变形监测论文

合集下载

关于变形监测参考文献_论文格式_

关于变形监测参考文献_论文格式_

关于变形监测参考文献变形监测参考文献一:[1]朱云武,钱国超。

大型变压器绕组变形检测方法试验研究[J].云南电力技术,2019,01:79-82.[2]刘瑞玲,罗万华,杨振祥。

C70型敞车底架中侧梁下垂变形的调修[J].煤矿机械,2019,02:140-143.[3]周永波,王丽。

建筑基坑常规变形监测技术问题探讨[J].城市勘测,2019,01:141-144.[4]桂芳茹。

三维激光扫描在地铁盾构隧道变形监测的应用[J].科技通报,2019,12:263-265.[5]刘志伟。

三维激光扫描技术在桥梁变形检测中的应用[J/OL].交通世界,2019(02)。

[6]李伟,王建,公多虎,罗文华,赵仲勇,姚陈果。

基于纳秒脉冲技术的超/特高压设备绕组变形带电检测研究[J].电测与仪表,2019,05:47-52+63.[7]王正洋,陈涛,郑文华。

矿井立井井筒变形检测方法探究[J].矿山测量,2019,01:46-49+76+5.[8]冯萌,郭巍。

大型储罐几何形体变形检测方法的研究与应用[J].工程勘察,2019,06:74-78.[9]蒋宝坤。

建筑幕墙平面变形检测装置创新思路探讨[J].智能城市,2019,05:79.[10]孙翔,何文林,詹江杨,郑一鸣,刘浩军,周建平。

电力变压器绕组变形检测与诊断技术的现状与发展[J].高电压技术,2019,04:1207-1220.[11]郭翔。

变压器绕组变形综合检测仪及其应用[J].电世界,2019,05:32-35.[12]李汉锋,赵子更,张学勇。

大功率超声成像技术在变压器绕组变形检测中的应用[J].机电信息,2019,15:47+49.[13]胡峰,范亮。

三维激光扫描技术在变电站扩建工程中的应用研究[J].南方能源建设,2019,02:92-95.[14]陈渊召,李振霞。

沥青路面半刚性基层温度效应监测研究[J].建筑材料学报,2019,02:325-329.[15]李强,余峰,经薇。

测量机器人变形监测设计方案论文

测量机器人变形监测设计方案论文

“测量变形监测设计方案论文”一、引言技术的飞速发展,使得测量的应用越来越广泛。

然而,在实际应用过程中,由于各种原因,可能会出现变形,影响其测量精度和稳定性。

因此,对测量进行变形监测具有重要意义。

本文将探讨一种测量变形监测的设计方案,以期为实际应用提供参考。

二、监测目的与意义1.确保测量精度:测量变形可能导致测量数据不准确,通过对变形进行监测,可以及时发现并纠正误差,保证测量结果的精度。

2.提高稳定性:监测变形有助于了解其运行状态,为维护和保养提供依据,从而提高的稳定性。

3.预防事故:变形可能导致故障,通过监测预警,可以预防潜在事故的发生。

4.优化设计:对变形监测数据的分析,可以为优化设计提供依据,提高其性能。

三、监测方案设计1.监测指标:选取关键部件的尺寸、形状和位置等参数作为监测指标。

2.监测方法:采用激光扫描、视觉测量等技术进行非接触式监测。

3.数据采集与处理:实时采集监测数据,通过数据滤波、降噪等手段,提高数据质量。

4.变形预警与处理:根据监测数据,建立变形预警模型,对超过阈值的变形进行预警,并采取相应措施进行处理。

5.监测系统:设计一套集成监测、预警、处理功能的监测系统,实现变形的实时监测与控制。

四、关键技术研究1.非接触式测量技术:研究激光扫描、视觉测量等非接触式测量技术,实现变形的精确测量。

2.数据处理与分析:研究数据滤波、降噪等算法,提高监测数据质量,为变形预警提供可靠依据。

3.变形预警模型:建立基于监测数据的变形预警模型,实现变形的实时预警。

4.监测系统设计:研究监测系统的硬件和软件设计,实现变形的实时监测与控制。

五、实施方案1.预备阶段:明确监测目标、指标和方法,搭建监测平台。

2.实施阶段:开展监测工作,实时采集和处理数据,进行变形预警与处理。

3.验证阶段:验证监测系统的有效性和可靠性。

4.运行阶段:持续开展监测,为维护和优化设计提供依据。

六、预期成果1.形成一套完善的测量变形监测方案。

GPS测量技术在水利工程高精度变形监测网中应用论文

GPS测量技术在水利工程高精度变形监测网中应用论文

GPS测量技术在水利工程高精度变形监测网中的应用【摘要】伴随着我国科技的迅速发展,gps测量技术的应用范围也越来越广泛,gps测量技术在水利工程高精度变形监测网中的应用得到了很大的时效。

