学习检测 答案
西城区化学学探诊答案(精选1篇)
西城区化学学探诊答案(精选1篇)以下是网友分享的关于西城区化学学探诊答案的资料1篇,希望对您有所帮助,就爱阅读感谢您的支持。
篇一:北京西城区学探诊电子版和答案.分式第十六章分式测试1 从分数到分式学习要求掌握分式的概念,能求出分式有意义,分式值为0、为1的条件.课堂学习检测一、填空题1.用A 、B 表示两个整式,A ÷B 就可以表示成______的形式,如果除式B 中______,该分式的分式.2.把下列各式写成分式的形式:(1)5÷xy 为______. (2)(3x +2y )÷(x -3y )为______.3.甲每小时做x 个零件,做90个零件所用的时间,可用式子表示成______小时.4.n 公顷麦田共收小麦m 吨,平均每公顷的产量可用式子表示成______吨.5.轮船在静水中每小时走a 千米,水流速度是b 千米/时,轮船在逆流中航行s 千米所需要的时间可用式子表示成______小时.6.当x =______时,分式x没有意义.3x -1x 2-17.当x =______时,分式的值为0.x -18.分式x,当字母x 、y 满足______时,值为1;当字母x ,y 满足______时值为-1.y二、选择题9.使得分式a有意义的a 的取值范围是() a +1C .a ≠-1D .a +1>0A .a ≠0B .a ≠1 10.下列判断错误的是()x +12时,分式有意义33x -2abB .当a ≠b 时,分式2有意义a -b 2A .当x =/C .当x =-12x +1时,分式值为04x 2x 2-y 2D .当x ≠y 时,分式有意义11.使分式A .0x值为0的x 值是()x +5B .5|x |的值为()xC .-5D .x ≠-512.当x <0时,A .1B .-1C .±1 13.x 为任何实数时,下列分式中一定有意义的是()D .不确定A .x 2+1x -1x -1x B .x 2-1C .x +1三、解答题14.下列各式中,哪些是整式?哪些是分式?x -y 3x +y 3x 2-y 2x x +y ; x 2+1; 3; x +y ; -2; (x -1) x ; x -1 π⋅15.x 取什么值时,(x -2)(x -3)x -2的值为0?综合、运用、诊断一、填空题16.当x =______时,分式2x3x -6无意义.17. 使分式2x(x +3) 2有意义的条件为______.18. 分式(x +1) +2有意义的条件为______.19.当______时,分式|x |-4x -4的值为零.20.若分式-67-x的值为正数,则x 满足______.二、选择题21.若x 、y 互为倒数,则用x 表示y 的正确结果是()A .x =-y B .x =1y C .y =1x22.若分式5a -b3a +2b有意义,则a 、b 满足的关系是()A .3a ≠2bB .a =/15bC .b =/-23a 23.式子x 2-x -2的值为0,那么x 的值是()A .2B .-2C .±224.若分式a 2-9a 2-a -6的值为0,则a 的值为()A .3B .-3C .±325.若分式1-b2b 2+1的值是负数,则b 满足() A .b <0 B .b ≥1C .b <1三、解答题26.如果分式|y |-3y 2+2y -3的值为0,求y 的值.D .x -1x 2+1D .y =±1xD .a =/-23b D .不存在D .a ≠-2D .b >127.当x 为何值时,分式28.当x 为何整数时,分式4的值为正整数?2x +11的值为正数?2x +1拓展、探究、思考29.已知分式y -a当y =2时分式的值为0,求当y =-7时分式的值., 当y =-3时无意义,y +b测试2 分式的基本性质学习要求掌握分式的基本性质,并能利用分式的基本性质将分式约分.课堂学习检测一、填空题A A ⨯M =, 其中A 是整式,B 是整式,且B ≠0,M 是______.B B ⨯My2.把分式中的x 和y 都扩大3倍,则分式的值______.x1.x -11-x=⋅3.x -2()5.) 5xy 2=. 4.3x (6.1().=2x +y x -y 21-x ()=⋅y -24-y 2二、选择题a 2-97.把分式约分得()ab +3bA .a +3b +3B .a -3b +3C .a -3bD .a +3b8.如果把分式x +2y中的x 和y 都扩大10倍,那么分式的值()x +y B .缩小10倍A .扩大10倍C .是原来的2 3D .不变9.下列各式中,正确的是()a +m a = b +m b ab +1b -1C .=ac -1c -1A .a +b=0 a +b x -y 1D .2 =2x +y x -yB .三、解答题10.约分:-10ab (1)15ac1. 6x 2y(2)-3. 2x 3ym -1(3)2m -1y 2-4xy +4x 2(4)11.不改变分式的值,使下列分式的分子、分母都不含负号.-3-11y -3x 2-2b (1)(3)⋅; (2);; (4)--5a -15x 5a综合、运用、诊断一、填空题x -9x -y=_____.12.化简分式:(1)_____;(2)=23(y -x ) 9-6x +x13.填空:(1)2-m +n =(m +n)n -m 2a -1; (2) =(-m -n -2b)1-2a⋅2b14.填入适当的代数式,使等式成立.aa +ab -2b () =() . =⋅(1)(2)22a b -a a +b 1-b221+二、选择题15.把分式2x中的x 、y 都扩大m 倍(m ≠0),则分式的值()x -yA .扩大m 倍16.下面四个等式:①B .缩小m 倍C .不变D .不能确定-x +y x -y -x -y x -y -x +y x +y=-; ②=-; ③=-; 222222④-x -y x +y=⋅其中正确的有()2-2B .1个C .2个D .3个A .0个a 2-b 217.化简的正确结果是()a +2ab +b A .a +ba -bB .a -ba +bC .1 2abD .-12ab9a 2b 218.化简分式2后得()3a b -6ab 2A .2a b -2ab 2B .3aba -6ab 2C .3aba -2bD .3ab3a 2b -2b三、解答题19.约分:12a 2(b -a ) 2(1)27(a -b ) 3x 2+3x +2(2)x -x -6m 2-4m (3)x 2-4x +4(4)x -220.不改变分式的值,使分子、分母中次数最高的项的系数都化为正数.-x 2(1)x -y(2)b -a -a21-x -x 2(3)1-x +x3m -m 2(4)-2拓展、探究、思考x x 221.(1)阅读下面解题过程:已知2的值.=, 求4 x +15x +12x x 2+12(x =/0), 5解:=∴1x +x=215, 即x +=⋅x 25x 21114∴4====⋅x +1x 2+(x +) 2-2() 2-217x 2x 2(2)请借鉴(1)中的方法解答下面的题目:x x已知2的值.=2, 求42x -3x +1x +x +12测试3 分式的乘法、除法学习要求1.学会类比方法、总结出分式乘法、除法法则.2.会进行分式的乘法、除法运算.课堂学习检测一、填空题x -xy -3x +3y 8x 9y÷=______.1.⋅(-3) =______.2.22y 2x x 3x ab +b 2⋅a 2-b 21. 2=______.3.÷(a +b ) =______.4.22a +2ab +b a -ab a +b5.已知x =2008,y =2009,则二、选择题6.(x +y )(x 2+y 2)x 4-y 42的值为______.a⋅(n -m ) 的值为()m 2-n 22am +nA .B .am +nC .-am +nD .-am -nab 2-3ax÷7.计算等于()4cd2b 2A .8.当x >1时,化简A .1 3b 2x B .22b 2C .-3a 2b 2x D .-228c d|1-x |得()1-xB .-1C .±1D .0三、计算下列各题5y 9.⋅21xy28x 2m 2-4n 2m 2-2mn 10.2 ÷m -mn m -nx 2-11111.÷.(x -1) 2x -1x +1四、阅读下列解题过程,然后回答后面问题11113.计算:a 2÷b ⨯÷c ⨯÷d ⨯⋅b c d解:a ÷b ⨯2x (3a +2) 25a 2-b 212.⋅5a +b 4x 2-9a 2x 2111÷c ⨯÷d ⨯ b c d=a 2÷1÷1÷1①=a 2.②请判断上述解题过程是否正确?若不正确,请指出在①、②中,错在何处,并给出正确的解题过程.综合、运用、诊断一、填空题2y 2a 114.÷c ⨯_____.15.-3xy ÷_____.b c16.一份稿件,甲单独打字需要a 天完成,乙单独打字需b 天完成,两人共同打需_____天完成.二、选择题17.计算(x -3)(x -2) x -3的结果是()÷22x -1x +xx -2C .2x -xx 2-2x D .x -1x -1x 2-xA .B .2x -2x -2x18.下列各式运算正确的是()A .m ÷n n =m C .B .m ÷n . D .m 3÷1=m n11÷m ⋅m ÷=1 m m三、计算下列各题 a +4 19.(a -16) ÷a -42.1÷m 2=1 m(1-a ) 2a +a 2. 20.a (1-a 2) 2a 4-a 2b 2a 2+ab b 221.2÷.a -2ab +b 2b 222.2x -64-4x +x 2÷(x +3) 2.x -23-x拓展、探究、思考x 2-2xy +y 2x -y23.小明在做一道化简求值题:(xy -x ) ÷. 2, 他不小心把条件x 的值抄x2丢了,只抄了y =-5,你说他能算出这道题的正确结果吗?为什么?测试4 分式的乘法、除法、乘方学习要求掌握乘方的意义,能根据乘方的法则,先乘方,再乘除进行分式运算.课堂学习检测一、填空题1.分式乘方就是________________.-3x 52a 332.() =____________.3.() =____________.2二、选择题22a 234.分式() 的计算结果是()2a 66a 5A .3 B .33b 9b5.下列各式计算正确的是()x 3x A .= y y8a 5C .39b m 6B .2=m 3m8a 6D .27b 3a 2+b 2C .=a +b(a -b ) 3D .=a -b(b -a ) 2n n 2m 26.-2÷⋅的结果是()m nm A .-2nm 2B .-3C .-n 4mD .-n7.计算(-2b 22b 2a 3() ⨯(-) 的结果是()) ⨯b 2a a 8a 8a 316a 2 A .-6 B .-6 C .5b b b16a 2D .-5b三、计算题2a 2b 38.()3c9.() -5a 2y 310.÷(2y 2) 211.(-2a b) 3÷(-24a 2) b四、解答题12.先化简,再求值:4x 2-14x 2+4x +11(1)÷, 其中x =-⋅42-4x xa 4-a 2b 2a (a +b ) b 21(2)其中÷. , a =, b =-1.2b a 2综合、运用、诊断一、填空题a 25b 261713.() ⋅() ⋅() =______.ab) =______.14.(-3ab c ) ÷(-a322二、选择题15.下列各式中正确的是()3x 233x 6A .() =32y2a 24a 2B .() =22a +b a +b m +n 3(m +n ) 3D .( ) =m -nx -y 2x 2-y 2) =2C .( 2x +y x +yb 22n16.(-) (n 为正整数)的值是()b 2+2n b 4n A .2n B .2n a a17.下列分式运算结果正确的是()b 2n +1a b 4nD .-2nam 4n 4m A .5. 3=na c adB .. =b d bc 3x 33x 3D .() =4y 4y2a 24a 2C .() =22a -b a -b三、计算下列各题a b18.(-) 2⋅(2) 2÷(-2ab ) 2 b ab 3n -1c 3a 2n19..20.(a -b 2-a 31) .() ÷22ab b -a a -b四、化简求值21.若m 等于它的倒数,求m 2+4m +4m 2-4÷(m 2+2m m -2) 2.(-m 2) 3的值.拓展、探究、思考52-3a 2ab 336b22.已知|3a +b -1|+(5a -b ) =0. 求() .(32) ÷(-2) 2的值.-a b b 2a .测试5 分式的加减学习要求1.能利用分式的基本性质通分.2.会进行同分母分式的加减法.3.会进行异分母分式的加减法.课堂学习检测一、填空题2a 2b的最简公分母是______., 223b c 9acx -14x +12.分式的最简公分母是______., ,-2x 23x 4x 31.分式3.分式m n的最简公分母是______.,a (m +2)b (m +2)x y的最简公分母是______.,a (x -y )b (y -x )4.分式5.同分母的分式相加减的法则是______.6.异分母的分式相加减,先______,变为______的分式,再加减.二、选择题7.已知x =/0, A .12x111++=()x 2x 3xB .1 6xC .5 6xD .11 6xx 3+a 3-a 3-y 38.+等于()x 3-y 3A .B .x -yC .x 2-xy +y 2D .x 2+y 2 9.b c a-+的计算结果是()a b cb 2-c 2+a 2A .b 2c -ac 2-a 2b B .abcD .b -c +aabcb 2c -ac 2+a 2b C .abc 310.-a -3等于()a -1a 2+2a -6A .1-a-a 2+4a +2-a 2+4a +4a B .C .D .1-a a -1a -1x n +1-x n -11+2等于()11.n +1x xA .1xn +1B .1xn -1C .12xD .1三、解答题12.通分:(1)b a 1, 2,2a 3b 4ab(2)y 2,a (x +2)b (x -2)(3)a 1, 22(a +1) a -a(4)112, 2, 22a +b a -b a -ab四、计算下列各题x 2+2x -4x 2 13.+x -2x 2+4x 2-x -62x 2-2x -514.+-x +3x +33+x15.7312--22x -4x +2x -416.y x+22x -xy y -xy综合、运用、诊断一、填空题122的结果是____________.+2a -93-a 23518. 2+-=____________.3a 4b 6ab17.计算二、选择题19.下列计算结果正确的是()114A .-=x +2x -2(x +2)(x -2)11-2x 2-2=2222 B .222x -y y -x3x 212xy -3x 2C .6x - =D .x -152-3-=2x -93-x x +3c -d c +d c -d -c -d -2d 52aB .-==+=12a +52a +5a a a ax y-=-1x -y y -x20.下列各式中错误的是()A .C .D .x (x -1) 2-1(1-x ) 2=1 x -1三、计算下列各题21.a +2b b 2a+-a -b b -a a -b22.y 2x +z y -z+-x -y +z y -x -z y -x -z232a +1523.++22a +33-2a 4a -9112x -4x 324.--+241-x 1+x 1+x 1+x25.先化简(x +1x 1-) ÷, 再选择一个恰当的x 值代入并求值.x 2-x x 2-2x +1x 拓展、探究、思考26. 已知A B 5x -4+=2, 试求实数A 、B 的值.x -5x +2x -3x -1027.阅读并计算:例:计算:11x (x +1)+1(x +1)(x +2)+1(x +2)(x +3)⋅原式=x x +1x +1x +2113=-=⋅x x +3x (x +3)-1+1-1+1x +2-1x +3仿照上例计算:2x (x +2)+2(x +2)(x +4)+2(x +4)(x +6)⋅测试6 分式的混合运算学习要求1.掌握分式的四则运算法则、运算顺序、运算律.2.能正确进行分式的四则运算.课堂学习检测一、填空题6ab 9a 2b 21.化简______.2.化简=______.=3a b -6ab 2a -4a 211-) ⨯(m 2-1) 的结果是______.m -1m +1x y 4.÷(1-) 的结果是______.y x +y3.计算(二、选择题x -y x 2+y 25.÷22的结果是()x +y x -yx 2+y 2A .26.(x 2+y 2B .2(x -y ) 2C .22(x +y ) 2D .22a -b 2b的结果是()) ⨯2b a -b 21 bA .B .a -b2ab +bC .a -ba +bD .1b (a +b )7.(a +b 2a +b 2a +b的结果是()) ÷() ⨯a -b a -b a -ba -ba +bA .B .a +ba -bC .(a +b 2) a -bD .1三、计算题8.1x+x -11-x9.212+2m -39-m410.x +2+x -21a 2-a +1 11.(a - ) ÷21-a a -2a +1mn mn12.(m +) ÷(m -) m -n m +na 3a 213.(+1) ÷(1-)1-a 2a +1综合、运用、诊断一、填空题1222a -b a +b14.++=______.-=______.15.2a +b a -b m -93-m m +3二、选择题16.(1-m )÷(1-m 2)×(m +1)的结果是()A .1(1+m ) 2B .1(1-m ) 2C .-1D .117.下列各分式运算结果正确的是().5a 3b 210c 525c 4①. =234x 2+1A .①③③1÷(x -3).1x -3x 2+1B .②④=1b 2c 3a 2bc 3a b ax 2-1C .①②④xy . x -1÷x +1=1 xyD .③④18.1-3a 3a 2b-⨯等于()2b 2b 2a a -baA .B .b -ab 1+1C ., N =a3a -2bbD .2b -3a2b19.实数a 、b 满足ab =1,设M =A .M >N 三、解答下列各题20.(y +2y 2-2y+1-y y 2-4y +4a +1b +1B .M =N 1+a 1+b C .M <NN 的大小关系为(), 则M 、D .不确定) ÷y -4y1x +4x 2-x -221.(1+) ÷(-)x 1-x x 2-1四、化简求值x +y x -y 2222.[-(-x -y )]÷, 其中5x +3y =0.3x x +y 3x x拓展、探究、思考23.甲、乙两名采购员去同一家饲料公司购买两次饲料,两次购买时饲料的价格各不相同.两位采购员的购货方式也各不相同,甲每次购买1000千克,乙每次只购买800元的饲料,设两次购买的饲料单价分别为m 元/千克和n 元/千克(m ,n 为正整数,且m ≠n ),那么甲、乙两名采购员两次购得饲料的平均价格分别是多少?谁的购买方法更合算?测试7 整数指数幂学习要求1.掌握零指数幂和负整数指数幂的意义.2.掌握科学记数法.课堂学习检测一、填空题1.32=______,(-) -3=______.-152.(-0.02)0=______,(-10) =______.2005-23.(a 2)3=______(a ≠0),(3) =______,(3-2) -1=______.4.用科学记数法表示:1cm =______m ,2.7mL =______L .5.一种细菌的半径为0.0004m ,用科学记数法表示为______m .--6.用小数表示下列各数:105=______,2.5×103=______.---7.(3a 2b 2)3=______,(-a 2b )2=______.8.纳米是表示微小距离的单位,1米=109纳米,已知某种植物花粉的直径为35000纳米,用科学记数法表示成______m . 二、选择题19.计算(-) -3的结果是()7A .-1 343B .-1 21C .-343D .-2110.下列各数,属于用科学记数法表示的是()----A .20.7×102B .0.35×101C .2004×103D .3.14×105 11.近似数0.33万表示为()-A .3.3×102B .3.3000×103C .3.3×103D .0.33×104 12.下列各式中正确的有()1--①() -2=9; ②22=-4;③a 0=1;④(-1)1=1;⑤(-3)2=36.3A .2个B .3个C .4个D .1个三、解答题13.用科学记数法表示:(1)0.00016 (2)-0.0000312 (3)1000.5 (4)0.00003万14.计算:1-(1)98÷98 (2)103 (3)() 0⨯10-2515.地球的质量为6×1013亿吨,太阳的质量为1.98×1019亿吨,则地球的质量是太阳质量的多少倍(用负指数幂表示)?综合、运用、诊断一、填空题12117.() -1-(2-1) 0+|-3|=______.2--16.() -1+(-π) 0=______,-1+(3.14)0+21=______.-18.计算(a 3)2(ab 2)2并把结果化成只含有正整数指数幂形式为______.19.“神威一号”计算机运算速度为每秒384000000000次,其运算速度用科学记数法表示,为______次/秒.-20.近似数-1.25×103有效数字的个数有______位.二、选择题21.(3-1) +(0. 125)A .2009⨯82009的结果是()B .3-2C .2D .0122.将() -1, (-2) 0, (-3) 2这三个数按从小到大的顺序排列为()6A .(-2) 216-1-1B .()16-12C .(-3)D .(-2)16-1三、解答题23.计算下列各式,并把结果化成只含有正整数指数幂的形式:------(1)(a 2b 3)2(a 2b 3)2 (2)(x 5y 2z 3)2----(3)(5m 2n 3)3(-mn 2)224.用小数表示下列各数:---(1)8.5×103 (2)2.25×108 (3)9.03×105测试8 分式方程的解法学习要求了解分式方程的概念和检验根的意义,会解可化为一元一次方程的分式方程.课堂学习检测一、填空题1.分式方程127若要化为整式方程,在方程两边同乘的最简公分母是+=2 1+x x -1x -1______.2.方程1=1的解是______.x +1x x -2的解是______.=x -5x -61x -1=-3的解?答:______.x -2x -23.方程4.x =2是否为方程5.若分式方程3x a+=1的解是x =0,则a =______.2x -77-2x二、选择题6.下列关于x 的方程中,不是分式方程的是()A .C .1+x =1 xB .3x=4 2x +1x 3x 2x 5D .= +=16x -63457.下列关于x 的方程中,是分式方程的是()A .。
各专题《学习检测》参考答案
7 8 9 10 11 12 13 14 15 √ⅹ√√√ⅹ√√ⅹ 22 23 24 25 26 27 28 29 30 √√ⅹⅹ√√√ⅹ√ 37 38 39 40 41 42 43 44 √ⅹ√ⅹⅹ√√ⅹ
9 10 11 12 13 14 15 16 17 18 19 20 DDBC B AADC BDC
(二)单项选择题 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ACCDBCBB CDACBBD C
专题三——实践与认识及其发展规律
(一)判断题
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 √√ⅹⅹⅹ√√ⅹ√√ⅹ√ⅹ√ⅹ√√√ (二)单项选择题
《学习检测》参考答案
专题一——马克思主义的产生
(一)判断题
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ×√×√××√√×√√√√√√√√××√
(二)单项选择题
1
2
3
4
5
6
7
8
9
10
C
A
Bபைடு நூலகம்
A
A
C
A
B
A
B
专题二——世界的物质性及发展规律
(一)判断题 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 √ × √ × √ √ ××× √ √ ××× √ × 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 × √ √ √ ×× √ √ √ × √ √ × √ √ ×
1
2
3
4
5
6
七上语文自主学习检测
七上语文自主学习检测1.下列加点字的注音完全正确的一项是()。
[单选题] *A. 抖擞(sǒu)应和(hé) 窠巢(kē)润湿(rùn)B. 酝酿(niàng) 黄晕(yùn) 淅沥(xī)筋骨(jīn)(正确答案)C. 蓑衣(suō) 暖和(he) 嘹亮(liáo) 斗笠(lì)D. 风筝(zheng) 繁花(fán) 捉迷藏(cháng) 眨眼(zhǎ)答案解析:A.应和(hè) C.暖和(huo) D.捉迷藏(cáng)2.下列词语有错别字的一项是() [单选题] *A.婉转卖弄瞭亮欣欣然(正确答案)B.赛跑躺着朗润轻悄悄C.眨眼清脆薄烟稀稀疏疏D.静默抖擞健壮花枝招展答案解析:“瞭亮”改为“嘹亮”3.下列句中加点成语使用不当的一项是() [单选题] *A.挑着花篮灯的姑娘们,打扮得花枝招展、艳丽俊俏。
B.下雪了,孩子们呼朋引伴,玩起了打雪仗。
C.秋天快要来了,又到了丰收的季节,到处繁花嫩叶,风景迷人。
(正确答案)D.他走路时总是昂首挺胸,精神抖擞。
答案解析:繁花嫩叶:花儿繁茂叶子嫩绿,形容花十分美丽妖媚,生命力旺盛,不适合用在秋天。
4.“无常”这个“鬼而人,理而情”的形象受到民众的喜爱,主要原因是()[单选题] *A.形象好看B.活泼诙谐C.能勾摄恶人魂魄D.公正的裁判是在阴间(正确答案)答案解析:无5.《藤野先生》一文中作者弃医从文的原因是() [单选题] *A.受到日本同学歧视B.先生不重视自己C.要拯救国民的精神(正确答案)D.学医太难答案解析:无6.阿长的性格给我们留下了深刻的印象,下列不属于阿长性格特点的一项是()[单选题] *A.迷信B.不拘小节C.马虎(正确答案)D.朴实答案解析:无7.下列文章不属于《朝花夕拾》的是() [单选题] *A.《风筝》(正确答案)B.《无常》C.《父亲的病》D.《藤野先生》答案解析:无8.范爱农和鲁迅初次相识的地点是() [单选题] *A.东京B.北平C.横滨(正确答案)D.绍兴答案解析:无9.《朝花夕拾》中,鲁迅借众鬼嘲弄人生,用阴间讽刺阳世,对“正人君子”进行了淋漓尽致的嘲弄和鞭挞的文章是() [单选题] *A.《琐记》B.《无常》(正确答案)C.《二十四孝图》D.《狗·猫·鼠》答案解析:无10.下列文章中不曾提及“长妈妈”的篇目是() [单选题] *A.《狗·猫·鼠》B.《五猖会》C.《二十四孝图》D.《琐记》(正确答案)答案解析:无11.“这是一个高大身材,长头发,眼球白多黑少的人,看人总像在渺视”。
七年级数学学探诊(有答案)
