[整理]555芯片内部原理及经典应用

合集下载

555芯片内部原理及经典应用

555芯片内部原理及经典应用

555定时电路内部结构分析及应用1 绪言555定时器是电子工程领域中广泛使用的一种中规模集成电路,它将模拟与逻辑功能巧妙地组合在一起,具有结构简单、使用电压范围宽、工作速度快、定时精度高、驱动能力强等优点。

555定时器配以外部元件,可以构成多种实际应用电路。

广泛应用于产生多种波形的脉冲振荡器、检测电路、自动控制电路、家用电器以及通信产品等电子设备中。

2555定时器功能及结构分析2.1 555定时器的分类及管脚作用555定时器又称时基电路。

555定时器按照内部元件分有双极型(又称TTL 型)和单极型两种。

双极型内部采用的是晶体管;单极型内部采用的则是场效应管,常见的555时基集成电路为塑料双列直插式封装(见图2-1),正面印有555字样,左下角为脚①,管脚号按逆时针方向排列。

2-1 555时基集成电路各管脚排布555时基集成电路各管脚的作用:脚①是公共地端为负极;脚②为低触发端TR,低于1/3电源电压以下时即导通;脚③是输出端V,电流可达2000mA;脚④是强制复位端MR,不用可与电源正极相连或悬空;脚⑤是用来调节比较器的基准电压,简称控制端VC,不用时可悬空,或通过0.01μF电容器接地;脚⑥为高触发端TH,也称阈值端,高于2/3电源电压发上时即截止;脚⑦是放电端DIS;脚⑧是电源正极VC。

2.2 555定时器的电路组成图2-2为555芯片的内部等效电路U31kBJT_NPN_VIRTUAL2-2 555定时器电路组成5G555定时器内部电路如图所示, 一般由分压器、比较器、触发器和开关。

及输出等四部分组成,这里我们主要介绍RS 触发器和电压比较器。

2.2.1基本RS 触发器原理如图2-3是由两个“与非”门构成的基本R-S 触发器, RD 、SD 是两个输入端,Q 及是两个输出端。

QQRDSD2-3 RS 触发器正常工作时,触发器的Q 和应保持相反,因而触发器具有两个稳定状态:1)Q=1,=0。

555时基电路工作原理

555时基电路工作原理

555时基电路工作原理概述:555时基电路是一种非往往用的集成电路,它可以用作多种电子设备中的时基或者定时器。

本文将详细介绍555时基电路的工作原理,包括内部结构、引脚功能、工作模式以及实际应用。

一、内部结构:555时基电路由23个晶体管、2个电容器和15个电阻器组成。

它的内部结构分为两个比较器、RS触发器、RS锁存器、电流源以及输出级等几个部份。

其中比较器用于比较电压,RS触发器用于存储输入信号,RS锁存器用于锁存输出信号。

二、引脚功能:1. GND(引脚1):接地引脚,连接到电路的负极。

2. TRIG(引脚2):触发引脚,用于接收外部触发信号。

3. OUT(引脚3):输出引脚,输出555时基电路的信号。

4. RESET(引脚4):复位引脚,用于将555时基电路复位。

5. CTRL(引脚5):控制引脚,用于控制555时基电路的工作模式。

6. THRESH(引脚6):阈值引脚,用于设置比较器的阈值电压。

7. DISCHARGE(引脚7):放电引脚,用于控制电容器的放电。

8. VCC(引脚8):电源引脚,连接到电路的正极。

三、工作模式:555时基电路有三种主要的工作模式:单稳态(monostable)、双稳态(bistable)和震荡态(astable)。

1. 单稳态(monostable)模式:在单稳态模式下,当TRIG引脚接收到一个负脉冲时,输出引脚OUT会产生一个正脉冲,持续时间由外部电容和电阻决定。

在单稳态模式下,CTRL引脚不起作用。

2. 双稳态(bistable)模式:在双稳态模式下,CTRL引脚被连接到电源或者地,通过改变CTRL引脚的电平可以改变输出引脚OUT的状态。

当CTRL引脚为高电平时,OUT引脚为低电平;当CTRL引脚为低电平时,OUT引脚为高电平。

3. 震荡态(astable)模式:在震荡态模式下,CTRL引脚被连接到电源或者地,通过改变CTRL引脚的电平可以改变输出引脚OUT的频率和占空比。

关于555集成电路原理及应用

关于555集成电路原理及应用

555集成电路及其应用一、555集成电路原理 (1)二、多用途水位控制器 (4)三、品名:JS-97A液位控制器 (5)四、555的应用 (7)一、555集成电路原理在数字系统中,为了使各部分在时间上协调动作,需要有一个统一的时间基准。

用来产生时间基准信号的电路称为时基电路。

时基集成电路555就是其中的一种。

它是一种由模拟电路与数字电路组合而成的多功能的中规模集成组件,只要配少量的外部器件,便可很方便的组成触发器、振荡器等多种功能电路。

因此其获得迅速发展和广泛应用。

555时基电路是一种将模拟功能与逻辑功能巧妙结合在同一硅片上的组合集成电路。

它设计新颖,构思奇巧,用途广泛,备受电子专业设计人员和电子爱好者的青睐,人们将其戏称为伟大的小IC。

1972年,美国西格尼蒂克斯公司(Signetics)研制出Tmer NE555双极型时基电路,设计原意是用来取代体积大,定时精度差的热延迟继电器等机械式延迟器。

但该器件投放市场后,人们发现这种电路的应用远远超出原设计的使用范围,用途之广几乎遍及电子应用的各个领域,需求量极大。

美国各大公司相继仿制这种电路1974年西格尼蒂克斯公司又在同一基片上将两个双极型555单元集成在一起,取名为NF556。

1978年美国英特锡尔公司(Intelsil)研制成功CMOS型时基电路ICM555 1CM556,后来又推出将四个时基电路集成在一个芯片上的四时基电路558 由于采用CMOS型工艺和高度集成,使时基电路的应用从民用扩展到火箭、导弹,卫星,航天等高科技领域。

在这期间,日本、西欧等各大公司和厂家也竞相仿制、生产。

尽管世界各大半导体或器件公司、厂家都在生产各自型号的555/556时基电路,但其内部电路大同小异,且都具有相同的引出功能端。

时基集成电路555工作原理如下:图a所示为555时基电路内部电路图。

管脚排列如图b所示。

整个电路包括分压器,比较器,基本RS触发器和放电开关四个部分。

_555_集成芯片及应用实例简介

_555_集成芯片及应用实例简介

监测检测Monitoring & Detection中国无线电 2007年第5期1 引言 “555”芯片是一种中规模集成电路,只要在外部配上适当阻容元件,就可以方便地构成脉冲产生和整形电路,在工业控制、定时、仿声、电子乐器、防盗报警等方面应用很广。

