化工原理课程设计换热器

合集下载

化工原理课程设计换热器

化工原理课程设计换热器

化工原理课程设计换热器
换热器设计是化工原理课程设计中一个重要的部分。

下面将为您介绍步骤和注意事项。

一、设计步骤:
1. 确定换热器类型:根据工艺要求及介质性质,选择适合的换热器类型,如管壳式、板式、螺旋板式等。

2. 估算传热系数:根据换热器类型、流体类型、流量、温度等因素,估算出传热系数。

3. 计算传热面积:根据所需传热量和传热系数,计算指定温度下需求的传热面积。

4. 选择换热器管径及壳体规格:根据所需传热面积和换热器类型,选择合适的换热器管径及壳体规格。

5. 设计热损失:根据换热器使用环境,计算换热器热损失量,以确保能量转化的高效。

6. 设计流路:结合工艺流程及介质性质,确定换热器内部介质的流路和流速,
以确保传热效率。

二、注意事项:
1. 选用合适的换热器类型,以确保传热效率和占用空间的合理性。

2. 估算传热系数要考虑介质性质、流量、温度等因素,更加科学地估算传热系数。

3. 所需传热面积要根据实际需要,同时结合换热器的大小、材质等因素做出合理的选择。

4. 选择换热器管径及壳体规格要遵循一定的社会标准及安全规范,以确保换热器使用的稳定性和安全性。

5. 设计热损失要考虑换热器使用环境,以确保能量转化的高效。

同时,必须符合国家有关规定。

化工原理课程设计 列管式换热器

化工原理课程设计 列管式换热器

化工原理课程设计列管式换热器设计要求:设计一个列管式换热器,实现两种不同温度的流体之间的热量传递。

设计要求如下:1. 列管式换热器采用直管式结构,热传导介质为水和油;2. 设计流量分别为水流量 Q1 = 500 L/h,油流量 Q2 = 300 L/h;3. 设计温度分别为水的进口温度 T1i = 80℃,油的进口温度T2i = 120℃;4. 确定水的出口温度 T1o 和油的出口温度 T2o;5. 选择合适的换热器材料,确保换热效果良好;6. 根据设计参数计算所需的换热面积 A 和换热效率η。

设计方案:1. 确定管径和管长:首先根据水和油的流量和温度差,计算所需的换热面积。

然后确定换热器的尺寸,其中包括管径和管长。

2. 选择换热器材料:根据换热介质的性质和工作条件,选择合适的换热器材料,例如不锈钢。

3. 计算出口温度:根据热平衡原理,计算水和油的出口温度。

假设换热器满足热平衡条件,即水的热量损失等于油的热量增加。

4. 计算换热面积:根据换热器的尺寸和热传导方程,计算所需的换热面积。

5. 计算换热效率:根据热平衡原理和换热器的热传导性能,计算换热效率。

实施步骤:1. 根据设计流量和温度差,计算所需的换热面积。

假设水和油的传热系数均为常数,可以使用换热传导方程进行计算。

2. 根据所需的换热面积和理论计算值,选择合适的换热器尺寸。

3. 根据所选换热器材料,计算换热器的尺寸和管径。

假设管壁温度近似等于流体温度。

4. 根据热平衡原理,计算出口温度。

假设热平衡条件满足,即水的热量损失等于油的热量增加。

5. 根据所选材料和尺寸,计算换热效率。

假设换热器的热传导系数为常数,使用换热效率计算公式进行计算。

总结:本课程设计主要针对列管式换热器的设计,通过选择合适的换热器材料和计算换热器的尺寸,实现了水和油之间的热量传递。

根据设计要求,通过计算出口温度和换热效率,验证了设计方案的合理性。

设计过程需要考虑多方面的因素,如流体性质、流量和温度差等。

化工原理课程设计——换热器

化工原理课程设计——换热器

化工原理课程设计管壳式换热器选型姓名:学号:10091693班级:工092指导老师:袁萍前言1.换热器的设备简介传热是热能从热流体间接或直接传向冷流体的过程。

其性质复杂,不但要考虑经过间壁的热传导,而且要考虑到间壁两边流体的对流传热,有时还须考虑到辐射传热。

在化学工业中常遇到的热交换问题,根据冷、热流体热量交换的原理和方式基本上可分三大类即:间壁式、混合式和蓄热式。

其中间壁式换热器詹用量最大,据统计,这类换热器占总用量的99%。

间壁式换热器又可分为管壳式和板壳式换热器两类,其中管壳式换热器以其高度的可靠性和广泛的适应性,在长期的操作过程中积累了丰富的经验,其设计资料基本齐全,在许多国家都有了系列化的标准。

