延安大学814数学分析与高等代数2017年考研初试真题
2017考研数一真题解析_Encrypt
解 X的概率密度
(
叶了) )+o.2s
;tl :�-�tlx�::二:
厂 『 (2) = 0.5
00
oo x)dx+0.25
X平x-4 dx
平
-oo
『00 = o+o.s
(2t+4)中Ct)dt
勹平 二平 = o.s[ 2 f
t)dt+4 I Ct)dt]
= 2.
三、解答题
f (15)解因为y = (ex 'cosx)'所以
M
= JI9妇+
2
y
+z2 dS.
又S在xOy 面上的投影区域为D = {(x , y ) lx 2 + y 2 ::(2x}, 所以
( )( ,-) M = 9Jf 互x三万 l+
X
2
+
y
D
J 立了
厂
dxdy
厂 = 13ff
dxdy
叫厂 =18J�f
,or• rdr
= 48J i �cos3 0d0 = 64.
(ll) -1
— ay
解
令
P (x ,y)
=x 2
+沪—
, 1
Q(x ,y) =:1· 2 +y 2 -•'
f 则曲线积分 Pdx + Qdy 在区域 D = { (x,y) I :尸+沪<l} 内与路径无关的条件是
而 a—P-=
— 2xy
— aQ
切
(x z +_v z -1) 2 '扣
故应填 — 1.
ax
ce�千o + 2ax 2a
2017年考研数学一真题及答案解析
2 x + c2 sin 2 x)
ò
xdx - aydy 在区域 D = ( x, y) | x2 + y 2 < 1 内与路径无关,则 L x2 + y 2 - 1
{
}
a = __________
【答案】 a = 1 【解析】
¶P -2 xy ¶Q 2axy ¶P ¶Q = 2 , = 2 , 由积分与路径无关知 = Þ a = -1 2 2 2 2 ¶y ( x + y - 1) ¶x ( x + y - 1) ¶y ¶x
(5)设 a 是 n 维单位列向量, E 为 n 阶单位矩阵,则(
)
( A) E - aa T 不可逆 (C ) E + 2aa T 不可逆
【答案】A
( B ) E + aa T 不可逆 ( D ) E - 2aa T 不可逆
【解析】选项 A,由 ( E - aa T )a 不可逆。 选项 B,由 r (aa T )a 其它选项类似理解。
x =0
【答案】 【解析】
dy dx
= f1' (1,1),
x =0
d2y dx 2
'' = f11 (1,1), x =0
y = f (e x , cos x) Þ y (0) = f (1,1) Þ Þ dy dx
2 x =0
x =0
= ( f1'e x + f 2' ( - sin x ) )
结论:
dy dx
= f1' (1,1)
x =0 '' = f11 (1,1) + f1' (1,1) - f 2' (1,1) x =0
中国科学院大学《高等代数》《数学分析》考研真题汇总(2009-2018年汇编)
|z| ≤ na, |x| ≤ nh, |y| ≤ nk.
(2) 求证: Hermite 矩阵的特征值都是实数.
(3) 求证:反对称矩阵的非零特征值都是纯虚数.
六、 ( 15 分) 设 A 是 n 维实线性空间 V 的线性变换, n ≥ 1. 求证: A 至少存在一个一维或者二维的不变 子空间.
七、 ( 20 分) 设循环矩阵 C 为
01
生成的子空间. 求 W ⊥ 的一组标准正交基.
00
11
八、 ( 18 分) 设 T1, T2, · · · , Tn 是数域 F 上线性空间 V 的非零线性变换, 试证明存在向量 α ∈ V , 使得 Ti(α) = 0, i = 1, 2, · · · , n.
7
5. 2013年中国科学院大学《高等代数》研究生入学考试试题
三、 ( 20 分) 已知 n 阶方阵
a21
a1a2 + 1 · · · a1an + 1
A
=
a2a1 + 1
a22
···
a2an + 1
,
···
··· ··· ···
ana1 + 1 ana2 + 1 · · ·
a2n
n
n
其中 ai = 1, a2i = n.
i=1
八、 ( 15 分) 设 A 是 n 阶实方阵, 证明 A 为实对称阵当且仅当 AAT = A2, 其中 AT 表示矩阵 A 的转置.
6
4. 2012年中国科学院大学《高等代数》研究生入学考试试题
一、 ( 15 分) 证明:多项式 f (x) = 1 + x + x2 + · · · + xn 没有重根.