经过对“555”芯片功能的研究,我们用“555”集成芯片设计了干扰机和信号源的控制电路,分别用于无线电频率干扰和无线电监测技术演练。

2 “555”芯片与无稳态电路简介 “555”芯片是一个具有八脚的集成芯片。

它主要由三个分压器、两个高精度电压比较器、一个基本R S 触发器、一个放电管和输出驱动反向器电路组成。

实物如图1所示,内部电路如图2所示。

2.1 芯片结构简介 (1)RS触发器 RS触发器由两个与非门交叉耦合组成,R和S是信号输入端,Q为触发器的输出端。

其真值表如表1所示。

表1 “555”芯片RS触发器真值 (2)比较器 如图2所示,A1、A2是两个电压比较器,如果用U+和U-表示相应输入端上所加的电压,则当U+>U-时,其输出为高电平,U+<U-时,输出为低电平。

两个输入端基本上不向外电路索取电流,即输入电阻趋近于无穷大。

(3)分压器 三个阻值均为5k Ω的电阻串联起来构成分压器(“555” 芯片也因此而得名),为比较器A1和A2提供参考电压。

如图2所示,A1端“U-” =2VCC/3、A2端“U+”=VCC/3。

电压控制端5脚处如果另加控制电压,则可改变A1、A2的参考电压,工作中不使用控制端时,一般通过一个0.01μF的电容接地,以旁路高频干扰。

图1“555”芯片实物 图2 芯片内部结构2.2 无稳态电路 无稳态电路是“555”芯片应用的基本电路,是指电路没有稳定状态(即方波放生器)。

如图3所示,在加电状态下,由于电容C上电压不能突变,故“555”芯片处于置位状态,输出端Uo(3脚)为高电平,放电管T 休止(7脚与地断开)。

致命干货:555电路常见应用及50个经典设计电路

致命干货:555电路常见应用及50个经典设计电路

致命干货:555电路常见应用及50个经典设计电路555定时器是美国Signetics公司1972年研制的用于取代机械式定时器的中规模集成电路,因输入端设计有三个5kΩ的电阻而得名。

此电路后来竟风靡世界。

目前,流行的产品主要有4个:BJT两个:555,556(含有两个555);CMOS两个:7555,7556(含有两个7555)。

初识555定时器555定时器是一种模拟和数字功能相结合的中规模集成器件。

一般用双极型(TTL)工艺制作的称为555,用互补金属氧化物(CMOS )工艺制作的称为7555,除单定时器外,还有对应的双定时器556/7556。

555 定时器的电源电压范围宽,可在4.5V~16V 工作,7555 可在3~18V 工作,输出驱动电流约为200mA,因而其输出可与 TTL、CMOS 或者模拟电路电平兼容。

555 芯片是极其多用途的芯片,有着多达数百的不同应用包括时基计时或是开关以及电压控制的振荡器和调节器。

对于接触过数字电路或者模拟电路的人来说,555芯片绝对算的上是经典的。

凭借着其低廉的成本和可靠的性能,广泛的被应用到各种电器上,包括仪器仪表、家用电器、电动玩具、自动控制。

它的各个引脚功能如下:1脚:外接电源负端VSS或接地,一般情况下接地。

2脚:低触发端TL,该脚电压小于1/3 VCC时有效。

3脚:输出端OUT。

4脚:直接清零端RST。

当此端接低电平时,则时基电路不工作,此时不论TL、TH处于何电平,时基电路输出为“0”,该端正常工作时应接高电平。

5脚:CO为控制电压端。

若此脚外接电压,则可改变内部两个比较器的基准电压,当该脚不用时,应将该脚串入一只0.01μF(103)瓷片电容接地,以防引入高频干扰。

6脚:高触发端TH,该脚电压大于2/3 VCC时有效。

7脚:放电端。

该端与放电管T的集电极相连,用做定时器时电容的放电引脚。

8脚:外接电源VCC,双极型时基电路VCC的范围是4.5 -16V,CMOS型时基电路VCC的范围为3-18V,一般用5V。

555芯片定时电路

555芯片定时电路

555芯片定时电路555芯片定时电路是一种广泛应用于电子设备中的定时器电路。

它采用了双电源稳压电路、比较器、RS触发器和放大器等组件,能够实现稳定可靠的定时功能。

本文将介绍555芯片定时电路的原理、应用及特点。

一、555芯片定时电路的原理555芯片定时电路是由NE555集成电路构成的。

它的原理基于555计时器芯片内部的几个重要部件,包括比较器、RS触发器、放大器和输出级。

它具有三个状态:复位(RESET)、置位(SET)和触发(TRIGGER)。

当TRIGGER脚电压低于1/3Vcc时,输出为高电平;当TRIGGER脚电压高于2/3Vcc时,输出为低电平。

而RESET脚和SET 脚则用于初始化和复位。

555芯片定时电路的基本工作原理如下:1. 当TRIGGER脚电压低于1/3Vcc时,比较器的输出变为高电平,RS触发器的Q输出变为低电平,输出级的输出也变为低电平,即开关断开。