因此,作为广泛应用于各个领域的工业设备,它在国民经济中具有非常重要的作用。

换热器(英语翻译:heat exchanger),是将热流体的部分热量传递给冷流体的设备,又称热交换器。

管壳式换热器按结构特点分为固定管板式换热器、浮头式换热器、U型管式换热器、双重管式换热器、填料函式换热器和双管板换热器等。

前3种应用比较普遍。

固定管板式换热器的结构:主要有外壳、管板、管束、顶盖(又称封头)等部件构成。

它的特点是结构简单,没有壳侧密封连接,相同的壳体内径排管最多,在有折流板的流动中旁路最小,管程可以分成任何管程数,因两个管板由管子互相支撑,故在各种管壳式换热器中它的管板最薄,造价最低,因而得到广泛应用。

这种换热器的缺点是:壳程清洗困难,有温差应力存在。

这种换热器适用于两种介质温差不大,或温差较大但壳程压力不高及壳程介质清洁,不易结垢的场合。

在满足工艺过程要求的前提下,换热器应达到安全与经济的目标。

换热器设计的主要任务是参数选择和结构设计、传热计算及压降计算等。

设计主要包括壳体形式、管程数、换热管类型、管长、管子排列、管子支承结构、冷热流体的流动通道等工艺设计和封头、壳体、管板等零部件的结构、强度设计计算。

化工原理课程设计模板-换热器

化工原理课程设计模板-换热器

化工原理课程设计模板-换热器1. 引言换热器是化工过程中常用的设备之一,其主要功能是在流体之间进行热量传递,以实现温度控制、能量回收等目的。

本文将介绍化工原理课程设计中换热器的设计过程和要点。

2. 设计目标在进行换热器设计之前,首先要确定设计的目标。

设计目标包括但不限于以下几点:•确定需要传热的流体的进口温度和出口温度;•确定传热后流体的温度变化范围;•确定换热器的热传导面积;•确定换热器的传热系数。

3. 设计步骤换热器的设计过程可以分为以下几个步骤:3.1 确定流体的性质参数在设计换热器之前,需要明确流体的性质参数,包括流体的密度、比热容以及传热系数等。

这些参数可以通过实验测定或者查阅相关文献获得。

3.2 计算流体的传热量根据热传导定律,可以计算流体的传热量。

传热量的计算公式如下:Q = m * c * ΔT其中,Q表示传热量,m表示流体的质量,c表示流体的比热容,ΔT表示流体的温度变化。

3.3 确定换热器的传热面积根据热传导定律,可以计算换热器的传热面积。

传热面积的计算公式如下:A = Q / (U * ΔTlm)其中,A表示传热面积,U表示换热器的传热系数,ΔTlm表示对数平均温差。

3.4 选择换热器的类型和结构根据设计要求和实际情况,选择合适的换热器类型和结构。

常见的换热器类型包括管壳式换热器、板式换热器等。

3.5 进行换热器的细节设计在确定了换热器的类型和结构之后,进行换热器的细节设计,包括管道的布置、流体的流动方式以及换热器的材料选择等。

3.6 进行换热器的性能评价完成换热器的设计之后,进行性能评价,验证设计结果是否满足设计目标。

性能评价主要包括换热器的传热效率、压降以及经济性等方面。

4. 实例分析下面通过一个实例来说明换热器的设计过程。

实例:管壳式换热器假设需要设计一个管壳式换热器,用于将流体A的温度从40℃降至20℃,同时将流体B的温度从70℃升至90℃。

根据设计要求,我们可以计算出流体A和流体B的传热量,然后根据对数平均温差计算出传热面积,从而确定换热器的尺寸。

化工原理课程设计 换热器

化工原理课程设计 换热器

一、设计任务书二、确定设计方案2.1 选择换热器的类型本设计中空气压缩机的后冷却器选用带有折流挡板的固定管板式换热器,这种换热器适用于下列情况:①温差不大;②温差较大但是壳程压力较小;③壳程不易结构或能化学清洗。

本次设计条件满足第②种情况。

另外,固定管板式换热器具有单位体积传热面积大,结构紧凑、坚固,传热效果好,而且能用多种材料制造,适用性较强,操作弹性大,结构简单,造价低廉,且适用于高温、高压的大型装置中。