第十五章整式测试1 同底数幂的乘法学习要求会用同底数幂的乘法性质进行计算.课堂学习检测一、填空题1.同底数的幂相乘,______不变,______相加.2.直接写出结果:(1)104×105=______;m3·m6=______;a8·a=______;(2)102×107×10=______;y3·y4·y=______;(3)(-b)3·(-b)=______;(-a)3·(-a)5·(-a)=______.3.若a3·a m=a8,则m=______;若33x+1=81,则x=______.二、选择题4.b3·b3的值是( ).(A)b9(B)2b3(C)b6(D)2b6 5.(-c)3·(-c)5的值是( ).(A)-c8(B)(-c)15(C)c15(D)c8三、判断题6.a3·a3=2a3.( ) 7.y3+y3=y6.( )8.m4·m3=m12.( ) 9.(-c)3·(-c)4=-c7.( )四、计算题10.23×23×2.11.x n·x n+1·x n-1.12.(-m)·(-m)2·(-m)3.13.(a-b)·(a-b)3·(a-b)2.14.a2·a3+a·a4+a5.15.a·a4-3a2·a·a2.综合、运用、诊断一、填空题16.直接写出结果:(1)m·m n·m2=______;(2)b m+2·b2·b=______;(3)-x3·x·x7=______;(4)(-x3)·(-x)4=______;(5)-m2·(-m)3=______;(6)-(-c)3·(-c)=______;(7)23·2(______)=256;(8)(-a)2·(______)=-a5.17.若2m=6,2n=5,则2m+n=______.二、计算题18.1000×10a+2×10a-1.19.x4·(-x)3+(-x)6·(-x).20.25×54-125×53.21.(-2)2009+(-2)2010.拓展、探究、思考22.回答下列问题:(1)(-a)n与-a n相等吗?(2)(a-b)n与(b-a)n相等吗?(3)根据以上结论计算①(m-2n)4·(2n-m)2;②(m-n)4·(n-m)3.测试2 幂的乘方学习要求会用幂的乘方性质进行计算.课堂学习检测一、填空题1.幂的乘方,______不变,指数______.2.直接写出结果:(1)(102)3=_______;(2)(a4)3=_______;(3)(3n)3=_______;(4)[(-2)2]3=______;(5)[(-n)3]3=______;(6)(-32)5=______.3.用“=”或“≠”把下列两个式子连接起来:(1)m3·m3______m9;(2)(a4)4______a4·a4;(3)(a2)5______(a5)2;(4)a2·a2______(a2)2;(5)(-a2)3______(-a3)2;(6)[(-b)2]3______[(-b)3]2.二、选择题4.下列计算正确的是( ).(A)(x2)3=x5 (B)(x3)5=x15(C)x4·x5=x20(D)-(-x3)2=x65.(-a5)2+(-a2)5的结果是( ).(A)0 (B)-2a7(C)2a10(D)-2a10三、计算题6.(x2)3·x4.7.2(x n-1)2·x n.8.(x3)4-3(x6)2.9.m·(-m3)2·(-m2)3.10.[(-2)3]4·(-2)2.11.[(x-y)2·(x-y)n-1]2.12.[(a-b)3]2-[(b-a)2]3.综合、运用、诊断一、填空题13.直接写出结果:(1)3(x2)4=_______;(2)[(a+b)3]4=_______;(3)(x2m)4n=_______;(4)x4·(x2)5=_______;(5)(c2)m+1·c m+4=_______.14.化简(-x-y)2m(-x-y)3=_______.(m为正整数)15.若(a3)x·a=a19,则x=_______.16.已知a3n=5,那么a6n=______.二、选择题17.下列算式计算正确的是( ).(A)(a3)3=a3+3=a6(B)(-x2)n=x2n(C)(-y2)3=(-y)6=y6(D)[(c3)3]3=c3×3×3=c27三、计算题18.9(a3)2·(-a)2·(-b2)2+(-2)4·(a2)4·b4.四、解答题19.(1)若16x=216,求x的值;(2)若(9a)2=38,求a的值.拓展、探究、思考20.(1)若10α=2,10β=3,求102α+3β 的值;(2)若2x+5y-3=0,求4x·32y的值.21.比较大小:3555,4444,5333.测试3 积的乘方学习要求会用积的乘方性质进行计算.课堂学习检测一、填空题1.积的乘方,等于把积的每个因式______,再把所得的幂______. 2.直接写出答案:(1)(3×10)2=_______; (2)(mn )6=_______;(3)(b 4c )9=_______; (4)(-2x )2=_______; (5)32)51(b a -=_______;(6)[(-2xy 3)2]2=_______. 二、选择题3.下列计算正确的是( ). (A)(xy )3=xy 3 (B)(-5xy 2)2=-5x 2y 4 (C)(-3x 2)2=-9x 4(D)(-2xy 2)3=-8x 3y 6 4.若(2a m b n )3=8a 9b 15成立,则( ). (A)m =6,n =12 (B)m =3,n =12 (C)m =3,n =5(D)m =6,n =55.下列计算中,错误的个数是( ).①(3x 3)2=6x 6 ②(-5a 5b 5)2=-25a 10b 10 ③3338)32(x x -=- ④(3x 2y 3)4=81x 6y 7 ⑤x 2·x 3=x 5 (A)2个 (B)3个(C)4个(D)5个三、计算题6..)4()21(2332a a ⋅ 7.-(-2xy 2)3(-y 3)5.8.(x 2y 3)3+(-2x 3y 2)2·y 5. 9.(-2a )6-(-2a 3)2-[(-2a )2]3.四、解答题 10.当41=a ,b =4时,求代数式32233)21()(ab b a -+-的值. 综合、运用、诊断一、填空题11.化简:(1)33331)31(b a ab +-=_______;(2)(3a 2)3+(a 2)2·a 2=_______.12.直接写出结果:(1)(______)n =3n a 2n b 3n ; (2)x 10y 11=(______)5·y ; (3)若2n =a ,3n =b ,则6n =______. 二、选择题13.下列等式正确的个数是( ).①(-2x 2y 3)3=-6x 6y 9 ②(-a 2m )3=a 6m ③(3a 6)3=3a 9④(5×105)×(7×107)=35×1035 ⑤(-0.5)100×2101=(-0.5×2)100×2 (A)1个 (B)2个 (C)3个 (D)4个 三、计算题14.[-(a 2b )3·a ]3. 15.(4x 2y )3·(0.125xy 3)2. 16.52009×(-0.2)2010. 17..)21(6)31(675-⨯⨯- 四、解答题 18.若4)31()9(832=⋅x,求x 3的值.拓展、探究、思考19.比较216×310与210×314的大小. 20.若3x +1·2x -3x ·2x +1=22·32,求x .测试4 整式的乘法(一)学习要求会进行单项式的乘法计算.课堂学习检测一、填空题1.单项式相乘,把它们的__________分别相乘,对于只在一个单项式里含有的字母,则__________. 2.直接写出结果:(1)3ab 2·2a 2b 2=_______; (2)xyz y x 165.5232=_______; (3)5y ·(-4xy 2)=_______; (4)(-3a 2b )·(-5a 4)=_______;(5))92()2()23(2322c b a b a -⋅⋅-=_______;(6)(-a 2)·(4a 4)2=_______. 3.用科学记数法表示:(3×105)×(5×102)=_______. 4.已知a =2010,b 是a 的倒数,则(a n b 2)·ab n -2=_______. 二、选择题5.下列算式中正确的是( ). (A)3a 3·2a 2=6a 6 (B)2x 3·4x 5=8x 8 (C)3x ·3x 4=9x 4(D)5y 7·5y 7=10y 146.21-m 2n ·(-mn 2x )的结果是( ). (A)x n m 2421 (B)3321n m(C)x n m 3321 (D)x n m 3321-7.若(8×106)×(5×102)×(2×10)=M ×10a ,则M 、a 的值为( ).(A)M =8,a =10 (B)M =8,a =8 (C)M =2,a =9(D)M =5,a =10三、计算题8.).21()103(2333c ab bc a ⋅ 9.(4x m +1z 3)·(-2x 2yz 2).10.).32()43(5433c ab b a ab -⋅-⋅11.[4(a -b )m -1]·[-3(a -b )2m ].综合、运用、诊断 一、填空题 12.直接写出结果:(1)(-4a n -1b )·(-3a )=_______; (2))43()32()3(22xy y x x -⋅-⋅-=______;(3)(-2a 4)3·(3ab 3)3=______; (4))1031()103(322⨯⨯⨯=______;(5)(-x 2y m )2·(xy )3=______;(6)(-a 3-a 3-a 3)2=______.13.已知x 3a =3,则x 6a +x 4a ·x 5a =______. 二、选择题14.如果单项式-3x 2a -b y 2与31x 3a+by 5a+8b是同类项,那么这两个单项式的积是( ).(A)-x 10y 4(B)-x 6y 4(C)-x 25y 4(D)-x 5y 215.下列各题中,计算正确的是( ).(A)(-m 3)2(-n 2)3=m 6n 6 (B)(-m 2n )3(-mn 2)3=-m 9n 9 (C)(-m 2n )2(-mn 2)3=-m 9n 8 (D)[(-m 3)2(-n 2)3]3=-m 18n 18三、计算题16.-(-2x 3y 2)2·(-23x 2y 3)2. 17.(-2x m y n )·(-x 2y n )2·(-3xy 2)3. 18.(2a 3b 2)2+(-3ab 3)·(5a 5b ). 19.(-5x 3)·(-2x 2)·41x 4-2x 4·(-41x 5).0.-43(-2x 2y )2·(-31xy )-(-xy )3·(-x 2).21.-2[(-x )2y ]2(-3x m y n ).拓展、探究、思考22.若x =2m +1,y =3+4m ;(1)请用含x 的代数式表示y ; (2)如果x =4,求此时y 的值.测试5 整式的乘法(二)学习要求会进行单项式与多项式的乘法计算.课堂学习检测一、填空题1.单项式与多项式相乘,就是用单项式去乘_______,再把所得的积_______. 2.直接写出结果:(1)5(m +n -5)=_______; (2)-2a (a -b 2+c 3)=_______; (3)(-2a +3b )·(-4ab )=_______;(4))21()864(2x x x-⋅-+-=_______. 二、选择题3.整式a m (a m -a 2+7)的结果是( ).(A)a 2m -a 2m +7a m(B)2m a -a 2m +7a m (C)a 2m -a 2+m +7a m(D)2m a-a m +2+7a m4.化简a (b -c )-b (c -a )+c (a -b )的结果是( ). (A)2ab +2bc +2ac (B)2ab -2bc (C)2ab(D)-2bc5.方程2x (x -1)-x (2x -5)=12的解为( ). (A)x =2 (B)x =1 (C)x =-3 (D)x =4 三、计算题6.2a 2-a (2a -5b )-b (5a -b ). 7.2(a 2b 2-ab +1)+3ab (1-ab ).8.(-2a 2b )2(ab 2-a 2b +a 2). 9.-(-x )2·(-2x 2y )3+2x 2(x 6y 3-1).四、解答题10.已知m =-1,n =2时,代数式)43253(4)12(562---+-+--n m m n m m m的值是多少?11.若n 为自然数,试说明整式n (2n +1)-2n (n -1)的值一定是3的倍数.综合、运用、诊断-、填空题12.直接写出结果:(1)-ab (-a 2b 2+ab -1)=_________;(2))6()63121(2ab ab b a ab -⋅--=_________; (3)(2ab 2-3a 2b )·(3ab )2=_________; (4)(-2y )3(4x 2y -2xy 2)=_________. 二、选择题13.要使x (x +a )+3x -2b =x 2+5x +4成立,则a ,b 的值分别是( ).(A)a =-2,b =-2 (B)a =2,b =2 (C)a =2,b =-2 (D)a =-2,b =214.如果x 2与-2y 2的和为m ,1+y 2与-2x 2的差为n ,那么2m -4n 化简后为( )(A)-6x 2-8y 2-4 (B)10x 2-8y 2-4 (C)-6x 2-8y 2+4 (D)10x 2-8y 2+4 15.如图,用代数式表示阴影部分面积为( ).(A)ab (B)ac +bc(C)ac +(b -c )c (D)(a -c )(b -c )三、计算题16.4a -3[a -3(4-2a )+8].17.).3()]21(2)3([322b a b b a b ab -⋅--- 18.)].21(36[32y x xy xy xy --19..6)6121(2)2143(2121xy y x xy y x n n ⋅--⋅-++四、解答题20.解方程2x (x -2)-6x (x -1)=4x (1-x )+16.21.解不等式2x 2(x -2)+4(x 2-x )≥x (2x 2+5)-3.22.已知ax (5x -3x 2y +by )=10x 2-6x 3y +2xy ,求a ,b 的值.拓展、探究、思考23.通过对代数式进行适当变化求出代数式的值(1)若x +5y =6,求x 2+5xy +30y ;(2)若m 2+m -1=0,求m 3+2m 2+2009;(3)若2x +y =0,求4x 3+2xy (x +y )+y 3.测试6 整式的乘法(三)学习要求会进行多项式的乘法计算.课堂学习检测一、填空题1.多项式与多项式相乘,先用_______乘以_______,再把所得的积______. 2.直接写出结果:(1)(a +b )(m +n )=_______;(2)(a +2b )(x +y )=_______; (3)(m +n )(3y -a )=_______;(4)(y -3)(y +4)=_______. 二、选择题3.下面计算正确的是( ). (A)(2a +b )(2a -b )=2a 2-b 2 (B)(-a -b )(a +b )=a 2-b 2 (C)(a -3b )(3a -b )=3a 2-10ab +3b 2 (D)(a -b )(a 2-ab +b 2)=a 3-b 3 4.已知(2x +1)(x -3)=2x 2-mx -3,那么m 的值为( ). (A)-2 (B)2 (C)-5 (D)5 三、计算题 5.(2x +3y )(x -y ).6.).214)(221(-+x x7.(a +3b 2)(a 2-3b ). 8.(5x 3-4y 2)(5x 3+4y 2).9.(x 2+xy +y 2)(x -y ). 10.(x -1)(x +1)(2x +1).四、解答题11.若a =-2,则代数式(3a +1)(2a -3)-(4a -5)(a -4)的值是多少?12.已知(x -1)(2-kx )的结果中不含有x 的一次项,求k 的值.综合、运用、诊断一、选择题13.设M =(x -3)(x -7),N =(x -2)(x -8),则M 与N 的关系为( ).(A)M <N (B)M >N (C)M =N (D)不能确定 14.方程(x +4)(x -5)=x 2-20的解为( ).(A)x =0 (B)x =-4 (C)x =5 (D)x =40 二、计算题15.).12)(5(21+--a a16.-3(2x +3y )(7y -x ).17.)33)(2(3+-bb a .18.(3a +2)(a -4)-3(a -2)(a -1).三、解答题19.先化简,再求值:4x (y -x )+(2x +y )(2x -y ),其中x =21,y =-2.20.解不等式(x -3)(x +4)+22>(x +1)(x +2).21.在(x 2+ax +b )(2x 2-3x -1)的积中,x 3项的系数是-5,x 2项的系数是-6,求a 、b .22.已知(x 2+px +8)(x 2-3x +q )的展开式中不含x 2和x 3项,求p 、q 的值.拓展、探究、思考23.回答下列问题:(1)计算:①(x +2)(x +3)=________;②(x +3)(x +7)=______;③(a +7)(a -10)=_______;④(x -5)(x -6)=______.(2)由(1)的结果,直接写出下列计算的结果:①(x +1)(x +3)=______; ②(x -2)(x -3)=______;③(x +2)(x -5)=______; ④)31)(21(+-m m =______. (3)总结公式:(x +a )(x +b )=____________.(4)已知a ,b ,m 均为整数,且(x +a )(x +b )=x 2+mx +36,求m 的所有可能值.24.计算:(x -1)(x +1)=_________;(x -1)(x 2+x +1)=__________; (x -1)(x 3+x 2+x +1)=__________; (x -1)(x 4+x 3+x 2+x +1)=__________; ……猜想:(x -1)(x n +x n -1+x n -2+…+x 2+x +1)=_________.测试7 平方差公式学习要求会运用平方差公式进行计算.课堂学习检测一、填空题1.直接写出结果:(1)(x +2)(x -2)=_______; (2)(2x +5y )(2x -5y )=______; (3)(x -ab )(x +ab )=_______; (4)(12+b 2)(b 2-12)=______. 2.先观察、再计算:(1)(x +y )(x -y )=______; (2)(y +x )(x -y )=______; (3)(y -x )(y +x )=______; (4)(x +y )(-y +x )=______; (5)(x -y )(-x -y )=______; (6)(-x -y )(-x +y )=______. 二、选择题3.下列各多项式相乘,可以用平方差公式的有( ). ①(-2ab +5x )(5x +2ab ) ②(ax -y )(-ax -y ) ③(-ab -c )(ab -c ) ④(m +n )(-m -n ) (A)4个 (B)3个 (C)2个 (D)1个 4.若x +y =6,x -y =5,则x 2-y 2等于( ). (A)11 (B)15 (C)30 (D)60 5.下列计算正确的是( ). (A)(5-m )(5+m )=m 2-25 (B)(1-3m )(1+3m )=1-3m 2 (C)(-4-3n )(-4+3n )=-9n 2+16 (D)(2ab -n )(2ab +n )=4ab 2-n 2 三、计算题 6.).23)(23(22ba b a -+ 7.(x n -2)(x n +2).8.).3243)(4332(m n n m +-+ 9.⋅+-323.232xy y x10.).24)(24(y x y x --- 11.(-m 2n +2)(-m 2n -2).四、解答题12.应用公式计算:(1)103×97;(2)1.02×0.98;(3)⋅⨯769711013.当x =1,y =2时,求(2x -y )(2x +y )-(x +2y )(2y -x )的值.综合、运用、诊断一、填空题 14.)23)(23(aa ++-=_______. 15.(-3x -5y )(-3x +5y )=______.16.在括号中填上适当的整式:(1)(x +5)(______)=x 2-25; (2)(m -n )(______)=n 2-m 2; (3)(-1-3x )(______)=1-9x 2; (4)(a +2b )(______)=4b 2-a 2. 二、选择题17.下列各式中能使用平方差公式的是( ).(A)(x 2-y 2)(y 2+x 2)(B))5121)(5121(3232n m n m +--(C)(-2x -3y )(2x +3y ) (D)(4x -3y )(-3y +4x ) 18.下面计算(-7+a +b )(-7-a -b )正确的是( ).(A)原式=(-7+a +b )[-7-(a +b )]=-72-(a +b )2 (B)原式=(-7+a +b )[-7-(a +b )]=72+(a +b )2 (C)原式=[-(7-a -b )][-(7+a +b )]=72-(a +b )2 (D)原式=[-(7+a )+b ][-(7+a )-b ]=(7+a )2-b 2 19.(a +3)(a 2+9)(a -3)的计算结果是( ).(A)a 4+81 (B)-a 4-81 (C)a 4-81 (D)81-a 4 三、计算题20.).321)(213(2222a b b a +---21.(x +1)(x 2+1)(x -1)(x 4+1).22.(m -2n )(2n +m )-(-3m -4n )(4n -3m ).拓展、探究、思考23.巧算:(1);21)211)(211)(211)(211(15842+++++(2)(3+1)(32+1)(34+1)(38+1)…(n23+1).24.已知:x ,y 为正整数,且4x 2-9y 2=31,你能求出x ,y 的值吗?试一试.测试8 完全平方公式学习要求会运用完全平方公式进行计算,巩固乘法公式的使用.课堂学习检测一、填空题1.直接写出结果:(1)(x +5)2=_______;(2)(3m +2n )2=_______; (3)(x -3y )2=_______;(4)2)32(b a -=_______; (5)(-x +y )2=______;(6)(-x -y )2=______. 2.若9x 2+4y 2=(3x +2y )2+M ,则M =______. 二、选择题3.下列多项式不是完全平方式的是( ). (A)x 2-4x -4(B)m m ++241(C)9a 2+6ab +b 2(D)4t 2+12t +94.下列等式能够成立的是( ). (A)(a -b )2=(-a -b )2 (B)(x -y )2=x 2-y 2(C)(m -n )2=(n -m )2(D)(x -y )(x +y )=(-x -y )(x -y ) 5.下列等式不能恒成立的是( ). (A)(3x -y )2=9x 2-6xy +y 2 (B)(a +b -c )2=(c -a -b )2 (C)22241)21(n mn m n m +-=- (D)(x -y )(x +y )(x 2-y 2)=x 4-y 4三、计算题 6..)3243(2y x + 7.(3mn -5ab )2.8.(5a 2-b 4)2. 9.(-3x 2+5y )2.10.(-4x 3-7y 2)2. 11.(y -3)2-2(y +2)(y -2).四、解答题12.用适当方法计算:(1)2)2140(; (2)2992.13.若a +b =17,ab =60,求(a -b )2和a 2+b 2的值.综合、运用、诊断一、填空题14.(1)x 2-10x +______=( -5)2:(2)x 2+______+16=(______-4)2; (3)x 2-x +______=(x -______)2; (4)4x 2+______+9=(______+3)2.15.多项式x 2-8x +k 是一个完全平方式,则k =______. 16.若x 2+2ax +16是一个完全平方式,则a =______. 二、选择题17.下列式子不能成立的有( )个.①(x -y )2=(y -x )2 ②(a -2b )2=a 2-4b 2 ③(a -b )3=(b -a )(a -b )2 ④(x +y )(x -y )=(-x -y )(-x +y ) ⑤1-(1+x )2=-x 2-2x (A)1 (B)2 (C)3 (D)4 18.计算2)22(b a -的结果与下面计算结果一样的是( ). (A)2)(21b a - (B)ab b a -+2)(21(C)ab b a +-2)(41 (D)ab b a -+2)(41三、计算题19.(2a +1)2(2a -1)2. 20.(x -2y )2+2(x +2y )(x -2y )+(x +2y )2.21.(a +b +2c )(a +b -2c ). 22.(x +2y -z )(x -2y +z ).23.(a +b +c )2. 24..)312(2+-y x四、解答题25.一长方形场地内要修建一个正方形花坛,预计花坛边长比场地的长少8米、宽少6米,且场地面积比花坛面积大104平方米,求长方形的长和宽.26.回答下列问题:(1)填空:-+=+222)1(1x x x x ______=+-2)1(x x ______.(2)若51=+a a ,则221aa +的值是多少?(3)若a 2-3a +1=0,则221aa +的值是多少?拓展、探究、思考27.若x 2-2x +10+y 2+6y =0,求(2x -y )2的值.28.若a 4+b 4+a 2b 2=5,ab =2,求a 2+b 2的值.29.若△ABC 三边a ,b ,c 满足a 2+b 2+c 2=ab +bc +ca ,试问△ABC 的三边有何关系?测试9 同底数幂的除法学习要求会用同底数幂的除法性质进行计算.课堂学习检测一、填空题1.同底数幂相除,底数______,指数______.2.任何不等于0的数的0次幂都等于______,即a 0=______(a ≠0). 3.直接写出结果: (1)x 5÷x 2=______; (2)y 9÷y 8=______; (3)a 12÷a 12=_______; (4)(-c )4÷(-c )=_______;(5)(xy )8÷(xy )3=_______; (6)(-x )13÷x 12=_______; (7))2()21(4yy ÷=_______; (8)(-ax )5÷(ax )3=_______;(9)(a -b )3÷(a -b )=_______; (10)(π-3.14)0=_______.二、选择题4.下列计算不正确的是( ).(A)x 3m ÷x 3m -1=x (B)x 12÷x 6=x 2 (C)x 10÷(-x )2÷x 3=x 5 (D)x 3m ÷(x 3)m =1 5.如果将a 8写成下列各式,那么正确的有( ).①a 4+a 4 ②(a 2)4 ③a 16÷a 2 ④(a 4)2 ⑤(a 4)4 ⑥a 4·a 4 ⑦a 20÷a 12 ⑧2a 8-a 8 (A)7个 (B)6个 (C)5个 (D)4个 三、判断题(a ≠0) 6.a 6÷a 2=a 3.( ) 7.(-a )2÷a 2=-1.( ) 8.a 3÷1=a 2.( ) 9.54÷54=0.( ) 10.(-a )3÷(-a )2=-a .( ) 11.(a -3)0=1(a ≠3).( )四、计算题 12.(a 6)2÷a 5. 13.(x 2)3÷(x 3)2.14.(ab 2)4÷(ab 2)2. 15.[(a 2)3]4÷a 5.16.x 4m ÷x m ·x 2m . 17.(x 3·x 2·x 2)÷x 6.综合、运用、诊断一、填空题18.