2. 当TRIGGER脚电压高于2/3Vcc时,比较器的输出变为低电平,RS触发器的Q输出变为高电平,输出级的输出也变为高电平,即开关闭合。

3. 当TRIGGER脚电压在1/3Vcc和2/3Vcc之间时,555芯片处于不稳定状态,输出级的输出状态不确定。

555芯片定时电路广泛应用于各种电子设备中,例如:1. 脉冲发生器:通过调节电阻和电容值,可以实现不同频率的脉冲输出。

2. 时序控制器:通过设定不同的时间参数,可以实现各种时序控制,例如延时开关、定时报警等。

3. 方波发生器:通过调节电阻和电容值,可以产生不同频率的方波信号。

4. 脉宽调制器:通过调节电阻和电容值,可以实现不同占空比的脉冲输出,用于控制电机速度、灯光亮度等。

三、555芯片定时电路的特点555芯片定时电路具有以下特点:1. 稳定可靠:由于芯片内部采用稳压电路,能够保证输出信号的稳定性和可靠性。

2. 灵活多变:通过调节电阻和电容值,可以实现不同的定时功能和输出信号。

555芯片定时电路

555芯片定时电路

555芯片定时电路555芯片是一种广泛应用于定时电路的集成电路。

它具有可调节的稳定多谐振荡器和一个比较器,可以根据输入信号的频率和幅度来生成输出波形。

本文将介绍555芯片的工作原理、应用场景以及调节定时电路的方法。

一、555芯片的工作原理555芯片由电压比较器、RS触发器、RS锁存器、发生器和输出级组成。

当电源电压施加到芯片上时,发生器开始工作,产生一个方波信号。

根据输入引脚上的不同电平,比较器会判断方波信号的高低电平,从而改变输出引脚的电平状态。

通过调节外部电阻和电容,可以改变方波信号的频率和占空比,实现定时电路的功能。

二、555芯片的应用场景1. 脉冲发生器:555芯片可以产生各种各样的脉冲信号,如方波、正弦波、三角波等。

这些脉冲信号在实际应用中被广泛用于时钟信号、定时器、频率计等领域。

2. 延时器:通过调节外部电阻和电容,可以实现不同的延时功能。

这在需要控制设备启动或停止时间的场景中非常有用,如定时灯、定时开关等。

3. 调制解调器:555芯片可以实现调制解调器的功能,将模拟信号转换为数字信号,实现信息的传输和接收。

4. 脉冲宽度调制:通过调节电阻和电容的数值,可以改变输出方波信号的占空比,从而实现脉冲宽度的调制。

这在直流电机的速度控制、LED灯的亮度调节等方面有广泛的应用。

三、调节定时电路的方法1. 改变电阻值:通过改变电阻的数值,可以改变电荷和放电的速率,从而改变定时电路的周期和频率。

电阻值越大,周期越长,频率越低;电阻值越小,周期越短,频率越高。

2. 改变电容值:通过改变电容的数值,可以改变电荷和放电的时间常数,从而改变定时电路的周期和频率。

电容值越大,周期越长,频率越低;电容值越小,周期越短,频率越高。

3. 调节电源电压:改变电源电压的大小,可以改变芯片内部的电流流动速度,从而改变定时电路的周期和频率。

电压越高,周期越短,频率越高;电压越低,周期越长,频率越低。

总结:555芯片是一种功能强大的定时电路集成电路,具有广泛的应用场景。

555芯片内部原理及经典应用

555芯片内部原理及经典应用

555芯片内部原理及经典应用首先,555芯片内部的电压比较器根据输入电压的大小决定输出信号的高低电平。

其次,双稳态多谐振荡器是555芯片的核心部件,它由两个电容器和三个电阻器组成。

其中,一个电容器负责充电,另一个负责放电,而电阻器则用于调节充、放电过程的时间。

当电容器充满电压时,输出信号为高电平;当电容器放电时,输出信号为低电平。

根据电容器的充放电时间及输出信号的高低电平,可以形成不同的波形。

这种双稳态多谐振荡器的特性使得555芯片可以用于多种应用中。

以下是其中几个经典的应用:1.时钟发生器:555芯片可通过调节电容器充放电的时间来产生稳定的方波信号,用作计时器或驱动时钟。

通过改变电阻器的数值,可以调节输出信号的频率,以满足不同应用的需要。

2.脉冲产生器:555芯片能够产生具有可调频率和占空比的脉冲信号。

通过调节电阻器和电容器的数值,可以控制输出脉冲的频率和持续时间。

3.延时器:555芯片能够以输入电平的上升沿或下降沿触发,产生一段可调的延时时间后,输出一个高电平或低电平信号。

这种特性可用于延时触发、时序控制等应用中。

4.频率测量器:在555芯片的稳定多谐振荡模式下,通过将待测信号输入到555芯片的电压比较器进行比较,然后测量输出脉冲的频率,可以实现对待测信号频率的测量。

5.环境亮度控制器:通过将555芯片与光敏电阻等光敏元件相连,测量环境亮度并调节输出信号的占空比,可以实现对环境亮度的自动控制。

除了以上应用外,555芯片还可以用于温度测量、声音闪光灯、警报器等其他领域。

总之,555芯片以其多功能、稳定性和易于调节的特点,在电子电路领域应用广泛。

不仅能够实现各种信号的产生、控制和测量,还能够适应不同的电气环境和需求。

555芯片的工作原理

555芯片的工作原理

555芯片的工作原理
555芯片是一种集成电路芯片,常用于定时和脉宽调制等应用。

它的工作原理如下:
1. 内部电路结构:555芯片由多个功能模块组成,包括比较器、RS触发器、RS锁存器、放电开关、电压分配器等。

2. 外部电容与电阻:外部连接一个电容和电阻组成的RC电路,通常通过通过改变电阻的阻值来调节芯片的工作频率和占空比。

3. 稳态工作原理:当电路刚开始通电时,电容开始充电。

当电容电压达到比较器的上阈值电压时(2/3 VCC),比较器的输
出由低电平变为高电平,将RS触发器推至Set状态(低电平),导致Output引脚输出高电平。

4. 放电阶段:当电容电压达到比较器的下阈值电压时(1/3 VCC),比较器的输出由高电平变为低电平,将RS触发器推
至Reset状态(高电平),导致Output引脚输出低电平。

此时电容开始放电。

5. 触发器状态切换:当电容放电至比较器下阈值电压以下时,比较器的输出由低电平变为高电平,触发器又回到Set状态,Output引脚输出高电平,电容再次开始充电,周而复始形成周期性矩形波。

总之,555芯片通过外部RC电路来控制充放电的时间,通过
比较器和触发器的状态切换来实现输出波形的控制,从而实现定时和脉宽调制等功能。

555芯片内部原理及经典应用

555芯片内部原理及经典应用

555定时电路内部结构分析及应用1 绪言555定时器是电子工程领域中广泛使用的一种中规模集成电路,它将模拟与逻辑功能巧妙地组合在一起,具有结构简单、使用电压范围宽、工作速度快、定时精度高、驱动能力强等优点。

555定时器配以外部元件,可以构成多种实际应用电路。

广泛应用于产生多种波形的脉冲振荡器、检测电路、自动控制电路、家用电器以及通信产品等电子设备中。

2555定时器功能及结构分析2.1 555定时器的分类及管脚作用555定时器又称时基电路。

555定时器按照内部元件分有双极型(又称TTL 型)和单极型两种。

双极型内部采用的是晶体管;单极型内部采用的则是场效应管,常见的555时基集成电路为塑料双列直插式封装(见图2-1),正面印有555字样,左下角为脚①,管脚号按逆时针方向排列。

2-1 555时基集成电路各管脚排布555时基集成电路各管脚的作用:脚①是公共地端为负极;脚②为低触发端TR,低于1/3电源电压以下时即导通;脚③是输出端V,电流可达2000mA;脚④是强制复位端MR,不用可与电源正极相连或悬空;脚⑤是用来调节比较器的基准电压,简称控制端VC,不用时可悬空,或通过0.01μF电容器接地;脚⑥为高触发端TH,也称阈值端,高于2/3电源电压发上时即截止;脚⑦是放电端DIS;脚⑧是电源正极VC。

2.2 555定时器的电路组成图2-2为555芯片的内部等效电路2-2 555定时器电路组成5G555定时器内部电路如图所示,一般由分压器、比较器、触发器和开关。