采用折流挡板,可使作为冷却剂的水容易形成湍流,可以提高对流表面传热系数,提高传热效率。

本设计中的固定管板式换热器采用的材料为钢管(20R钢)。

2.2 流动方向及流速的确定本冷却器的管程走压缩后的热空气,壳程走冷却水。

热空气和冷却水逆向流动换热。

根据的原则有:(1)因为热空气的操作压力达到1.1Mpa,而冷却水的操作压力取0.3Mpa,如果热空气走管内可以避免壳体受压,可节省壳程金属消耗量;(2)对于刚性结构的换热器,若两流体的的温度差较大,对流传热系数较大者宜走管间,因壁面温度与对流表面传热系数大的流体温度相近,可以减少热应力,防止把管子压弯或把管子从管板处拉脱。

(3)热空气走管内,可以提高热空气流速增大其对流传热系数,因为管内截面积通常比管间小,而且管束易于采用多管程以增大流速。

查阅《化工原理(上)》P201表4-9 可得到,热空气的流速范围为5~30 m·s-1;冷却水的流速范围为0.2~1.5 m·s-1。

本设计中,假设热空气的流速为8 m·s-1,然后进行计算校核。

2.3 安装方式冷却器是小型冷却器,采用卧式较适宜。

三、设计条件及主要物性参数3.1设计条件由设计任务书可得设计条件如下表:体积流量进口温度出口温度操作压力设计压力注:要求设计的冷却器在规定压力下操作安全,必须使设计压力比最大操作压力略大,本设计的设计压力比最大操作压力大0.1MPa 。

3.2确定主要物性数据3.2.1定性温度的确定可取流体进出口温度的平均值。

换热器化工原理课程设计

换热器化工原理课程设计

换热器化工原理课程设计一、教学目标本课程旨在让学生掌握换热器的基本原理、类型及计算方法,能够运用化工原理分析解决实际工程问题。

通过本课程的学习,学生应达到以下目标:1.知识目标:(1)理解换热器的基本概念及其在化工工艺中的应用;(2)掌握换热器的传热原理,包括对流传热、热传导和热辐射;(3)熟悉不同类型的换热器结构及其特点;(4)学会换热器面积计算、热负荷计算和效率评价。

2.技能目标:(1)能够运用换热器的基本原理分析实际工程问题;(2)熟练运用相关软件进行换热器设计和模拟;(3)具备换热器操作和维护的基本技能。

3.情感态度价值观目标:(1)培养学生的工程意识,提高解决实际问题的能力;(2)培养学生对化工行业的兴趣,树立正确的职业观;(3)培养学生团队协作、创新思维和持续学习的意识。

二、教学内容本课程的教学内容主要包括换热器的基本原理、类型、计算方法和实际应用。

具体安排如下:1.换热器的基本原理:介绍换热器的工作原理,对流传热、热传导和热辐射的基本概念。

2.换热器的类型:讲解不同类型的换热器,如平板式换热器、壳管式换热器、空气冷却器等,及其特点和应用。

3.换热器计算方法:教授换热器面积计算、热负荷计算和效率评价的方法。

4.换热器实际应用:分析换热器在化工工艺中的应用案例,讲解换热器操作和维护的基本知识。

三、教学方法为了提高教学效果,本课程将采用多种教学方法,如讲授法、案例分析法、实验法等。

1.讲授法:通过讲解换热器的基本原理、类型和计算方法,使学生掌握相关理论知识。

2.案例分析法:分析实际工程中的换热器应用案例,提高学生解决实际问题的能力。

3.实验法:学生进行换热器实验,培养学生的动手能力和实验技能。

四、教学资源为了支持本课程的教学,我们将准备以下教学资源:1.教材:选用权威、实用的换热器教材,为学生提供系统、科学的理论知识。

2.参考书:提供相关的化工原理、热力学等参考书籍,丰富学生的知识体系。

化工原理课程设计__换热器

化工原理课程设计__换热器

化⼯原理课程设计__换热器⼀、设计任务书⼆、确定设计⽅案2.1 选择换热器的类型本设计中空⽓压缩机的后冷却器选⽤带有折流挡板的固定管板式换热器,这种换热器适⽤于下列情况:①温差不⼤;②温差较⼤但是壳程压⼒较⼩;③壳程不易结构或能化学清洗。

本次设计条件满⾜第②种情况。

另外,固定管板式换热器具有单位体积传热⾯积⼤,结构紧凑、坚固,传热效果好,⽽且能⽤多种材料制造,适⽤性较强,操作弹性⼤,结构简单,造价低廉,且适⽤于⾼温、⾼压的⼤型装置中。