2017年考研数学一真题及答案解析
12017年考研数学一真题及答案解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)若函数0(),0x f x b x >=⎪≤⎩在0x =处连续,则( ) ()()11()22()02A abB abC abD ab ==-==【答案】A【解析】00112lim lim ,()2x x xf x ax a++→→== 在0x =处连续11.22b ab a ∴=⇒=选A.(2)设函数()f x 可导,且'()()0f x f x >,则( )()()()(1)(1)(1)(1)()(1)(1)(1)(1)A f fB f fC f fD f f >-<->-<-【答案】C【解析】'()0()()0,(1)'()0f x f x f x f x >⎧>∴⎨>⎩ 或()0(2)'()0f x f x <⎧⎨<⎩,只有C 选项满足(1)且满足(2),所以选C 。
(3)函数22(,,)f x y z x y z =+在点(1,2,0)处沿向量()1,2,2u =的方向导数为( )()12()6()4()2A B C D【答案】D 【解析】2(1,2,0)122{2,,2},{4,1,0}{4,1,0}{,,} 2.|u |333f u gradf xy x z gradfgradf u ∂=⇒=⇒=⋅=⋅=∂ 选D.(4)甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m )处,图中实线表示甲的速度曲线1()v v t =(单位:/m s ),虚线表示乙的速度曲线2()v v t =,三块阴影部分面积的数值依次为10,20,3,计时开始后乙追上甲的时刻记为0t (单位:s ),则( )()s0000()10()1520()25()25A t B t C t D t =<<=>【答案】B【解析】从0到0t 这段时间内甲乙的位移分别为120(t),(t),t t v dt v dt ⎰⎰则乙要追上甲,则210(t)v (t)10t v dt -=⎰,当025t =时满足,故选C.(5)设α是n 维单位列向量,E 为n 阶单位矩阵,则( )()()()()22T T TT A E B E C E D E αααααααα-++-不可逆不可逆不可逆不可逆【答案】A【解析】选项A,由()0ααααα-=-=T E 得()0αα-=T E x 有非零解,故0αα-=T E 。
2017年南京航空航天大学814高等代数考研真题硕士研究生专业课考试试题
南京航空航天大学2017年硕士研究生入学考试初试试题(A 卷) 科目代码: 814 科目名称: 高等代数 满分: 150 分 注意: ①认真阅读答题纸上的注意事项;②所有答案必须写在答题纸上,写在本试题纸或草稿纸上均无效;③本试题纸须随答题纸一起装入试题袋中交回!一、(15分)设4阶矩阵A 的特征多项式是b ax x x x x f +++−=23455)(,且)(|12x f x −,这里“|”表示多项式的整除.1.求b a ,的值;2.求A 的全部特征值;3.问:12−x 是否有可能成为矩阵A 的最小多项式?并说明理由.二、(15分) 设1V 是由向量组T T T a )3,,3(,)1,1,2(,)2,0,1(321===ααα生成的3R 的一个2维子空间(这里“T ”表示转置,以下各题相同). 1.求a 的值;2.求1V 的正交补⊥1V 的维数和基;3.若2V 是由向量组T T )3,1,2(,)0,1,1(21==ββ生成的3R 的另一个子空间,求21V V ∩的维数和基.三、(20分)设有非齐次线性方程组⎩⎨⎧=++=++⎩⎨⎧=++=−.1,123)II (;232,)I (32132132131x bx x x x x x x x a x x 1.证明对任意实数a ,方程组(I )有无穷多解;2.求b a ,的值,使得方程组(I )和(II )同解;3.在方程组(I )和(II )同解的情况下,求方程组在实数域上模最小的特解.四、(20分)设3阶矩阵A 与3维列向量α,使得向量组ααα2,,A A 线性无关,且满足αααA A A −=232,矩阵),,(2αααA A P =.1.求矩阵B ,使得1−=PBP A ;2.求行列式A E +,这里E 表示单位矩阵;3.问:矩阵A 是否可以对角化?如能,求与其相似的对角标准形;如不能,求与其相似的Jordan 标准形.五、(20分) 设有二次型)(2)(323121232221x x t x x t x x t x x x X A X X f T +++++==.1.写出)(X f 在正交变换PY X =下的一个标准形;2.若)(X f 为正定二次型,求t 的取值范围;3.若1=t ,求正定矩阵B ,使得2B A =.六、(20分) 设A 是n m ×矩阵,B 是m n ×矩阵,且A ABA =,证明:1.)()(A AB 秩秩=;2.非线性方程组β=AX 有解的充分必要条件是ββ=AB ;3.若以r E 表示r 阶单位矩阵,则AB 与形如⎟⎟⎠⎞⎜⎜⎝⎛000r E 的分块矩阵相似,且r 是A 的秩. 七、(20分) 设B A ,是两个n 阶矩阵,且B A AB −=,证明: 1.B 可逆的充分必要条件是A 可逆;2.α为B 的特征向量的充分必要条件是α为A 的特征向量; 3.若A 是正定矩阵,则B 也是正定矩阵.八、(20分) 设Γ是n 维欧氏空间V 的线性变换,Γ满足条件:对任意V ∈βα,,有))(,()),((βαβαΓ−=Γ,这里),(⋅⋅表示欧氏空间上的内积,证明:1.若Γ有特征值,则其特征值必为0;2.若Γ没有特征值,则Γ必可逆;3.2Γ必有n 个实特征值,其特征值均小于或等于0;4.若n 为奇数,则Γ不可逆.。