及输出等四部分组成,这里我们主要介绍RS触发器和电压比较器。

2.2.1基本RS触发器原理如图2-3是由两个“与非”门构成的基本R-S触发器, RD、SD是两个输入端,Q及是两个输出端。

Q QRD SD2-3 RS触发器正常工作时,触发器的Q 和应保持相反,因而触发器具有两个稳定状态:1)Q=1,=0。

通常将Q端作为触发器的状态。

若Q端处于高电平,就说触发器是1状态;2)Q=0,=1。

555定时器芯片手册

555定时器芯片手册

555定时器芯片手册【原创版】目录1.555 定时器芯片概述2.555 定时器的基本原理3.555 定时器的引脚功能及应用4.555 定时器的典型应用电路5.555 定时器的使用注意事项正文【555 定时器芯片概述】555 定时器芯片是一种常用的模拟集成电路,广泛应用于各种定时、延时和触发电路中。

它的主要特点是功能简单、价格低廉、工作稳定可靠,因此深受电子工程师的喜爱。

555 定时器芯片由美国 Signetics 公司发明,现已成为全球通用的标准定时器电路。

【555 定时器的基本原理】555 定时器的基本原理是利用三个电阻器、两个 NAND 门和两个触发器构成一个简单的正反馈电路。

当输入端施加正电压时,触发器被激活,输出端产生一个矩形脉冲信号。

通过调整电阻值可以改变脉冲的宽度和延时时间。

【555 定时器的引脚功能及应用】555 定时器芯片共有 8 个引脚,分别为:1.引脚 1(GND):地引脚2.引脚 2(VCC):电源正极3.引脚 3(RESET):复位引脚,低电平有效4.引脚 4(TRIGGER):触发器引脚,施加正电压触发器动作5.引脚 5(CONTROL VOLTAGE):控制电压引脚,决定输出电压的高低6.引脚 6(A):输出信号 A,矩形脉冲信号7.引脚 7(B):输出信号 B,矩形脉冲信号的反相信号8.引脚 8(D):放电引脚,使触发器放电555 定时器芯片可以应用于各种定时、延时和触发电路,如简单的定时器、多功能计时器、电子开关、自动控制等。

【555 定时器的典型应用电路】555 定时器的典型应用电路有:1.简单的延时电路2.触摸式延时开关3.多功能定时器4.电子计数器5.定时闹钟等【555 定时器的使用注意事项】在使用 555 定时器芯片时,需要注意以下几点:1.电源电压范围应为 2V 至 16V,否则可能导致工作不稳定或损坏芯片。

2.负电源引脚(GND)应接在电路的地线上,以保证电路的稳定性。

555定时器的工作原理及其应用

555定时器的工作原理及其应用

555定时器的工作原理及其应用概述:555定时器是一种高度通用的集成电路(IC),广泛用于电子电路中产生精确的定时信号。

它是由电子公司Signetics(现在是NXP半导体的一部分)于1971年推出的,从此成为电子领域最受欢迎的集成电路之一。

由于其简单、低成本和易于使用,555定时器通常用作定时器、振荡器和脉冲发生器。

它能够产生精确的定时信号,这使得它适用于广泛的应用,包括定时电路、频率产生和波形整形。

身体:1. 555定时器工作原理:555定时器是基于一个不稳定的多谐振荡器的原理,这是一个电路,产生连续输出波形,没有任何外部触发。

该集成电路由两个比较器、一个触发器、一个放电晶体管以及决定时序特性的电阻和电容组成。

555定时器的定时功能是通过外部电容的充放电来实现的。

1.1充电阶段:在充电阶段,电压源连接到定时器的VCC引脚,外部电容(C)通过串联电阻(R)充电。

内部触发器设置为高状态,导致放电晶体管关断。

结果,电容器以指数方式充电,时间常数由R和C的值决定。

1.2放电阶段:一旦电容器上的电压达到某个阈值(约为电源电压的2/3),内部触发器将复位到低状态。

这触发放电晶体管打开,将电容器连接到地。

然后电容器通过放电晶体管和外部电阻呈指数级放电。

2. 555定时器的应用:555定时器是一种令人难以置信的通用IC,可用于各种电子电路。

555定时器的一些常见应用是:2.1时序电路:555定时器的主要应用之一是在定时电路中,它可以用作单稳定或不稳定的多谐振荡器。

在单稳定模式下,555定时器响应外部触发器产生一个特定持续时间的单脉冲。

这在延时电路、脉宽调制和脱杂电路等应用中非常有用。

在稳定模式下,555定时器产生具有特定频率和占空比的连续方波。

这通常用于时钟生成、分频和音调生成等应用。

2.2 PWM产生:555定时器还可用于产生脉宽调制(PWM)信号,广泛用于电机速度控制、LED调光和音频放大器等应用。

通过将555定时器配置为稳定模式并改变定时元件(电阻和电容),可以调整输出波形的占空比,从而控制传递给负载的平均功率。

555芯片工作原理

555芯片工作原理

555芯片工作原理
555芯片是一种常用的集成电路,主要用于产生精确的方波信号和脉冲信号。

它通常由若干个晶体管、电阻和电容等电子元件组成。

其主要工作原理如下:
1. 555芯片内部包含三个比较器(Comparator)和一个RS触发器(RS Flip-Flop)。

这些比较器和触发器通过连接外部电阻和电容的方式,形成了一个基于阈值电压的多种模式运行电路。

2. 在555芯片中,有三个电压引脚:VCC(电源正极)、GND(地线)和Reset(复位)引脚。

VCC和GND引脚用于供电,Reset引脚用于对芯片进行复位。

3. 根据引脚的不同连接方式,555芯片可以实现不同的工作模式,如单稳态(Monostable)、双稳态(Bistable)和震荡器(Astable)模式。

- 单稳态模式:在单稳态模式下,通过外部触发器对555芯片进行触发,当触发信号到达时,芯片输出一个固定时间持续的高电平脉冲。

- 双稳态模式:在双稳态模式下,通过外部信号对555芯片进行触发,芯片输出一个高电平或低电平的持续信号,直到再次触发。

- 震荡器模式:在震荡器模式下,555芯片通过内部电阻和
电容的充放电过程,生成一个周期性的方波信号或脉冲信号。

4. 在震荡器模式下,由于555芯片的特殊设计,可以通过调整外部电阻和电容的数值,来改变输出方波信号或脉冲信号的频率和占空比。

总之,555芯片通过不同的引脚连接方式和工作模式,实现了在各种电子电路中产生精确的方波信号和脉冲信号。

它的工作原理基于比较器和触发器的组合,以及外部电阻和电容的充放电过程。

555集成电路管脚,工作原理,特点及典型应用电路介绍

555集成电路管脚,工作原理,特点及典型应用电路介绍

555集成电路管脚,工作原理,特点及典型应用电路介绍.1 555集成电路的框图及工作原理555集成电路开始是作定时器应用的,所以叫做555定时器或555时基电路。