本文主要阐述gps测量技术的特点和局限性、gps测量技术在水利工程中的常用的方式、变形监测网中控制网的布设情况和对数据的处理、gps测量技术在水利工程高精度变形监测网的质量的评价。

【关键词】gps测量技术;水利工程;变形监测;观测数据伴随着我国经济的发展,水利工程是一项关乎国计民生的重大建设工程,做好水利工程的建设工作非常重要。

gps系统是一种具有连续性和高精度的测量仪器,对水利工程的建设有很大的影响。

因此,我们就要掌握gps测量技术在水利工程精度变形监测网中的应用进行系统的分析。

1.gps测量技术的特点和局限性1.1 gps测量技术的特点gps测量技术的特点主要体现在以下几个方面:(1)gps测量技术能够为一些用户提供连续性的工作,因此gps 测量技术具有连续性的特点。

(2)gps测量技术开始正常工作运行的时候,不会受天气的影响,可以进行全天候的工作,因此,gps测量技术具有全天候工作的特点。

(3)gps测量技术在工作的时候,只要能够满足其测量的条件,那么就能够实现测量精度的准确性,因此,gps测量技术具有测量的安全性和可靠性的特点。

(4)gps测量技术能够达到测量的精度,其中没有误差的产生。

(5)gps测量技术的劳动强度是非常大的,只要满足了具体的工作条件,那么就可以轻松的进行高精度的作业。

(6)gps测量技术的速度是非常快的,对一个测点进行定位只需要几秒钟的时间。

1.2 gps测量技术的局限性(1)利用gps技术在对一些河道进行测量的时候存在着一些局限性,同时也会受到一些外部环境的影响,因此在进行测量的时候就要避开高压电路或者具有非常强的电磁干扰的地方。

(2)如果gps测量技术在被一些高大的建筑物阻挡的时候,那么就会影响到接受信号的效果,影响gps测量的正常工作情况。

移动式测量机器人在大朝山5#滑坡体变形监测应用论文

移动式测量机器人在大朝山5#滑坡体变形监测应用论文

移动式测量机器人在大朝山5#滑坡体变形监测中的应用摘要:介绍了移动式测量机器人在大朝山5#滑坡体变形监测中应用的基本情况,实际应用表明,采用移动式测量机器人对该滑坡体进行监测,具有观测速度快、自动化程度和观测精度高等特点,并可同时获得每个变形点的平面位移和垂直位移信息,克服了以往平面位移监测和垂直位移监测分别进行的缺陷。

关键词:测量机器人;移动式;滑坡;变形监测【中图分类号】tp240 引言测量机器人是一种能代替人进行自动搜索、跟踪、辨识和精确照准目标并获取角度、距离、三维坐标以及影像等信息的智能型电子全站仪。

它是在全站仪基础上集成步进马达、ccd影像传感器并配置智能化的控制及应用软件而发展形成的。

在工程建筑物及滑坡的变形自动化监测方面,测量机器人已逐渐成为首选的自动化测量技术设备。

测量机器人变形监测系统由基站、参考点、目标点、专用软件和计算机组成,是基于一台测量机器人的有合作目标(照准棱镜)的变形监测系统。

利用测量机器人进行滑坡的自动化变形监测,按监测方法可分为固定式持续监测系统和移动式周期监测系统。

固定式持续监测系统一般在测站上建立测量机器人监测房,配设供电、控制、计算、通信装置中心,而移动式周期监测系统只需测量机器人在每个测站上对周围目标点作周期观测,再用带有后处理软件的计算机进行数据处理即可。

前者的优势是全自动、实时在线监测,然而系统相对复杂,造价昂贵,一方面这些昂贵的系统设备只能长期用于一个固定的变形监测项目,而且需要采取特殊方式进行保护管理并定期检测修复,另一方面没有多余观测量,测量的精度随着距离的增长而显著降低,且不易检查发现错误;后者是一种半自动变形监测系统,工程数据管理轻便灵活,测量精度高,周期测量后仪器即可拆除,适合半人工作业、变形缓慢需定期测量的工程项目,与传统作业方式大同小异,但是效率提高了3~4倍,在替代传统变形监测系统方面有着显著的优势,这种模式常采用测量机器人机载半自动化外业观测软件加计算机后处理软件共同构成。