直接写出结果:(1)(-a 5)÷(-a )3=_______; (2)-a 4÷(-a )2=_______;(3)x 10÷x 4÷x 2=_______; (4)10n ÷10n -2=_______;(5)(a 3)m ÷a m =_______; (6)(y -x )2n ÷(x -y )n -1=_______. 19.若2(x -2)0有意义,则x ______________. 二、选择题20.下列计算中正确的是( ).(A)x a +2÷x a +1=x 2 (B)(xy )6÷(xy )3=x 2y 2(C)x 12÷(x 5÷x 2)=x 9 (D)(x 4n ÷x 2n )·x 3n =x 3n +221.若(y 2)m ·(x n +1)÷x ·y =xy 3,则m ,n 的值是( ).(A)m =n =1 (B)m =n =2 (C)m =1,n =2 (D)m =2,n =1 三、计算题22.[(x 3)2·(-x 4)3]÷(-x 6)3. 23.(x m ·x 2n )2÷(-x m +n ).24.(m -2n )4÷(2n -m )2. 25.(m -n )4÷(n -m )3.四、解答题26.(1)已知10m =3,10n =2,求102m -n 的值. (2)已知32m =6,9n =8,求36m -4n 的值.27.学校图书馆藏书约3.6×104册,学校现有师生约1.8×103人,每个教师或学生假期平均最多可以借阅多少册图书?拓展、探究、思考28.若2x =3,2y =6,2z =12,求x ,y ,z 之间的数量关系.29.若(a -1)a =1,求a 的值.30.已知999999=P ,909911=Q ,那么P ,Q 的大小关系怎样?为什么?测试10 整式的除法(一)学习要求会进行单项式除以单项式的计算.课堂学习检测一、判断题1.x 3n ÷x n =x 3.( ) 2.10x 4÷7x =0.7x 3.( ) 3..2121)(2x xy y x -=÷- ( ) 4.8a 8÷4a 4=2a 4.( ) 5.26÷42×162=512.( )6.(3ab 2)3÷3ab 3=9a 3b 3.( )二、选择题7.28a 4b 2÷7a 3b 的结果是( ). (A)4ab 2 (B)4a 4b(C)4a 2b 2 (D)4ab8.25a 3b 2÷5(ab )2的结果是( ). (A)a (B)5a (C)5a 2b (D)5a 2三、计算题9.-8x 4÷3x 2. 10.(-12a 5b 2c )÷(-3a 2b ).11..2383342ab b a ÷12..5.0)21(2242y x y x ÷-13.10a 3÷(-5a )2. 14.(4x 2y 3)2÷(-2xy 2)2.四、解答题15.先化简,再求值:[5a 4·a 2-(3a 6)2÷(a 2)3]÷(-2a 2)2,其中a =-5.综合、运用、诊断一、选择题 16.)21(43224yz x z y x -÷-的结果是( ). (A)8xyz (B)-8xyz (C)2xyz(D)8xy 2z 217.下列计算中错误的是( ).(A)4a 5b 3c 2÷(-2a 2bc )2=ab(B)(-24a 2b 3)÷(-3a 2b )·2a =16ab 2 (C)214)21(4222-=÷-⋅y x y y x (D)3658410221)()(a a a a a a=÷÷÷÷ 二、计算题18.(1.2×107)÷(5×104).19.(2a )3·b 4÷12a 3b 2.20.7m 2·(4m 3p 4)÷7m 5p . 21.(-2a 2)3[-(-a )4]2÷a 8.22.].)(21[)(122+++÷+n n y x y x23.⋅⨯⨯mmm m 42372三、解答题24.若22372288b b a b a nm=÷,求m ,n 的值.拓展、探究、思考25.已知x 2=x +1,求代数式x 5-5x +2的值.测试11 整式的除法(二)学习要求会进行多项式除以单项式的计算.课堂学习检测一、填空题1.直接写出结果:(1)(4x 2-8x +6)÷2=___________;(2)(28b 3-14b 2+21b )÷7b =___________; (3)(9a 3+6a 2-12a +3)÷(-3)=___________; (4)(6x 4y 3-8x 3y 2+9x 2y )÷(-2xy )=___________.2.已知A 是关于x 的四次多项式,且A ÷x =B ,那么B 是关于x 的_______次多项式. 二、选择题3.下列计算正确的是( ).(A)(-3x n +1y n z )÷(-3x n +1y n z )=0 (B)(15x 2y -10xy 2)÷(-5xy )=3x -2y (C)x xy xy y x 216)63(2=÷- (D)231123931)3(x x x x xn n n +=÷+-++ 4.已知7x 5y 3与一个多项式之积是28x 7y 3+98x 6y 5-21x 5y 5,则这个多项式是( ). (A)4x 2-3y 2 (B)4x 2y -3xy 2 (C)4x 2-3y 2+14xy 2 (D)4x 2-3y 2+7xy 3 三、计算题5..53)1095643(354336ax ax x a x a ÷-+-6.[2m (7n 3m 3)2+28m 7n 3-21m 5n 3]÷(-7m 5n 3).7.[(m +n -p )(m +p +n )-(m +n )2]÷(-p ).四、解答题8.先化简,再求值:[(3a +2b )(3a -2b )-(a +2b )(5a -2b )]÷4a ,其中a =2,b =-3.综合、运用、诊断一、填空题9.直接写出结果:(1)[(-a 2)3-a 2(-a 2)]÷(-a )2=____________;(2)(-81x n +5+15x n +1-3x n -1)÷(-3x n -1)=_____________; (3)(____________)·(-4x 2y 3)=8x 5y 4-2x 4y 5-12x 2y 7. 10.若M (a -b )3=(a 2-b 2)3,那么整式M =____________. 二、计算题11.[(m +n )(m -n )-(m -n )2+2n (m -n )]÷4n .12..9]31)3(2)3[(8723223242y x y y x x x y x ÷⋅-⋅-三、解答题 13.当21=a ,b =-1时,求(a 2b -2ab 2-b 3)÷b -(a +b )(a -b )的值.拓展、探究、思考14.已知多项式A =1343x -258,B =x 2+5x -1,C =2x 3-10x 2+51x -259,D =2x 5-x 3+6x 2-3x +1,你能用等号和运算符号把它们连接起来吗?参考答案第十五章 整式测试11.底数,指数. 2.(1)109;m 9;a 9.(2)1010;y 8.(3)b 4;-a 9.3.5;1. 4.C . 5.D . 6.×. 7.×. 8.×. 9.√. 10.128.11.x 3n . 12.m 6. 13.(a -b )6. 14.3a 5. 15.-2a 5.16.(1)m n +3. (2)b m +5.(3)-x 11.(4)-x 7.(5)m 5.(6)-c 4.(7)5.(8)-a 3.17.30. 18.102a +4. 19.-2x 7. 20.0. 21.22009.22.(1)(-a )n =⎪⎩⎪⎨⎧-)()(为正奇数为正偶数n n n a a . (2)⎪⎩⎪⎨⎧---=-)()()()()(为正奇数为正偶数n b a b a a b n n n (3)①(m -2n )6.②-(m -n )7.测试21.底数,相乘. 2.(1)106;(2)a 12;(3)33n ;(4)64;(5)-n 9;(6)-310.3.(1)≠;(2)≠;(3)=;(4)=;(5)≠;(6)=.4.B . 5.A . 6.x 10. 7.2x 3n -2. 8.-2x 12. 9.-m 13. 10.214.11.(x -y )2n +2. 12.0. 13.(1)3x 8;(2)(a +b )12;(3)x 8mn ;(4)x 14;(5)c 3m +6.14.-(x +y )2m +3 15.6. 16.25. 17.D .18.25a 8b 4. 19.(1)x =4;(2)a =2. 20.(1)108;(2)8. 21.5333<3555<4444.测试31.分别乘方;相乘.2.(1)9×102;(2)m 6n 6;(3)b 36c 9;(4)4x 2;(5)361251b a -;(6)16x 4y 12. 3.D . 4.C . 5.C . 6.2a 12.7.-8x 3y 21. 8.5x 6y 9. 9.-4a 6. 10.56.11.(1)33278b a ;(2)28a 6. 12.(1)3a 2b 3;(2)x 2y 2;(3)ab . 13.A . 14.-a 21b 9. 15.x 8y 9. 16.0.2. 17.-18. 18.±6. 19.216×310<210×314. 20.2.测试41.系数、相同字母的幂,连同它的指数作为积的一个因式.2.(1)6a 3b 4;(2)z y x 4381;(3)-20xy 3;(4)15a 6b ;(5)c b a 4532;(6)-16a 10. 3.1.5×108. 4.2010. 5.B . 6.C . 7.A . 8.544203c b a . 9.-8x m +3yz 5. 10.c b a 8525. 11.-12(a -b )3m -1. 12.(1)12a n b ;(2)3423y x -;(3)-216a 15b 9;(4)3×107;(5)x 7y 2m +3;(6)9a 6. 13.36. 14.A . 15.D . 16.-9x 10y 10.17.54x m +7y 3n +6. 18.-11a 6b 4. 19.3x 9. 20.0. 21.6x m +4y n +2.22.(1)y =(x -1)2+3;(2)12.测试51.多项式的每一项,相加.2.(1)5m +5n -25;(2)-2a 2+2ab 2-2ac 3;(3)8a 2b -12ab 2;(4)2x 3-3x 2+4x .3.C . 4.B . 5.D . 6.b 2.7.-a 2b 2+ab +2. 8.4a 5b 4-4a 6b 3+4a 6b 2. 9.10x 8y 3-2x 2. 10.27.11.3n 是3的倍数.12.(1)a 3b 3-a 2b 2+ab ;(2)33a 2b 2+2a 3b 2;(3)18a 3b 4-27a 4b 3;(4)-32x 2y 4+16xy 5.13.C . 14.A . 15.C .16.-17a +12. 17.-3a 3b 4. 18..2992322y x y x +19..232y x n +- 20.x =-8. 21.31≤x . 22.a =2;b =1. 23.(1)36;(2)2010;(3)0. 测试61.一个多项式的每一项,另一个多项式的每一项,相加.2.(1)am +an +bm +bn ;(2)ax +ay +2bx +2by ;(3)3my -ma +3ny -na ;(4)y 2+y -12.3.C . 4.D . 5.2x 2+xy -3y 2. 6..143122-+x x 7.a 3-3ab +3a 2b 2-9b 3. 8.25x 6-16y 4. 9.x 3-y 3. 10.2x 3+x 2-2x -1. 11.-43. 12.k =-2. 13.B . 14.A . 15.⋅---252112a a 16.-33xy +6x 2-63y 2. 17.ab 2+7ab -18a . 18.-a -14. 19.-8.20.x <4. 21.a =-1;b =-4. 22.p =3;q =1.23.(1)①x 2+5x +6;②x 2+10x +21;③a 2-3a -70;④x 2-11x +30.(2)①x 2+4x +3;②x 2-5x +6;③x 2-3x -10;④⋅--61612m m (3)x 2+(a +b )x +ab .(4)±37;±20;±15;±13;±12.24.x 2-1;x 3-1;x 4-1;x 5-1;x n +1-1.测试71.(1)x 2-4;(2)4x 2-25y 2;(3)x 2-a 2b 2;(4)b 4-144.2.(1)x 2-y 2;(2)x 2-y 2;(3)y 2-x 2;(4)x 2-y 2;(5)y 2-x 2;(6)x 2-y 2.3.B . 4.C . 5.C . 6.⋅-4924b a 7.x 2n -4. 8..1699422n m -9..233222y x -10.⋅-16422x y 11.m 4n 2-4. 12.(1)9991;(2)0.9996;(3)⋅494899 13.-15. 14..942-a 15.9x 2-25y 2. 16.(1)x -5.(2)-m -n .(3)3x -1.(4)2b -a .17.A . 18.C . 19.C . 20..94144a b - 21.x 8-1. 22.-8m 2+12n 2. 23.(1)2.(2)⋅-⨯+2132112n 24.x =8;y =5. 测试81.(1)x 2+10x +25;(2)9m 2+12mn +4n 2;(3)x 2-6xy +9y 2;(4)⋅+-934422b ab a (5)x 2-2xy +y 2;(6)x 2+2xy +y 2. 2.-12xy . 3.A . 4.C . 5.D .6.169x 2+xy +94y 2. 7.9m 2n 2-30mnab +25a 2b 2. 8.25a 4-10a 2b 4+b 8. 9.9x 4-30x 2y +25y 2. 10.16x 6+56x 3y 2+49y 4. 11.-y 2-6y +17. 12.(1)411640;(2)89401. 13.49;169. 14.(1)25;x ;(2)-8x ;x ;(3)21;41 (4)12x ;2x . 15.16. 16.±4. 17.B . 18.D . 19.16a 4-8a 2+1. 20.4x 2. 21.a 2+2ab +b 2-4c 2.22.x 2-4y 2-z 2+4yz . 23.a 2+b 2+c 2+2ab +2bc +2ac .24.⋅+-++-9134324422y x y xy x 25.长12米,宽10米. 26.(1)2;2;(2)23;(3)7. 27.25. 28.3. 29.相等.测试91.不变,相减. 2.1,1.3.(1)x 3;(2)y ;(3)1;(4)-c 3;(5)x 5y 5;(6)-x ;(7)83y ;(8)-a 2x 2;(9)a 2-2ab +b 2;(10)1. 4.B . 5.C . 6.×. 7.×. 8.×. 9.×. 10.√. 11.√.12.a 7. 13.1. 14.a 2b 4. 15.a 19. 16.x 5m . 17.x .18.(1)a 2;(2)-a 2;(3)x 4;(4)100;(5)a 2m ;(6)(x -y )n +1. 19.x ≠2.20.C . 21.D . 22.1. 23.-x m +3n . 24.m 2-4mn +4n 2. 25.-m +n .26.(1)29;(2)827. 27.20册. 28.2y =x +z . 29.a =0或a =2. 30.P =Q .测试10 1.×. 2.×. 3.×. 4.√. 5.×. 6.×. 7.D . 8.B . 9.238x -. 10.4a 3bc . 11..41ab 12.-y 2. 13.a 52. 14.4x 2y 2. 15.-25. 16.A . 17.D . 18.240. 19.232b . 20.4p 3. 21.-8a 6. 22.2(x +y )n +1. 23.1. 24.m =4;n =3. 25.5.测试11 1.(1)2x 2-4x +3;(2)4b 2-2b +3;(3)-3a 3-2a 2+4a -1;(4).2943223x y x y x -+- 2.三. 3.D . 4.C . 5..23245225x x a a -+- 6.-14m 2n 3-4m 2+3. 7.p . 8.8. 9.(1)-a 4+a 2;(2)27x 6-5x 2+1;(3).32124223y y x y x ++-10.(a+b)3.11.m-n.12.-1.13.1.14.B·C+A=D.。
学习检测答案..
学习检测一一、填空题杂质,本征半导体和掺入的杂质大于,变窄。
小于,变厚电子,空穴变窄,大于,;,6.1.2~2V,高于,5~10mA稳压。
稳定电压,额定电流,动态电阻,额定功耗,温度系数二、判断题1.×2.√ 3.× 4.×5.√6.×7.×三、选择题1.A 3.D四、简答题PN结的伏安特性有何特点?答:PN结的伏安特性〔外特性〕如下图,它直观形象地表示了PN结的单向导电性。
伏安特性的表达式为:式中i D为通过PN结的电流,v D为PN结两端的外加电压,V T为温度的电压当量,,其中k为波耳兹曼常数〔×10-23J/K〕,T为热力学温度,即绝对温度〔300K〕,q为电子电荷〔×10-19C〕。
在常温下,V T≈。
I s为反向饱和电流,对于分立器件,其典型值为-8-14A 的范围内。
26mV10~10集成电路中二极管PN结,其I s值那么更小。
当v D>>0,且v D>V T时,;当v D,且时,i D≈–I S≈。
<00电容特性:PN结加反向电压时,空间电荷区中的正负电荷构成一个电容性的器件。
它的电容量随外加电压改变,主要有势垒电容〔CB〕和扩散电容〔CD〕。
势垒电容和扩散电容均是非线性电容。
势垒电容:势垒电容是由空间电荷区的离子薄层形成的。
当外加电压使PN结上压降发生变化时,离子薄层的厚度也相应地随之改变,这相当PN结中存储的电荷量也随之变化。
势垒区类似平板电容器,其交界两侧存储着数值相等极性相反的离子电荷,电荷量随外加电压而变化,称为势垒电容,用C B表示,其值为:。
在PN结反偏时结电阻很大,C B的作用不能无视,特别是在高频时,它对电路有较大的影响。
C B 不是恒值,而是随V而变化,利用该特性可制作变容二极管。
PN结有突变结和缓变结,现考虑突变结情况,PN结相当于平板电容器,虽然外加电场会使势垒区变宽或变窄但这个变化比拟小可以忽略,那么,动态平衡下阻挡层的宽度L0,代入上式可得:扩散电容:PN结正向导电时,多子扩散到对方区域后,在PN结边界上积累,并有一定的浓度分布。
地理学习与检测答案
地理学习与检测答案地理学习与检测答案【篇一:2021初中地理新课程标准理论测试题及答案2021版】ass=txt>16、地理位置一般分为位置和位置。
17、纸笔测验可分为课堂测试、测试、测试、测试等。
学校姓名分数一、填空题(每空1分,共45分)1、义务教育地理课程是一门兼有2、教学过程是课程改革目标能否实现的关键。
新的教学评价标准可以归纳为三点:、、。
3、。
4、教学时尤其要注意突出地理学科特点,灵活运用多种教学方式方法,充分重视地理信息资源和信息技术的利用,关注培养学生的、学习能力、和。
5、评价应注重评价目标,实现和相结合、定性评价和定量评价相结合。
6、、实施建议四部分内容。
7、地理教材包括、地理图册等。
8、新一轮地理课程改革的创新特色体现出五个“新”:新、新新、新、新。
9、“10、课程目标是指学科课程对学生在知识与技能、、等方面的培养上期望达到的程度。
11、义务教育阶段的地理课程是学生认识地理环境、学习地理掌握地理、增强爱国情感、逐步形成可持续发展观念的一门必修课程。
12、课程标准中对“课程目标”和“课程内容”的陈述方式,主要采用标和目标两类。
13、地理科学是研究14、地理课程的特征有。
15、区域地理通常从区域地理总论和区域分区地理两个方面学习。
区域地理总论又分为和两大部分。
二、选择题(每题2分,共20分)1、下列各功能属于评价在日常教学中的功能的是()。
a、导向功能b、反馈功能c、启发功能d、激励功能2、()是地理学习和地理研究的基础。
a、资料b、教师教学用书c、教科书d、地图3、下列不属于获取评价信息的方法的是()。
a、学生表现法b、纸笔测验法c、档案袋法d、观察法等。
4、在课程总目标和三项分目标中对知识方面须达到的目标可分为知道、(掌握等层次。
a、了解b、理解c、灵活运用d、巩固5、新一轮课程改革的突出之点是()。
a、求同b、求异c、创新d、创造6、地理课程的实施,关键在于教师的()。
小学英语自主学习检测·五年级(下)听力材料与参考答案
小学英语自主学习检测·五年级(下)听力材料与参考答案第一单元听力材料一、听句子,选出与听到内容相符的图片。
(10分)1. We do morning exercises every day.2. I have English class on Mondays.3. I often take a dancing class on Saturdays.4. I sometimes go shopping with my mum on the weekend.5. She often cleans the room in the evening.二、听问题,选择正确的答语。
(10分)1. When do you have lunch?2. What’s your father like?3. What do you often do on Saturdays?4. Let’s play football together after school.5. When do you start class?三、听短文,判断句子正误。
正确打“√”,错误打“×”。
(10分)I’m Betty. I don’t go to school on the weekend. I get up at 8:00. I eat breakfast at 8:30. I often have bread and milk for breakfast. On Saturday morning, I often do my homework and read books.I usually clean my room in the afternoon. On Sunday morning, I often play music. In the afternoon, I usually play sports with my friends. Sometimes I go shopping with my mother. I have a good time every weekend.四、判断下列图片与你所听内容是否相符。
学生学习习惯检测及德育测试题
学生学习习惯检测(答案)一、填空:(每空1分,共25分)1、读写时,保持正确的写字姿势,做到“头正、身直、足平、臂开”,字迹工整,书写规范。
要做到“三个一”:即“眼距书一尺,胸距桌一拳,手距笔尖一寸”。
2、会听课是搞好学习、提高素质的关键。
听课要做到情绪饱满,精力集中;抓住重点,弄清关键;主动参与,思考分析。
3、独立、认真、按时完成各类作业,作业形式要规范,完成作业时要做到精练反思,不抄袭别人的作业。
未完成作业的,应主动向老师同学说明理由,并及时补上。
学有余力的同学要养成自主设计和完成作业的好习惯。
4、学习用品是学习生活必需品,来之不易,应当爱惜。
对学习用品要珍惜、保护,小心使用,不乱扔、不故意损坏。
要敢于向任意损坏学习用品的行为作斗争。
5、课前做好准备,桌凳等物品摆放整齐,教室内卫生整洁。
自觉检查课本、课堂练习本、作业本及必需的文具是否都准备齐全。
课桌上只摆放与本节课相关的物品。
6、善于倾听同学的发言、他人的意见和建议。
乐于交流,交流时目光专注,先看别人的优点,再谈别人的不足,不随便打断别人的话,不嘲笑别人的错误。
7、自己订阅的报刊应及时阅读。
摘抄课外读物的精彩片段,或在精彩处圈点,记上自己的体会,养成“不动笔墨不读书”的好习惯。
二、判断(每题2分,共16分)1、淘淘告诉老师因自己买了一支新钢笔,爱不释手,写作业时不舍得用而没能按时完成作业。
(错)2、丽丽为了帮助学习成绩不好的小芳按时完成老师布置的作业,主动让小芳看自己的作业。
(错)3、一天晚上东东感冒发高烧,老师告诉他好好休息,今晚的作业可以不做了,但还还是坚持写完了,并把学习用品和往常一样收拾好了。
(对)4、彤彤是个非常爱读书的孩子,每天在校车上仍然坚持读书。
(错)5、课堂上,姗姗认真思考,积极发言,在别人发言时,发现别人发言中的错误,总是马上站起来给予纠正。
(错)6、小诗文是个爱整洁的孩子,每当做作业出现写错现象时,小诗文总是将写错的那页作业纸撕掉,重新再写。
北京西城区学探诊电子版和答案.初二.整式