但后来经过开发,它除了作定时延时控制外,还可用于调光、调温、调压、调速等多种控制及计量检测。

此外,还可以组成脉冲振荡、单稳、双稳和脉冲调制电路,用于交流信号源、电源变换、频率变换、脉冲调制等。

由于它工作可靠、使用方便、价格低廉,目前被广泛用于各种电子产品中,555集成电路内部有几十个元器件,有分压器、比较器、基本R-S触发器、放电管以及缓冲器等,电路比较复杂,是模拟电路和数字电路的混合体,如图1所示。

2. 555芯片管脚介绍555集成电路是8脚封装,双列直插型,如图2(A)所示,按输入输出的排列可看成如图2(B)所示。

其中6脚称阈值端(TH),是上比较器的输入;2脚称触发端(TR),是下比较器的输入;3脚是输出端(V o),它有O和1两种状态,由输入端所加的电平决定;7脚是放电端(DIS),它是内部放电管的输出,有悬空和接地两种状态,也是由输入端的状态决定;4脚是复位端(MR),加上低电平时可使输出为低电平;5脚是控制电压端(Vc),可用它改变上下触发电平值;8脚是电源端,1脚是地端。

图2 555集成电路封装图我们也可以把555电路等效成一个带放电开关的R-S触发器,如图3(A)所示,这个特殊的触发器有两个输入端:阈值端(TH)可看成是置零端R,要求高电平,触发端(TR)可看成是置位端S,要求低电平,有一个输出端Vo,Vo可等效成触发器的Q端,放电端(DIS)可看成是由内部放电开关控制的一个接点,由触发器的Q端控制:Q=1时DIS端接地,Q=0时DIS端悬空。

另外还有复位端MR,控制电压端Vc,电源端VDD和地端GND。

这个特殊的触发器有两个特点:(1)两个输入端的触发电平要求一高一低,置零端R即阈值端(TH)要求高电平,而置位端s 即触发端(TR)则要求低电乎;(2)两个输入端的触发电平使输出发生翻转的阈值电压值也不同,当V c端不接控制电压时,对TH(R)端来讲,>2/3VDD是高电平1,<2/3VDD是低电平0:而对TR(S)端来讲,>1/3VDD 是高电平1,<1/3VDD是低电平0。

NE555芯片知识应用讲解

NE555芯片知识应用讲解

NE555芯片知识应用讲解积土成山,风雨兴焉,积水成渊,蛟龙生焉。

——荀子1.555芯片引脚图1脚电源负极端(GND) 2脚触发输入端(TR)3脚输出端(OUT) 4脚总复位端(MR)5脚控制端(UC) 6脚调值输入端(TH)7脚放电端(DIC) 8脚电源正极(VCC)2.内部结构:按分压器、比较器、RS触发器、输出级、放电开关几部分组成共有两个比较器,一开始上电其中上比较器同相输入端5脚电压直接到达2/3Vcc,下比较器反相输入端电压直接达到1/3Vcc,经过外电路连接2、6脚电压经过比较器输出对应R、S电压,因为要研究输出端3脚电压输出,所以接下来我们讨论RS触发器rs触发器由两个与非门正负反馈形成。

R=0,S=1时,假设Q输出高,则与非门G2的一个输入端为高并且杠R=0,所以Q非为高,Q非为与非门G1的输入端并且S=1,所以Q输出低与假设矛盾,反之假设Q输出为低推导出来的结果与假设符合。

R=1,S=0时,假设Q输出高,则与非门G2的一个输入端为高并且R=1,所以Q非为低,Q非为与非门G1的输入端并且杠S=1,所以Q输出高与假设符合,反之假设矛盾。

R=1,S=1时,Q输出为Qn的意思是保持上一状态不变,这是一个动态变化,看Q输出为高还是低要看上一状态。

单独判断R=1,S=1时Q输出高或低都成立,然而它保持上一状态不变是因为基本RS触发器具有记忆功能,它保持上一个状态不想改变。

R=0,S=0时,Q输出是为高,然而真值表上Q的状态不定,是R 和S同时从0变为1时Q的状态是不定的,单独判断R=1,S=1时,Q输出高或低都成立,他为什么不定呢?因为R和S都为零的这一状态时Q和杠Q都是输出高,变为R和S都为1时Q和Q非其中有一个输出必须变为零,然而我们不知道Q还是Q非谁先变化,也不知道两个与非门的传输速度高低,所以不确定Q输出为高还是低。

理解RS触发器之后,我们接下来理解555构成的多谐振荡器。

3.多谐振荡器我们标识Vcc与3脚之间的灯泡为LED1,3脚与GND之间的灯泡为LED2。

555定时器的内部结构与工作原理

555定时器的内部结构与工作原理

555定时器的内部结构与工作原理555定时器是一种广泛应用的数字和模拟定时器,它具有简单而可靠的工作特性。

其内部结构和工作原理可以分解为几个主要部分:分压器、电压比较器、简单锁存器(SR)、放电三极管和缓冲器。

1.分压器分压器是555定时器的一个基本组成部分,它由两个电阻构成,可以将输入电压(通常为电源电压)分压为两个部分。

一部分电压直接输出到电压比较器,另一部分电压则通过一个开关K1连接到地线。

这个分压器的主要作用是为电压比较器和缓冲器提供适当的电压。

2.电压比较器电压比较器是555定时器的核心组件之一,它对输入的电压进行比较。

比较器有两个输入端,一个来自分压器的电压,另一个来自简单锁存器(SR)的输出。

当两个输入端的电压差达到一定值时,比较器的输出会发生变化。

在555定时器中,这个比较器的输出会直接控制放电三极管的开启和关闭。

3.简单锁存器(SR)简单锁存器是一个触发器,它有两个稳定状态:触发状态和非触发状态。

当输入信号达到一定值时,锁存器会从一种状态切换到另一种状态,并保持这种状态,直到外部信号使其改变。

在555定时器中,锁存器的状态由分压器和电压比较器的信号决定。

4.放电三极管放电三极管是555定时器中的一个大电流开关,它连接着定时器的输出和地线。

当电压比较器的输出变化时,会控制这个三极管的开启和关闭。

当三极管开启时,输出端的电容器会通过这个三极管放电,从而输出一个短暂的电流脉冲。

5.缓冲器缓冲器是用来隔离555定时器的输出和输入的。

它能够防止输入信号对输出信号产生影响,同时也能保护输出电路免受外部干扰的影响。

在555定时器的应用中,缓冲器还能提供一定的驱动能力,以满足外部电路的需求。

555定时器的内部结构和工作原理是通过对输入电压的分压、电压的比较、锁存器的状态控制、放电三极管的开关操作以及缓冲器的隔离和驱动能力的提供,实现定时、延迟、触发等功能的。