矿山地表沉降与变形监测技术研究

矿山地表沉降与变形监测技术研究

矿山地表沉降与变形监测技术研究摘要:随着矿山开采的不断加剧和规模的扩大,矿山地表沉降与变形监测技术的研究变得越发重要。

本论文主要研究了矿山开采活动对地表沉降和变形的影响机理,综述了常用的监测技术及其原理,并介绍了一种基于遥感和地理信息系统(GIS)的监测方法。

通过实地调查和仿真分析,验证了该方法的可行性和有效性。

研究结果表明,该监测方法能够准确、及时地监测矿山地表沉降与变形,并为矿山开采活动的环境保护和安全管理提供了有效的数据依据。

关键词:矿山开采,地表沉降,变形监测,遥感,地理信息系统(GIS)第一章:引言随着矿山资源的逐渐枯竭以及对矿石品位要求的提高,矿区的开采活动不断加剧,矿山开发对地表环境产生的影响也越来越大。

其中,地表沉降与变形是矿区开采活动最常见的一种地表变化形式。

矿山地表沉降与变形的研究对矿山环境保护、安全管理和可持续发展具有重要意义。

本章主要阐述矿山地表沉降与变形的发生机理,说明其对矿区环境的影响,并概述了国内外相关研究的现状与发展趋势。

1.1 矿山地表沉降与变形的机理矿山开采活动对地表沉降与变形的影响主要包括地表破裂、地下空洞、矿物体移动等。

地表破裂是由于矿山开采活动引起地下空洞及矿石的变形而导致地表发生断裂。

地下空洞是由于矿山开采活动引起地下岩层的塌陷和溶解而形成的空腔。

矿物体移动是指在地下开采过程中,矿石体随着开采的进行不断下沉和挤压,最终导致地表发生沉降。

1.2 矿山地表沉降与变形的影响矿山地表沉降与变形对矿区环境产生直接和间接的影响。

直接影响主要包括地表破裂、地下空洞及矿物体移动等,这些现象会给矿区的地质环境和生态环境带来破坏。

间接影响主要表现为地下水位的变化和水质的污染,由于地表沉降和变形会影响地下水系统的稳定性和地下水与地表水的交互作用,导致地下水位下降和水质恶化。

1.3 国内外研究现状与发展趋势国内外关于矿山地表沉降与变形监测技术研究的成果丰富,但仍存在一些问题亟待解决。

建筑施工变形监测论文

建筑施工变形监测论文

建筑施工变形监测探讨摘要:针对建筑物施工(尤其高层及超高层)变形监测中存在的问题,指出变形监测在建筑物施工安全监测中的意义,并从基准点布设、沉降观测点布设、变形观测精度的确定和观测周期的安排、监测方案的实施、观测成果平差计算及成果整理等方面论述了建筑物施工变形监测的方法,为工程施工和预防在施工过程中出现不均匀沉降提供了决策依据,从而达到建筑工程防灾减灾的目的。

关键词:建筑施工;变形监测;精度中图分类号:g267 文献标识码:a 文章编号:1引言建筑物从基础施工到竣工验收及其运营使用过程中,由于建筑物地基和基础承受的荷载的影响,往往产生不同形式的变形。

如果变形超过一定限度,将会影响建筑物的正常使用,严重的将会危及建筑物的安全,因此在建筑物施工过程中应用变形监测加强全过程监控,指导合理的施工工序,预防在施工过程中出现不均匀沉降,已成为建筑工程防灾减灾的重要方面。

2基准点布设为监测建筑物的施工变形,首先必须建立作为观测依据的水准基点。

水准基点应设置在施工现场应力之外,埋设时应在建筑物开始始工前的场地平整阶段埋设,埋深至少在冰冻线以下0.5米,其埋设位置一般要离开建筑物20米~25米,还应考虑避开低洼积水及松软地带,水准基点的埋设数目不得少于3个,构成水准网,以便相互检核。

一般情况下,水准基点应与附近的国家水准点联测。

若较远,可以采用独立的假定高程系统,水准基点在引测中宜采用二等水准测量方法测定,其往返较差及附合或环线闭合差不得超过±1.0 (单位:mm毫米,n为测站数)或±4 (单位:mm毫米,l为往返测段、附合或环形水准路线长度:km公里)。

3沉降观测点布设要求得建筑物的变形量,势必要在该建筑物上设置能反映其变形特征的观测点,通过对其观测方可求得。

建筑物(尤其高层及超高层)往往由主楼、裙房、地下室等构成,观测点宜设置在主楼与裙房交接处的两侧或变形缝(沉降缝)的两侧和建筑物的四角,当建筑物较长或较宽时宜在两端、中间布点(间距以10米~20米或每隔1~3根柱基为宜),外墙和边柱上的点应在外侧,内部的点应放在便于观测的位置,以减少测站,提高观测成果的精度。