采⽤折流挡板,可使作为冷却剂的⽔容易形成湍流,可以提⾼对流表⾯传热系数,提⾼传热效率。

本设计中的固定管板式换热器采⽤的材料为钢管(20R 钢)。

2.2 流动⽅向及流速的确定本冷却器的管程⾛压缩后的热空⽓,壳程⾛冷却⽔。

热空⽓和冷却⽔逆向流动换热。

根据的原则有:(1)因为热空⽓的操作压⼒达到1.1Mpa ,⽽冷却⽔的操作压⼒取0.3Mpa ,如果热空⽓⾛管内可以避免壳体受压,可节省壳程⾦属消耗量;(2)对于刚性结构的换热器,若两流体的的温度差较⼤,对流传热系数较⼤者宜⾛管间,因壁⾯温度与对流表⾯传热系数⼤的流体温度相近,可以减少热应⼒,防⽌把管⼦压弯或把管⼦从管板处拉脱。

(3)热空⽓⾛管内,可以提⾼热空⽓流速增⼤其对流传热系数,因为管内截⾯积通常⽐管间⼩,⽽且管束易于采⽤多管程以增⼤流速。

查阅《化⼯原理(上)》P201表4-9 可得到,热空⽓的流速范围为5~30 m ·s -1;冷却⽔的流速范围为0.2~1.5 m ·s -1。

本设计中,假设热空⽓的流速为8 m ·s -1,然后进⾏计算校核。

2.3 安装⽅式冷却器是⼩型冷却器,采⽤卧式较适宜。

空⽓⽔⽔空⽓三、设计条件及主要物性参数3.1设计条件注:要求设计的冷却器在规定压⼒下操作安全,必须使设计压⼒⽐最⼤操作压⼒略⼤,本设计的设计压⼒⽐最⼤操作压⼒⼤0.1MPa 。

3.2确定主要物性数据3.2.1定性温度的确定可取流体进出⼝温度的平均值。

化工原理课程设计换热器

化工原理课程设计换热器
>4管程:0.45-0.65
设计示例
年处理量:6000kg/h, 煤油从140℃-40 ℃
循环水入口温度:30 ℃-40 ℃ 煤油压力:0.3MPa 循环水压力:0.4MPa
1.选择换热器类型
考虑季节操作,选用带有膨胀节的固定管 板式换热器。
2.流动空间及流速的确定
由于循环冷却水较易结垢,为便于水垢清洗, 应使循环水走管程,油走壳程,选用 Ф25×2.5的碳钢管,管内流速取0.5m/s。
化工原理课程设计
• 换热器的设计
• 换热器, 在不同温度的流体间传递热能的
装置称为换热器。
• 在化工、石油、动力、制冷、食品等行业
中广泛使用各种换热器,且它们是上述行 业的通用设备,占有十分重要的地位。
• 列管式换热器的设计
• 1、热力设计 • 2、流动设计 • 3、结构设计 • 4、强度热器的工艺设计
• 1、根据换热任务和有关要求确定设计方案 • 2、初步确定换热器的结构和尺寸 • 3、核算换热器的传热面积和流体阻力 • 4、确定换热器的工艺结构
• 设计方案的设计
• 1、换热器类型的选择 • 固定管板式换热器 • 浮头式换热器 • U型管换热器 • 填料函式换热器
• 2、流动空间的选择
速0.5m/s 2.管程数和传热管数 单程传热管数:
V
ns


4
d
u2
i
58
按单管程设计, 所需的传热管长度为:
L S 10.8m
dons
现取传热管长为6m,
• 则管程数:
NP

L l

2
• 总管数58×2=116
换热器核算
1.热量衡算 由于采用圆缺形折流板,可采用克恩公式

化工原理课程设计列管式换热器

化工原理课程设计列管式换热器

化工原理课程设计列管式换热器化工原理课程设计是化学工程学科的重要环节,其设计的目的是让学生在理论基础知识的基础上,能够熟练掌握工业化学反应装置和过程的设计方法,并能灵活运用各种装置和工艺条件来实现设备的最优化。