第十五章 整式测试1 整式的乘法学习要求会进行整式的乘法计算.课堂学习检测一、填空题1.(1)单项式相乘,把它们的________分别相乘,对于只在一个单项式里含有的字母,则________.(2)单项式与多项式相乘,就是用单项式去乘________,再把所得的积________. (3)多项式与多项式相乘,先用________乘以________,再把所得的积________. 2.直接写出结果:(1)5y ·(-4xy 2)=________;(2)(-x 2y )3·(-3xy 2z )=________; (3)(-2a 2b )(ab 2-a 2b +a 2)=________;(4)=-⋅-+-)21()864(22x x x ________;(5)(3a +b )(a -2b )=________;(6)(x +5)(x -1)=________. 二、选择题3.下列算式中正确的是( ) A .3a 3·2a 2=6a 6 B .2x 3·4x 5=8x 8 C .3x ·3x 4=9x 4 D .5y 7·5y 3=10y 10 4.(-10)·(-0.3×102)·(0.4×105)等于( ) A .1.2×108 B .-0.12×107 C .1.2×107 D .-0.12×108 5.下面计算正确的是( )A .(2a +b )(2a -b )=2a 2-b 2B .(-a -b )(a +b )=a 2-b 2C .(a -3b )(3a -b )=3a 2-10ab +3b 2D .(a -b )(a 2-ab +b 2)=a 3-b 36.已知a +b =m ,ab =-4,化简(a -2)(b -2)的结果是( ) A .6 B .2m -8 C .2m D .-2m 三、计算题 7.)21).(43).(32(222z xy z yz x --8.[4(a -b )m -1]·[-3(a -b )2m ]9.2(a 2b 2-ab +1)+3ab (1-ab ) 10.2a 2-a (2a -5b )-b (5a -b )11.-(-x )2·(-2x 2y )3+2x 2(x 6y 3-1) 12.)214)(221(-+x x13.(0.1m -0.2n )(0.3m +0.4n ) 14.(x 2+xy +y 2)(x -y )四、解答题15.先化简,再求值.(1)),43253(4)12(562---+-+--n m m n m m m 其中m =-1,n =2;(2)(3a +1)(2a -3)-(4a -5)(a -4),其中a =-2.16.小明同学在长a cm ,宽cm 43a 的纸上作画,他在纸的四周各留了2cm 的空白,求小明同学作的画所占的面积.综合、运用、诊断一、填空题17.直接写出结果:(1)=⨯⨯⨯)1031()103(322______;(2)-2[(-x )2y ]2·(-3x m y n )=______;(3)(-x 2y m )2·(xy )3=______;(4)(-a 3-a 3-a 3)2=______;(5)(x +a )(x +b )=______;(6)=+-)31)(21(n m ______;(7)(-2y )3(4x 2y -2xy 2)=______; (8)(4xy 2-2x 2y )·(3xy )2=______. 二、选择题18.下列各题中,计算正确的是( )A .(-m 3)2(-n 2)3=m 6n 6B .[(-m 3)2(-n 2)3]3=-m 18n 18C .(-m 2n )2(-mn 2)3=-m 9n 8D .(-m 2n )3(-mn 2)3=-m 9n 919.若(8×106)(5×102)(2×10)=M ×10a ,则M 、a 的值为( )A .M =8,a =8B .M =8,a =10C .M =2,a =9D .M =5,a =1020.设M =(x -3)(x -7),N =(x -2)(x -8),则M 与N 的关系为( )A .M <NB .M >NC .M =ND .不能确定21.如果x 2与-2y 2的和为m ,1+y 2与-2x 2的差为n ,那么2m -4n 化简后的结果为( )A .-6x 2-8y 2-4B .10x 2-8y 2-4C .-6x 2-8y 2+4D .10x 2-8y 2+4 22.如图,用代数式表示阴影部分面积为( )A .ac +bcB .ac +(b -c )C .ac +(b -c )cD .a +b +2c (a -c )+(b -c )三、计算题23.-(-2x 3y 2)2·(1.5x 2y 3)2 24.)250(241)2)(5(54423x .x x x x -⋅-⋅--25.4a -3[a -3(4-2a )+8]26.)3()]21(2)3([322b a b b a b ab -⋅---四、解答题27.在(x 2+ax +b )(2x 2-3x -1)的积中,x 3项的系数是-5,x 2项的系数是-6,求a 、b 的值.拓展、探究、思考28.通过对代数式进行适当变形求出代数式的值. (1)若2x +y =0,求4x 3+2xy (x +y )+y 3的值;(2)若m 2+m -1=0,求m 3+2m 2+2008的值.29.若x =2m +1,y =3+4m ,请用含x 的代数式表示y .测试2 乘法公式学习要求会用平方差公式、完全平方公式进行计算,巩固乘法公式的使用.课堂学习检测一、填空题 1.计算题:(y +x )(x -y )=______;(x +y )(-y +x )=______;(-x -y )(-x +y )=______;(-y +x )(-x -y )=______; 2.直接写出结果:(1)(2x +5y )(2x -5y )=________; (2)(x -ab )(x +ab )=______; (3)(12+b 2)(b 2-12)=________; (4)(a m -b n )(b n +a m )=______; (5)(3m +2n )2=________; (6)=-2)32(ba ______;(7)( )2=m 2+8m +16;(8)2)325.1(b a -=______;3.在括号中填上适当的整式:(1)(m -n )( )=n 2-m 2; (2)(-1-3x )( )=1-9x 2. 4.多项式x 2-8x +k 是一个完全平方式,则k =______. 5.-+=+222)1(1xx x x ______=2)1(x x -+______. 二、选择题6.下列各多项式相乘,可以用平方差公式的有( )①(-2ab +5x )(5x +2ab ) ②(ax -y )(-ax -y ) ③(-ab -c )(ab -c ) ④(m +n )(-m -n ) A .4个 B .3个 C .2个 D .1个 7.下列计算正确的是( ) A .(5-m )(5+m )=m 2-25 B .(1-3m )(1+3m )=1-3m 2 C .(-4-3n )(-4+3n )=-9n 2+16 D .(2ab -n )(2ab +n )=2a 2b 2-n 2 8.下列等式能够成立的是( ) A .(a -b )2=(-a -b )2 B .(x -y )2=x 2-y 2 C .(m -n )2=(n -m )2 D .(x -y )(x +y )=(-x -y )(x -y ) 9.若9x 2+4y 2=(3x +2y )2+M ,则 M 为( ) A .6xy B .-6xy C .12xy D .-12xy 10.如图2-1所示的图形面积由以下哪个公式表示( ) A .a 2-b 2=a (a -b )+b (a -b ) B .(a -b )2=a 2-2ab +b 2 C .(a +b )2=a 2+2ab +b 2D .a 2-b 2=a (a +b )-b (a +b )图2-1三、计算题11.(x n -2)(x n +2) 12.(3x +0.5)(0.5-3x )13.)3243)(4332(m n n m +-+ 14.323.232x y y x +-15.(3mn -5ab )2 16.(-4x 3-7y 2)2 17.(5a 2-b 4)2四、解答题18.用适当的方法计算. (1)1.02 ×0.98(2)13111321⨯(3)2)2140((4)20052-4010×2006+2006219.若a +b =17,ab =60,求(a -b )2和a 2+b 2的值.综合、运用、诊断一、填空题20.(a +2b +3c )(a -2b -3c )=(______)2-(______)2; (-5a -2b 2)(______)=4b 4-25a 2. 21.x 2+______+25=(x +______)2; x 2-10x +______=(______-5)2;x 2-x +______=(x -______)2; 4x 2+______+9=(______+3)2. 22.若x 2+2ax +16是一个完全平方式,是a =______. 二、选择题23.下列各式中,能使用平方差公式的是( )A .(x 2-y 2)(y 2+x 2)B .(0.5m 2-0.2n 3)(-0.5m 2+0.2n 3)C .(-2x -3y )(2x +3y )D .(4x -3y )(-3y +4x )24.下列等式不能恒成立的是( )A .(3x -y )2=9x 2-6xy +y 2B .(a +b -c )2=(c -a -b )2C .(0.5m -n )2=0.25m 2-mn +n 2D .(x -y )(x +y )(x 2-y 2)=x 4-y 425.若,51=+a a 则221a a +的结果是( )A .23B .8C .-8D .-23 26.(a +3)(a 2+9)(a -3)的计算结果是( )A .a 4+81B .-a 4-81C .a 4-81D .81-a 4 三、计算题27.(x +1)(x 2+1)(x -1)(x 4+1) 28.(2a +3b )(4a +5b )(2a -3b )(4a -5b )29.(y -3)2-2(y +2)(y -2)30.(x -2y )2+2(x +2y )(x -2y )+(x +2y )2四、计算题31.当a =1,b =-2时,求)212]()21()21[(2222b a b a b a --++的值.拓展、探究、思考32.巧算:).200811()411)(311)(211(2222----33.计算:(a +b +c )2.34.若a 4+b 4+a 2b 2=5,ab =2,求a 2+b 2的值.35.若x 2-2x +10+y 2+6y =0,求(2x +y )2的值.36.若△ABC 三边a 、b 、c 满足a 2+b 2+c 2=ab +bc +ca .试问△ABC 的三边有何关系?测试3 整式的除法学习要求1.会进行单项式除以单项式的计算. 2.会进行多项式除以单项式的计算.课堂学习检测一、判断题1.x 3n ÷x n =x 3 ( )2.x xy y x 2121)(2-=÷- ( )3.26÷42×162=512 ( ) 4.(3ab 2)3÷3ab 3=9a 3b 3 ( )二、填空题5.直接写出结果:(1)(28b 3-14b 2+21b )÷7b =______;(2)(6x 4y 3-8x 3y 2+9x 2y )÷(-2xy )=______; (3)=-÷-+-)32()32752(32224y y x y x xy y ______. 6.已知A 是关于x 的四次多项式,且A ÷x =B ,那么B 是关于x 的______次多项式.三、选择题7.25a 3b 2÷5(ab )2的结果是( ) A .a B .5a C .5a 2b D .5a 28.已知7x 5y 3与一个多项式之积是28x 7y 3+98x 6y 5-21x 5y 5,则这个多项式是( ) A .4x 2-3y 2 B .4x 2y -3xy 2 C .4x 2-3y 2+14xy 2 D .4x 2-3y 2+7xy 3 四、计算题 9.3422383ab b a ÷10.22425.0)21(y x y x ÷-11.)21()52(232434x y a y x a -÷- 12.26)(310)(5y x y x -÷- 13.35433660)905643(ax .ax .x a x a ÷-+-14.[2m (7n 3m 3)2+28m 7n 3-21m 5n 3]÷(-7m 5n 3)五、解答题15.先化简,再求值:[5a 4·a 2-(3a 6)2÷(a 2)3]÷(-2a 2)2,其中a =-5.16.已知长方形的长是a +5,面积是(a +3)(a +5),求它的周长.17.月球质量约5.351×1022千克,地球质量约5.977×1024千克,问地球质量约是月球质量的多少倍?(结果保留整数).综合、运用、诊断一、填空题18.直接写出结果:(1)[(-a 2)3-a 2(-a 2)]÷(-a 2)=______.(2)=-÷-+---++)3()31581(1115n n n n x x x x ______. 19.若m (a -b )3=(a 2-b 2)3,那么整式m =______. 二、选择题 20.)(yz x z y x 3224214-÷-的结果是( ) A .8xyz B .-8xyz C .2xyzD .8xy 2z 221.下列计算中错误的是( )A .4a 5b 3c 2÷(-2a 2bc )2=abB .(-24a 2b 3)÷(-3a 2b )·2a =16ab 2C .214)21(4222-=÷-⋅y x y y x D .3658410221)()(a a a a a a =÷÷÷÷22.当43=a 时,代数式(28a 3-28a 2+7a )÷7a 的值是( ) A .425 B .41 C .49-D .-4三、计算题23.7m 2·(4m 3p 4)÷7m 5p 24.(-2a 2)3[-(-a )4]2÷a 825.)43(]19)38[(23554y x xy z y x -⋅÷- 26.x m +n (3x n y n )÷(-2x n y n )27.])(21[)(122+++÷+n n y x y x 28.mmm m )42(372-⨯⨯29.[(m +n )(m -n )-(m -n )2+2n (m -n )]÷4n30.87232232429]31.)3(2)3[(y x y y x x x y x ÷-⋅-四、解答题31.求1,61=-=y x 时,(3x 2y -7xy 2)÷6xy -(15x 2-10x )÷10x -(9y 2+3y )÷(-3y )的值.32.若,72288223b b a b a n m =÷求m 、n 的值.拓展、探究、思考33.已知x 2-5x +1=0,求221xx +的值.34.已知x 3=m ,x 5=n ,试用m 、n 的代数式表示x 14.35.已知除式x -y ,商式x +y ,余式为1,求被除式.测试4 提公因式法学习要求能够用提公因式法把多项式进行因式分解. 一、填空题1.因式分解是把一个______化为______的形式.2.ax 、ay 、-ax 的公因式是______;6mn 2、-2m 2n 3、4mn 的公因式是______. 3.因式分解a 3-a 2b =______. 二、选择题4.下列各式变形中,是因式分解的是( )A .a 2-2ab +b 2-1=(a -b )2-1 B.)11(22222xx x x +=+C .(x +2)(x -2)=x 2-4D .x 4-1=(x 2+1)(x +1)(x -1) 5.将多项式-6x 3y 2 +3x 2y 2-12x 2y 3分解因式时,应提取的公因式是( ) A .-3xy B .-3x 2y C .-3x 2y 2 D .-3x 3y 36.多项式a n -a 3n +a n +2分解因式的结果是( ) A .a n (1-a 3+a 2) B .a n (-a 2n +a 2) C .a n (1-a 2n +a 2) D .a n (-a 3+a n ) 三、计算题 7.x 4-x 3y 8.12ab +6b9.5x 2y +10xy 2-15xy 10.3x (m -n )+2(m -n )11.3(x -3)2-6(3-x ) 12.y 2(2x +1)+y (2x +1)213.y (x -y )2-(y -x )3 14.a 2b (a -b )+3ab (a -b )15.-2x 2n -4x n16.x (a -b )2n +xy (b -a )2n +1四、解答题17.应用简便方法计算:(1)2012-201 (2)4.3×199.8+7.6×199.8-1.9×199.8(3)说明3200-4×3199+10×3198能被7整除.综合、运用、诊断一、填空题18.把下列各式因式分解:(1)-16a 2b -8ab =______;(2)x 3(x -y )2-x 2(y -x )2=______.19.在空白处填出适当的式子:(1)x (y -1)-( )=(y -1)(x +1);(2)=+c b ab 3294278( )(2a +3bc ).二、选择题20.下列各式中,分解因式正确的是( )A .-3x 2y 2+6xy 2=-3xy 2(x +2y )B .(m -n )3-2x (n -m )3=(m -n )(1-2x )C .2(a -b )2-(b -a )=(a -b )(2a -2b )D .am 3-bm 2-m =m (am 2-bm -1)21.如果多项式x 2+mx +n 可因式分解为(x +1)(x -2),则m 、n 的值为() A .m =1,n =2 B .m =-1,n =2C .m =1,n =-2D .m =-1,n =-222.(-2)10+(-2)11等于( )A .-210B .-211C .210D .-2三、解答题23.已知x ,y 满足⎩⎨⎧=-=+,13,62y xy x 求7y (x -3y )2-2(3y -x )3的值.24.已知x +y =2,,21-=xy 求x (x +y )2(1-y )-x (y +x )2的值拓展、探究、思考25.因式分解:(1)ax +ay +bx +by ; (2)2ax +3am -10bx -15bm .测试5 公式法(1)学习要求能运用平方差公式把简单的多项式进行因式分解.课堂学习检测一、填空题1.在括号内写出适当的式子:(1)0.25m 4=( )2;(2)=n y 294( )2;(3)121a 2b 6=( )2.2.因式分解:(1)x 2-y 2=( )( ); (2)m 2-16=( )( );(3)49a 2-4=( )( );(4)2b 2-2=______( )( ).二、选择题3.下列各式中,不能用平方差公式分解因式的是( )A .y 2-49x 2B .4491x - C .-m 4-n 2 D .9)(412-+q p4.a 2-(b -c )2有一个因式是a +b -c ,则另一个因式为( )A .a -b -cB .a +b +cC .a +b -cD .a -b +c5.下列因式分解错误的是( )A .1-16a 2=(1+4a )(1-4a )B .x 3-x =x (x 2-1)C .a 2-b 2c 2=(a +bc )(a -bc )D .)l .032)(32l .0(l 0.09422n m m n n m -+=-三、把下列各式因式分解6.x 2-25 7.4a 2-9b 28.(a +b )2-64 9.m 4-81n 410.12a 6-3a 2b 2 11.(2a -3b )2-(b +a )2四、解答题12.利用公式简算:(1)2008+20082-20092;(2)3.14×512-3.14×492.13.已知x +2y =3,x 2-4y 2=-15,(1)求x -2y 的值;(2)求x 和y 的值.综合、运用、诊断一、填空题14.因式分解下列各式:(1)m m +-3161=______; (2)x 4-16=______;(3)11-+-m m a a =______; (4)x (x 2-1)-x 2+1=______.二、选择题15.把(3m +2n )2-(3m -2n )2分解因式,结果是( )A .0B .16n 2C .36m 2D .24mn16.下列因式分解正确的是( )A .-a 2+9b 2=(2a +3b )(2a -3b )B .a 5-81ab 4=a (a 2+9b 2)(a 2-9b 2)C .)21)(21(212212a a a -+=-D .x 2-4y 2-3x -6y =(x -2y )(x +2y -3)三、把下列各式因式分解17.a 3-ab 2 18.m 2(x -y )+n 2(y -x )19.2-2m 4 20.3(x +y )2-2721.a 2(b -1)+b 2-b 3 22.(3m 2-n 2)2-(m 2-3n 2)2四、解答题23.已知,4425,7522==y x 求(x +y )2-(x -y )2的值.拓展、探究、思考24.分别根据所给条件求出自然数x 和y 的值:(1)x 、y 满足x 2+xy =35;(2)x 、y 满足x 2-y 2=45.测试6 公式法(2)学习要求能运用完全平方公式把多项式进行因式分解.课堂学习检测一、填空题1.在括号中填入适当的式子,使等式成立:(1)x 2+6x +( )=( )2;(2)x 2-( )+4y 2=( )2;(3)a 2-5a +( )=( )2;(4)4m 2-12mn +( )=( )22.若4x 2-mxy +25y 2=(2x +5y )2,则m =______.二、选择题3.将a 2+24a +144因式分解,结果为( )A .(a +18)(a +8)B .(a +12)(a -12)C .(a +12)2D .(a -12)24.下列各式中,能用完全平方公式分解因式的有( )①9a 2-1; ②x 2+4x +4; ③m 2-4mn +n 2; ④-a 2-b 2+2ab ; ⑤;913222n mn m +- ⑥(x -y )2-6z (x +y )+9z 2.A .2个B .3个C .4个D .5个5.下列因式分解正确的是( )A .4(m -n )2-4(m -n )+1=(2m -2n +1)2B .18x -9x 2-9=-9(x +1)2C .4(m -n )2-4(n -m )+1=(2m -2n +1)2D .-a 2-2ab -b 2=(-a -b )2三、把下列各式因式分解6.a 2-16a +64 7.-x 2-4y 2+4xy8.(a -b )2-2(a -b )(a +b )+(a +b )2 9.4x 3+4x 2+x10.计算:(1)2972 (2)10.32四、解答题11.若a 2+2a +1+b 2-6b +9=0,求a 2-b 2的值.综合、运用、诊断一、填空题12.把下列各式因式分解:(1)49x 2-14xy +y 2=______;(2)25(p +q )2+10(p +q )+1=______;(3)a n +1+a n -1-2a n =______;(4)(a +1)(a +5)+4=______.二、选择题13.如果x 2+kxy +9y 2是一个完全平方公式,那么k 是( )A .6B .-6C .±6D .1814.如果a 2-ab -4m 是一个完全平方公式,那么m 是( )A .2161b B .2161b - C .281b D .281b -15.如果x 2+2ax +b 是一个完全平方公式,那么a 与b 满足的关系是( )A .b =aB .a =2bC .b =2aD .b =a 2三、把下列各式因式分解16.x (x +4)+4 17.2mx 2-4mxy +2my 218.x 3y +2x 2y 2+xy 3 19.2341x x x -+四、解答题20.若,31=+x x 求221x x +的值.21.若a 4+b 4+a 2b 2=5,ab =2,求a 2+b 2的值.拓展、探究、思考22.(m 2+n 2)2-4m 2n 2 23.x 2+2x +1-y 224.(a +1)2(2a -3)-2(a +1)(3-2a )+2a -325.x2-2xy+y2-2x+2y+126.已知x3+y3=(x+y)(x2-xy+y2)称为立方和公式,x3-y3=(x-y)(x2+xy+y2)称为立方差公式,据此,试将下列各式因式分解:(1)a3+8 (2)27a3-1测试7 十字相乘法学习要求能运用公式x2+(a+b)x+ab=(x+a)(x+b)把多项式进行因式分解.课堂学习检测一、填空题1.将下列各式因式分解:(1)x2-5x+6=______;(2)x2-5x-6=______;(3)x2+5x+6=______;(4)x2+5x-6=______;(5)x2-2x-8=______;(6)x2+14xy-32y2=______.二、选择题2.将a2+10a+16因式分解,结果是()A.(a-2)(a+8)B.(a+2)(a-8)C.(a+2)(a+8)D.(a-2)(a-8)3.因式分解的结果是(x-3)(x-4)的多项式是()A.x2-7x-12 B.x2-7x+12C.x2+7x+12D.x2+7x-124.如果x2-px+q=(x+a)(x+b),那么p等于()A.ab B.a+bC.-ab D.-a-b5.若x2+kx-36=(x-12)(x+3),则k的值为()A.-9B.15C.-15 D.9三、把下列各式因式分解6.m2-12m+20 7.x2+xy-6y28.10-3a-a2 9.x2-10xy+9y210.(x-1)(x+4)-36 11.ma2-18ma-40m12.x3-5x2y-24xy2四、解答题13.已知x+y=0,x+3y=1,求3x2+12xy+13y2的值.综合、探究、检测一、填空题14.若m2-13m+36=(m+a)(m+b),贝a-b=______.15.因式分解x(x-20)+64=______.二、选择题16.多项式x2-3xy+ay2可分解为(x-5y)(x-by),则a、b的值为()A.a=10,b=-2 B.a=-10,b=-2C.a=10,b=2D.a=-10,b=217.若x2+(a+b)x+ab=x2-x-30,且b<a,则b的值为()A.5B.-6C.-5D.618.将(x+y)2-5(x+y)-6因式分解的结果是()A.(x+y+2)(x+y-3)B.(x+y-2)(x+y+3)C.(x+y-6)(x+y+1)D.(x+y+6)(x+y-1)三、把下列各式因式分解19.(x2-2)2-(x2-2)-220.(x2+4x)2-x2-4x-20拓展、探究、思考21.因式分解:4a2-4ab+b2-6a+3b-4.22.观察下列各式:1×2×3×4+1=52;2×3×4×5+1=112;3×4×5×6+1=192;判断是否任意四个连续正整数之积与1的和都是某个正整数的平方,并说明理由.。
数学学习与检测答案
数学学习与检测答案【篇一:2011年版数学课程标准测试题及答案】=txt>一、填空。
1、数学是研究(空间形势)和(数量)的科学。
2、(数学)是人类文化的重要组成部分,(数学素养)是现代社会每一个公民应该具备的基本素质。
作为促进学生会全面发展教育的重要组成部分,数学教育既要使学生(使学生掌握现代生活)和学习中所需要的(数学知识与技能),更要发挥数学在培养人的(理性思维)和(创新能力)方面的不可替代的作用。
3、义务教育阶段的数学课程是(培养公民素质)的基础课程。
数学课程能使学生掌握必备的基础知识和基本技能,培养学生的(抽象思维和推理能力),培养学生的(创新意识和实践能力),促进学生在情感、态度与价值观等方面的发展。
4、数学课程应致力于实现义务教育阶段的培养目标,要面向全体学生,适应学生个性发展的需要,使得(人人都能获得良好的数学教育,不同的人在数学上得到不同的发展)。
5、课程内容要反映社会的需要、数学的特点,(要符合学生的认知规律)。
它不仅包括数学的结果,也包括(数学结果的形成过程)和(蕴涵的数学思想方法)。
课程内容的选择要贴近学生的实际,有利于学生(体验与理解)、(思考与探索)。
课程内容的组织要重视(过程)处理好(过程与结果的关系);要重视(直观),处理好(处理好直观与抽象的关系);要重视(要重视直接经验),处理好(直接经验与间接经验的关系)。
课程内容的呈现应注意(层次性)和(多样性)。
6、教学活动是师生(积极参与)、(交往互动)、(共同发展)的过程。
学生是(学习的主体)。
7、数学教学活动,特别是课堂教学应激发学生的(学习兴趣),调动学生的(积极性),引发学生的(数学思考),鼓励学生的(创造性思维);要注重培养学生良好的数学学习习惯,使学生掌握恰当的(数学学习方法)。
8、学生学习应当是一个主动活泼的、主动的和富有个性的过程。
(认真听讲)、(积极思考)(动手实践)、(自主探索)、(合作交流)等,都是学习数学的重要方式。
七年级数学学探诊(有答案)