这种定时器的应用广泛,可用于脉冲发生器、延时继电器、脉冲调制电路等多种数字和模拟电路中。

NE555内部全解和应用电路集合

NE555内部全解和应用电路集合

单电源变双电源电路 附图电路中,时基电路555接成无稳态电路,3脚 输出频率为20KHz、占空比为1:1的方波.3脚 为高电平时,C4被充电;低电平时,C3被充电.由 于VD1、VD2的存在,C3、C4在电路中只充电 不放电,充电最大值为EC,将B端接地,在A、C两 端就得到+/-EC的双电源.本电路输出电流超过 50mA.
555内部原理图 和各种应用电路
一、3种单稳类电路 第1种〔图1是人工启动单稳,又因为定时电阻定时电 容位置不同而分为2个不同的单元,并分别以和为代号.他 们的输入端的形式,也就是电路的结构特点是:"RT-6.2CT"和"CT-6.2-RT".
第2种〔图2是脉冲启动型单稳,也可以分为2个不同的单元. 他们的输入特点都是"RT-7.6-CT",都是从2端输入.电路 的2端不带任何元件,具有最简单的形式;电路则带有一 个RC微分电路.
用555制作的D类放大器 由IC555和R1、R2、C1等组成100KHz可控 多谐振荡器,占空比为50%,控制端5脚输入 音频信号,3脚便得到脉宽与输入信号幅值成 正比的脉冲信号,经L、C3接调、滤波后推 动扬声器.
风扇周波调速电路 夏天要来了,电风扇又得派上用场.这里介绍一个电风扇模拟阵风周 波调速电路,可以为将我们家里的老式风扇增加一个实用功能,也算是一 个迎接夏天到来的准备吧.下面介绍其工作原理. 电路见图1a.电路中NE555接成占空比可调的方波发生器,调节RW可改 变占空比.在NE555的3脚输出高电平期间,过零通断型光电耦合器 MOC3061初级得到约10mA正向工作电流,使内部硅化镓红外线发射二 极管发射红外光,将过零检测器中光敏双向开关于市电过零时导通,接通 电风扇电机电源,风扇运转送风.在NE555的3脚输出低电平期间,双向开 关关断,风扇停转. MOC3061本身具有一定驱动能力,可不加功率驱动元件而直接利用 MOC3061的内部双向开关来控制电风扇电机的运转.RW为占空比调节 电位器,亦即电风扇单位时间内〔本电路数据约为20秒送风时间的调节, 改变C2的取值或RW的取值可改变控制周期. 图1b电路为MOC3061的典型功率扩展电路,在控制功率较大的电机 时,应考虑使用功率扩展电路.制作时,可参考图示参数选择器件.由于电源 采用电容压降方式,请自制时注意安全,人体不能直接触摸电路板.

555芯片的原理以及应用

555芯片的原理以及应用

555芯片的原理以及应用1. 555芯片的概述555芯片,也称为NE555,是一种经典的集成电路,由美国德克萨斯仪器公司(Texas Instruments)于1972年推出。

它是一种多功能定时器,广泛应用于电子电路中,以实现各种定时、延时、频率分割和脉冲调制等功能。

2. 555芯片的工作原理555芯片基于RC(电容-电阻)振荡器的工作原理。

它由比较器、内部参考电压源、RS触发器、RS触发器控制逻辑、输出驱动器等组成。

工作过程如下: - 初始状态下,触发端(TRIG)处于低电平,复位端(RST)处于高电平,输出端(OUT)处于低电平。

- 当触发端的电压低于1/3的Vcc (Vcc为芯片供电电压)时,换能器的输出状态反转,OUT端输出高电平。

- 当OUT端输出高电平时,电容开始充电,直到电压达到2/3的Vcc。

- 一旦电容电压达到2/3Vcc,RS触发器反转,OUT端输出低电平。

- 同时,内部比较器将触发端与控制端(CTRL)进行比较。

如果触发端电压低于控制端电压,RS触发器将再次反转,OUT端输出高电平,电容开始充电,循环往复。

3. 555芯片的应用555芯片在电子领域的应用非常广泛,下面列举了几个典型的应用案例:3.1 延时器由于555芯片有可调的RC周期,它常常被用作延时器。

通过调整电阻和电容的值,可以实现不同的延时时间。

基于此原理,555芯片在许多领域被用作延时触发器,例如摄影、闪光灯控制、舞台灯光控制等。

3.2 频率分割器555芯片也可以用作频率分割器,通过将输出连接到输入,实现部分频率的输出。

该功能常用于数码时钟、频率计等电路中。

3.3 方波发生器555芯片还可以用作方波发生器。

方波波形具有丰富的谐波分量,常用于音乐合成、脉冲调制等应用。

3.4 PWM(脉宽调制)控制器由于555芯片可以在一定频率下输出可调占空比的方波信号,它常常被用作PWM控制器。

例如,可以将555芯片用于电机速度控制、LED调光等应用中。

555芯片内部原理及经典应用

555芯片内部原理及经典应用

555定时电路内部结构分析及应用1 绪言555定时器是电子工程领域中广泛使用的一种中规模集成电路,它将模拟与逻辑功能巧妙地组合在一起,具有结构简单、使用电压范围宽、工作速度快、定时精度高、驱动能力强等优点。

555定时器配以外部元件,可以构成多种实际应用电路。

广泛应用于产生多种波形的脉冲振荡器、检测电路、自动控制电路、家用电器以及通信产品等电子设备中。

2555定时器功能及结构分析2.1 555定时器的分类及管脚作用555定时器又称时基电路。

555定时器按照内部元件分有双极型(又称TTL 型)和单极型两种。

双极型内部采用的是晶体管;单极型内部采用的则是场效应管,常见的555时基集成电路为塑料双列直插式封装(见图2-1),正面印有555字样,左下角为脚①,管脚号按逆时针方向排列。

2-1 555时基集成电路各管脚排布555时基集成电路各管脚的作用:脚①是公共地端为负极;脚②为低触发端TR,低于1/3电源电压以下时即导通;脚③是输出端V,电流可达2000mA;脚④是强制复位端MR,不用可与电源正极相连或悬空;脚⑤是用来调节比较器的基准电压,简称控制端VC,不用时可悬空,或通过0.01μF电容器接地;脚⑥为高触发端TH,也称阈值端,高于2/3电源电压发上时即截止;脚⑦是放电端DIS;脚⑧是电源正极VC。

2.2 555定时器的电路组成图2-2为555芯片的内部等效电路2-2 555定时器电路组成5G555定时器内部电路如图所示,一般由分压器、比较器、触发器和开关。