论变形监测技术的现状与发展趋势

论变形监测技术的现状与发展趋势

论变形监测技术的现状与发展趋势[摘要]随着现代科学技术的发展,变形监测技术也逐渐得到发展和广泛的应用。

变形监测是一项利用精密仪器和专业方法对发生形变的物体进行长时间的观察检测的工作。

同时也将对发生形变的物体做出相应的预测和分析。

变形监测技术主要是用来确定变形体的形状、大小以及发生变化的位置空间和时间,并且需要结合变形体的性质和地基情况后在做出相应的分析。

一般研究分析的变形体有建筑物、边坡、大坝、桥梁等,这些属于精密工程测量当中的变形体。

本文就是通过对一些最具代表性的形变体来浅谈分析形态检测技术的现状与发展趋势。

[关键词]变形监测发展趋势建筑物桥梁变形监测技术只要有地面观测检测技术、地下观测监测技术、对地观测监测技术。

进行变形监测的意义主要是检查各种变形体如各种工程建筑物和地质构造是否稳定以便更早地发现问题并给予及时的解决方法。

从科学性的角度出发,掌握好变形监测技术能够更好地帮助理解物体发生变形现象的机理甚至会关系到地壳的运动假说。

因而只有做好检测技术并将其传承发扬,才能更好地通过相关工程设计理论预测出变形体的发展趋势进而总结出完善的预报变形的方法。

1应用变形监测技术的范围1.1全球性的变形监测全球性的变形监测主要是针对地球的运动状况。

主要研究地极的移动,地球旋转速度和地壳板块的运动。

在很大程度上都与地壳运动家说有关。

1.2区域性的变形监测区域性的变形监测通过建立专用监测网,监测的是在板块交界处由于板块运动发生的地壳变形。

这类变形监测也会通过从国家控制网得到的定期更新的资料来研究地壳板块范围内的变形。

1.3局部性的变形监测局部性的变形监测针对的是局部地壳变形,对象可以是工程建筑物、滑坡体、煤矿等。

这些变形体发生的沉陷、水平移动、倾斜等现象都侧面体现出局部地壳的变形。

2变形监测的方法2.1大地测量方法较为传统的方法一般是常规大地测量的方法,通过一些专业工具测出所需的角度、边长、水准。

这种方法具有很大的灵活性,可以满足不同精度的要求,不同的外界条件和不同的变形体。

变形监测报告

变形监测报告

变形监测技术与应用时间:6/19/2013有关沉降监测论文报告沉降监测就是采用合理的仪器和方法测量建筑物在垂直方向上高程的变化量。

建筑物沉降是通过布置在建筑物上的监测点的沉降来体现的,因此沉降监测前首先需要布设监测点。

监测点布置应考虑设计要求和实际情况,要能较全面反映建筑物地基和基础的变形特征。

沉降监测一般在基础施工时开始,并定期检测到施工结束或结束后一段时间,当沉降趋于稳定时停止,重要建筑物有的可能要延续较长长一段时间,有的可能要长期监测。

为了保证监测成果的质量,应根据建筑物特点和监测精度要求配备监测仪器,采用合理的监测方法,在此,我来介绍以下几种监测方法。

一、精密水准测量法测量原理:采用该方法进行沉降监测,沉降监测的测量点分为水准基点、工作基点和监测点3种。

水准基点是沉降监测的基准点,一般3个—4个构成一组,形成近似正三角形或正方形。

为保证其坚固与稳定,应选埋在变形区以外的岩石上或深埋于原状土上,也可以选埋在稳固的建筑物上。

为了检查水准基点自身的高程是否变动,可在每组水准基点的中心位置设置固定测站,定期观测水准基点之间的高差,判断水准基点的变动情况。

也可以将水准基点构成闭合水准路线,通过重复观测的平差结果和统计检验的方法分析水准基点的稳定性。

采用精密水准测量方法进行沉降监测时,从工作基点开始经过若干监测点,形成一个或多个闭合或符合路线,其中以闭合路线为佳,特别困难的监测点可以采用支水准路线往返测量。

整个监测期间,最好能固定监测仪器和监测人员,固定监测路线和测站,固定监测周期和相应时段。

误差来源分析:i角误差、磁场和大气垂直折光的影响、受温度影响,导致i角误差发生变化,而且该误差在往返测不符值中不容易被发现、标尺零点差的影响等。

二、精密三角高程测量法高精度全站仪的发展,使得电磁波测距三角高程测量在工程测量中的应用更加广泛;电磁波测距三角高程测量代替水准测量进行沉降监测,将极大地降低劳动强度,提高工作效率。

对建筑物变形观测方法的分析

对建筑物变形观测方法的分析

对建筑物变形观测方法的分析摘要:随着国民经济和社会的飞速发展,高层建筑物将日益增多。

变形观测是对建筑物(构筑物)的变形沉降、水平位移、挠曲、倾斜及裂缝等进行的测量工作,本文阐述了变形观测的方法,详细分析了变形观测的精度和频率,以供大家交流。

关键词:变形观测沉降观测1、前言随着国民经济和社会的飞速发展, 高层建筑越来越多。

在兴建和已建工程建筑物的过程中,由于多种原因都能使建筑物产生变形,这种变形在一定限度之内,应认为是正常现象,但如果超出了规定的限度,就会影响建筑物的正常使用,严重时还会危及建筑物的安全。