第十五章整式测试1 同底数幂的乘法学习要求会用同底数幂的乘法性质进行计算.课堂学习检测一、填空题1.同底数的幂相乘,______不变,______相加.2.直接写出结果:(1)104×105=______;m3·m6=______;a8·a=______;(2)102×107×10=______;y3·y4·y=______;(3)(-b)3·(-b)=______;(-a)3·(-a)5·(-a)=______.3.若a3·a m=a8,则m=______;若33x+1=81,则x=______.二、选择题4.b3·b3的值是( ).(A)b9(B)2b3(C)b6(D)2b6 5.(-c)3·(-c)5的值是( ).(A)-c8(B)(-c)15(C)c15(D)c8三、判断题6.a3·a3=2a3.( ) 7.y3+y3=y6.( )8.m4·m3=m12.( ) 9.(-c)3·(-c)4=-c7.( )四、计算题10.23×23×2.11.x n·x n+1·x n-1.12.(-m)·(-m)2·(-m)3.13.(a-b)·(a-b)3·(a-b)2.14.a2·a3+a·a4+a5.15.a·a4-3a2·a·a2.综合、运用、诊断一、填空题16.直接写出结果:(1)m·m n·m2=______;(2)b m+2·b2·b=______;(3)-x3·x·x7=______;(4)(-x3)·(-x)4=______;(5)-m2·(-m)3=______;(6)-(-c)3·(-c)=______;(7)23·2(______)=256;(8)(-a)2·(______)=-a5.17.若2m=6,2n=5,则2m+n=______.二、计算题18.1000×10a+2×10a-1.19.x4·(-x)3+(-x)6·(-x).20.25×54-125×53.21.(-2)2009+(-2)2010.拓展、探究、思考22.回答下列问题:(1)(-a)n与-a n相等吗?(2)(a-b)n与(b-a)n相等吗?(3)根据以上结论计算①(m-2n)4·(2n-m)2;②(m-n)4·(n-m)3.测试2 幂的乘方学习要求会用幂的乘方性质进行计算.课堂学习检测一、填空题1.幂的乘方,______不变,指数______.2.直接写出结果:(1)(102)3=_______;(2)(a4)3=_______;(3)(3n)3=_______;(4)[(-2)2]3=______;(5)[(-n)3]3=______;(6)(-32)5=______.3.用“=”或“≠”把下列两个式子连接起来:(1)m3·m3______m9;(2)(a4)4______a4·a4;(3)(a2)5______(a5)2;(4)a2·a2______(a2)2;(5)(-a2)3______(-a3)2;(6)[(-b)2]3______[(-b)3]2.二、选择题4.下列计算正确的是( ).(A)(x2)3=x5 (B)(x3)5=x15(C)x4·x5=x20(D)-(-x3)2=x65.(-a5)2+(-a2)5的结果是( ).(A)0 (B)-2a7(C)2a10(D)-2a10三、计算题6.(x2)3·x4.7.2(x n-1)2·x n.8.(x3)4-3(x6)2.9.m·(-m3)2·(-m2)3.10.[(-2)3]4·(-2)2.11.[(x-y)2·(x-y)n-1]2.12.[(a-b)3]2-[(b-a)2]3.综合、运用、诊断一、填空题13.直接写出结果:(1)3(x2)4=_______;(2)[(a+b)3]4=_______;(3)(x2m)4n=_______;(4)x4·(x2)5=_______;(5)(c2)m+1·c m+4=_______.14.化简(-x-y)2m(-x-y)3=_______.(m为正整数)15.若(a3)x·a=a19,则x=_______.16.已知a3n=5,那么a6n=______.二、选择题17.下列算式计算正确的是( ).(A)(a3)3=a3+3=a6(B)(-x2)n=x2n(C)(-y2)3=(-y)6=y6(D)[(c3)3]3=c3×3×3=c27三、计算题18.9(a3)2·(-a)2·(-b2)2+(-2)4·(a2)4·b4.四、解答题19.(1)若16x=216,求x的值;(2)若(9a)2=38,求a的值.拓展、探究、思考20.(1)若10α=2,10β=3,求102α+3β 的值;(2)若2x+5y-3=0,求4x·32y的值.21.比较大小:3555,4444,5333.测试3 积的乘方学习要求会用积的乘方性质进行计算.课堂学习检测一、填空题1.积的乘方,等于把积的每个因式______,再把所得的幂______. 2.直接写出答案:(1)(3×10)2=_______; (2)(mn )6=_______;(3)(b 4c )9=_______; (4)(-2x )2=_______; (5)32)51(b a -=_______;(6)[(-2xy 3)2]2=_______. 二、选择题3.下列计算正确的是( ). (A)(xy )3=xy 3 (B)(-5xy 2)2=-5x 2y 4 (C)(-3x 2)2=-9x 4(D)(-2xy 2)3=-8x 3y 6 4.若(2a m b n )3=8a 9b 15成立,则( ). (A)m =6,n =12 (B)m =3,n =12 (C)m =3,n =5(D)m =6,n =55.下列计算中,错误的个数是( ).①(3x 3)2=6x 6 ②(-5a 5b 5)2=-25a 10b 10 ③3338)32(x x -=- ④(3x 2y 3)4=81x 6y 7 ⑤x 2·x 3=x 5 (A)2个 (B)3个(C)4个(D)5个三、计算题6..)4()21(2332a a ⋅ 7.-(-2xy 2)3(-y 3)5.8.(x 2y 3)3+(-2x 3y 2)2·y 5. 9.(-2a )6-(-2a 3)2-[(-2a )2]3.四、解答题 10.当41=a ,b =4时,求代数式32233)21()(ab b a -+-的值. 综合、运用、诊断一、填空题11.化简:(1)33331)31(b a ab +-=_______;(2)(3a 2)3+(a 2)2·a 2=_______.12.直接写出结果:(1)(______)n =3n a 2n b 3n ; (2)x 10y 11=(______)5·y ; (3)若2n =a ,3n =b ,则6n =______. 二、选择题13.下列等式正确的个数是( ).①(-2x 2y 3)3=-6x 6y 9 ②(-a 2m )3=a 6m ③(3a 6)3=3a 9④(5×105)×(7×107)=35×1035 ⑤(-0.5)100×2101=(-0.5×2)100×2 (A)1个 (B)2个 (C)3个 (D)4个 三、计算题14.[-(a 2b )3·a ]3. 15.(4x 2y )3·(0.125xy 3)2. 16.52009×(-0.2)2010. 17..)21(6)31(675-⨯⨯- 四、解答题 18.若4)31()9(832=⋅x,求x 3的值.拓展、探究、思考19.比较216×310与210×314的大小. 20.若3x +1·2x -3x ·2x +1=22·32,求x .测试4 整式的乘法(一)学习要求会进行单项式的乘法计算.课堂学习检测一、填空题1.单项式相乘,把它们的__________分别相乘,对于只在一个单项式里含有的字母,则__________. 2.直接写出结果:(1)3ab 2·2a 2b 2=_______; (2)xyz y x 165.5232=_______; (3)5y ·(-4xy 2)=_______; (4)(-3a 2b )·(-5a 4)=_______;(5))92()2()23(2322c b a b a -⋅⋅-=_______;(6)(-a 2)·(4a 4)2=_______. 3.用科学记数法表示:(3×105)×(5×102)=_______. 4.已知a =2010,b 是a 的倒数,则(a n b 2)·ab n -2=_______. 二、选择题5.下列算式中正确的是( ). (A)3a 3·2a 2=6a 6 (B)2x 3·4x 5=8x 8 (C)3x ·3x 4=9x 4(D)5y 7·5y 7=10y 146.21-m 2n ·(-mn 2x )的结果是( ). (A)x n m 2421 (B)3321n m(C)x n m 3321 (D)x n m 3321-7.若(8×106)×(5×102)×(2×10)=M ×10a ,则M 、a 的值为( ).(A)M =8,a =10 (B)M =8,a =8 (C)M =2,a =9(D)M =5,a =10三、计算题8.).21()103(2333c ab bc a ⋅ 9.(4x m +1z 3)·(-2x 2yz 2).10.).32()43(5433c ab b a ab -⋅-⋅11.[4(a -b )m -1]·[-3(a -b )2m ].综合、运用、诊断 一、填空题 12.直接写出结果:(1)(-4a n -1b )·(-3a )=_______; (2))43()32()3(22xy y x x -⋅-⋅-=______;(3)(-2a 4)3·(3ab 3)3=______; (4))1031()103(322⨯⨯⨯=______;(5)(-x 2y m )2·(xy )3=______;(6)(-a 3-a 3-a 3)2=______.13.已知x 3a =3,则x 6a +x 4a ·x 5a =______. 二、选择题14.如果单项式-3x 2a -b y 2与31x 3a+by 5a+8b是同类项,那么这两个单项式的积是( ).(A)-x 10y 4(B)-x 6y 4(C)-x 25y 4(D)-x 5y 215.下列各题中,计算正确的是( ).(A)(-m 3)2(-n 2)3=m 6n 6 (B)(-m 2n )3(-mn 2)3=-m 9n 9 (C)(-m 2n )2(-mn 2)3=-m 9n 8 (D)[(-m 3)2(-n 2)3]3=-m 18n 18三、计算题16.-(-2x 3y 2)2·(-23x 2y 3)2. 17.(-2x m y n )·(-x 2y n )2·(-3xy 2)3. 18.(2a 3b 2)2+(-3ab 3)·(5a 5b ). 19.(-5x 3)·(-2x 2)·41x 4-2x 4·(-41x 5).0.-43(-2x 2y )2·(-31xy )-(-xy )3·(-x 2).21.-2[(-x )2y ]2(-3x m y n ).拓展、探究、思考22.若x =2m +1,y =3+4m ;(1)请用含x 的代数式表示y ; (2)如果x =4,求此时y 的值.测试5 整式的乘法(二)学习要求会进行单项式与多项式的乘法计算.课堂学习检测一、填空题1.单项式与多项式相乘,就是用单项式去乘_______,再把所得的积_______. 2.直接写出结果:(1)5(m +n -5)=_______; (2)-2a (a -b 2+c 3)=_______; (3)(-2a +3b )·(-4ab )=_______;(4))21()864(2x x x-⋅-+-=_______. 二、选择题3.整式a m (a m -a 2+7)的结果是( ).(A)a 2m -a 2m +7a m(B)2m a -a 2m +7a m (C)a 2m -a 2+m +7a m(D)2m a-a m +2+7a m4.化简a (b -c )-b (c -a )+c (a -b )的结果是( ). (A)2ab +2bc +2ac (B)2ab -2bc (C)2ab(D)-2bc5.方程2x (x -1)-x (2x -5)=12的解为( ). (A)x =2 (B)x =1 (C)x =-3 (D)x =4 三、计算题6.2a 2-a (2a -5b )-b (5a -b ). 7.2(a 2b 2-ab +1)+3ab (1-ab ).8.(-2a 2b )2(ab 2-a 2b +a 2). 9.-(-x )2·(-2x 2y )3+2x 2(x 6y 3-1).四、解答题10.已知m =-1,n =2时,代数式)43253(4)12(562---+-+--n m m n m m m的值是多少?11.若n 为自然数,试说明整式n (2n +1)-2n (n -1)的值一定是3的倍数.综合、运用、诊断-、填空题12.直接写出结果:(1)-ab (-a 2b 2+ab -1)=_________;(2))6()63121(2ab ab b a ab -⋅--=_________; (3)(2ab 2-3a 2b )·(3ab )2=_________; (4)(-2y )3(4x 2y -2xy 2)=_________. 二、选择题13.要使x (x +a )+3x -2b =x 2+5x +4成立,则a ,b 的值分别是( ).(A)a =-2,b =-2 (B)a =2,b =2 (C)a =2,b =-2 (D)a =-2,b =214.如果x 2与-2y 2的和为m ,1+y 2与-2x 2的差为n ,那么2m -4n 化简后为( )(A)-6x 2-8y 2-4 (B)10x 2-8y 2-4 (C)-6x 2-8y 2+4 (D)10x 2-8y 2+4 15.如图,用代数式表示阴影部分面积为( ).(A)ab (B)ac +bc(C)ac +(b -c )c (D)(a -c )(b -c )三、计算题16.4a -3[a -3(4-2a )+8].17.).3()]21(2)3([322b a b b a b ab -⋅--- 18.)].21(36[32y x xy xy xy --19..6)6121(2)2143(2121xy y x xy y x n n ⋅--⋅-++四、解答题20.解方程2x (x -2)-6x (x -1)=4x (1-x )+16.21.解不等式2x 2(x -2)+4(x 2-x )≥x (2x 2+5)-3.22.已知ax (5x -3x 2y +by )=10x 2-6x 3y +2xy ,求a ,b 的值.拓展、探究、思考23.通过对代数式进行适当变化求出代数式的值(1)若x +5y =6,求x 2+5xy +30y ;(2)若m 2+m -1=0,求m 3+2m 2+2009;(3)若2x +y =0,求4x 3+2xy (x +y )+y 3.测试6 整式的乘法(三)学习要求会进行多项式的乘法计算.课堂学习检测一、填空题1.多项式与多项式相乘,先用_______乘以_______,再把所得的积______. 2.直接写出结果:(1)(a +b )(m +n )=_______;(2)(a +2b )(x +y )=_______; (3)(m +n )(3y -a )=_______;(4)(y -3)(y +4)=_______. 二、选择题3.下面计算正确的是( ). (A)(2a +b )(2a -b )=2a 2-b 2 (B)(-a -b )(a +b )=a 2-b 2 (C)(a -3b )(3a -b )=3a 2-10ab +3b 2 (D)(a -b )(a 2-ab +b 2)=a 3-b 3 4.已知(2x +1)(x -3)=2x 2-mx -3,那么m 的值为( ). (A)-2 (B)2 (C)-5 (D)5 三、计算题 5.(2x +3y )(x -y ).6.).214)(221(-+x x7.(a +3b 2)(a 2-3b ). 8.(5x 3-4y 2)(5x 3+4y 2).9.(x 2+xy +y 2)(x -y ). 10.(x -1)(x +1)(2x +1).四、解答题11.若a =-2,则代数式(3a +1)(2a -3)-(4a -5)(a -4)的值是多少?12.已知(x -1)(2-kx )的结果中不含有x 的一次项,求k 的值.综合、运用、诊断一、选择题13.设M =(x -3)(x -7),N =(x -2)(x -8),则M 与N 的关系为( ).(A)M <N (B)M >N (C)M =N (D)不能确定 14.方程(x +4)(x -5)=x 2-20的解为( ).(A)x =0 (B)x =-4 (C)x =5 (D)x =40 二、计算题15.).12)(5(21+--a a16.-3(2x +3y )(7y -x ).17.)33)(2(3+-bb a .18.(3a +2)(a -4)-3(a -2)(a -1).三、解答题19.先化简,再求值:4x (y -x )+(2x +y )(2x -y ),其中x =21,y =-2.20.解不等式(x -3)(x +4)+22>(x +1)(x +2).21.在(x 2+ax +b )(2x 2-3x -1)的积中,x 3项的系数是-5,x 2项的系数是-6,求a 、b .22.已知(x 2+px +8)(x 2-3x +q )的展开式中不含x 2和x 3项,求p 、q 的值.拓展、探究、思考23.回答下列问题:(1)计算:①(x +2)(x +3)=________;②(x +3)(x +7)=______;③(a +7)(a -10)=_______;④(x -5)(x -6)=______.(2)由(1)的结果,直接写出下列计算的结果:①(x +1)(x +3)=______; ②(x -2)(x -3)=______;③(x +2)(x -5)=______; ④)31)(21(+-m m =______. (3)总结公式:(x +a )(x +b )=____________.(4)已知a ,b ,m 均为整数,且(x +a )(x +b )=x 2+mx +36,求m 的所有可能值.24.计算:(x -1)(x +1)=_________;(x -1)(x 2+x +1)=__________; (x -1)(x 3+x 2+x +1)=__________; (x -1)(x 4+x 3+x 2+x +1)=__________; ……猜想:(x -1)(x n +x n -1+x n -2+…+x 2+x +1)=_________.测试7 平方差公式学习要求会运用平方差公式进行计算.课堂学习检测一、填空题1.直接写出结果:(1)(x +2)(x -2)=_______; (2)(2x +5y )(2x -5y )=______; (3)(x -ab )(x +ab )=_______; (4)(12+b 2)(b 2-12)=______. 2.先观察、再计算:(1)(x +y )(x -y )=______; (2)(y +x )(x -y )=______; (3)(y -x )(y +x )=______; (4)(x +y )(-y +x )=______; (5)(x -y )(-x -y )=______; (6)(-x -y )(-x +y )=______. 二、选择题3.下列各多项式相乘,可以用平方差公式的有( ). ①(-2ab +5x )(5x +2ab ) ②(ax -y )(-ax -y ) ③(-ab -c )(ab -c ) ④(m +n )(-m -n ) (A)4个 (B)3个 (C)2个 (D)1个 4.若x +y =6,x -y =5,则x 2-y 2等于( ). (A)11 (B)15 (C)30 (D)60 5.下列计算正确的是( ). (A)(5-m )(5+m )=m 2-25 (B)(1-3m )(1+3m )=1-3m 2 (C)(-4-3n )(-4+3n )=-9n 2+16 (D)(2ab -n )(2ab +n )=4ab 2-n 2 三、计算题 6.).23)(23(22ba b a -+ 7.(x n -2)(x n +2).8.).3243)(4332(m n n m +-+ 9.⋅+-323.232xy y x10.).24)(24(y x y x --- 11.(-m 2n +2)(-m 2n -2).四、解答题12.应用公式计算:(1)103×97;(2)1.02×0.98;(3)⋅⨯769711013.当x =1,y =2时,求(2x -y )(2x +y )-(x +2y )(2y -x )的值.综合、运用、诊断一、填空题 14.)23)(23(aa ++-=_______. 15.(-3x -5y )(-3x +5y )=______.16.在括号中填上适当的整式:(1)(x +5)(______)=x 2-25; (2)(m -n )(______)=n 2-m 2; (3)(-1-3x )(______)=1-9x 2; (4)(a +2b )(______)=4b 2-a 2. 二、选择题17.下列各式中能使用平方差公式的是( ).(A)(x 2-y 2)(y 2+x 2)(B))5121)(5121(3232n m n m +--(C)(-2x -3y )(2x +3y ) (D)(4x -3y )(-3y +4x ) 18.下面计算(-7+a +b )(-7-a -b )正确的是( ).(A)原式=(-7+a +b )[-7-(a +b )]=-72-(a +b )2 (B)原式=(-7+a +b )[-7-(a +b )]=72+(a +b )2 (C)原式=[-(7-a -b )][-(7+a +b )]=72-(a +b )2 (D)原式=[-(7+a )+b ][-(7+a )-b ]=(7+a )2-b 2 19.(a +3)(a 2+9)(a -3)的计算结果是( ).(A)a 4+81 (B)-a 4-81 (C)a 4-81 (D)81-a 4 三、计算题20.).321)(213(2222a b b a +---21.(x +1)(x 2+1)(x -1)(x 4+1).22.(m -2n )(2n +m )-(-3m -4n )(4n -3m ).拓展、探究、思考23.巧算:(1);21)211)(211)(211)(211(15842+++++(2)(3+1)(32+1)(34+1)(38+1)…(n23+1).24.已知:x ,y 为正整数,且4x 2-9y 2=31,你能求出x ,y 的值吗?试一试.测试8 完全平方公式学习要求会运用完全平方公式进行计算,巩固乘法公式的使用.课堂学习检测一、填空题1.直接写出结果:(1)(x +5)2=_______;(2)(3m +2n )2=_______; (3)(x -3y )2=_______;(4)2)32(b a -=_______; (5)(-x +y )2=______;(6)(-x -y )2=______. 2.若9x 2+4y 2=(3x +2y )2+M ,则M =______. 二、选择题3.下列多项式不是完全平方式的是( ). (A)x 2-4x -4(B)m m ++241(C)9a 2+6ab +b 2(D)4t 2+12t +94.下列等式能够成立的是( ). (A)(a -b )2=(-a -b )2 (B)(x -y )2=x 2-y 2(C)(m -n )2=(n -m )2(D)(x -y )(x +y )=(-x -y )(x -y ) 5.下列等式不能恒成立的是( ). (A)(3x -y )2=9x 2-6xy +y 2 (B)(a +b -c )2=(c -a -b )2 (C)22241)21(n mn m n m +-=- (D)(x -y )(x +y )(x 2-y 2)=x 4-y 4三、计算题 6..)3243(2y x + 7.(3mn -5ab )2.8.(5a 2-b 4)2. 9.(-3x 2+5y )2.10.(-4x 3-7y 2)2. 11.(y -3)2-2(y +2)(y -2).四、解答题12.用适当方法计算:(1)2)2140(; (2)2992.13.若a +b =17,ab =60,求(a -b )2和a 2+b 2的值.综合、运用、诊断一、填空题14.(1)x 2-10x +______=( -5)2:(2)x 2+______+16=(______-4)2; (3)x 2-x +______=(x -______)2; (4)4x 2+______+9=(______+3)2.15.多项式x 2-8x +k 是一个完全平方式,则k =______. 16.若x 2+2ax +16是一个完全平方式,则a =______. 二、选择题17.下列式子不能成立的有( )个.①(x -y )2=(y -x )2 ②(a -2b )2=a 2-4b 2 ③(a -b )3=(b -a )(a -b )2 ④(x +y )(x -y )=(-x -y )(-x +y ) ⑤1-(1+x )2=-x 2-2x (A)1 (B)2 (C)3 (D)4 18.计算2)22(b a -的结果与下面计算结果一样的是( ). (A)2)(21b a - (B)ab b a -+2)(21(C)ab b a +-2)(41 (D)ab b a -+2)(41三、计算题19.(2a +1)2(2a -1)2. 20.(x -2y )2+2(x +2y )(x -2y )+(x +2y )2.21.(a +b +2c )(a +b -2c ). 22.(x +2y -z )(x -2y +z ).23.(a +b +c )2. 24..)312(2+-y x四、解答题25.一长方形场地内要修建一个正方形花坛,预计花坛边长比场地的长少8米、宽少6米,且场地面积比花坛面积大104平方米,求长方形的长和宽.26.回答下列问题:(1)填空:-+=+222)1(1x x x x ______=+-2)1(x x ______.(2)若51=+a a ,则221aa +的值是多少?(3)若a 2-3a +1=0,则221aa +的值是多少?拓展、探究、思考27.若x 2-2x +10+y 2+6y =0,求(2x -y )2的值.28.若a 4+b 4+a 2b 2=5,ab =2,求a 2+b 2的值.29.若△ABC 三边a ,b ,c 满足a 2+b 2+c 2=ab +bc +ca ,试问△ABC 的三边有何关系?测试9 同底数幂的除法学习要求会用同底数幂的除法性质进行计算.课堂学习检测一、填空题1.同底数幂相除,底数______,指数______.2.任何不等于0的数的0次幂都等于______,即a 0=______(a ≠0). 3.直接写出结果: (1)x 5÷x 2=______; (2)y 9÷y 8=______; (3)a 12÷a 12=_______; (4)(-c )4÷(-c )=_______;(5)(xy )8÷(xy )3=_______; (6)(-x )13÷x 12=_______; (7))2()21(4yy ÷=_______; (8)(-ax )5÷(ax )3=_______;(9)(a -b )3÷(a -b )=_______; (10)(π-3.14)0=_______.二、选择题4.下列计算不正确的是( ).(A)x 3m ÷x 3m -1=x (B)x 12÷x 6=x 2 (C)x 10÷(-x )2÷x 3=x 5 (D)x 3m ÷(x 3)m =1 5.如果将a 8写成下列各式,那么正确的有( ).①a 4+a 4 ②(a 2)4 ③a 16÷a 2 ④(a 4)2 ⑤(a 4)4 ⑥a 4·a 4 ⑦a 20÷a 12 ⑧2a 8-a 8 (A)7个 (B)6个 (C)5个 (D)4个 三、判断题(a ≠0) 6.a 6÷a 2=a 3.( ) 7.(-a )2÷a 2=-1.( ) 8.a 3÷1=a 2.( ) 9.54÷54=0.( ) 10.(-a )3÷(-a )2=-a .( ) 11.(a -3)0=1(a ≠3).( )四、计算题 12.(a 6)2÷a 5. 13.(x 2)3÷(x 3)2.14.(ab 2)4÷(ab 2)2. 15.[(a 2)3]4÷a 5.16.x 4m ÷x m ·x 2m . 17.(x 3·x 2·x 2)÷x 6.综合、运用、诊断一、填空题18.直接写出结果:(1)(-a 5)÷(-a )3=_______; (2)-a 4÷(-a )2=_______;(3)x 10÷x 4÷x 2=_______; (4)10n ÷10n -2=_______;(5)(a 3)m ÷a m =_______; (6)(y -x )2n ÷(x -y )n -1=_______. 19.若2(x -2)0有意义,则x ______________. 二、选择题20.下列计算中正确的是( ).(A)x a +2÷x a +1=x 2 (B)(xy )6÷(xy )3=x 2y 2(C)x 12÷(x 5÷x 2)=x 9 (D)(x 4n ÷x 2n )·x 3n =x 3n +221.若(y 2)m ·(x n +1)÷x ·y =xy 3,则m ,n 的值是( ).(A)m =n =1 (B)m =n =2 (C)m =1,n =2 (D)m =2,n =1 三、计算题22.[(x 3)2·(-x 4)3]÷(-x 6)3. 23.(x m ·x 2n )2÷(-x m +n ).24.(m -2n )4÷(2n -m )2. 25.(m -n )4÷(n -m )3.四、解答题26.(1)已知10m =3,10n =2,求102m -n 的值. (2)已知32m =6,9n =8,求36m -4n 的值.27.学校图书馆藏书约3.6×104册,学校现有师生约1.8×103人,每个教师或学生假期平均最多可以借阅多少册图书?拓展、探究、思考28.若2x =3,2y =6,2z =12,求x ,y ,z 之间的数量关系.29.若(a -1)a =1,求a 的值.30.已知999999=P ,909911=Q ,那么P ,Q 的大小关系怎样?为什么?