其中列管式换热器是常用于化工生产过程中的一种重要装置,本文将对其进行详细介绍。

一、列管式换热器的结构与原理列管式换热器是通过管壳型构造,由许多纵向的管子构成,管子两侧通过流体工质进行换热。

其主要结构包括壳体、管板、管束、进出口法兰等部分。

换热原理是将热量从高温的流体传给低温的流体,实现两种流体之间的热量交换。

二、列管式换热器的特点和应用列管式换热器具有结构简单、换热效率高、应用范围广、容易清洗维修等特点。

其在化工生产中广泛应用于热回收、冷却、加热等方面,如在石油、化工、冶金、食品、制药、造纸等行业的反应过程中都有重要的应用。

三、列管式换热器的设计方法在设计列管式换热器时,主要需考虑的参数有流体介质、流量、温度、压力等等,其中最核心的是确定热量传递系数与压降。

常用的设计方法有总热传系数法、等效径法、NTU法等。

其中总热传系数法是最常用的方法,其计算的公式为:1/U = 1/hi + Δx/k + Δy/ho其中U为总热传系数,hi、ho分别为热传分界面内的内、外热传系数,k为扩散系数(介质传热系数),Δx、Δy为介质的平均厚度与壁层厚度。

在设计时应根据具体情况选用合适的计算方法。

四、列管式换热器的操作和维护在使用列管式换热器时,应注意清洗维护工作。

由于该装置的结构特殊,应定期进行化学清洗,以避免沉积物和腐蚀物堵塞换热器内壁。

同时还应注意防止介质的过于浓缩,以免产生结晶、沉积、腐蚀等情况。

综上所述,列管式换热器是化工生产中不可缺少的一种装置,其结构特殊、应用范围广泛、换热效率高,并且容易维护操作,是值得研究和推广的一种装置。

在化工原理的课程设计中,学生能够通过对列管式换热器的深入理解和设计方案的完善,培养出创新思维和实际操作能力,为将来化工行业的发展奠定坚实的基础。

化工原理课程设计——换热器的设计

化工原理课程设计——换热器的设计

化工原理课程设计——换热器的设计1000字
该课程设计的目标是设计一个换热器,用于从一种热流体中传递热量到另一种热流体。

设计过程中需要考虑到热传递的效率和换热器的成本。

设计要求:
1.设定两种热流体的流量和进出口温度。

2.根据流量和温差计算出所需的传热量。

3.选择一种合适的换热器类型并计算出尺寸和效率。

4.根据选择的换热器类型确定换热管的材料,并计算出所需的管道长度。

5.确定换热器外壳材料和绝缘材料,并计算出所需的壁厚度。

在设计过程中,需要进行以下计算:
1.计算热传递量:
热传递量 = 流量 x 热容 x 温差
流量:两种热流体的流量
热容:热流体的比热容
温差:两种热流体的进出口温度差
2.选择换热器类型:
常见的换热器类型包括:管式热交换器、板式热交换器和壳管式热交换器。

在选择时需要考虑到传热效率、材料成本以及维护难度等因素。

3.计算换热管尺寸:
换热管的长度和直径需要根据流量和传热效率来计算,同时需要考虑到管壁的热传递系数和管壁的厚度。

4.确定换热器外壳材料和绝缘材料:
外壳的材料需要考虑到其耐腐蚀性和强度,同时需要计算出所需的壁厚度。

绝缘材料需要选用热传导系数较小的材料,以提高传热效率。

5.总体设计方案:
根据上述计算和选择,得到符合要求的换热器总体设计方案,并进行设计图纸和工艺流程图的绘制。

结论:
在设计过程中,需要考虑到换热器的热传递效率、成本、材料选用和维护难度等因素,从而得出符合要求的总体设计方案。

化工原理课程设计之换热器

化工原理课程设计之换热器

(一)设计任务和设计条件:某生产过程的流程如图所示,出混合器的混合气体经过与进料物流换热后,用循环冷却水将其从110℃进一步冷却至60℃之后,进入吸收塔吸收其中可溶组分。

已知混合气体的流量为227801kg/h,压力为 6.9Mpa,循环冷却水的压力为0.4Mpa ,循环水入口温度29℃,出口温度为39℃,试设计一台列管式换热器,完成该生产任务。

已知混合气体在85℃下的物性数据如下:)()3590105.10279.0297.3mkg sPa C m W C kg kJ C o o o po =⋅⨯=︒⋅=︒⋅=-ρηλ(二)确定设计方案:1.选择换热器的类型:该换热器用循环冷却水冷却,冬季操作时,进口温度会降低,考虑这一因素,估计该换热器的管壁温与壳体壁温之差较大,因此初步确定选用浮头式换热器。