因此,在工程建筑物施工之前、施工过程中和交付使用期间,必须对建筑物的变形状态进行监测,即变形观测。

通过对建筑物进行变形观测,可分析和监视建筑物的变形情况。

当发现建筑物有异常时,可及时分析原因,采取有效措施,保证建筑工程质量和安全生产,同时也为今后建筑物的结构和地基基础的合理设计积累资料。

2、变形观测的内容产生建筑物变形的原因是多方面的,主要由于建筑物基础的地质构造不均匀,土壤的物理性质不同,大气温度变化,土基的弹性变形,地下水位季节性和周期性的变化,建筑物本身的荷重,建筑物的结构,形式及动荷载(例如风力,震动等)的作用。

变形观测的内容,应根据建筑物的性质与地基情况而定,要求针对性强,重点明确,全面考虑,正确反映出建筑物变化情况,以达到监视建筑物安全运营,了解其变形规律为目的。

对于不同用途的建筑物,其变形观测的重点及要求有所不同,例如对于建筑物的基础,主要观测的内容是均匀沉降和不均匀沉降,如果地基属于软土地带,基础采用的桩基础,则还需要确定其水平位移。

而对于建筑物的本身,主要是倾斜和裂缝观测。

总的来说变形观测的内容可以概括为:建筑物的沉降、水平位移、挠曲、倾斜及裂缝,其中最基本的变形观测为沉降观测和水平位移观测。

代写论文1、垂直度的监测:测定建筑物的倾斜有两类:一类是直接测定建筑物的倾斜,该方法多用于高层建筑。

GNSS定位技术在变形监测中的应用_测绘工程专业论文设计

GNSS定位技术在变形监测中的应用_测绘工程专业论文设计

郑州工商学院本科生毕业论文(设计)GNSS定位技术在变形监测中的应用目录1绪论 (3)1.1研究目的和意义 (3)1.2国内外研究现状 (3)1.3本文研究的主要内容及方法 (4)2GNSS定位技术 (5)2.1GNSS的原理与组成 (5)2.2GNSS的测量分类 (7)2.2.1 静态定位 (7)2.2.2 动态定位 (7)2.3GNSS的特点与应用 (7)2.4GNSS的前景 (10)3GNSS定位技术在变形监测中的应用 (12)3.1变形监测的特点 (12)3.2GNSS控制网的布设 (12)3.2.1 GNSS控制网的一般要求 (12)3.2.2 GNSS控制网的布设 (12)3.2.3 GNSS网点的埋设 (14)3.3GNSS控制网的测量 (14)3.3.1 GNSS控制网的测量的精度要求 (14)3.3.2 测量过程 (15)3.3.3 数据处理和精度分析 (16)3.4变形数据的分析与预报 (16)3.4.1 分析 (16)3.4.2 预报 (17)4应用实例 (18)4.1工程简介 (18)4.2准备工作 (18)4.2.1 设备、仪器及人员组织的准备 (18)4.2.2 采用的坐标系 (18)4.3控制网的测量 (19)4.3.1 控制网的布设 (19)4.3.2 控制测量 (19)4.4数据处理与精度分析 (20)4.5变形数据分析与预报 (22)5结束语............................................................................................... 错误!未定义书签。

参考文献................................................................................................... 错误!未定义书签。

建筑变形监测方法研究

建筑变形监测方法研究
科 学论 坛
C h i n a s ci en ce a nd T e c h n el e g y Re vi e w
’ 々 ■l
建 筑 变 形 监 测方 法研 究
毕朋峰
( 沈阳经济技术开发区规划建筑设计有限公司 1 1 0 0 0 0 )
[ 摘 要] 本 文基 于建 筑变 形监 测 的相 关研究 经验 , 以高 层建 筑静 态变 形监 测 为研究 对象 , 论文 主要 分析 了高 层建 筑变 形监 测的 范畴 和具体 方法 。 [ 关键 词] 变 形 监测 , 高 层建 筑 ; 方 法 , 中图分 类号 : T U1 9 6 文 献标识 码 : A 文 章编 号 : 1 0 0 9 —9 1 4 X( 2 0 1 3 ) 0 7 — 0 2 8 5 一O 1
称为 基坑 工程 环境 效应 。 基 坑工 程环境 效应 包括 支护 结构和 工程 桩施 工 、 降低 地下 水位 、 基 坑 土方 开 挖各 阶段对 高层 建 筑的 影响 , 主 要表 现在 以下 几方 面 。 ( 1 ) 基坑 土方开 挖引起 支护结 构变 形 以及降 低地下水 位造 成基坑 四周地 面 产生 沉 降 、 不均 匀沉 降和水 平位 移 , 导致 影响相 邻高层 建 筑及市 政管 线的 正常
变形监测 目的是 为了实时 的了解高 层建筑 的变 形情况 , 确保 高层建筑 的安 全使 用 , 就静态 变形监 测而言 , 监测 的主要 内容包括 : 沉 降观测 、 倾斜观 测 、 水 平 位移 观 测和裂 缝观 测。 监测方 法包 括常规 地面 测量方 法 、 近景摄 影测 量 以及 特 定条 件 下采取 一些 特殊 的测量方 法 。 沉 降观测 常用水 准测量 的方 法 , 也可 以采