测试10 整式的除法(一)学习要求会进行单项式除以单项式的计算.课堂学习检测一、判断题1.x 3n ÷x n =x 3.( ) 2.10x 4÷7x =0.7x 3.( ) 3..2121)(2x xy y x -=÷- ( ) 4.8a 8÷4a 4=2a 4.( ) 5.26÷42×162=512.( )6.(3ab 2)3÷3ab 3=9a 3b 3.( )二、选择题7.28a 4b 2÷7a 3b 的结果是( ). (A)4ab 2 (B)4a 4b(C)4a 2b 2 (D)4ab8.25a 3b 2÷5(ab )2的结果是( ). (A)a (B)5a (C)5a 2b (D)5a 2三、计算题9.-8x 4÷3x 2. 10.(-12a 5b 2c )÷(-3a 2b ).11..2383342ab b a ÷12..5.0)21(2242y x y x ÷-13.10a 3÷(-5a )2. 14.(4x 2y 3)2÷(-2xy 2)2.四、解答题15.先化简,再求值:[5a 4·a 2-(3a 6)2÷(a 2)3]÷(-2a 2)2,其中a =-5.综合、运用、诊断一、选择题 16.)21(43224yz x z y x -÷-的结果是( ). (A)8xyz (B)-8xyz (C)2xyz(D)8xy 2z 217.下列计算中错误的是( ).(A)4a 5b 3c 2÷(-2a 2bc )2=ab(B)(-24a 2b 3)÷(-3a 2b )·2a =16ab 2 (C)214)21(4222-=÷-⋅y x y y x (D)3658410221)()(a a a a a a=÷÷÷÷ 二、计算题18.(1.2×107)÷(5×104).19.(2a )3·b 4÷12a 3b 2.20.7m 2·(4m 3p 4)÷7m 5p . 21.(-2a 2)3[-(-a )4]2÷a 8.22.].)(21[)(122+++÷+n n y x y x23.⋅⨯⨯mmm m 42372三、解答题24.若22372288b b a b a nm=÷,求m ,n 的值.拓展、探究、思考25.已知x 2=x +1,求代数式x 5-5x +2的值.测试11 整式的除法(二)学习要求会进行多项式除以单项式的计算.课堂学习检测一、填空题1.直接写出结果:(1)(4x 2-8x +6)÷2=___________;(2)(28b 3-14b 2+21b )÷7b =___________; (3)(9a 3+6a 2-12a +3)÷(-3)=___________; (4)(6x 4y 3-8x 3y 2+9x 2y )÷(-2xy )=___________.2.已知A 是关于x 的四次多项式,且A ÷x =B ,那么B 是关于x 的_______次多项式. 二、选择题3.下列计算正确的是( ).(A)(-3x n +1y n z )÷(-3x n +1y n z )=0 (B)(15x 2y -10xy 2)÷(-5xy )=3x -2y (C)x xy xy y x 216)63(2=÷- (D)231123931)3(x x x x xn n n +=÷+-++ 4.已知7x 5y 3与一个多项式之积是28x 7y 3+98x 6y 5-21x 5y 5,则这个多项式是( ). (A)4x 2-3y 2 (B)4x 2y -3xy 2 (C)4x 2-3y 2+14xy 2 (D)4x 2-3y 2+7xy 3 三、计算题5..53)1095643(354336ax ax x a x a ÷-+-6.[2m (7n 3m 3)2+28m 7n 3-21m 5n 3]÷(-7m 5n 3).7.[(m +n -p )(m +p +n )-(m +n )2]÷(-p ).四、解答题8.先化简,再求值:[(3a +2b )(3a -2b )-(a +2b )(5a -2b )]÷4a ,其中a =2,b =-3.综合、运用、诊断一、填空题9.直接写出结果:(1)[(-a 2)3-a 2(-a 2)]÷(-a )2=____________;(2)(-81x n +5+15x n +1-3x n -1)÷(-3x n -1)=_____________; (3)(____________)·(-4x 2y 3)=8x 5y 4-2x 4y 5-12x 2y 7. 10.若M (a -b )3=(a 2-b 2)3,那么整式M =____________. 二、计算题11.[(m +n )(m -n )-(m -n )2+2n (m -n )]÷4n .12..9]31)3(2)3[(8723223242y x y y x x x y x ÷⋅-⋅-三、解答题 13.当21=a ,b =-1时,求(a 2b -2ab 2-b 3)÷b -(a +b )(a -b )的值.拓展、探究、思考14.已知多项式A =1343x -258,B =x 2+5x -1,C =2x 3-10x 2+51x -259,D =2x 5-x 3+6x 2-3x +1,你能用等号和运算符号把它们连接起来吗?参考答案第十五章 整式测试11.底数,指数. 2.(1)109;m 9;a 9.(2)1010;y 8.(3)b 4;-a 9.3.5;1. 4.C . 5.D . 6.×. 7.×. 8.×. 9.√. 10.128.11.x 3n . 12.m 6. 13.(a -b )6. 14.3a 5. 15.-2a 5.16.(1)m n +3. (2)b m +5.(3)-x 11.(4)-x 7.(5)m 5.(6)-c 4.(7)5.(8)-a 3.17.30. 18.102a +4. 19.-2x 7. 20.0. 21.22009.22.(1)(-a )n =⎪⎩⎪⎨⎧-)()(为正奇数为正偶数n n n a a . (2)⎪⎩⎪⎨⎧---=-)()()()()(为正奇数为正偶数n b a b a a b n n n (3)①(m -2n )6.②-(m -n )7.测试21.底数,相乘. 2.(1)106;(2)a 12;(3)33n ;(4)64;(5)-n 9;(6)-310.3.(1)≠;(2)≠;(3)=;(4)=;(5)≠;(6)=.4.B . 5.A . 6.x 10. 7.2x 3n -2. 8.-2x 12. 9.-m 13. 10.214.11.(x -y )2n +2. 12.0. 13.(1)3x 8;(2)(a +b )12;(3)x 8mn ;(4)x 14;(5)c 3m +6.14.-(x +y )2m +3 15.6. 16.25. 17.D .18.25a 8b 4. 19.(1)x =4;(2)a =2. 20.(1)108;(2)8. 21.5333<3555<4444.测试31.分别乘方;相乘.2.(1)9×102;(2)m 6n 6;(3)b 36c 9;(4)4x 2;(5)361251b a -;(6)16x 4y 12. 3.D . 4.C . 5.C . 6.2a 12.7.-8x 3y 21. 8.5x 6y 9. 9.-4a 6. 10.56.11.(1)33278b a ;(2)28a 6. 12.(1)3a 2b 3;(2)x 2y 2;(3)ab . 13.A . 14.-a 21b 9. 15.x 8y 9. 16.0.2. 17.-18. 18.±6. 19.216×310<210×314. 20.2.测试41.系数、相同字母的幂,连同它的指数作为积的一个因式.2.(1)6a 3b 4;(2)z y x 4381;(3)-20xy 3;(4)15a 6b ;(5)c b a 4532;(6)-16a 10. 3.1.5×108. 4.2010. 5.B . 6.C . 7.A . 8.544203c b a . 9.-8x m +3yz 5. 10.c b a 8525. 11.-12(a -b )3m -1. 12.(1)12a n b ;(2)3423y x -;(3)-216a 15b 9;(4)3×107;(5)x 7y 2m +3;(6)9a 6. 13.36. 14.A . 15.D . 16.-9x 10y 10.17.54x m +7y 3n +6. 18.-11a 6b 4. 19.3x 9. 20.0. 21.6x m +4y n +2.22.(1)y =(x -1)2+3;(2)12.测试51.多项式的每一项,相加.2.(1)5m +5n -25;(2)-2a 2+2ab 2-2ac 3;(3)8a 2b -12ab 2;(4)2x 3-3x 2+4x .3.C . 4.B . 5.D . 6.b 2.7.-a 2b 2+ab +2. 8.4a 5b 4-4a 6b 3+4a 6b 2. 9.10x 8y 3-2x 2. 10.27.11.3n 是3的倍数.12.(1)a 3b 3-a 2b 2+ab ;(2)33a 2b 2+2a 3b 2;(3)18a 3b 4-27a 4b 3;(4)-32x 2y 4+16xy 5.13.C . 14.A . 15.C .16.-17a +12. 17.-3a 3b 4. 18..2992322y x y x +19..232y x n +- 20.x =-8. 21.31≤x . 22.a =2;b =1. 23.(1)36;(2)2010;(3)0. 测试61.一个多项式的每一项,另一个多项式的每一项,相加.2.(1)am +an +bm +bn ;(2)ax +ay +2bx +2by ;(3)3my -ma +3ny -na ;(4)y 2+y -12.3.C . 4.D . 5.2x 2+xy -3y 2. 6..143122-+x x 7.a 3-3ab +3a 2b 2-9b 3. 8.25x 6-16y 4. 9.x 3-y 3. 10.2x 3+x 2-2x -1. 11.-43. 12.k =-2. 13.B . 14.A . 15.⋅---252112a a 16.-33xy +6x 2-63y 2. 17.ab 2+7ab -18a . 18.-a -14. 19.-8.20.x <4. 21.a =-1;b =-4. 22.p =3;q =1.23.(1)①x 2+5x +6;②x 2+10x +21;③a 2-3a -70;④x 2-11x +30.(2)①x 2+4x +3;②x 2-5x +6;③x 2-3x -10;④⋅--61612m m (3)x 2+(a +b )x +ab .(4)±37;±20;±15;±13;±12.24.x 2-1;x 3-1;x 4-1;x 5-1;x n +1-1.测试71.(1)x 2-4;(2)4x 2-25y 2;(3)x 2-a 2b 2;(4)b 4-144.2.(1)x 2-y 2;(2)x 2-y 2;(3)y 2-x 2;(4)x 2-y 2;(5)y 2-x 2;(6)x 2-y 2.3.B . 4.C . 5.C . 6.⋅-4924b a 7.x 2n -4. 8..1699422n m -9..233222y x -10.⋅-16422x y 11.m 4n 2-4. 12.(1)9991;(2)0.9996;(3)⋅494899 13.-15. 14..942-a 15.9x 2-25y 2. 16.(1)x -5.(2)-m -n .(3)3x -1.(4)2b -a .17.A . 18.C . 19.C . 20..94144a b - 21.x 8-1. 22.-8m 2+12n 2. 23.(1)2.(2)⋅-⨯+2132112n 24.x =8;y =5. 测试81.(1)x 2+10x +25;(2)9m 2+12mn +4n 2;(3)x 2-6xy +9y 2;(4)⋅+-934422b ab a (5)x 2-2xy +y 2;(6)x 2+2xy +y 2. 2.-12xy . 3.A . 4.C . 5.D .6.169x 2+xy +94y 2. 7.9m 2n 2-30mnab +25a 2b 2. 8.25a 4-10a 2b 4+b 8. 9.9x 4-30x 2y +25y 2. 10.16x 6+56x 3y 2+49y 4. 11.-y 2-6y +17. 12.(1)411640;(2)89401. 13.49;169. 14.(1)25;x ;(2)-8x ;x ;(3)21;41 (4)12x ;2x . 15.16. 16.±4. 17.B . 18.D . 19.16a 4-8a 2+1. 20.4x 2. 21.a 2+2ab +b 2-4c 2.22.x 2-4y 2-z 2+4yz . 23.a 2+b 2+c 2+2ab +2bc +2ac .24.⋅+-++-9134324422y x y xy x 25.长12米,宽10米. 26.(1)2;2;(2)23;(3)7. 27.25. 28.3. 29.相等.测试91.不变,相减. 2.1,1.3.(1)x 3;(2)y ;(3)1;(4)-c 3;(5)x 5y 5;(6)-x ;(7)83y ;(8)-a 2x 2;(9)a 2-2ab +b 2;(10)1. 4.B . 5.C . 6.×. 7.×. 8.×. 9.×. 10.√. 11.√.12.a 7. 13.1. 14.a 2b 4. 15.a 19. 16.x 5m . 17.x .18.(1)a 2;(2)-a 2;(3)x 4;(4)100;(5)a 2m ;(6)(x -y )n +1. 19.x ≠2.20.C . 21.D . 22.1. 23.-x m +3n . 24.m 2-4mn +4n 2. 25.-m +n .26.(1)29;(2)827. 27.20册. 28.2y =x +z . 29.a =0或a =2. 30.P =Q .测试10 1.×. 2.×. 3.×. 4.√. 5.×. 6.×. 7.D . 8.B . 9.238x -. 10.4a 3bc . 11..41ab 12.-y 2. 13.a 52. 14.4x 2y 2. 15.-25. 16.A . 17.D . 18.240. 19.232b . 20.4p 3. 21.-8a 6. 22.2(x +y )n +1. 23.1. 24.m =4;n =3. 25.5.测试11 1.(1)2x 2-4x +3;(2)4b 2-2b +3;(3)-3a 3-2a 2+4a -1;(4).2943223x y x y x -+- 2.三. 3.D . 4.C . 5..23245225x x a a -+- 6.-14m 2n 3-4m 2+3. 7.p . 8.8. 9.(1)-a 4+a 2;(2)27x 6-5x 2+1;(3).32124223y y x y x ++-10.(a+b)3.11.m-n.12.-1.13.1.14.B·C+A=D.。
2023年初三下半期第7次大练习线上学习检测历史考试(吉林省长春市东北师大净月)
选择题中国历史上第一个统一的多民族的封建王朝是()A. 秦朝B. 汉朝C. 隋朝D. 唐朝【答案】A【解析】试题分析:本题主要考查学生运用所学知识解决问题的能力,此题为问答型选择题。
考查学生对中国历史上第一个统一的多民族的封建王朝秦朝的记忆能力。
据题意根据所学知识,选项中A合题意。
所以答案选A选择题“风吹金榜落凡世,三十三人名字香。
”是唐代诗人周匡物的诗句,此诗描述的情景与哪一制度有关?A. 三省六部制B. 分封制C. 科举制D. 行省制【答案】C【解析】依据题干“风吹金榜落凡世,三十三人名字香。
”的信息,结合所学知识可知,隋朝时期开创了科举考试制度,通过考试选拔人才,“风吹金榜落凡世,三十三人名字香。
”描述的就是通过科举制度选拔人才的过程,C项符合题意;ABD三项不符合题意;故选C。
选择题使太平天国运动由盛转衰的历史事件是A. 封王建制B. 定都天京C. 孤军北伐D. 天京事变【答案】D【解析】依据所学知识可知,1856年,太平天国定都天京以后,主要领导人之间嫌隙日生,杨秀清、韦昌辉、石达开等各自结成自己的势力集团,进行争权夺利的斗争,太平天国领导集团之间发生的一次公开的分裂,史称天京变乱,使太平军元气大伤,并丧失了乘胜歼灭敌人的有利时机,是太平天国由盛转衰的转折点,D项符合题意;ABC三项不符合题意;故选D。
选择题有人说:“洋务运动因战争而兴起,又因战争而宣告失败”。
战争分别指A.鸦片战争一第二次鸦片战争B.鸦片战争一八国联军侵华战争C.第二次鸦片战争一甲午中日战争D.第二次鸦片战争一八国联军侵华战争【答案】C【解析】根据所学知识可知,第二次鸦片战争后,清政府内外交困,为维护清朝统治,从19世纪60-90年代,洋务派掀起了一场“师夷长技”的洋务运动。
甲午中日战争中北洋舰队全军覆没,标志着洋务运动彻底破产,C符合题意;综合上述分析可知,ABD项不符,排除。
故选择C。
选择题梁启超说:“辛亥革命有什么意义呢?简单说:第一,觉得凡不是中国人都没有权来管中国人的事;第二,觉得凡是中国人都有权来管中国人的事”。
八年级下册生物学习与检测答案
八年级下册生物学系与检测参考答案注:本答案只应参考第五单元生命的起源第一章生命的起源和进化第一节生命的起源导学提纲一、1.水蒸气氢气氨甲烷氧气紫外线闪电有机小分子物质原始海洋2.有机大分子物质原始的蛋白质核酸原始界膜新陈代谢个体增殖二、米勒生命化学进化课堂自测1.C 2.C 3.A 4.D 5.B 6.B7.化学进化生命非生命物质化学进化米勒生命化学进化8.氨基酸结晶牛胰岛素简单的有机物核酸知能提升1.D2.D3.D4.B5.A6.(1)米勒(2)原始大气氧气闪电能量(3)氨基酸原始海洋(4)冷凝器降雨(5)化学进化第二节生物进化的证据导学提纲一、1.地层古代生物遗体遗物生活痕迹最直接2.简单复杂二、来源解剖结构外形功能亲缘关系共同的原始祖先三、分子生物学蛋白质 1% 氨基酸亲缘关系生物进化近远课堂自测1.D 2.C 3.A 4.B5.化石顺序进化6.外形功能来源同源同源生活环境功能7.黑猩猩马果蝇、向日葵知能提升1.C 2.B 3.B 4.C5.没有生命从无到有6.(1)凡是具有同源器官的生物,都是由共同的原始祖先进化而来的(2)在进化过程中,由于它们的生活环境不同,同源器官适应于不同的生活环境,逐渐出现了形态和功能上的不同(3)化石、胚胎学、生物化学、遗传学、生物地理学等方面的证据第三节生物进化的历程导学提纲一、1.藻类苔藓蕨类输导种子2.两一两一隔膜两两3.简单复杂水生陆生低等高等二、1.苔藓植物蕨类植物2.原始单细胞动物无脊椎动物脊椎动物爬行类哺乳类课堂自测1.D 2.C 3.B 4.C 5.A 6.B7.(1)叶绿体原始的单细胞藻类植物(2)原始的苔藓植物原始的蕨类植物种子植物原始的裸子植物原始的被子植物(3)水生陆生简单复杂低等高等知能提升1.D 2.B 3.C 4.D 5.B 6.C 7.D8.(1)熊(2)大熊猫(3)这些生物是由共同的祖先经过漫长的时间逐渐进化而来的,它们之间有着或远或近的亲缘关系9 由水生到陆生第四节生物进化的原因导学提纲一、自然选择生存斗争适者不适者过度繁殖生存斗争足够的食物空间同种不同种自然条件适者生存不适者被淘汰二、需求爱好不断选择人快得多课堂自测1.B 2.C 3.C 4.D 5.A 6.D7.(1)有翅变异大风 (2)自然选择生存斗争知能提升1.D 2.A 3.B 4.C 5.B 6.B7.(1)差异 (2)颈长有利变异不利变异 ( 3)颈长颈短 (4)遗传物质(5)生存斗争自然选择8.(1)个体差异不定向(2)选择定向(3)生存斗争第二章人类的起源和进化第一节人类的起源导学提纲一、1.赫胥黎比较解剖人猿同祖2.达尔文长臂猿猩猩大猩猩黑猩猩共同的祖先古猿3.化石二、树栖稀树草原地面下移增长短宽弓“S”四足直立行走课堂自测1.C 2.D 3.B 4.B 5.D6.比较解剖人猿同祖7.古猿化石8.重心下移骨盆变短增宽下肢骨增长脊柱由弓形变为“S”形知能提升1.C2.B 3.B 4.D5.(1)树栖地面森林大量消失(2)直立行走上脑制造(3)黑猩猩利用树枝,不具有创造性(4)A→B→C→D→E→F→G第二节人类的进化导学提纲一、1.1929 裴文中从猿到人2.南方古猿能人直立人智人二、1.体质特征蒙古利亚人高加索人尼格罗人澳大利亚人2.基因极其微小物种智人体质特征地域自然选择课堂自测1.B2.D3.D4.C知能提升1.C 2.B 3.D 4.C5.南方古猿制造取火关键智人南方古猿单元检测五一、选择题1.B2.B3.A4.B5.C6.A7.C8.B9.B 10.C 11.D 12.B 13.B14.C 15.B 16.D 17.D 18.D 19.C 20.D二、非选择题21.(1)黑猩猩金枪鱼(2)金枪鱼、响尾蛇、鸡、狗、猕猴、黑猩猩(3)D (4)各种生物之间有着共同的起源和一定的亲缘关系22.(1)在越早形成的地层中,成为化石的生物越简单、越低等,水生生物越多;在越晚形成的地层中,成为化石的生物越复杂、越高等,陆生生物越多(2)由水生到陆生,由简单到复杂,由低等到高等( 3)无脊椎动物(4)最可靠的证据23.(1)e(2)b(3)e(4)d24.(1)哺乳类被子植物两栖类复杂高等水生(2)爬行类生物化石(3)保护色D25.(1)原始材料(2)生存斗争动力(3)定向选择(4)遗传种群26.(1)变异遗传(2)适者生存定向方向(3)自然选择27.(1)人类(2)现代类人猿(3)人类的颅腔比类人猿的颅腔大,所以脑的容量也大28.(1)前肢后肢短小下肢(2)半直立行走直立行走29.遗传变异自然选择古猿南方古猿能人直立人智人30.(1)树栖野果(2)直立行走上肢简单工具(3)适应者不适应者自然规律和谐相处第六单元生物与环境第一章生态系统第一节生态系统的组成导学提纲一、1.生物无机环境2.生物圈全部生物无机环境二、1.非生物成分生物成分2.阳光空气水土壤能量营养生存空间3.生产者消费者分解者生产者课堂自测1.C 2.D 3.A 4.B 5.C6.绿色植物基本关键7.细菌真菌无机物知能提升1.B 2.C 3.A 4.D5.(1)非生物成分(2)生物成分树光合有机物(或营养物质)和能量(3)分解者将动植物残体等含有的有机物分解成简单的无机物(4)联系依存6.(1)有光(或阳光)(2)光合呼吸腐生细菌(3)藻类和水草小鱼(4)水、空气、泥沙等第二节食物链和食物网导学提纲一、1.生物食物2.铅汞铜食物链增加二、食物网复杂课堂自测1.B 2.D 3.C 4.D 5.A6.(1)草兔和鼠狐、蛇和鹰(2)5草→鼠→蛇→鹰(3)鹰知能提升1.A 2.B 3.C 4.D 5.D 6.C7.(1)4(2)草→食草昆虫→青蛙→蛇→鹰(3)捕食竞争(4)草鹰(5)分解者(或腐生的细菌、真菌)8.(1)非生物成分(2)1 绿色植物、蝉、螳螂、黄雀、蛇(3)绿色植物螳螂蛇(4)分解者将动植物残体等含有的有机物分解成简单的无机物第三节能量流动和物质循环导学提纲一、1.食物链2.(1)太阳能(2)输入传递散失(3)逐级递减 10%~20%二、1.生产者消费者分解者2.周而复始课堂自测1.D 2.C 3.B 4.A 5.B6.食物链食物网7.物质循环能量流动知能提升1.A 2.B 3.C 4.A5.(1)[A]生产者(2)消费者分解者(3)光合呼吸6.(1)呼吸作用②(2)腐生的细菌、真菌将动植物残体等含有的有机物分解成二氧化碳、水等无机物(3)乙→丙→丁丁 (4)太阳能(单向流动)逐级递减第四节生态系统的类型导学提纲一、1.陆地生态系统水域生态系统2.森林生态系统草原生态系统荒漠生态系统森林生态系统3.海洋生态系统淡水生态系统二、1.人 2.科学管理课堂自测1.D 2.A 3.B 4.A 5.C6.气候温度降雨量7.森林生态系统知能提升1.C 2.D 3.B 4.A 5.B6.(1)人工(2)农作物(3)人7.(1)捕食 (2)细菌 (3)太阳能(或阳光) (4)能量利用 (5)鱼(人)第五节生态系统的自我调节导学提纲一、1.结构功能 2.自我动态二、1.多复杂大(强) 2.限度课堂自测1.D 2.B 3.B 4.C 5.A6.增加减少减少由于蟾蜍数量减少,黏虫因为缺少天敌而大量繁殖,导致小麦减产可采用生物防治害虫的方法,人类活动要保持生态系统的相对稳定,维护生态平衡知能提升1.A 2.A 3.B 4.C 5.D6.(1)植物田鼠(2)增加植物第二章生物多样性及保护第一节生物多样性导学提纲一、生物种类遗传(或基因)生态系统二、直接使用价值间接使用价值潜在使用价值课堂自测1.A 2.C 3.B 4.A 5.B6.鱼类鸟类哺乳动物7.基因基因库基因遗传(或基因)知能提升1.A 2.C 3.A 4.D5.(1)裸子植物(2)两栖类、爬行类(3)遗传(或基因)的多样性第二节生物多样性的保护导学提纲一、栖息地的丧失滥采乱伐滥捕乱杀外来生物二、就地保护迁地保护加强教育法制管理课堂自测1.A 2.C 3.C 4.D 5.D6.就地保护建立自然保护区7.保护对象保护管理捕杀采集8.中华人民共和国森林法中华人民共和国野生动物保护法中国自然保护纲要1.D 2.D 3.B 4.C 5.A6.(1)偷猎、栖息地丧失(2)栖息地丧失(3)保护生物的生存环境;保护生物栖息地不被破坏;建立自然保护区;迁地保护、设立科研机构,进行人工繁殖;加大保护宣传力度;制定法律等等(4)单元检测六一、选择题1.D 2.A 3.C 4.C 5.B 6.C 7.D 8.A 9.C 10.B 11.D 12.D 13.B 14.C 15.B 16.D 17.D 18.A 19.C 20.B二、非选择题21 (1)5 (2)草→鼠→蛇→鹰(3)非生物成分分解者(4)兔22.(1)非生物成分分解者(2)太阳能 (单向流动)逐级递减(3)5 三、四 (4)农作物→食草昆虫→食虫鸟 (5)蛇23.(1)生产者分解者 (2)二氧化碳呼吸 (3)(单向流动)逐级递减24.(1)生产者(或稻)固定的太阳能(2)稻(3)细菌、真菌分解者(4)稻→猪(5)使有毒物质随着食物链传递,最终会导致人中毒,严重时会引起死亡25.(1)太阳能(或阳光)藻类 (2)捕食竞争 (3)藻类→小鱼→大鱼(4)细菌、真菌(或分解者)26.(1)[甲]生产者(2)光合(3)甲和乙(4)二氧化碳第七单元生物技术第一章生活中的生物技术第一节发酵技术导学提纲一、1.温度无氧乳糖乳酸 2.酸奶二、1.温度无氧酒精 2.酿酒课堂自测1.C2.D3.A4.D5.A6 (1)(2)两(3)酵母菌无氧7 (1)杀死材料中的杂菌(2)酸奶中有乳酸菌(3)防止空气进入容器,抑制乳酸的活动(4)乳酸菌将乳糖等分解为乳酸(5)略1.D2.C3.C4.D5.(1)细胞壁细胞膜液泡细胞质细胞核(2)成形液泡(3)葡萄糖二氧化碳(4)叶绿体第二节食品贮存导学提纲一、微生物的大量繁殖二、微生物微生物呼吸三、1.糖渍酒泡 2.脱水添加防腐剂课堂自测1.B2.A3.C4.C5.B6 (1)—C (2)—B (3)—A (4)—E (5)—D知能提升1.D2.C3.B4.(1)杀菌(2)不让微生物进入(3)微生物(4)低温能抑制细菌繁殖从而使食品保鲜(5)适宜的温度水分有机物第二章现代生物技术第一节基因工程导学提纲一、分子基因拼接组合另一种生物遗传性状新品种二、抗虫棉利用大肠杆菌生产的胰岛素三、《21世纪议程》《生物多样性公约》《农业转基因生物管理条例》课堂自测1.B2.A3.D4.C5.(1)转入的是草鱼生长激素基因。
2024年新统编版小学六年级语文上册第2次月考学习质量测试(附参考答案)
2024年新统编版小学六年级语文上册第2次月考学习质量检测试卷(本练习满分100分,时间120分钟。
答案一律写在答题卡上)第一部分基础百花园一、书写水平(5分)1.根据习作的汉字书写水平计分。
二、选择题(每小题2分,共20分)2.下面加点字读音无误的一项是()A.政.府(zhèng)缀.满(zhuì)窥.视(kuì)崎岖.(qū)B.屹.立(yì)浑浊.(zhuó)笨拙.(zhuō)擎.着(jíng)C.攀.登(pān)参.差(cēn)芭.蕉(bā)憧.憬(tóng)D.顺.心(shùn)勾勒.(lè)愁.怨(chóu)伪.装(wěi)3.下列词语书写全部正确的一项是()A.居高临下聚精会神徐徐上升襟漂带舞B.迎风招展千钧一发横七竖八视死如归C.斩钉接铁硕大无朋自言自语纹丝不动D.热血沸腾全神惯注四面八方孤芳自赏4.下列关联词运用不当的一项是()A.因为人们随意毁坏自然资源,所以造成了一系列生态灾难。