(原因:固定管板式换热器适用于壳程流体清洁,不易结垢,或者管外侧污垢能用化学处理方法除掉的场合,同时要求壳体壁温与管子壁温温差不能太大。

) 浮头式换热器能在较高的压力下工作,适用于壳体壁温与管壁温差较大或壳程流体易结垢的场合。

U 型管式换热器适用于壳程易结垢,或壳体壁温与管壁温差较大的场合,但要求管程流体较为清洁,不易结垢。

) 2.流程安排:从物流操作压力上来看,应使混合气体走管程,循环冷却水走壳程。

但由于循环冷却水较易结垢,若其流速太低,将会加快污垢增长速度,使传热器的传热能力下降,从总体上来看,应使循环水走管程,混合气体走壳程。

(三)确定物性参数:定性温度:对于一般气体和水等低粘度流体,其定性温度可取进出口温度平均值。

故混合气体的定性温度为 C T ︒=+=85260110 管程流体的定性温度为 C t ︒=+=3422939 查表确定冷却水在34℃下的物性数据:()()333.99410742.0624.0174.4mkg sPa K m W K kg kJ C i i i pi =⋅⨯=⋅=⋅=-ρηλ(四)估算传热面积:1.热流量:2.平均传热温差:先按纯逆流计算(一般逆流优于并流,在工程上若无特殊需要,均按逆流考虑)()()()())(3.48296039110ln 296039110ln 12211221K t T t T t T t T t m =-----=-----=∆逆3.传热面积:由于壳程气体压力较高,故选取较大的K 值。

化工原理课程设计列管式换热器

化工原理课程设计列管式换热器
缺陷: 1)在管子旳U型处易冲蚀,应控制管内流速; 2)管程不合用于结垢较重旳场合;
可用旳场合:
1)管程走清洁流体;
2)管程压力尤其高;
3)管壳程金属温差很大,固定管板换热器连设置膨胀节都无法 满足要求旳场合.
2、流动空间旳选择
3、流速旳拟定
4、流动方式旳选择
除逆流和并流之外,在列管式换热器中冷、 热流体还能够作多种多管程多壳程旳复杂 流动。当流量一定时,管程或壳程越多, 表面传热系数越大,对传热过程越有利。 但是,采用多管程或多壳程必造成流体阻 力损失,即输送流体旳动力费用增长。所 以,在决定换热器旳程数时,需权衡传热 和流体输送两方面旳损失。
5、流体出口温度旳拟定
若换热器中冷、热流体旳温度都由工艺条件所要求,则不存在 拟定流体两端温度旳问题。若其中一流体仅已知进口温度,则 出口温度应由设计者来拟定。例如用冷水冷却一热流体,冷水 旳进口温度可根据本地旳气温条件作出估计,而其出口温度则 可根据经济核实来拟定:为了节省冷水量,可使出口温度提升 某些,但是传热面积就需要增长;为了减小传热面积,则需要 增长冷水量。两者是相互矛盾旳。一般来说,水源丰富旳地域 选用较小旳温差,缺水地域选用较大旳温差。但是,工业冷却 用水旳出口温度一般不宜高于45℃,因为工业用水中所含旳部 分盐类(如CaCO3、CaSO4、 MgCO3和MgSO4等)旳溶解度 随温度升高而减小,如出口温度过高,盐类析出,将形成传热 性能很差旳污垢,而使传热过程恶化。假如是用加热介质加热 冷流体,可按一样旳原则选择加热介质旳出口温度。
取管长应根据出厂旳钢管长度合理截用。 我国生产系列原则中管长有1.5m,2m, 3m,4.5m,6m和9m六种,其中以3m和 6m更为普遍。同步,管子旳长度又应与管 径相适应,一般管长与管径之比,即L/D约 为4~6

化工原理课程设计换热器 [《化工原理课程设计》报告换热器的设计]

化工原理课程设计换热器 [《化工原理课程设计》报告换热器的设计]

化工原理课程设计换热器[《化工原理课程设计》报告换热器的设计]《化工原理课程设计》报告换热器的设计目录概述1.1.换热器设计任务书-4-1.2换热器的结构形式-7-2.蛇管式换热器-7-3.套管式换热器-7-1.3换热器材质的选择-8-1.4管板式换热器的优点-9-1.5列管式换热器的结构-10-1.6管板式换热器的类型及工作原理-11-1.7确定设计方案-12-2.1设计参数-12-2.2计算总传热系数-13-2.3工艺结构尺寸-14-2.4换热器核算-15-2.4.1.热流量核算-16-2.4.2.壁温计算-18-2.4.3.换热器内流体的流动阻力-19-概述在不同温度的流体间传递热能的装置称为热交换器,简称为换热器。