测量机器人变形监测设计方案论文

测量机器人变形监测设计方案论文

03
移动速度
测量机器人的移动速度也是其重要的技术参数之一。快速的移动速度可
以提高测量的效率,满足动态测量的需求。
测量机器人的应用领域
工业检测
测量机器人在工业领域中广泛应 用于产品尺寸、表面质量等的检 测,提高了生产效率和产品质量

建筑测量
在建筑领域,测量机器人可以用于 建筑物的变形监测、施工过程控制 等,保障建筑物的安全和质量。
测量机器人变形监测技 术已取得显著成果,能 够实现高精度、高效率 的变形监测。
02
测量机器人在实际应用 中表现优异,为工程安 全提供了有力保障。
03
测量机器人的应用范围 不断扩大,已涉及多个 领域,如建筑、桥梁、 隧道等。
04
测量机器人的技术水平 不断提升,为变形监测 技术的发展做出了重要 贡献。
研究不足与展望
06
部署与维护
将测量机器人部署到实际应用场景中,进行长 期监测和维护,根据反馈进行必要的调整和优 化。
设计方案的可行性分析
技术可行性
方案所涉及的技术和方法在国内外均有 成熟的应用案例,技术难度适中,具备
可行性。
社会可行性
方案符合国家法律法规和相关政策, 同时也符合社会发展和环境保护的需
求。
经济可行性
地理信息采集
在地理信息采集领域,测量机器人 可以用于地形地貌、地质结构等的 测量,为地理信息科学研究和实际 应用提供数据支持。
03
变形监测技术基础
变形监测的基本概念
变形监测
对建筑物或地表等对象的形态变 化进行持续的观测和记录,以评 估其安全性和稳定性的过程。
变形监测的重要性
及时发现变形迹象,预防安全事 故,为工程维护和加固提供依据 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

变形监测论文——变形监测理论与技术发展的研究现状姓名:***学号:********论文题目:变形数据理论与技术发展的研究现状论文摘要:论述变形监测在工程建设、管理中的意义,以及变形监测的内涵变迁;变形监测的监测技术与数据处理技术的发展进程;总结变形监测与技术发展的现状以及其趋势。

关键词:变形监测,数据处理,监测技术,发展现状与趋势,研究理论。

正文:1.变形监测概论人类社会的进步和国民经济的发展,加快了工程建设的进程,并且对现代工程建筑物的规模,造型,难度提出了更高的要求。

与此同时,变形监测工作的意义更为重要。

在工程项目建设中,由于受到多种主观或者客观的因素影响,会产生变形,变形如果超过了规定限度就会影响建筑物的正常使用,严重者还可能造成损失,而变形监测的首要目的就是要掌握变形体的实际性状,从而为判断其安全提供必要的信息。

变形监测队工程的施工和运营管理极为重要,变形监测涉及到测量、工程地质、水文、结构力学、地球物理、计算机等诸多学科的知识,因此它是一项跨科学的研究。

变形监测主要涉及研究三方面的内容:变形信息的获取、变形信息的的分析与解释以及变形预报,它主要是掌握各种建筑物和地质构造的稳定性,验证一些形变的运动以及设计有效的变形模型。

2.变形监测的一些技术介绍和分析2.1.地面观测监测技术在地面上设站,测量变形体的变化,通称地面观测监测技术。

主要以经纬仪、全站仪、引张线、激光扫描仪、摄影测量等技术为主。

目前地面观测技术的主要发展为、测量机器人和激光三维扫描技术。

2.1.1 自动全站仪监测技术自动全站仪俗称测量机器人(Robotic T otal Station System),里面除了一般电子全站仪的电子电路、光学系统、软件系统以外,还有两个最重要的装置,自动目标照准传感装置和提供动力的两个步进马达。

目标照准传感装置,一般采用内置在全站仪中的CCD阵列传感器,该传感器可以识别被反射棱镜返回的红外光,CCD判别接受后,马达就驱动全站仪自动转向棱镜,并实现自动精确照准。