2017年考研数学一真题及答案全
2017年全国硕士研究生入学统一考试数学(一)试题一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.请将所选项前的字母填在答题纸...指定位置上. (1)若函数0(),0x f x b x >=⎪≤⎩在x 连续,则 (A) 12ab =. (B) 12ab =-. (C) 0ab =. (D) 2ab =.【答案】A【详解】由011lim 2x b ax a +→-==,得12ab =.(2)设函数()f x 可导,且()'()0f x f x >则(A) ()()11f f >- . (B) ()()11f f <-. (C) ()()11f f >-. (D) ()()11f f <-.【答案】C【详解】2()()()[]02f x f x f x ''=>,从而2()f x 单调递增,22(1)(1)f f >-. (3)函数22(,,)f x y z x y z =+在点(1,2,0)处沿着向量(1,2,2)n =的方向导数为 (A) 12. (B) 6.(C) 4.(D)2 .【答案】D【详解】方向余弦12cos ,cos cos 33===αβγ,偏导数22,,2x y z f xy f xf z '''===,代入cos cos cos x y z f f f '''++αβγ即可.(4)甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m)处.图中,实线表示甲的速度曲线1()v v t =(单位:m/s),虚线表示乙的速度曲线2()v v t =(单位:m/s),三块阴影部分面积的数值一次为10,20,3,计时开始后乙追上甲的时刻记为(单位:s),则(A) 010t =. (B) 01520t <<. (C) 025t =. (D) 025t >.【答案】C【详解】在025t =时,乙比甲多跑10m,而最开始的时候甲在乙前方10m 处. (5)设α为n 维单位列向量,E 为n 阶单位矩阵,则 (A) TE -αα不可逆. (B) TE +αα不可逆. (C) T 2E +αα不可逆. (D) T2E -αα不可逆.【答案】A【详解】可设T α=(1,0,,0),则T αα的特征值为1,0,,0,从而T αα-E 的特征值为011,,,,因此T αα-E 不可逆.(6)设有矩阵200021001A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,210020001B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,122C ⎛⎫ ⎪= ⎪ ⎪⎝⎭(A)A 与C 相似,B 与C 相似. (B) A 与C 相似,B 与C 不相似.(C) A 与C 不相似,B 与C 相似. (D) A 与C 不相似,B 与C 不相似. 【答案】B【详解】,A B 的特征值为221,,,但A 有三个线性无关的特征向量,而B 只有两个,所以A 可对角化,B 则不行.(7)设,A B 为随机事件,若0()1P A <<,0()1P B <<,则(|)(|)P A B P B A >的充分必要条件(A) (|)(|)P B A P B A >. (B) (|)(|)P B A P B A <. (C) (|)(|)P B A P B A >. (D) (|)(|)P B A P B A <.【答案】A【详解】由(|)(|)P A B P A B >得()()()()()()1()P AB P AB P A P AB P B P B P B ->=-,即()>()()P AB P A P B ;由(|)(|)P B A P B A >也可得()>()()P AB P A P B . (8)设12,,,(2)n X X X n …为来自总体(,1)N μ的简单随机样本,记11ni i X X n ==∑,则下列结论不正确的是 (A)21()ni i X μ=-∑服从2χ分布 . (B) 212()n X X -服从2χ分布.(C)21()nii XX =-∑服从2χ分布. (D) 2()n X -μ服从2χ分布.【答案】B【详解】222211~(0,1)()~(),()~(1)1n ni i i i i X N X n X X n ==----∑∑μμχχ;221~(,),()~(1);X N n X n-μμχ2211()~(0,2),~(1)2n n X X X X N --χ.