在换热器中至少要有两种温度不同的流体,一种流体温度较高,放出热量;另一种流体则温度较低,吸收热量。

35%~40%。

随着我国工业的不断发展,对能源利用、开发和节约的要求不断提高,因而对换热器的要求也日益加强。

换热器的设计、制造、结构改进及传热机理的研究十分活跃,一些新型高效换热器相继问世。

随着换热器在工业生产中的地位和作用不同,换热器的类型也多种多样,不同类型的换热器各有优缺点,性能各异。

在换热器设计中,首先应根据工艺要求选择适用的类型,然后计算换热所需传热面积,并确定换热器的结构尺寸。

换热器按用途不同可分为加热器、冷却器、冷凝器、蒸发器、再沸器、深冷器、过热器等。

换热器按传热方式的不同可分为:混合式、蓄热式和间壁式。

其中间壁式换热器应用最广泛,按照传热面的形状和结构特点又可分为管壳式换热器、板面式换热器和扩展表面式换热器(板翅式、管翅式等),如表2-1所示。

表2-1传热器的结构分类类型特点间壁式管壳式列管式固定管板式刚性结构用于管壳温差较小的情况(一般≤50℃),管间不能清洗带膨胀节有一定的温度补偿能力,壳程只能承受低压力浮头式管内外均能承受高压,可用于高温高压场合U型管式管内外均能承受高压,管内清洗及检修困难填料函式外填料函管间容易泄漏,不宜处理易挥发、易爆炸及压力较高的介质内填料函密封性能差,只能用于压差较小的场合釜式壳体上部有个蒸发空间用于再沸、蒸煮双套管式结构比较复杂,主要用于高温高压场合和固定床反应器中套管式能逆流操作,用于传热面较小的冷却器、冷凝器或预热器螺旋管式沉浸式用于管内流体的冷却、冷凝或管外流体的加热喷淋式只用于管内流体的冷却或冷凝板面式板式拆洗方便,传热面能调整,主要用于粘性较大的液体间换热螺旋板式可进行严格的逆流操作,有自洁的作用,可用作回收低温热能平板式结构紧凑,拆洗方便,通道较小、易堵,要求流体干净板壳式板束类似于管束,可抽出清洗检修,压力不能太高混合式适用于允许换热流体之间直接接触蓄热式换热过程分阶段交替进行,适用于从高温炉气中回收热能的场合完善的换热器在设计或选型时应满足以下各项基本要求。

化工原理课程设计换热器

化工原理课程设计换热器

化工原理课程设计换热器化工工程专业是一门应用学科,其中涉及到很多实际工程应用,而其中最为重要的一项便是换热技术。

在化工原理课程中,学生需要学习换热的原理,同时也需要进行相应的课程设计,以加深对该项工艺的理解。

本文将具体介绍化工原理课程设计中的换热器部分。

一、换热器的定义与应用换热器是指将工作介质中的热量从一种流体(或气体)传到另一种流体(或气体)的装置。

具体来说,它是用于加热或冷却化学、石油、食品、冶金、电力、纺织等行业在生产过程中所使用的流体的设备,是化工生产过程中最为常用的一种装置。

换热器可分为管式换热器、板式换热器、壳式换热器等。

其中,壳式换热器是最常用的一种,也是本文课程设计的重点。

二、化工原理换热器课程设计1. 设计目标作为化工原理课程中的一个重要部分,换热器的课程设计旨在让学生了解换热器的原理和设计方法,培养学生的动手能力和实践能力,为学生未来从事化工工作提供实践基础。

2. 设计内容换热器的课程设计通常包括以下内容:(1)了解壳式换热器的结构和分类,并对不同的壳式换热器进行比较和分析。

(2)了解换热器的传热原理和传热方式,以及热传导、对流传热和辐射传热等基本原理。

(3)了解不同流体的传热性质,如热导率、热容、热透过系数等,并掌握其应用方法。

(4)掌握壳式换热器的设计方法,包括换热面积的计算、流速的估算、流体性质的确定等。

(5)通过计算确定换热器的设计参数,如壳程和管程的流体流量、进出口温度、换热系数等,并绘制换热器的流程图和工艺图。

3. 设计过程换热器的课程设计通常分为理论计算和实践操作两个部分。

理论计算部分包括上述内容中的步骤(1)至(4),而实践操作部分则需要学生使用化工实验室中的相应设备进行实验操作。

在实践部分中,学生需要完成以下操作:(1)拆卸换热器,进行清洗和维修,对设备的状态进行检查和评估。

(2)确定流量计和温度计的安装点,并将它们安装在换热器的管路中,以便后续的流量和温度测量。

化工原理课程设计换热器设计

化工原理课程设计换热器设计

化工原理课程设计设计任务:换热器班级:13级化学工程与工艺(3)班姓名:魏苗苗学号:1320103090目录化工原理课程设计任务书 (2)设计概述 (3)试算并初选换热器规格 (6)1。

