成都数学中考复习题
2023成都中考数学题
中考数学试卷一、单项选择题(共12分)1.已知反比例函数y=kx(k≠0),当x<0时,y随x的增大而增大,那么一次函数y=kx−k的图象经过()。
A.第一,二,三象限B.第一,二,四象限C.第一,三,四象限D.第二,三,四象限2.下列各数中,是无理数的是()A. B. C. D.0.131333.对于反比例函数y=kx(k≠0),下列所给的四个结论中,正确的是()A.过图象上任一点P作x轴、y轴的垂线,垂足分别A,B,则矩形O APB的面积为kB.若点(2,4)在其图象上,则(−2,4)也在其图象上C.反比例函数的图象关于直线y=x和y=−x成轴对称D.当k>0时,y随x的增大而减小4.一元二次方程x2﹣3x=0的根是()A.x=3 B.x1=0,x2=﹣3C.x1=0,x2=√3 D.x1=0,x2=35.已知m3=n4,那么下列式子中一定成立的是()A.4m=3n B.3m=4n C.m=4n D.mn=12二、填空题(共24分)6.学校为了解学生的安全防范意识,随机抽取了12名学生进行相关知识测试,将测试成绩整理得到如图所示的条形统计图,则这12名学生测试成绩的中位数是___.(单位:分)7.把一张半径为2cm,圆心角为120°的扇形纸片卷成一个圆锥的侧面,那么这个圆锥的底面积是。
8.如图,在平面直角坐标系xOy中,反比例函数y=一的图象与↵0交于A,B 两点,且点A,B都在第一象限.若A(1,2),则点B的坐标为___.三、解答题9.求证:DE是⊙O的切线。
如图,同心圆O,大圆的面积被小圆所平分,若大圆的弦AB,CD分别切小圆于E、F点,当大圆半径为R时,且AB∥CD,求阴影部分面积。
10.如图,把正方形ABCD绕点A,按顺时针方向旋转得到正方形AEFG,边FG与BC交于点H.求证:HG=HB.11.如图,方格纸中的每个小方格都是边长为1的正方形,我们把以格点间连线为边的三角形称为“格点三角形”,图中的△ABC是格点三角形.在建立平面直角坐标系后,点B的坐标为(﹣1,﹣1)。
2024成都中考数学第一轮专题复习之第四章 第四节 解直角三角形的实际应用 知识精练(含答案)
2024成都中考数学第一轮专题复习之第四章第四节解直角三角形的实际应用知识精练基础题1.(2023天津)sin 45°+22的值等于()A.1B.2C.3D.22.(2023河北)淇淇一家要到革命圣地西柏坡参观,如图,西柏坡位于淇淇家南偏西70°的方向,则淇淇家位于西柏坡的()第2题图A.南偏西70°方向B.南偏东20°方向C.北偏西20°方向D.北偏东70°方向3.(2023南充)如图,小兵同学从A 处出发向正东方向走x 米到达B 处,再向正北方向走到C 处,已知∠BAC =α,则A ,C 两点相距()A.x sin α米B.x cos α米C.x ·sin α米D.x ·cos α米第3题图4.如图所示的网格是边长为1的正方形网格,则cos ∠CAB 的值为()第4题图A.55B.255C.22D.255.(2023包头)如图源于我国汉代数学家赵爽的弦图,它是由四个全等直角三角形与一个小正方形拼成的一个大正方形,若小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为α,则cosα的值为()A.34B.43C.35D.45第5题图6.(2023十堰)如图所示,有一天桥高AB为5米,BC是通向天桥的斜坡,∠ACB=45°,市政部门启动“陡改缓”工程,决定将斜坡的底端C延伸到D处,使∠D=30°,则CD的长度约为(参考数据:2≈1.414,3≈1.732)()第6题图A.1.59米B.2.07米C.3.55米D.3.66米7.(北师九下P20第2题改编)如图是某水库大坝的横截面示意图,已知AD∥BC,且AD,BC之间的距离为15米,背水坡CD的坡度i=1∶0.6,为提高大坝的防洪能力,需对大坝进行加固,加固后大坝顶端AE比原来的顶端AD加宽了2米,背水坡EF的坡度i=3∶4,则大坝底端增加的长度CF为()第7题图A.7米B.11米C.13米D.20米8.(2023武汉)如图,将45°的∠AOB按下面的方式放置在一把刻度尺上:顶点O与尺下沿的端点重合,OA与尺下沿重合,OB尺上沿的交点B在尺上的读数为2cm.