B.即使地球上的各种资源都枯竭了,我们也很难从别的地方得到补充。
C.如果生态环境遭到破坏,人类的生存就会受到威胁。
D.虽然山沟里的生活条件十分艰苦,但是老人不肯离开这里去城里享清福。
5.六(一)班集体到绍兴鲁迅故居参观考察,一路上,他们看到很多路牌,其中路牌有误的一项是()A.绍兴SHAOXINGB.鲁迅路LUXUN luC.南山湖NANSHAN HUD.中兴路ZHONGXING LU6.学习了《草原》这篇课文后,下面的说法正确的是()A.本文的作者是老舍,他是“人民文学家”。
B.课文主要写了作者一行骑马来到草原的历见、所闻、所感。
C. 课文赞美了草原的美丽风光,讴歌了蒙汉同胞的民族情谊。
D. 课文在写景中融入了作者的感受,起到了画蛇添足的作用。
7.下面的说法中,不正确的一项是()A. 阅读文章,只要把握住文章的主要内容,体会到作者表达的思想感情就可以了,不需要想开去。
八年级学探诊 全套和答案
八年级学探诊全套和答案Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#第十一章全等三角形测试1全等三角形的概念和性质学习要求1.理解全等三角形及其对应边、对应角的概念;能准确辨认全等三角形的对应元素.2.掌握全等三角形的性质;会利用全等三角形的性质进行简单的推理和计算,解决某些实际问题.课堂学习检测一、填空题1._____的两个图形叫做全等形.2.把两个全等的三角形重合到一起,_____叫做对应顶点;叫做对应边;_____叫做对应角.记两个三角形全等时,通常把表示_____的字母写在_____上.3.全等三角形的对应边_____,对应角_____,这是全等三角形的重要性质.4.如果ΔABC≌ΔDEF,则AB的对应边是_____,AC的对应边是_____,∠C 的对应角是_____,∠DEF的对应角是_____.图1-15.如图1-1所示,ΔABC≌ΔDCB.(1)若∠D=74°∠DBC=38°,则∠A =_____,∠ABC=_____(2)如果AC=DB,请指出其他的对应边_____;(3)如果ΔAOB≌ΔDOC,请指出所有的对应边_____,对应角_____.图1-2图1-36.如图1-2,已知△ABE≌△DCE,AE=2 cm,BE=cm,∠A=25°,∠B=48°;那么DE=_____cm,EC=_____cm,∠C=_____°;∠D=_____°.7.一个图形经过平移、翻折、旋转后,_____变化了,但__________都没有改变,即平移、翻折、旋转前后的图形二、选择题8.已知:如图1-3,ΔABD≌CDB,若AB∥CD,则AB的对应边是()A.DB B.BC C.CD D.AD9.下列命题中,真命题的个数是()①全等三角形的周长相等②全等三角形的对应角相等③全等三角形的面积相等④面积相等的两个三角形全等A.4B.3C.2D.110.如图1-4,△ABC≌△BAD,A和B、C和D是对应顶点,如果AB=5,BD =6,AD=4,那么BC等于()A.6 B.5C.4D.无法确定图1-4 图1-5 图1-611.如图1-5,△ABC≌△AEF,若∠ABC和∠AEF是对应角,则∠EAC等于()A.∠ACB B.∠CAF C.∠BAF D.∠BAC12.如图1-6,△ABC≌ΔADE,若∠B=80°,∠C=30°,∠DAC=35°,则∠EAC的度数为()A.40°B.35°C.30°D.25°三、解答题13.已知:如图1-7所示,以B为中心,将Rt△EBC绕B点逆时针旋转90°得到△ABD,若∠E=35°,求∠ADB的度数.图1-7图1-8图1-9综合、运用、诊断一、填空题14.如图1-8,△ABE和△ADC是△ABC分别沿着AB,AC翻折180°形成的若∠1∶∠2∶∠3=28∶5∶3,则∠α的度数为______.15.已知:如图1-9,△ABC≌△DEF,∠A=85°,∠B=60°,AB=8,EH =2.(1)求∠F的度数与DH的长;(2)求证:AB∥DE.拓展、探究、思考16.如图1-10,AB⊥BC,ΔABE≌ΔECD.判断AE与DE的关系,并证明你的结论.图1-10测试2 三角形全等的条件(一)学习要求1.理解和掌握全等三角形判定方法1——“边边边”,2.能把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等.课堂学习检测一、填空题1.判断_____的_____ 叫做证明三角形全等.2.全等三角形判定方法1——“边边边”(即______)指的是________________________________________________________________________ ________.3.由全等三角形判定方法1——“边边边”可以得出:当三角形的三边长度一定时,这个三角形的_____也就确定了.图2-1图2-2图2-34.已知:如图2-1,△RPQ中,RP=RQ,M为PQ的中点.求证:RM平分∠PRQ.分析:要证RM平分∠PRQ,即∠PRM=______,只要证______≌______证明:∵M为PQ的中点(已知),∴______=______在△______和△______中,∴______≌______().∴∠PRM=______(______).即RM.5.已知:如图2-2,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.分析:要证∠A=∠D,只要证______≌______.证明:∵BE=CF(),∴BC=______.在△ABC和△DEF中,∴______≌______().∴∠A=∠D(______).6.如图2-3,CE=DE,EA=EB,CA=DB,求证:△ABC≌△BAD.证明:∵CE=DE,EA=EB,∴______+______=______+______,即______=______.在△ABC和△BAD中,=______(已知),∴△ABC≌△BAD().综合、运用、诊断一、解答题7.已知:如图2-4,AD=BC.AC=BD.试证明:∠CAD=∠DBC.图2-48.画一画.已知:如图2-5,线段a、b、c.求作:ΔABC,使得BC=a,AC=b,AB=c.图2-59.“三月三,放风筝”.图2-6是小明制作的风筝,他根据DE=DF,EH=FH,不用度量,就知道∠DEH=∠DFH.请你用所学的知识证明.图2-6拓展、探究、思考10.画一画,想一想:利用圆规和直尺可以作一个角等于已知角,你能说明其作法的理论依据吗测试3 三角形全等的条件(二)学习要求1.理解和掌握全等三角形判定方法2——“边角边”.2.能把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等图3-1图3-2课堂学习检测一、填空题1.全等三角形判定方法2——“边角边”(即______)指的是______ ___________________________________________________________________ ________.2.已知:如图3-1,AB、CD相交于O点,AO=CO,OD=OB.求证:∠D=∠B.分析:要证∠D=∠B,只要证______≌______证明:在△AOD与△COB中,∴△AOD≌△______ ().∴∠D=∠B(______).3.已知:如图3-2,AB∥CD,AB=CD.求证:AD∥BC.分析:要证AD∥BC,只要证∠______=∠______,又需证______≌______.证明:∵AB∥CD(),∴∠______=∠______ (),在△______和△______中,∴Δ______≌Δ______ ().∴∠______=∠______ ().∴ ______∥______().综合、运用、诊断一、解答题4.已知:如图3-3,AB=AC,∠BAD=∠CAD.求证:∠B=∠C.图3-35.已知:如图3-4,AB=AC,BE=CD.求证:∠B=∠C.图3-46.已知:如图3-5,AB=AD,AC=AE,∠1=∠2.求证:BC=DE.图3-5拓展、探究、思考7.如图3-6,将两个一大、一小的等腰直角三角尺拼接(A、B、D三点共线,AB=CB,EB=DB,∠ABC=∠EBD=90°),连接AE、CD,试确定AE与CD的位置与数量关系,并证明你的结论.图3-6测试4 三角形全等的条件(三)学习要求1.理解和掌握全等三角形判定方法3——“角边角”,判定方法4——“角角边”;能运用它们判定两个三角形全等.2.能把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等.课堂学习检测一、填空题1.(1)全等三角形判定方法3——“角边角”(即______)指的是______ ___________________________________________________________________ ________;(2)全等三角形判定方法4——“角角边”(即______)指的是______ ___________________________________________________________________ ________.图4-12.已知:如图4-1,PM=PN,∠M=∠N.求证:AM=BN.分析:∵PM=PN,∴要证AM=BN,只要证P A=______,只要证______≌______.证明:在△______与△______中,∴△______≌△______ ().∴P A=______ ().∵PM=PN(),∴PM-______=PN-______,即AM=______.3.已知:如图4-2,AC BD.求证:OA=OB,OC=OD.分析:要证OA=OB,OC=OD,只要证______≌______.证明:∵AC∥BD,∴∠C=______.在△______与△______中,∴______≌______ ().∴OA=OB,OC=OD().图4-2二、选择题4.能确定△ABC≌△DEF的条件是()A.AB=DE,BC=EF,∠A=∠EB.AB=DE,BC=EF,∠C=∠EC.∠A=∠E,AB=EF,∠B=∠DD.∠A=∠D,AB=DE,∠B=∠E5.如图4-3,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中,和△ABC全等的图形是()图4-3A.甲和乙B.乙和丙C.只有乙D.只有丙6.AD是△ABC的角平分线,作DE⊥AB于E,DF⊥AC于F,下列结论错误的是()A.DE=DF B.AE=AF C.BD=CD D.∠ADE=∠ADF三、解答题7.阅读下题及一位同学的解答过程:如图4-4,AB和CD相交于点O,且OA =OB,∠A=∠C.那么△AOD与△COB全等吗若全等,试写出证明过程;若不全等,请说明理由.答:△AOD≌△COB.证明:在△AOD和△COB中,图4-4∴△AOD≌△COB(ASA).问:这位同学的回答及证明过程正确吗为什么综合、应用、诊断8.已知:如图4-5,AB⊥AE,AD⊥AC,∠E=∠B,DE=CB.求证:AD=AC.图4-59.已知:如图4-6,在△MPN中,H是高MQ和NR的交点,且MQ=NQ.求证:HN=PM.图4-610.已知:AM是ΔABC的一条中线,BE⊥AM的延长线于E,CF⊥AM于F,BC=10,BE=4.求BM、CF的长.拓展、探究、思考11.填空题(1)已知:如图4-7,AB=AC,BD⊥AC于D,CE⊥AB于E.欲证明BD =CE,需证明Δ______≌△______,理由为______.(2)已知:如图4-8,AE=DF,∠A=∠D,欲证ΔACE≌ΔDBF,需要添加条件______,证明全等的理由是______;或添加条件______,证明全等的理由是______;也可以添加条件______,证明全等的理由是______.图4-7 图4-812.如图4-9,已知ΔABC≌ΔA'B'C',AD、A'D'分别是ΔABC和ΔA'B'C'的角平分线.(1)请证明AD=A'D';(2)把上述结论用文字叙述出来;(3)你还能得出其他类似的结论吗图4-913.如图4-10,在△ABC中,∠ACB=90°,AC=BC,直线l经过顶点C,过A、B两点分别作l的垂线AE、BF,E、F为垂足.(1)当直线l不与底边AB相交时,求证:EF=AE+BF.图4-10(2)如图4-11,将直线l绕点C顺时针旋转,使l与底边AB交于点D,请你探究直线l在如下位置时,EF、AE、BF之间的关系.①AD>BD;②AD=BD;③AD<BD.图4-11测试5 直角三角形全等的条件学习要求掌握判定直角三角形全等的一种特殊方法一“斜边、直角边”(即“HL”),能熟练地用判定一般三角形全等的方法及判定直角三角形全等的特殊方法判定两个直角三角形全等.课堂学习检测一、填空题1.判定两直角三角形全等的“HL”这种特殊方法指的是_____.2.直角三角形全等的判定方法有_____ (用简写).3.如图5-1,E、B、F、C在同一条直线上,若∠D=∠A=90°,EB=FC,AB=DF.则ΔABC≌_____,全等的根据是_____.4.判断满足下列条件的两个直角三角形是否全等,不全等的画“×”,全等的注明理由:(1)一个锐角和这个角的对边对应相等;()(2)一个锐角和这个角的邻边对应相等;()(3)一个锐角和斜边对应相等;()(4)两直角边对应相等;()(5)一条直角边和斜边对应相等.()二、选择题5.下列说法正确的是()A.一直角边对应相等的两个直角三角形全等B.斜边相等的两个直角三角形全等C.斜边相等的两个等腰直角三角形全等D.一边长相等的两等腰直角三角形全等6.如图5-2,AB=AC,AD⊥BC于D,E、F为AD上的点,则图中共有()对全等三角形.A.3B.4C.5D.6图5-2三、解答题7.已知:如图5-3,AB⊥BD,CD⊥BD,AD=BC.求证:(1)AB=DC:(2)AD∥BC.8.已知:如图5-4,AC=BD,AD⊥AC,BC⊥BD.求证:AD=BC;图5-4综合、运用、诊断9.已知:如图5-5,AE⊥AB,BC⊥AB,AE=AB,ED=AC.求证:ED⊥AC.图5-510.已知:如图5-6,DE⊥AC,BF⊥AC,AD=BC,DE=BF.求证:AB∥DC.图5-611.用三角板可按下面方法画角平分线:在已知∠AOB的两边上,分别取OM=ON(如图5-7),再分别过点M、N作OA、OB的垂线,交点为P,画射线OP,则OP平分∠AOB,请你说出其中的道理.图5-7拓展、探究、思考12.下列说法中,正确的画“√”;错误的画“×”,并作图举出反例.(1)一条直角边和斜边上的高对应相等的两个直角三角形全等.()(2)有两边和其中一边上的高对应相等的两个三角形全等.()(3)有两边和第三边上的高对应相等的两个三角形全等.()13.(1)已知:如图5-8,线段AC、BD交于O,∠AOB为钝角,AB=CD,BF⊥AC于F,DE⊥AC于E,AE=CF.求证:BO=DO.(2)若∠AOB为锐角,其他条件不变,请画出图形并判断(1)中的结论是否仍然成立若成立,请加以证明;若不成立,请说明理由.测试6 三角形全等的条件(四)学习要求能熟练运用三角形全等的判定方法进行推理并解决某些问题.课堂学习检测一、填空题1.两个三角形全等的判定依据除定义外,还有①_____;②_____;③_____;④_____;⑤_____.2.如图6-1,要判定ΔABC≌ΔADE,除去公共角∠A外,在下列横线上写出还需要的两个条件,并在括号内写出由这些条件直接判定两个三角形全等的依据.(1)∠B=∠D,AB=AD();(2)_____,_____();(3)_____,_____();(4)_____,_____();(5)_____,_____();(6)_____,_____();(7)_____,_____().图6-13.如图6-2,已知AB⊥CF,DE⊥CF,垂足分别为B,E,AB=DE.请添加一个适当条件,使ΔABC≌ΔDEF,并说明理由添加条件:_________________________________________________________________,理由是:___________________________________________________________________.图6-24.在ΔABC和ΔDEF中,若∠B=∠E=90°,∠A=34°,∠D=56°,AC=DF,贝ΔABC和ΔDEF是否全等答:______,理由是______.二、选择题5.下列命题中正确的有()个①三个内角对应相等的两个三角形全等;②三条边对应相等的两个三角形全等;③有两角和一边分别相等的两个三角形全等;④等底等高的两个三角形全等.A.1B.2C.3D.46.如图6-3,AB=CD,AD=CB,AC、BD交于O,图中有()对全等三角形.A.2B.3C.4D.5图6-37.如图6-4,若AB=CD,DE=AF,CF=BE,∠AFB=80°,∠D=60°,则∠B的度数是()A.80°B.60°C.40°D.20°8.如图6-5,△ABC中,若∠B=∠C,BD=CE,CD=BF,则∠EDF=()A .90°-∠AB .A ∠-2190oC .180°-2∠AD .A ∠-2145o 图6-4 图6-5 图6-69.下列各组条件中,可保证△ABC 与△A 'B 'C '全等的是 ( )A .∠A =∠A ',∠B =∠B ',∠C =∠C 'B .AB =A 'B ',AC =A 'C ',∠B =∠B 'C .AB =C 'B ',∠A =∠B ',∠C =∠C 'D .CB =A 'B ',AC =A 'C ',BA =B 'C '10.如图6-6,已知MB =ND ,∠MBA =∠NDC ,下列条件不能判定△ABM ≌△CDN 的是 ( )A .∠M =∠NB .AB =CDC .AM =CND .AM ∥CN综合、运用、诊断一、解答题11.已知:如图6-7,AD =AE ,AB =AC ,∠DAE =∠BAC .求证:BD =CE .图6-712.已知:如图6-8,AC 与BD 交于O 点,AB ∥DC ,AB =DC .(1)求证:AC 与BD 互相平分;图6-8(2)若过O 点作直线l ,分别交AB 、DC 于E 、F 两点,求证:OE =OF .13.如图6-9,E 在AB 上,∠1=∠2,∠3=∠4,那么AC 等于AD 吗为什么图6-9拓展、探究、思考14.如图6-10,△ABC的三个顶点分别在2×3方格的3个格点上,请你试着再在格点上找出三个点D、E、F,使得△DEF≌△ABC,这样的三角形你能找到几个请一一画出来.图6-1015.请分别按给出的条件画△ABC(标上小题号,不写作法),并说明所作的三角形是否唯一;如果有不唯一的,想一想,为什么①∠B=120°,AB=2cm,AC=4cm;②∠B=90°,AB=2cm,AC=3cm;③∠B=30°,AB=2cm,AC=3cm;④∠B=30°,AB=2cm,AC=2cm;⑤∠B=30°,AB=2cm,AC=1cm;⑥∠B=30°,AB=2cm,AC=.测试7三角形全等的条件(五)学习要求能熟练运用三角形全等的知识综合解决问题.课堂学习检测解答题1.如图7-1,小明与小敏玩跷跷板游戏.如果跷跷板的支点O(即跷跷板的中点)到地面的距离是50 cm,当小敏从水平位置CD下降40 cm时,小明这时离地面的高度是多少请用所学的全等三角形的知识说明其中的道理.图7-12.如图7-2,工人师傅要在墙壁的O处用钻打孔,要使孔口从墙壁对面的B点处打开,墙壁厚是35 cm,B点与O点的铅直距离AB长是20 cm,工人师傅在旁边墙上与AO水平的线上截取OC=35 cm,画CD⊥OC,使CD=20 cm,连接OD,然后沿着DO的方向打孔,结果钻头正好从B点处打出,这是什么道理呢请你说出理由.图7-23.如图7-3,公园里有一条“Z”字形道路ABCD,其中AB∥CD,在AB、BC、CD三段路旁各有一只小石凳E,F,M,且BE=CF,M在BC的中点,试判断三只石凳E,M,F恰好在一直线上吗为什么图7-34.在一池塘边有A、B两棵树,如图7-4.试设计两种方案,测量A、B两棵树之间的距离.方案一:方案二:图7-4测试8 角的平分线的性质(一)学习要求1.掌握角平分线的性质,理解三角形的三条角平分线的性质.2.掌握角平分线的判定及角平分线的画法.课堂学习检测一、填空题1._____叫做角的平分线.2.角的平分线的性质是___________________________.它的题设是_________,结论是_____.3.到角的两边距离相等的点,在_____.所以,如果点P到∠AOB两边的距离相等,那么射线OP是_____.4.完成下列各命题,注意它们之间的区别与联系.(1)如果一个点在角的平分线上,那么_____;(2)如果一个点到角的两边的距离相等,那么_____;(3)综上所述,角的平分线是_____的集合.5.(1)三角形的三条角平分线_____它到___________________________.(2)三角形内....,到三边距离相等的点是_____.6.如图8-1,已知∠C=90°,AD平分∠BAC,BD=2CD,若点D到AB的距离等于5cm,则BC的长为_____cm.图8-1二、作图题7.已知:如图8-2,∠AOB.求作:∠AOB的平分线OC.作法:图8-28.已知:如图8-3,直线AB及其上一点P.求作:直线MN,使得MN⊥AB于P.作法:图8-39.已知:如图8-4,△AB C.求作:点P,使得点P在△ABC内,且到三边AB、BC、CA的距离相等.作法:图8-4综合、运用、诊断一、解答题10.已知:如图8-5,△ABC中,AB=AC,D是BC的中点,DE⊥AB于E,DF⊥AC于F.求证:DE=DF.图8-511.已知:如图8-6,CD⊥AB于D,BE⊥AC于E,CD、BE交于O,∠1=∠2.求证:OB=OC.图8-612.已知:如图8-7,△ABC中,∠C=90°,试在AC上找一点P,使P到斜边的距离等于PC.(画出图形,并写出画法)图8-7拓展、探究、思考13.已知:如图8-8,直线l1,l2,l3表示三条相互交叉的公路,现要建一个塔台,若要求它到三条公路的距离都相等,试问:(1)可选择的地点有几处(2)你能画出塔台的位置吗图8-814.已知:如图8-9,四条直线两两相交,相交部分的线段构成正方形ABCD.试问:是否存在到至少三边所在的直线的距离都相等的点若存在,请找出此点,这样的点有几个若不存在,请说明理由.图8-9测试9 角的平分线的性质(二)学习要求熟练运用角的平分线的性质解决问题.课堂学习检测一、选择题1.如图9-1,若OP 平分∠AOB ,PC ⊥OA ,PD ⊥OB ,垂足分别是C 、D ,则下列结论中错误的是 ( )A .PC =PDB .OC =ODC .∠CPO =∠DPOD .OC =PC 图9-12.如图9-2,在Rt ΔABC 中,∠C =90°,BD 是∠ABC 的平分线,交AC 于D ,若CD =n ,AB =m ,则ΔABD 的面积是( )A .mn 31B .mn 21C .mnD .2mn图9-2二、填空题3.已知:如图9-3,在Rt ΔABC 中,∠C =90°,沿着过点B 的一条直线BE折叠ΔABC ,使C 点恰好落在AB 边的中点D 处,则∠A 的度数等于_____.图9-34.已知:如图9-4,在ΔABC 中,BD 、CE 分别平分∠ABC 、∠ACB ,且BD 、CE 交于点O ,过O 作OP ⊥BC 于P ,OM ⊥AB 于M ,ON ⊥AC 于N ,则OP 、OM 、ON 的大小关系为_____.图9-4三、解答题5.已知:如图9-5,OD 平分∠POQ ,在OP 、OQ 边上取OA =OB ,点C 在OD 上,CM ⊥AD 于M ,CN ⊥BD 于N .求证:CM=CN.图9-56.已知:如图9-6,ΔABC的外角∠CBD和∠BCE的平分线BF、CF交于点F.求证:一点F必在∠DAE的平分线上.图9-67.已知:如图9-7,A、B、C、D四点在∠MON的边上,AB=CD,P为∠MON内一点,并且△P AB的面积与△PCD的面积相等.求证:射线OP是∠MON的平分线.图9-78.如图9-8,在ΔABC中,∠C=90°,BD平分∠ABC,DE⊥AB于E,若△BCD与△BCA的面积比为3∶8,求△ADE与△BCA的面积之比.图9-89.已知:如图9-9,∠B=∠C=90°,M是BC的中点,DM平分∠ADC.(1)求证:AM平分∠DAB;(2)猜想AM与DM的位置关系如何并证明你的结论.图9-9拓展、探究、思考10.已知:如图9-10,在ΔABC中,AD是△ABC的角平分线,E、F分别是AB、AC上一点,并且有∠EDF+∠EAF=180°.试判断DE和DF的大小关系并说明理由.图9-10第十二章轴对称测试1轴对称学习要求1.理解轴对称图形以及两个图形成轴对称的概念,弄清它们之间的区别与联系,能识别轴对称图形.2.理解图形成轴对称的性质,会画一些简单的关于某直线对称的图形.一、填空题1.如果一个图形沿着一条直线_____,直线两旁的部分能够_____,那么这个图...形.叫做_____,这条直线叫做它的_____,这时,我们也就说这个图形....关于这条直线(或轴)_____.2.把一个图形沿着某一条直线折叠,如果它能够与_____重合,那么这两图形...叫做关于_____,这条直线叫做_____,折后重合的点是_____,又叫做_____.3.成轴对称的两个图形的主要性质是(1)成轴对称的两个图形是_____;(2)如果两个图形关于某条直线对称,那么对称轴是任何一对_____的垂直平分线.4.轴对称图形的对称轴是_____.5.(1)角是轴对称图形,它的对称轴是_____;(2)线段是轴对称图形,它的对称轴是_____;(3)圆是轴对称图形,它的对称轴是_____.二、选择题6.在图1-1中,是轴对称图形.....的是()图1-17.在图1-2的几何图形中,一定是轴对称图形的有()图1-2A.2个B.3个C.4个D.5个8.如图1-3,ΔABC与ΔA'B'C'关于直线l对称,则∠B的度数为()图1-3A.30°B.50°C.90°D.100°9.将一个正方形纸片依次按图1-4a,b的方式对折,然后沿图c中的虚线裁剪,成图d样式,将纸展开铺平,所得到的图形是图1-5中的()图1-4图1-510.如图1-6,将矩形纸片ABCD(图①)按如下步骤操作:(1)以过点A的直线为折痕折叠纸片,使点B恰好落在AD边上,折痕与BC边交于点E (如图②);(2)以过点E的直线为折痕折叠纸片,使点A落在BC边上,折痕EF交AD边于点F(如图③);(3)将纸片收展平,那么∠AFE的度数为()图1-6A.60°B.°C.72°D.75°综合、运用、诊断一、解答题11.请分别画出图1-7中各图的对称轴.(1)正方形(2)正三角形(3)相交的两个圆图1-712.如图1-8,ΔABC中,AB=BC,ΔABC沿DE折叠后,点A落在BC边上的A'处,若点D为AB边的中点,∠A=70°,求∠BDA'的度数.图1-813.在图1-9中你能否将已知的正方形按如下要求分割成四部分,(1)分割后的图形是轴对称图形;(2)这四个部分图形的形状和大小都相同.请至少给出四种不同分割的设计方案,并画出示意图.图1-914.在图1-10这一组图中找出它们所蕴含的内在规律,然后在横线的空白处设计一个恰当的图形.图1-10拓展、探究、思考15.已知,如图1-11,在直角坐标系中,点A在y轴上,BC⊥x轴于点C,点A关于直线OB的对称点D恰好在BC上,点E与点O关于直线BC对称,∠OBC=35°,求∠OED的度数.图1-11测试2 线段的垂直平分线学习要求1.理解线段的垂直平分线的概念,掌握线段的垂直平分线的性质及判定,会画已知线段的垂直平分线.2.