及输出等四部分组成,这里我们主要介绍RS触发器和电压比较器。

2.2.1基本RS触发器原理如图2-3是由两个“与非”门构成的基本R-S触发器, RD、SD是两个输入端,Q及是两个输出端。

Q QRD SD2-3 RS触发器正常工作时,触发器的Q 和应保持相反,因而触发器具有两个稳定状态:1)Q=1,=0。

通常将Q端作为触发器的状态。

若Q端处于高电平,就说触发器是1状态;2)Q=0,=1。

555芯片原理及应用专题讲座

555芯片原理及应用专题讲座

R1 B 7 R2 B
4
8 Uo 2 5μ 8Ω 0.01μ Uo 2 (b )
C
A 6 555 2 5 1
C 0.01μ (a )
B 3 6 555 2 1 5
Uo 1
10
&
&
Q G2
&
G3
1
3 G4
Uo Uo RD
(b )
1
(a )
二、555功能分析
2
三、用555构成双稳态触发器
3
四、用555构成施密特触发器
4
施密特触发器的应用:脉冲整形
5
五、用555构成单稳态触发器
UCC R 8 4
Ui T 1 U 3 CC 0 Uo t
UC Ui C
7 6 5 55 3 2
Uo TW TW t UCC
1
5 0 .0 1 μ
0 2 U 3 CC 0 (b) UC
(a) t
U C ( ) U C (0 ) TW RC 1n RC 1n3 1.1RC U C ( ) U T
6
单稳态触发器的应用:
产生特定长度的定时信号
F/V变换(间接测量频率)
T2 R2C 1n 2 0.7R2C
T T1 T2 0.7( R1 2R2 )C
8
周期固定、占空比可调的多谐振荡器(PWM发生器)
UCC
R1
RW V1 V2
7
4
8
R2
555 3 2 6 1 5
Uo
C
0.01μ
9
多谐振荡器的应用
UCC
R1 A 7 R2 A
4
8 3 Uo1 Rd
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

555定时电路内部结构分析及应用1 绪言555定时器是电子工程领域中广泛使用的一种中规模集成电路,它将模拟与逻辑功能巧妙地组合在一起,具有结构简单、使用电压范围宽、工作速度快、定时精度高、驱动能力强等优点。

555定时器配以外部元件,可以构成多种实际应用电路。

广泛应用于产生多种波形的脉冲振荡器、检测电路、自动控制电路、家用电器以及通信产品等电子设备中。

2555定时器功能及结构分析2.1 555定时器的分类及管脚作用555定时器又称时基电路。

555定时器按照内部元件分有双极型(又称TTL 型)和单极型两种。

双极型内部采用的是晶体管;单极型内部采用的则是场效应管,常见的555时基集成电路为塑料双列直插式封装(见图2-1),正面印有555字样,左下角为脚①,管脚号按逆时针方向排列。

2-1 555时基集成电路各管脚排布555时基集成电路各管脚的作用:脚①是公共地端为负极;脚②为低触发端TR,低于1/3电源电压以下时即导通;脚③是输出端V,电流可达2000mA;脚④是强制复位端MR,不用可与电源正极相连或悬空;脚⑤是用来调节比较器的基准电压,简称控制端VC,不用时可悬空,或通过0.01μF电容器接地;脚⑥为高触发端TH,也称阈值端,高于2/3电源电压发上时即截止;脚⑦是放电端DIS;脚⑧是电源正极VC。

2.2 555定时器的电路组成图2-2为555芯片的内部等效电路U31kBJT_NPN_VIRTUAL2-2 555定时器电路组成5G555定时器内部电路如图所示, 一般由分压器、比较器、触发器和开关。

及输出等四部分组成,这里我们主要介绍RS 触发器和电压比较器。

2.2.1基本RS 触发器原理如图2-3是由两个“与非”门构成的基本R-S 触发器, RD 、SD 是两个输入端,Q 及是两个输出端。

QQRDSD2-3 RS 触发器正常工作时,触发器的Q 和应保持相反,因而触发器具有两个稳定状态:1)Q=1,=0。

通常将Q端作为触发器的状态。

若Q端处于高电平,就说触发器是1状态;2)Q=0,=1。

Q端处于低电平,就说触发器是0状态;Q端称为触发器的原端或1端,端称为触发器的非端或0端。

由图可看出,如果Q端的初始状态设为1,RD、SD端都作用于高电平(逻辑1),则一定为0。

如果RD、SD状态不变,则Q 及的状态也不会改变。

这是一个稳定状态;同理,若触发器的初始状态Q为0而为1,在RD、SD为1的情况下这种状态也不会改变。

这又是一个稳定状态。

可见,它具有两个稳定状态。

输入与输出之间的逻辑关系可以用真值表来描述。

首先对该RS触发器Q端状态仿真。

如图2-42-4 RS触发器Q端仿真电路图Q端状态变化规律如图2-52-5 Q端状态变化规律仿真此图中A即SD,B即RD.,再对该R—S触发器Q非端状态仿真,如图2-62-6 RS触发器Q非端仿真图Q非端状态变化规律如图2-72-7 Q非端状态变化规律此图中A即SD,B即RD.R-S触发器的逻辑功能,可以用输入、输出之间的逻辑关系构成一个真值表(或叫功能表)来描述,由仿真可得以下结论。

当RD =0,SD=1时,不论触发器的初始状态如何,一定为1,由于“与非”门的输入全是1,Q端应为0。

称触发器为0状态,RD为置0端。

当RD =1,SD=0时,不论触发器的初始状态如何,Q 一定为1,从而使为0。

称触发器为1状态,SD置1端。

当RD =1,SD =1时,如前所述,Q及的状态保持原状态不变。

当RD =0,SD =0时,不论触发器的初始状态如何,Q==1,若RD、SD同时由0变成1,在两个门的性能完全一致的情况下, Q及究竟哪一个为1,哪一个为0是不定的,在应用时不允许RD 和SD同时为0。

综合以上四种情况,可建立R-S触发器的真值表如表4—1。

应注意的是表中RD = SD =0的一行中Q及的状态是指RD、SD同时变为1后所处的状态是不定的,用Ф表示。

由于RD =0,SD =1时Q为0,RD端称为置0端或复位端。

相仿的原因,SD称置1端或置位端。

2.2.2简单电压比较器电压比较器简称比较器,它用来比较两个电压的大小,比较的结果通常由输出的高电贫乏UHO或低电平UOL来表示。

简单电压比较器的基本电路如图2-8所示U0R21.0k12 V 12 V2-8 简单电压比较器它的反相输入端和同相输入端分别接输入信号Ui和参考电压Uref,该电路属于反相输入电压比较器,显然电路中的运放工作在开环状态。