流体流动途径的确定 (6)2. 物性参数及其选型 (6)3。

计算热负荷及冷却水流量 (7)4. 计算两流体的平均温度差 (7)5。

初选换热器的规格 (7)工艺计算 (10)1. 核算总传热系数 (10)2. 核算压强降 (13)设计结果一览表 (16)经验公式 (16)设备及工艺流程图 (17)设计评述 (17)参考文献 (18)化工原理课程设计任务书一、设计题目:设计一台换热器二、操作条件: 1、苯:入口温度80℃,出口温度40℃。

2、冷却介质:循环水,入口温度32。

5℃。

3、允许压强降:不大于50kPa 。

4、每年按300天计,每天24小时连续运行。

三、设备型式: 管壳式换热器四、处理能力: 109000吨/年苯五、设计要求:1、选定管壳式换热器的种类和工艺流程。

2、管壳式换热器的工艺计算和主要的工艺尺寸的设计.3、设计结果概要或设计结果一览表.4、设备简图。

(要求按比例画出主要结构及尺寸)5、对本设计的评述及有关问题的讨论。

六、附表:1。

设计概述 1。

1热量传递 出口温度 40。

5℃壳体内部空间利用率 70%选定管程流速u (m/s ) 1壳程流体进出口接管流体流速u1(m/s ) 1的概念与意义1。

1。

1热量传递的概念热量传递是指由于温度差引起的能量转移,简称传热.由热力学第二定律可知,在自然界中凡是有温差存在时,热就必然从高温处传递到低温处,因此传热是自然界和工程技术领域中极普遍的一种传递现象。

1.1.2化学工业与热传递的关系化学工业与传热的关系密切.这是因为化工生产中的很多过程和单元操作,多需要进行加热和冷却,例如:化学反应通常要在一定的温度进行,为了达到并保持一定温度,就需要向反应器输入或输出热量;又如在蒸发、蒸馏、干燥等单元操作中,都要向这些设备输入或输出热量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

化工原理课程设计换热器
本文主要介绍化工原理课程设计中涉及到的换热器的相关知识和设计思路。

换热器是化工工业中常用的设备之一,其主要功能是通过传导、对流和辐射的方式实现热量的传递,从而将一个流体的热量传递给另一个流体。

因此,在化工原理课程设计中涉及到换热器的设计,既需要考虑流体的物理性质,也需要考虑热力学参数的影响。

换热器的类型繁多,按照传热方式的不同可分为对流式换热器和辐射式换热器。

常用的对流式换热器包括管壳式换热器、板式换热器和螺旋式换热器等。

在换热器的设计中,需要首先确定换热器所要实现的传热方式和工作条件,如流体流速、进出口温度和压力等。

接下来需要考虑的问题是如何选择合适的材料以满足流体的物理性质和热力学参数的要求。

在化工原理课程设计中,换热器的设计重点之一是热力学计算。

为了实现对流体的热量传递,需要考虑流体的传热系数。

传热系数与流体的物理性质密切相关,包括流体的密度、比热、粘度和导热系数等。

通过对这些参数的测量和分析,可以计算出传热系数,并进而确定换热器的传热效率。

另外,在化工原理课程设计中,换热器的设计还需要考虑到换热器的尺寸、材料和结构等方面的问题。

尺寸的设计需要考虑工作流体的容积和流速等因素,以保证换热器的实现效率和安全性。

材料选择需要考虑到流体的化学性质,以避免流体
与材料发生反应和腐蚀。

结构设计需要兼顾容易清洗、拆卸和维护的要求,以方便日常运行和维护。

总之,在化工原理课程设计中,换热器的设计是一个系统性的工程,包括物理学、化学和工程学等多个学科领域的综合运用。

只有充分理解流体的物理性质和热力学参数,才能做出合理的设计并实现高效的换热效果。

同时,还需要考虑到实际工程的应用需求,以满足生产的需要和安全的要求。

相关文档
最新文档