CCD识别的是不可见红外光,它能够在夜间、雾天甚至雨天(保证镜面无雨水)进行测量。

基于上述特点利用测量机器人可实现常规监测网测量的自动化。

2.1.2 自动全站仪监测系统的构成方式针对不同的监测对象和要求,自动全站仪可组成以下的监测方式。

移动式监测方式,利用短通讯电缆(1~2米)将便携计算机与全站仪连接,由便携机自动控制全站仪进行测量;或者直接将控制软件安装在自动全站仪内部,控制全站仪测量。

2.1.3 自动全站仪监测技术的不足由于目标自动识别的限制,使用范围有限;由于采样频率的限制,1台用于多点的高频率的振动测量比较困难,当然可以采用每台跟踪1个点的方式,这样成本较高。

2.2地面三维激光扫描测量技术激光雷达LIDAR (Light Detection and Ranging)是通过发射红外激光直接测量雷达中心到地面点的一项技术,它通过角度和距离信息,同时获取地面点的三维数据。

激光雷达最大特点是不需要任何测量专用标志,直接对地面测量,能够快速获取地形高密度的三维数据,所以又称三维激光扫描技术。

根据承载平台不同,激光扫描技术又分机载三维激光扫描、车载三维激光扫描、站载三维激光扫描,其中的车载型和站载型属于地面三维激光扫描。

2.2.1三维激光扫描技术的特点三维激光扫描仪的主要特点体现在数据采集的高密度、高速度和无何作目标测量上。

高密度体现在用户可以设置测点间隔0.1m-2.0m,高速度体现在每秒可测量几十点到几千个点,具有很强的数字空间模型信息的获取能力。

地面三维激光扫描仪在测量范围上,根据仪器种类不同,从几米到4公里以上。

10m以内测程为超短程,10m-100m为短程,100m-300m 为中程,300m以上为远程三维激光扫描系统。

影响三维激光扫描仪测量精度的因素较多,主要包括:步进器的测角精度、仪器的测时精度、激光信号的信噪比、激光信号的反射率、回波信号的强度、背景辐射噪声的强度、激光脉冲接受器的灵敏度、仪器与被测点问的距离、仪器与被测目标面所形成的角度等等[18]。

一般中远程三维激光扫描仪的单点测量精度在几毫米到数厘米之间,模型的精度要远高于单点精度,可达2-3mm。

2.2.2三维激光扫描技术应用在工程变形监测中的优势及问题三维激光扫描系统的速度快,不需接触目标,精度高,信息丰富(不仅获取空间信息,还获取灰度信息和真彩色纹理)、自动化程度高、3mm 的面型测量精度等特点,能快速准确地生成监测对象的三维数据模型,这些技术优势决定了三维激光扫描技术在变形监测领域将有着广阔的应用前景。

已开始在桥梁、文物、滑坡体、泥石流、火山等领域快速面监测中进行应用。

例如,美国弗罗里达州运输部利用ILRIS-3D对弗罗里达州I10出口的30号桥梁进行桥梁加载变形监测的试验[18],以分析该桥梁结构承受能力,通过与传统监测手段在外界所需条件、测量精度、测量需要时间、需要人员、测量总点数、成果输出等方面的比较,认为三维激光扫描技术在变形监测方面是可行的。

但由于激光扫描系统得到是海量数据,一个目标多幅距离影像,以及点云的散乱性、没有实体特征参数等,直接利用三维激光扫描数据比较困难。

针对三维激光扫描技术的整体变形监测概念,研究与三维激光扫描仪相适应的变形监测理论及数据处理方法,主要考虑以下问题[19]:(1)现有的基于变形监测点的变形监测模式不适用于基于三维激光扫描仪的变形监测,必须摒弃变形监测点,探讨无变形监测点的监测对象测量方法。

考虑采用监测对象自身的特征点或人工投射的特征信息来替代变形监测点的作用,并采集相应的数据。

(2)要研究监测对象三维模型的建立和模型的匹配。

三维激光扫描仪的采样数据包括监测对象的三维点云和同步采集的纹理信息,利用点云信息能够很快构建监测对象的三维数据模型,再加上纹理信息,就能建立研究对象的仿真模型。

而变形量的获取可以通过不同时期的两个模型间整体对比(即模型求差)来获取,这里就必然涉及到对模型进行匹配的问题。

(3)基于三维监测对象模型的变形分析理论及方法研究。

变形监测的最终结果是要进行相应的应力及应变分析,这里的分析是基于整体监测对象模型的,和传统的基于变形点的以点代面的分析方式存在较大差异,所以,有必要对基于三维监测对象模型的变形分析理论及方法进行相应研究。