能运用线段的垂直平分线的性质解决简单的数学问题及实际问题.课堂学习检测一、填空题1.经过_____并且_____的_____ 叫做线段的垂直平分线.2.线段的垂直平分线有如下性质:线段的垂直平分线上的_____与这条线段_____的_____相等.3.线段的垂直平分线的判定,由于与一条线段两个端点距离相等的点在_____,并且两点确定_____,所以,如果两点M、N分别与线段AB两个端点的距离相等,那么直线MN是_____.4.完成下列各命题:(1)线段垂直平分线上的点,与这条线段的_____;(2)与一条线段两个端点距离相等的点,在_____;(3)不在线段垂直平分线上的点,与这条线段的_____;(4)与一条线段两个端点距离不相等的点,_____;(5)综上所述,线段的垂直平分线是_____的集合.5.如图2-1,若P是线段AB的垂直平分线上的任意一点,则(1)ΔPAC≌_____;(2)P A=_____;(3)∠APC=_____;(4)∠A=_____.图2-16.ΔABC中,若AB-AC=2cm,BC的垂直平分线交AB于D点,且ΔACD的周长为14cm,则AB=_____,AC_____.7.如图2-2,ΔABC中,AB=AC,AB的垂直平分线交AC于P点.(1)若∠A=35°,则∠BPC=_____;(2)若AB=5 cm,BC=3 cm,则ΔPBC的周长=_____.图2-2综合、运用、诊断一、解答题8.已知:如图2-3,线段AB.求作:线段AB的垂直平分线MN.作法:图2-39.已知:如图2-4,∠ABC及两点M、N.求作:点P,使得PM=PN,且P点到∠ABC两边的距离相等.作法:图2-4拓展、探究、思考10.已知点A在直线l外,点P为直线l上的一个动点,探究是否存在一个定点B,当点P在直线l上运动时,点P与A、B两点的距离总相等.如果存在,请作出定点B;若不存在,请说明理由.图2-511.如图2-6,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,那么点E、F是否关于AD对称若对称,请说明理由.图2-6测试3 轴对称变换学习要求1.理解轴对称变换,能作出已知图形关于某条直线的对称图形.2.能利用轴对称变换,设计一些图案,解决简单的实际问题.一、填空题1.由一个_____得到它的_____叫做轴对称变换.2.如果由一个平面图形得到它关于某一条直线l的对称图形,那么,(1)这个图形与原图形的_____完全一样;(2)新图形上的每一点,都是_____;(3)连接任意一对对应点的线段被_____.3.由于几何图形都可以看成是由点组成的,因此,要作一个平面图形的轴对称图形,可归结为作该图形上的这些点关于对称轴的______.二、解答题4.试分别作出已知图形关于给定直线l的对称图形.(1)图3-1(2)图3-2(3)图3-35.如图3-4所示,已知平行四边形ABCD及对角线BD,求作ΔBCD关于直线BD的对称图形.(不要求写作法)图3-46.如图3-5所示,已知长方形纸片ABCD中,沿着直线EF折叠,求作四边形EFCD关于直线EF的对称图形.(不要求写作法)图3-57.为了美化环境,在一块正方形空地上分别种植不同的花草,现将这块空地按下列要求分成四块:(1)分割后的整个图形必须是轴对称图形;(2)四块图形形状相同;(3)四块图形面积相等,现已有两种不同的分法:①分别作两条对角线(图①),②过一条边的四等分点作该边的垂线段(图②),(图②中的两个图形的分割看作同一种方法).请你按照上述三个要求,分别在图③的三个正方形中,给出另外三种不同的分割方法.(只画图,不写作法)图3-6综合、运用、诊断8.已知:如图3-7,A、B两点在直线l的同侧,点A'与A关于直线l对称,连接A'B交l于P点,若A'B=a.(1)求AP+PB;(2)若点M是直线l上异于P点的任意一点,求证:AM+MB>AP+PB.图3-79.已知:A、B两点在直线l的同侧,试分别画出符合条件的点M.(1)如图3-8,在l上求作一点M,使得|AM-BM|最小;作法:图3-8(2)如图3-9,在l上求作一点M,使得|AM-BM|最大;作法:图3-9(3)如图3-10,在l上求作一点M,使得AM+BM最小.图3-10拓展、探究、思考10.(1)如图3-11,点A、B、C在直线l的同侧,在直线l上,求作一点P,使得四边形APBC的周长最小;图3-11(2)如图3-12,已知线段a,点A、B在直线l的同侧,在直线l上,求作两点P、Q(点P在点Q的左侧)且PQ=a,四边形APQB的周长最小.图3-1211.(1)已知:如图3-13,点M在锐角∠AOB的内部,在OA边上求作一点P,在OB边上求作一点Q,使得ΔPMQ的周长最小;图3-13(2)已知:如图3-14,点M在锐角∠AOB的内部,在OB边上求作一点P,使得点P到点M的距离与点P到OA边的距离之和最小.图3-14测试4用坐标表示轴对称学习要求1.运用所学的轴对称知识,认识和掌握在平面直角坐标系中,与已知点关于x轴或y轴对称点的坐标的规律,进而能在平面直角坐标系中作出与一个图形关于x轴或y轴对称的图形.2.能运用轴对称的性质,解决简单的数学问题或实际问题,提高分析问题和解决问题的能力.课堂学习检测一、解答题1.按要求分别写出各对应点的坐标:2.已知:线段AB,并且A、B两点的坐标分别为(-2,1)和(2,3).(1)在图4-1中分别画出线段AB关于x轴和y轴的对称线段A1B1及A2B2,并写出相应端点的坐标.图4-1(2)在图4-2中分别画出线段AB关于直线x=-1和直线y=4的对称线段A3B3及A4B4,并写出相应端点的坐标.图4-23.如图4-3,已知四边形ABCD的顶点坐标分别为A(1,1),B(5,1),C(5,4),D(2,4),分别写出四边形ABCD关于x轴、y轴对称的四边形A1B1C1D1和A2B2C2D2的顶点坐标.图4-3综合、运用、诊断4.如图4-4,ΔABC中,点A的坐标为(0,1),点C的坐标为(4,3),点B的坐标为(3,1),如果要使ΔABD与ΔABC全等,求点D的坐标.图4-4拓展、探究、思考5.如图4-5,在平面直角坐标系中,直线l是第一、三象限的角平分线.图4-5实验与探究:(1)由图观察易知A(0,2)关于直线l的对称点A'的坐标为(2,0),请在图中分别标明B(5,3)、C(-2,5)关于直线l的对称点B'、C'的位置,并写出它们的坐标:B'_____、C'_____;归纳与发现:(2)结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P (a,b)关于第一、三象限的角平分线l的对称点P'的坐标为_____(不必证明);运用与拓广:(3)已知两点D(1,-3)、E(-1,-4),试在直线l上确定一点Q,使点Q到D、E两点的距离之和最小,并求出Q点坐标.测试5 等腰三角形的性质学习要求掌握等腰三角形的性质,并能利用它证明两个角相等、两条线段相等以及两条直线垂直.课堂学习检测一、填空题1._____的_____叫做等腰三角形.2.(1)等腰三角形的性质1是______________________________________________.(2)等腰三角形的性质2是______________________________________________.(3)等腰三角形的对称性是_____,它的对称轴是_____.图5-13.如图5-1,根据已知条件,填写由此得出的结论和理由.(1)∵ΔABC中,AB=AC,∴∠B=______.()(2)∵ΔABC中,AB=AC,∠1=∠2,∴AD垂直平分______.()(3)∵ΔABC中,AB=AC,AD⊥BC,∴BD=______.()(4)∵ΔABC中,AB=AC,BD=DC,∴AD⊥______.()4.等腰三角形中,若底角是65°,则顶角的度数是_____.5.等腰三角形的周长为10cm,一边长为3cm,则其他两边长分别为_____.6.等腰三角形一个角为70°,则其他两个角分别是_____.7.等腰三角形一腰上的高与另一腰的夹角是20°,则等腰三角形的底角等于_____.二、选择题8.等腰直角三角形的底边长为5cm,则它的面积是()A.25cm2B.C.10cm2D.9.等腰三角形的两边长分别为25cm和13cm,则它的周长是()A.63cm B.51cmC.63cm和51cm D.以上都不正确10.△ABC中,AB=AC,D是AC上一点,且AD=BD=BC,则∠A等于()A.45°B.36°C.90°D.135°综合、运用、诊断一、解答题11.已知:如图5-2,ΔABC中,AB=AC,D、E在BC边上,且AD=AE.求证:BD=CE.图5-212.已知:如图5-3,D、E分别为AB、AC上的点,AC=BC=BD,AD=AE,DE=CE,求∠B的度数.图5-313.已知:如图5-4,ΔABC中,AB=AC,D是AB上一点,延长CA至E,使AE=AD.试确定ED与BC的位置关系,并证明你的结论.图5-4拓展、探究、思考14.已知:如图5-5,RtΔABC中,∠BAC=90°,AB=AC,D是BC的中点,AE=BF.求证:(1)DE=DF;(2)ΔDEF为等腰直角三角形.图5-515.在平面直角坐标系中,点P(2,3),Q(3,2),请在x轴和y轴上分别找到M点和N点,使四边形PQMN周长最小.(1)作出M点和N点.(2)求出M点和N点的坐标.图5-6测试6 等腰三角形的判定学习要求掌握等腰三角形的判定定理.课堂学习检测一、填空题1.等腰三角形的判定定理是_________________________________________________.2.ΔABC中,∠B=50°,∠A=80°,AB=5cm,则AC=______.。
七年级生物学学习与检测(上册)_参考答案
第三节绿色植物的光合作用导学提纲一、1.淀粉将原有的淀粉运走耗尽光溶解掉叶绿素未遮盖部分光淀粉2.氧气二、水二氧化碳光能三、1.二氧化碳+水---→有机物(储存能量)+氧气 2.叶绿体光能能量叶绿体四、间作套种合理密植课堂自测1.A2.B3.B4.B5.B6.C7.D8.B9.无机有机氧气光化学10.(1)甲将要熄灭的木条插入试管中看能否复燃(2)光光是绿色植物光合作用的条件绿色植物光合作用是由绿色植物完成的不能变量不唯一知能提升1.C2.C3.B4.D5.B6.B7.A8.C9.C10.(1)将原有的淀粉运走耗尽(2)黄白叶绿素(3)叶绿体是光合作用的场所,此处无叶绿体光是光合作用的必要条件(4)淀粉(5)A C 叶绿体叶绿体是光合作用的场所 B C 光照光是光合作用的条件11.(1)将叶片中原有的淀粉运走耗尽(2)二氧化碳(3)燃烧旺盛产生氧气12.二氧化碳植物进行光合作用吸收二氧化碳,光合作用逐渐增强第四节绿色植物的呼吸作用导学提纲一、1.氧二氧化碳水能量2.有机物(储存能量)+氧气→二氧化碳+水+能量3.呼吸作用释放能量(热)氧气呼吸作用产生二氧化碳4.热能植物体各项生命活动二、1.呼吸课堂自测1.C2.B3.C4.B5.D6.D7.B8.C9.C10.(1)甲、乙能量(热量)(2)熄灭继续燃烧需要氧气(3)变浑浊无明显变化二氧化碳释放二氧化碳知能提升1.B2.D3.D4.D5.D6.B7.D8.C9.B 10.D11.(1)升高加强 35℃左右(2)较低降低呼吸作用12.(1)植物光合作用吸收了二氧化碳(2)浑浊呼吸作用产生了二氧化碳(3)不能水珠有可能是土壤中的水分蒸发后形成的第五节绿色植物在生物圈中的作用导学提纲一、1.光化学 2.基本重要二、1.二氧化碳氧气碳—氧三、1.保护固定 2.湿度降水量课堂自测1.D2.C3.C4.D5.C6.大规模的植树造林,减少二氧化碳等气体的排放量。
2024年新统编版小学六年级语文上册第3次月考学习质量测试(附参考答案)
2024年新统编版小学六年级语文上册第3次月考学习质量检测试卷(时间:90分满分:100分)卷首寄语:同学们,现在就请打开你智慧的头脑,来采摘这些丰收的果实吧!相信只要细心,你一定会完成得很出色的。
加油!一、积累与运用( 40分)1.看拼音,写汉字。
(8分)当新冠肺炎疫情bào fā( ① )的时候,世界骤然变得yīn lěng( ② )而又可怕。
那些医务工作者毫不退缩,依然默默地 fèn zhàn( ③ )在最前线,不知 pí juàn( ④ )、不分zhòu yè(⑤)地与病毒作斗争。
他们用自己的rè xuè( ⑥ )和青春pǔ xiě( ⑦ )了一曲曲gǎn rén(⑧)的生命赞歌。
2、下列四组词语中,字音、字形、字义都正确的一项是() (2分)A.供(gòng)品颓丧技高一筹水村山郭 (郭:姓)B.笨拙(zhuó) 费话念念有词掉尾而斗 (掉:摆动,摇动)C.参差(cī)不齐拥带余音绕梁字正腔圆 (腔:乐曲的调子)D.惟妙惟肖(xiào) 斗篷别出心裁斩钉截铁 (截:斩断,截断)3.下列句子中,加点字解释有误的一项是( )(2分)A.移舟泊烟渚.(渚:水中小块陆地)B.还.来就菊花(还:重复,再,再次)C.明月别.枝惊鹊(别:别的,另外的)D.巍巍乎若.太山(若:似,像)4.下列句子中,加点词语使用不正确的一项是( )(2分)A.她随后带来音乐剧《悲惨世界》中的曲目《我曾有梦》,评委们立即被她的天籁之...音.所震撼。
B.富兰克林大胆推测,天上的雷暴就是人们熟知的放电现象。
这种推论在当时看起来是微不足道....的。
C.人生之路曲折盘桓,错综复杂....,看似一条路的终点亦是另一条路的起点。
D.他的琴声虽然动听,可惜高山流水....,知音难觅。
5.下列对课文解读完全正确的一项是( )。
山东省政府采购评审专家学习检测题库601-800
601清单中的产品有效时间以中国环境标志产品认证证书有效截止日期为准,超过认证证书有效截止日期的自动失效。
(判选题)A.对B.错正确答案为:对602采购人或其委托的采购代理机构未按上述要求采购的,有关部门要按照相关法律、法规和规章予以处理,但财政部门不得拒付采购资金。
(判选题)A.对B.错正确答案为错603采购人、采购代理机构在跨省抽取评审专家的,其开始时间原则上不得迟于评审活动开始前()小时。
(单选题)A.3B.8C.12D.24正确答案为:24采购人、采购代理机构应当根据采购项目情况选择评审专家抽取区域。
采购预算金额单项或者批量不足500万元的,在至少()个设区的市范围内抽取(单选题)A.4B.3C.2D.1 正确答案为:1604第十三条采购人、采购代理机构应当根据采购项目情况选择评审专家抽取区域。
采购预算金额单项或者批量不足500万元的,在至少1个设区的市范围内抽取;500万元及以上、不足1000万元的,在至少5个设区的市范围内抽取;1000万元及以上、不足5000万元的,在至少10个设区的市范围内抽取;对5000万元及以上的,应当在全省范围内抽取。
社会影响较大、技术复杂或者采购需求特殊的项目,可在全省范围内抽取,或者根据需要在省外抽取评审专家。
根据《中华人民共和国政府采购法》,谈判小组由采购人的代表和有关专家共三人以上的单数组成,其中专家的人数不得少于成员总数的()。
(单选题)A.三分之一B.三分之二C.二分之一D.四分之三正确答案为:三分之二根据《中华人民共和国政府采购法》,采取询价方式采购的应当遵循()程序。
(单选题)A.成立询价小组→询价→确定被询价的供应商名单→确定成交供应商B.确定被询价的供应商名单→成立询价小组→制定询价方案→询价→确定成交供应商C.成立询价小组→确定被询价的供应商名单→询价→确定成交供应商D.成立询价小组→制定询价方案→询价→确定成交供应商正确答案为:成立询价小组→确定被询价的供应商名单→询价→确定成交供应商根据《中华人民共和国政府采购法》,符合下列()情形之一的货物或者服务,可以依照本法采用竞争性谈判方式采购。
部编版四年级下册语文试题第八单元学习检测 (含答案)
部编版小学语文四年级下册第八单元学习检测一、看拼音,写字词。
(5分)童话世界是奇妙多彩的,在那里有面目丑陋的yāo( )怪,有可以让xiàng rì kuí( )迅速生长的宝葫芦,有yáng yì( )着欢声笑语的巨人的花园,有公主与王子在一起的xìng fú( )结局……童话照亮了我们五彩的梦,为我们的童年zēng tiān ( )了许多快乐。
二、按要求完成练习,把答案的序号填在括号里。
(15分)1.下列加点字的注音全都正确的一项是( )。
A.规矩.(ju) 允.(rǔn)许 乖.(guāi)巧B.砌.(qì)墙 呼啸.(xiào) 丝缕.(lǚ)C.叱.(cì)责 脸颊.(jiá) 仪.(yí)式D.抚.(fǔ)摸 覆.(fù)盖 凋.(zhōu)谢2.下列词语搭配有误的一项是( )。
A.鲜花盛开 绿树成荫 秋果飘香B.花朵凋谢 雪花飞舞 北风呼啸C.竖起围墙 裹着毯子 砌起告示牌D.驶进港口 敲响铜钟 托着披纱3.《宝葫芦的秘密》一课“这是我们的规矩”中“规矩”是指( )。
A.规则,法则,标准B.老实巴交C.合乎标准或常理D.有规律4.依次填入下面文段括号中的词语,最恰当的一项是( )。
我听到中国女排在2019年女排世界杯连胜十一场并夺得冠军的消息,心情十分( )。
队员们( )拼搏的精神也( )了我,我( )自己长大后也能成为一名出色的运动员,为祖国争光。
A.激励 坚强 激动 奢望B.激励 顽强 激动 希望C.激动 坚强 激励 奢望D.激动 顽强 激励 希望5.下列句子中,有语病的一项是( )。
A.通过这次活动,同学们认识到“诵读经典”很重要。
B.美团外卖、饿了么、百度外卖三家外卖平台的全国日订单量大约在2000万单左右。
C.观看了国庆70周年阅兵仪式,人们纷纷表示很受鼓舞。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学习检测一一、填空题1.杂质,本征半导体和掺入的杂质2.大于,变窄。
小于,变厚3.电子,空穴4.变窄,大于5.0.6-0.8,0.7;0.1-1.3,0.26. 1.2~2V,高于,5~10 mA7.稳压。
稳定电压,额定电流,动态电阻,额定功耗,温度系数二、判断题1. ×2.√3. ×4.×5.√6.×7. ×三、选择题1. A2.C3. D4.C5.B四、简答题1. PN结的伏安特性有何特点?答:PN结的伏安特性(外特性)如图所示,它直观形象地表示了PN结的单向导电性。
伏安特性的表达式为:式中i D为通过PN结的电流,v D为PN结两端的外加电压,V T为温度的电压当量,,其中k为波耳兹曼常数(1.38×10-23J/K),T为热力学温度,即绝对温度(300K),q为电子电荷(1.6×10-19C)。
在常温下,V≈26mV。
I s为反向饱和电流,对于分立器件,其典型值为10-8~10-14A的范围内。
T集成电路中二极管PN结,其I s值则更小。
当v D>>0,且v D>V T时,;当v D<0,且时,i D≈–I S≈0。
电容特性:PN结加反向电压时,空间电荷区中的正负电荷构成一个电容性的器件。
它的电容量随外加电压改变,主要有势垒电容(CB)和扩散电容(CD)。
势垒电容和扩散电容均是非线性电容。
势垒电容:势垒电容是由空间电荷区的离子薄层形成的。
当外加电压使PN结上压降发生变化时,离子薄层的厚度也相应地随之改变,这相当PN结中存储的电荷量也随之变化。
势垒区类似平板电容器,其交界两侧存储着数值相等极性表示,其值相反的离子电荷,电荷量随外加电压而变化,称为势垒电容,用CB为:。
在PN结反偏时结电阻很大,C B的作用不能忽视,特别是在高频不是恒值,而是随V而变化,利用该特性可制作时,它对电路有较大的影响。
CB变容二极管。
PN结有突变结和缓变结,现考虑突变结情况,PN结相当于平板电容器,虽然外加电场会使势垒区变宽或变窄但这个变化比较小可以忽略,则,已知动态平衡下阻挡层的宽度L,代入上式可得:扩散电容:PN结正向导电时,多子扩散到对方区域后,在PN结边界上积累,并有一定的浓度分布。
积累的电荷量随外加电压的变化而变化,当PN结正向电压加大时,正向电流随着加大,这就要求有更多的载流子积累起来以满足电流加大的要求;而当正向电压减小时,正向电流减小,积累在P区的电子或N区的空穴就要相对减小,这样,当外加电压变化时,有载流子向PN结“充入”和“放出”。
PN结的扩散电容C D描述了积累在P区的电子或N区的空穴随外加电压的变化的电容效应2. 什么是PN结的反向击穿?PN结的反向击穿有哪几种类型?各有何特点?答:PN结加反向电压时,空间电荷区变宽,区中电场增强。
反向电压增大到一定程度时,反向电流将突然增大。
如果外电路不能限制电流,则电流会大到将PN结烧毁。
反向电流突然增大时的电压称击穿电压。
基本的击穿机构有两种,即隧道击穿(也叫齐纳击穿)和雪崩击穿,前者击穿电压小于6V,有负的温度系数,后者击穿电压大于6V,有正的温度系数。
雪崩击穿:阻挡层中的载流子漂移速度随内部电场的增强而相应加快到一定程度时,其动能足以把束缚在共价键中的价电子碰撞出来,产生自由电子—空穴对,新产生的载流子在强电场作用下,再去碰撞其它中性原子,又产生新的自由电子—空穴对,如此连锁反应,使阻挡层中的载流子数量急剧增加,象雪崩一样。
雪崩击穿发生在掺杂浓度较低的PN结中,阻挡层宽,碰撞电离的机会较多,雪崩击穿的击穿电压高。
齐纳击穿:齐纳击穿通常发生在掺杂浓度很高的PN结内。
由于掺杂浓度很高,PN结很窄,这样即使施加较小的反向电压(5V以下),结层中的电场却很强(可达2.5×105V/m左右)。
在强电场作用下,会强行促使PN结内原子的价电子从共价键中拉出来,形成"电子一空穴对",从而产生大量的载流子。
它们在反向电压的作用下,形成很大的反向电流,出现了击穿。
显然,齐纳击穿的物理本质是场致电离。
热电击穿:当PN结施加反向电压时,流过pn结的反向电流要引起热损耗。
反向电压逐渐增大时,对于一定的反向电流所损耗的功率也增大,这将产生大量热量。
如果没有良好的散热条件使这些热能及时传递出去,则将引起结温上升。
这种由于热不稳定性引起的击穿,称为热电击穿。
击穿电压的温度特性:温度升高后,晶格振动加剧,致使载流子运动的平均自由路程缩短,碰撞前动能减小,必须加大反向电压才能发生雪崩击穿具有正的温度系数,但温度升高,共价键中的价电子能量状态高,从而齐纳击穿电压随温度升高而降低,具有负的温度系数。
3. PN结电容是怎样形成的?和普通电容相比有什么区别?答:PN结电容分为两部分,势垒电容和扩散电容。
势垒电容:PN结交界处存在势垒区。
结两端电压变化引起积累在此区域的电荷数量的改变,从而显现电容效应。
当所加的正向电压升高时,PN结变窄,空间电荷区变窄,结中空间电荷量减少,相当于电容放电。
同理,当正向电压减小时,PN结变宽,空间电荷区变宽,结中空间电荷量增加,相当于电容充电。
加反向电压升高时,一方面会使耗尽区变宽,也相当于对电容的充电。
加反向电压减少时,就是P区的空穴、N区的电子向耗尽区流,使耗尽区变窄,相当于放电。
扩散电容:PN结势垒电容主要研究的是多子,是由多子数量的变化引起电容的变化。
而扩散电容研究的是少子。
在PN结反向偏置时,少子数量很少,电容效应很少,也就可以不考虑了。
在正向偏置时,P区中的电子,N区中的空穴,会伴着远离势垒区,数量逐渐减少。
即离结近处,少子数量多,离结远处,少子的数量少,有一定的浓度梯度。
4. 温度对二极管的正向特性影响小,对其反向特性影响大,这是为什么?答:温度对二极管的影响主要是对二极管PN结的影响。
对于正向来讲,当温度上升时,二极管的死区电压和正向电压都将减小。
在同样电流下,温度每升高1度,二极管的正向压降低2-2.5mv. 由于二极管的反向电流由少量少子漂移形成,少子的浓度受温度的影响非常大。
一般讲温度每升高10度反向电流将翻一番。
综合比较而言,温度对二极管反向特性的影响比正向影响大的多。
5. 能否将 1.5 V的干电池以正向接法接到二极管两端?为什么?答:不能。
二极管两端能承受的电压小于1.5V。
6.有A、B两个二极管。
它们的反向饱和电流分别为5 mA和0.01 mA,在外加相同的正向电压时的电流分别为20 mA和8 mA,你认为哪一个管的性能较好?答:如果要去反向饱和电流小的,就是B性能较好;如果是要求正向电压大的场合就是A管性能较好。
7. 利用硅二极管较陡峭的正向特性,能否实现稳压?若能,则二极管应如何偏置?答:二极管反向偏置。
8. 什么是齐纳击穿?击穿后是否意味着PN结损坏?答:在高掺杂的情况下,因耗尽层宽度很小,不大的反向电压就可在耗尽层形成很强的电场,而直接破坏共价键,使价电子脱离共价键束缚,产生电子—空穴对,致使电流急剧增大,这种击穿称为齐纳击穿。
也称为隧道击穿。
齐纳击穿是暂时性的,可以恢复。
齐纳击穿一般发生在低反压、高掺杂的情况下。
五、计算题1. ,代入求解2.解:U O1≈1.3V,U O2=0,U O3≈-1.3V,U O4≈2V,U O5≈1.3V,U≈-2V。
O63. 解:U O1=6V,U O2=5V。
4.利用稳压二极管稳压的原理。
5.233-700欧姆学习检测二1.第二个,反向电流小2. IE=IC+IB3.硅管,硅管,硅管,锗管,锗管,锗管4.(b)可以,其他的不行5.0 V:截止1 V:放大区,输出为9V1.5 V:饱和区,输出为0.1V,很小6.(1)6V,IB=20UA,IC=1MA VCE=3V(2)利用静态偏置一一算出。
(3)4.5V(4)1.5V左右7.100学习检测三1. 0 V:截止,输出为12V1 V:放大区,输出为9V1.5 V :饱和区,输出为0.1V ,很小2.V C C -I C R C >0 可以推出,β大于100时晶体管饱和 3.(a )可能 (b )不可能 (c )不可能 (d )不可能 (e )可能学习检测四1.I R =V C C -V B E /R=1mA2. 解:(1) 大约相等(2)分析估算如下:CC BE3BE2100R V U U I R--==0μ AβCC B1C0B2C0E1E2CC1C0I I I I I I I I I I I I R +=+=+====C 10001R R I I I ββ=⋅≈=+μ A3.Ui 0.1 0.5 1 1.5 Uo1 -1 -5 -10 -15 Uo21.15.51116.54.(1)正反馈运算电路 (2)负反馈运算电路 (3)积分运算电路 (4)同相加法运算电路(5)反相加法运算电路(6)反相负反馈运算电路5.6.比例系数为-5000/50=-100学习检测五一、判断题1. ×2.√3. √4.×二、选择题1. (1)B (2)C (3)A (4)D2.B,B3. D4.C5.C6.(1)A (2)B (3)B (4)A(5)B三、计算题1.(a)负反馈,电流串联负反馈(b)电压并联负反馈(c)电流串联负反馈(d)正反馈2. (a)和(b)都有自举电路,在电路起抬高电压的作用。
3.(a)直流和交流反馈,负反馈(b)直流和交流反馈,正反馈(c)直流反馈,负反馈(d)直流和交流反馈,负反馈(e)交流反馈,负反馈(f)直流反馈,负反馈(g)直流和交流反馈,正反馈学习检测六一、填空题1.输出电压2.降低了管子的损耗3.有用功率和电源功率之比4.0.2W5.管子的损耗,三极管的电流,以及最大电压6.见公式7.78.5%,见公式,交越失真;0.2POM,4W8.防止交越失真。
学习检测七一、判断题1. √2. ×3. ×4. √5. ×6. √7. ×8. ×9. √10.×二、选择题1. (1)A (2)B (3)C2.(1)B,C,A (2)B,C,A学习检测八一、判断题1. ×2. √3. ×4. √5. ×6. √7. √8. √9. ×10.√11. √12. √13. √二、选择题1.A2.B3.A4.B5.C6.C7.A8.A三、计算题1.电路如图T1所示,变压器副边电压有效值为2U2。
2.电路如图T2所示。
(1)分别标出uo1 和uo2 对地的极性。
(2)uo1、uo2 分别是半波整流还是全波整流?(3)当U21 =U22 =20 V时,Uo1(AV)和Uo2(AV)各为多少?(4)当U21 =18 V,U22 =22 V时,画出uo1、uo2的波形;并求出Uo1(AV)和Uo2(AV)各为多少?3.滤波电路4.5.6.。