由于开环电压增益高,受电源电压的限制,这时,只要输入信号ui稍小于参考电压Uref,输出即为高电平u0=UOH(U0,MAX),输出级处于正饱和状态;反之,只要ui稍大于Uref,输出即为低电平u0=UOL(-U0,MAX),输出级处于负饱和状态;只有uI 在非常接近Uref 的极小范围内,运放才处于线性放大状态,此时,才有u0=A0d(Uref-uI). 通常把比较器的输出电压从一个电平变化到另一个电平时对应的临界输入电压称为阀值电压或门限电压,简称为阀值,用符号UTH 表示,对这里所讨论的简单比较器有UTH=Uref 。

我们知道了555定时电路的结构就可以在此基础之上制作出不同功能的电路,这里我们主要讨论平时常见的几种基于555芯片的功能电路如多谐振荡器,施密特触发器等。

3 多谐振荡器3.1电路组成及工作原理下面图3-1时基于555的多谐振荡器连接图1k1kN_VIRTUALC110nF6213-1 基于555芯片的多谐振荡器多谐振荡器是一种自激振荡电路。

因为没有稳定的工作状态,多谐振荡器也称为无稳态电路。

其工作原理时这样的:在刚接同电源时,由于电容C1两端的电压不能突变,使集成电路A 的2脚电压为0V ,这一低电压加到电压比较器D 的同相输入端,使电压比较器D 输出低电平,该低电平加到与非门B 的一个输入端,这样,输出端Q 输出高电平,即多谐振荡器输出电压U0为高电平,通电之后,直流电压+V 通过电阻R1和R2对电容C1充电,由于电容C1的充电要有一个过程,在C1两端的电压没有充到一定程度时,电路保持输出电压U0为高电平状态,这是一个暂稳态。

随着对电容C1充电的进行,(C1上的充电电压极性为上正下负),当C1上的电压达到一定程度时,集成电路A 的6脚电压为高电平,该高电平加到内电路中的电压比较器C 的反相输入端,使比器C 输出低电平,该低电平加到与非门A的一个输入端,使RS触发器翻转,即为Q端输出低电平,即U0为低电平,Q非为高电平,从图中所示波形中可看出,此时U0已从高电平翻转到低电平。

Q非为高电平后,该高电平经过电阻RS加到VT1基极,使VT1饱和导通,由于VT1导通后集电极和发射极之间的内阻减小,这样电容C1上充到的上正下负电压开始放电,其放电回路是:C1的上端——R2——集成电路A的7脚——VT1集电极——VT1发射极——地端——C1的下端,在这放电的过程中,多谐振荡器保持U0为低电平状态,随着C1的放电,C1上的电压在下降,当C1上的电压下降到一定程度时,使集成电路的2脚电平很低,即电压较器D的同相输入端电压很低,使比较器D输出低电压,该低电压加到与非门B的一个输入端,使RS触发器再次翻转,翻转到Q为高电平的暂稳态,即U0为高电平,由于Q为高电平,Q非为低电平,使VT1管的基极电压很小,VT1截止,电容C1停止放电,改变为+V通过电阻R1和R2对电容C1充电,这样电路进入第2个周期,如此反复达到振荡器的作用。

由仿真得该电路输出波形,如图3-2所示3-2 多谐振荡器输出波形仿真多谐振荡器一旦起振之后,电路没有稳态,只有两个暂稳态,它们做交替变化,输出连续的矩形脉冲信号,因此它又称作无稳态电路,常用来做脉冲信号源。

3.2多谐振荡器应用实例3.2.1 简易温控报警器下图3-4是利用多谐振荡器构成的简易温控报警电路,利用555构成可控音频振荡电路,用扬声器发声报警,可用于火警或热水温度报警,电路简单、调试方便。

图中晶体管T可选用锗管3AX31、3AX81或3AG类,也可选用3DU型光敏管。

3AX31等锗管在常温下,集电极和发射极之间的穿透电流I CEO一般在10~50μΑ,且随温度升高而增大较快。

当温度低于设定温度值时,晶体管T的穿透电流I CEO较小,555复位端R D(4脚)的电压较低,电路工作在复位状态,多谐振荡器停振,扬声器不发声。

当温度升高到设定温度值时,晶体管T的穿透电流I CEO较大,555复位端R D的电压升高到解除复位状态之电位,多谐振荡器开始振荡,扬声器发出报警声。

R30.01uF3-4 多谐振荡器用作简易温控报警电路需要指出的是,不同的晶体管,其I CEO值相差较大,故需改变R1的阻值来调节控温点。

方法是先把测温元件T置于要求报警的温度下,调节R1使电路刚发出报警声。

报警的音调取决于多谐振荡器的振荡频率,由元件R2、R3和C1决定,改变这些元件值,可改变音调,但要求R2大于1kΩ。

3.2.2 双音门铃下图3-5是用多谐振荡器构成的电子双音门铃电路。

当按钮开关AN 按下时,开关闭合,V CC 经D 2向C 3充电,P 点(4脚)电位迅速充至V CC ,复位解除;由于D 1将R 3旁路,V CC 经D 1、R 1、R 2向C 充电,充电时间常数为(R 1+R 2)C ,放电时间常数为R 2 C ,多谐振荡器产生高频振荡,喇叭发出高音。

当按钮开关AN 松开时,开关断开,由于电容C 3储存的电荷经R 4放电要维持一段时间,在P 点电位降至复位电平之前,电路将继续维持振荡;但此时V CC 经R 3、R 1、R 2向C 充电,充电时间常数增加为(R 3+R 1+R 2)C ,放电时间常数仍为R 2 C ,多谐振荡器产生低频振荡,喇叭发出低音。

当电容C 3持续放电,使P 点电位降至555的复位电平以下时,多谐振荡器停止振荡,喇叭停止发声。

调节相关参数,可以改变高、低音发声频率以及低音维持时间。

R1R2100k_VIRTUAL3-5 用多谐振荡器构成的双音门铃电路4施密特触发器施密特触发器——具有回差电压特性,能将边沿变化缓慢的电压波形整形为边沿陡峭的矩形脉冲。

4.1 电路组成及工作原理4-1 555定时器构成的施密特触发器其实,555内部电路就可以等效成一个施密特触发器,要清除其工作原理,我们必须再次研究其内部电路,如图4-2U2U331k14-2 施密特触发器主电路上图中,a点电压为8V即2/3VS,b点电压为4V即1/3VS,当输入电压UI小于b点电压时,C输出高电平,D输出低电平,输出端3脚输出为高电平,并保持不变,当输入电压UI继续上升满足4V<UI<8V时,D翻转为高电平,但是C输出仍为高电平,A输出仍为低电平,所以,B 输出仍为高电平不变,但是当UI 大于8V 时,C 输出翻转为低电平,A 翻转为高电平,此时B 翻转为低电平,接着UI 再下降,同理,如此反复。

相关文档
最新文档