(4)监测数据的精度评价体系的建立和模型的精度评定研究。

要建立一个完整的理论及技术体系,除了应具备一套完善的理论及方法外,还应建立相关的成果评价体系,具备相关精度指标和置信度的成果才是完整的,这也是相应信息被正确使用的前提条件。

3.对地观测监测技术对地观测监测技术,是利用卫星或飞机上的测量传感器实现对地面进行沉降或位移监测的技术。

目前主要包括GPS全球定位系统、D-InSAR (Differential-Interferometric Synthetic Aperture Radar)差分干涉雷达测量和机载激光三维扫描等技术。

3.1 GPS监测技术3.1.1 GPS观测技术的特点与监测应用领域GPS测量技术以其测站点之间无需通视、全天候观测、提供三维信息、测量范围大等特点,已成为现代测量的主要技术手段。

GPS可以提供点位基于全球坐标系统的变化,不受局部变形的影响,可以监测全球范围或区域范围内的地球板块的运动,为地震监测提供必要的数据。

目前,我国利用GPS已建立中国地壳运动观测网络。

由于GPS不需要各种点(基准点、监测点)之间通视,测量范围也不受限制,同时具有高速数据采样率,使其在工程变形监测方面,具有独特测量优势。

比如对于滑坡体较大通视条件差或大的露天矿边坡,很难找到通视的基准点,采用GPS监测时,基准点就可以选在远离变形区,而不是否通视。

对于海上勘探平台沉陷监测、城市地面沉陷监测,采用传统的水准测量方法无法实现或作业强度很大,采用GPS可以降低劳动强度,而且可以直接利用大地高计算沉陷量,使观测结果的精度不受损失。

利用GPS 数据的高采样率,可用于高耸建筑物的风振监测、桥梁的振动监测,尤其是5公里以上特长桥梁。

3.1.2 GPS变形监测模式GPS用于变形监测的作业方式可分为周期性和连续性两种模式[1][6]。

当变形体的变形速率相当缓慢,在局部时间域和空间域内可以认为稳定不动时,可利用GPS进行周期性变形监测,监测频率视具体情况可为数月、一年或甚至更长时间。

连续性变形监测指的是采用固定监测仪器进行长时间的数据采集,获得变形数据系列,此时监测数据是连续的,具有较高的时间分辨率。

周期性模式采用GPS静态相对定位的测量方法。

该测量模式成本低,一般监测采用该模式。

比如目前三峡库区滑坡[2]、李家峡水电站滑坡[3],龙羊峡水库近岸滑坡[4]等监测工程中均采用该模式。

连续性监测模式,对自动化要求高,数据采集周期短的监测项目采用。

对于卫星观测条件好的监测工程,比如桥梁、高层建筑物等的动态监测中,GPS正逐渐取代加速度计、激光干涉仪等动态监测设备。

在香港青马大桥、虎门大桥[5]、深圳帝王大厦、隔河岩大坝[6]外观变形监测均采用该模式。

该模式可实现24小时的连续观测,使监测工作实现完全自动化,使监测、监控、决策实现远距离控制,建立无人值守的监测系统。

由于该模式要求GPS接受设备必须永久固定在变形点成本较高。

另外,根据变形体的不同特征,GPS连续性监测可采用静态相对定位和动态相对定位两种数据处理方法进行观测,一般要求变形响应的实时性。

为解决限制连续性监测模式应用的高成本,香港理工大学、河海大学的专家开始提出和研究基于一机多天线的自动化监测技术[7]。

利用若干GPS天线和具有若干通道的微波开关,相应的微波开关控制电路及1台GPS接收机组成一机多天线系统。

最新系统将控制电路板、GPS接收机(OEM)板集成在工业控制计算机中。

目前,一机多天线已应用在东江大坝监测、小湾电站边坡监测[8]等工程中。

3.1.3 GPS在变形监测中的测量方法根据监测对象及要求不同,GPS在变形监测中可采用的测量方法分为静态测量法、快速静态测量法和动态测量法三种。

静态测量法是把多于3台GPS接收机同时安置在各观测点上同步观测一定时段,一般为1小时~2小时不等,构网用后处理软件解算基线,平差计算求观测点的三维坐标。

静态测量法精度高,一般水平精度优于3mm,垂直精度优于5mm。

比如,隔河岩大坝应用广播星历1~2小时观测资料解算监测点相对于基准点的水平精度优于1.5mm,垂直精度优于1.5mm;6小时资料解算水平精度优于1mm,垂直精度优于1mm[6]。

GPS基准网,一般应采用静态测量方法,当基准网的边长超过10km,要考虑基准网的起算点与国际IGS站联测,基线向量解算时采用精密星历,以提高基线解算的精度。

相关文档
最新文档