二、填空题:9~14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9)已知函数21(),1f x x=+(3)(0)f = . 【答案】0 【详解】2421()1(11)1f x x x x x==-++-<<+,没有三次项.(10)微分方程032=+'+''y y y 的通解为 .【答案】12e ()xy C C -=+【详解】特征方程2230r r ++=得1r =-,因此12e ()x y C C -=+.(11)若曲线积分⎰-+-L y x aydy xdx 122在区域{}1),(22<+=y x y x D 内与路径无关,则=a. 【答案】1-【详解】有题意可得Q Px x∂∂=∂∂,解得1a =-. (12)幂级数111)1(-∞=-∑-n n n nx 在(-1,1)内的和函数()S x = .【答案】21(1)x + 【详解】112111(1)[()](1)n n n n n nxx x ∞∞--=='-=--=+∑∑.(13)⎪⎪⎪⎭⎫ ⎝⎛=110211101A ,321ααα,,是3维线性无关的列向量,则()321,,αααA A A 的秩为 .【答案】2【详解】123(,,)()2r r ααα==A A A A(14)设随即变量X 的分布函数4()0.5()0.5()2x F x x -=Φ+Φ,其中)(x Φ为标准正态分布函数,则EX = . 【答案】2 【详解】00.54()d [0,5()()]d 222x EX xf x x x x x +∞+∞-∞-==+=⎰⎰ϕϕ. 三、解答题:15~23小题,共94分.解答应写出文字说明、证明过程或演算步骤.请将答案写在答题纸...指定位置上. (15)(本题满分10分).设函数(,)f u v 具有2阶连续偏导数,(e ,cos ),xy f x =求2200,x x dyd y dxdx==.【答案】(e ,cos )x y f x =()''12'12''''''''''111212122222''''11122sin ,0(1,1)sin (sin )sin cos 0(1,1)(1,1)(1,1)x x x x x dyf e f x dx dy x f dx d y f e f x e f e f e f x x f x dx d y x f f f dx ∴=-∴===-+---==+- (16)(本题满分10分).求2limln(1)n k kn n→∞+.【答案】212221120012202lim ln(1)1122lim ln(1)ln(1)...ln(1)11122lim ln(1)ln(1)...ln(1)1ln(1)ln(1)21111ln(1)02211111ln 2221n k n n k k nn n n n n n n n n n n n n n n n n n x x dx x d x x x x dxx x ∞→∞=→∞→∞+⎛⎫=++++++ ⎪⎝⎭⎛⎫=++++++ ⎪⎝⎭=+=+=+-+-+=-∑⎰⎰⎰1011002111ln 2[(1)]22111111ln 2[()ln(1)]002221111ln 2(1ln 2)2224dxxx dx dx x x x x +=--++=--++=--+=⎰⎰⎰(17)(本题满分10分).已知函数)(x y 由方程333320x y x y +-+-=确定,求)(x y 的极值. 【答案】333320x y x y +-+-=①,方程①两边对x 求导得:22''33330x y y y +-+=②, 令'0y =,得233,1x x ==±. 当1x =时1y =,当1x =-时0y =.方程②两边再对x 求导:'22''''66()330x y y y y y +++=, 令'0y =,2''6(31)0x y y ++=,当1x =,1y =时''32y =-,当1x =-,0y =时''6y =. 所以当1x =时函数有极大值,极大值为1,当1x =-时函数有极小值,极小值为0.(18)(本题满分10分).设函数()f x 在区间[0,1]上具有2阶导数,且(1)0f >,0()lim 0x f x x+→<.证明: (I )方程()0f x =在区间(0,1)内至少存在一个实根;(II )方程2()''()['()]0f x f x f x +=在区间(0,1)内至少存在两个不同实根. 【答案】 (1)()lim 0x f x x+→<,由极限的局部保号性,(0,),()0c f c δ∃∈<使得,又(1)0,f >由零点存在定理知,(c,1)ξ∃∈,使得,()0f ξ=. (2)构造()()'F x f x f x =,(0)(0)'(0)0F f f ==,()()'()0F f f ξξξ==,()lim 0,'(0)0,x f x f x +→<∴<由拉格朗日中值定理知(1)(0)(0,1),'()010f f f ηη-∃∈=>-,'(0)'()0,f f η<所以由零点定理知1(0,)(0,1)ξη∃∈⊂,使得1'()0f ξ=,111()()'()0,F f f ξξξ∴== 所以原方程至少有两个不同实根。