效接触的是病人, 则不能使病人数增加
必须区分已感染者(病 人)和未感染者(健康人)
模型2
假设
建模 s(t) i(t) r(t) 1
需建立 i(t),s(t),r(t)的两个方程
模型4
SIR模型
N [ i ( t t ) i ( t ) ] N ( t ) i ( t ) s t N ( t ) ti
N [ s ( t t) s ( t) ] N ( t) i ( t s ) t
相轨线
i(0 ) i0 , s (0 ) s0
相轨线 i ( s ) 的定义域
i(s)(s0ii0)s1lnss0
D { s ,i( )s 0 ,i 0 ,s i 1 } 1
在D内作相轨线 i ( s )
的图形,进行分析
D 0
s
1
模型4 相轨线 i ( s ) 及其分析
SIR模型
di
1. 道格拉斯(Douglas)生产函数
产值 Q(t)
资金 K(t) 劳动力 L(t) 技术 f(t) = f0
Q (t)f0F (K (t)L ,(t))F为待定函数
1. 道格拉斯(Douglas)生产函数
静态模型 Q (K ,L )f0F (K ,L )
每个劳动 力的产值
z
Q L
每个劳动 力的投资
的估计
提高 r0
s0i0r01
s 0
i 0
s1lnss 0
0
忽略i 0
群体免疫
lns0 lns
s0 s
模型4
被传染人数的估计
SIR模型
记被传染人数比例 xs0s
s0 i0 s1lnss 0 0 i0 0, s0 1
x 1ln1( x)0
s0
i
x<<s0 x(1s012sx02)0
x2s0(s0 1)
di
dt
i (1 i )
i ( 0 ) i0
模型2
di dt
i (1 i )
Logistic 模型
i
i ( 0 ) i0
1
1/2
i0
0
tm
t
t=tm, di/dt 最大
i(t)
1
1
1 i0
1et
t m
1
ln
1 i
0
1
tm~传染病高潮到来时刻 t i 1?
(日接触率) tm
~ 日接触率 1/ ~感染期
/ ~ 一个感染期内每个病人的
有效接触人数,称为接触数。
模型3
di/dt
dii(1i)i /
dt
i
dii[i(11)]
dt
i
>1
i0
>1
1
1-1/
i0 di/dt < 0
0
1-1/ 1 i
i0
0
i()
1
1
,
1
0,
1
t0
t
接触数 =1 ~ 阈值
1i(t)
第五章 微分方程模型
5.1 传染病模型 5.2 经济增长模型 5.3 正规战与游击战 5.4 药物在体内的分布与排除 5.5 香烟过滤嘴的作用 5.6 人口预测和控制 5.7 烟雾的扩散与消失 5.8 万有引力定律的发现
动态 模型
• 描述对象特征随时间(空间)的演变过程 • 分析对象特征的变化规律 • 预报对象特征的未来性态 • 研究控制对象特征的手段
di
dt
si i
ds
dt
si
无法求出 i(t),s(t)
的解析解
i(0 ) i0 , s (0 ) s0
在相平面 s~i 上
研究解的性质
i0s01(通r常 (0)r0很小)
模型4
SIR模型
di
dt
si
i
ds
dt
si
消去dt
/
di
ds
1 1
s
i s s 0 i 0
病人可以治愈!
模型3
传染病无免疫性——病人治愈成 为健康人,健康人可再次被感染ห้องสมุดไป่ตู้SIS 模型
增加假设 3)病人每天治愈的比例为 ~日治愈率
建模 N [ i ( t t ) i ( t ) ] N ( t ) i ( t ) s t N ( t ) t
di dt
i(1 i)
i
i(0) i0
1s
P1: s0>1/ i(t)先升后降至 0 P2: s0<1/ i(t)单调降至0
传染病蔓延 1/ 传染病不蔓延 ~阈

模型4
预防传染病蔓延的手段
SIR模型
传染病不蔓延的条件——s0<1/ • 提高阈值 1/ 降低 (=/)
,
(日接触率) 卫生水平
(日治愈率) 医疗水平
• 降低 s0
微分 方程 建模
• 根据函数及其变化率之间的关系确定函数 • 根据建模目的和问题分析作出简化假设 • 按照内在规律或用类比法建立微分方程
问题
5.1 传染病模型
• 描述传染病的传播过程 • 分析受感染人数的变化规律 • 预报传染病高潮到来的时刻 • 预防传染病蔓延的手段
• 按照传播过程的一般规律, 用机理分析方法建立模型
相关文档
最新文档