若按相同的方式将37°的∠AOC放置在该刻度尺上,则OC与尺上沿的交点C在尺上的读数是________cm.(结果精确到0.1cm,参考数据sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)第8题图9.[新考法—跨学科](2022凉山州)如图,CD是平面镜,光线从A点出发经CD上点O反射后照射到B点,若入射角为α,反射角为β(反射角等于入射角),AC⊥CD于点C,BD⊥CD于点D,且AC=3,BD=6,CD=12,则tanα的值为________.第9题图10.[新考法—数学文化](2023枣庄改编)桔槔是一种原始的汲水工具,它是在一根竖立的架子上加上一根细长的杠杆,末端悬挂一重物,前端悬挂水桶.当人把水桶放入水中打满水以后,由于杠杆末端的重力作用,便能轻易把水提升至所需处.如图所示是桔槔汲水的简单示意图,若已知杠杆AB=6米,AO∶OB=2∶1,支架OM⊥EF,OM=3米,AB可以绕着点O自由旋转,当点A旋转到如图所示位置时∠AOM=45°,此时点B到水平地面EF的距离为________米.(结果保留根号)第10题图11.成都第31届世界大学生夏季运动会代表建筑主火炬塔,其构造设计理念为“大运之光”,塔身整体采用钢结构制作,造型呈细腰型,底座为直径约13米的内外同心圆环,内环延伸出4根主管呈螺旋上升型,外环12根副管与主管反向螺旋上升,象征着十二条太阳光芒螺旋升腾聚集于阳燧,寓意“东进兴川之光”.某数学活动小组利用课余时间测量主火炬塔的高度,在点A 处放置高为1米的测角仪AB ,在B 处测得塔顶F 的仰角为30°,沿AC 方向继续向前行38米至点C ,在CD 处测得塔顶F 的仰角为65°(点A ,C ,E 在同一条直线上),依据上述测量数据,求出主火炬塔EF 的高度.(结果保留整数,参考数据:3≈1.73,sin 25°≈0.42,cos 25°≈0.91,tan 25°≈0.47)第11题图拔高题12.[新考法—跨学科](2023甘肃省卷)如图①,某人的一器官后面A 处长了一个新生物,现需检测其到皮肤的距离.为避免伤害器官,可利用一种新型检测技术,检测射线可避开器官从侧面测量.某医疗小组制定方案,通过医疗仪器的测量获得相关数据,并利用数据计算出新生物到皮肤的距离方案如下:课题检测新生物到皮肤的距离工具医疗仪器等示意图第12题图①第12题图②说明如图②,新生物在A 处,先在皮肤上选择最大限度地避开器官的B 处照射新生物,检测射线与皮肤MN 的夹角为∠DBN ;再在皮肤上选择距离B 处9cm 的C 处照射新生物,检测射线与皮肤MN 的夹角为∠ECN .测量数据∠DBN =35°,∠ECN =22°,BC =9cm请你根据上表中的测量数据,计算新生物A 处到皮肤的距离.(结果精确到0.1cm ,参考数据:sin 35°≈0.57,cos 35°≈0.82,tan 35°≈0.70,sin 22°≈0.37,cos 22°≈0.93,tan 22°≈0.40)13.雨量监测站是一款以物联网为基础的现代型雨量站,通过这款设备,人们能远程获得降雨量的数据,并能根据当地环境气象判断出未来雨量情况,从而安排合理的农业作业.如图①是雨量监测站的实物图,如图②是该监测站的简化示意图,其中支杆AB,CD与支架MN 的夹角分别为∠BAM=45°,∠DCM=30°,支杆AB与太阳能供电板的夹角∠ABD=85°,且支杆AB,CD的端点A,C的距离为14cm,支杆CD的端点D到支架MN的水平距离为16cm,求支杆AB,CD的端点B,D之间的距离.(结果精确到0.1cm.参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,3≈1.73)图①图②第13题图参考答案与解析1.B【解析】原式=22+22=2.2.D【解析】∵南北方向是平行的,∴淇淇家位于西柏坡的北偏东70°方向.3.B 【解析】∵在Rt △ABC 中,cos α=AB AC ,∴AC =AB cos α.∵AB =x ,∴AC =x cos α.4.B 【解析】如解图,连接BD ,在△ABD 中,AB =32+12=10,AD =22+22=22,BD =12+12=2,∴AD 2+BD 2=AB 2,∴△ABD 是直角三角形,∴cos ∠CAB =AD AB=255.第4题解图5.D 【解析】如解图,∵两个正方形的面积分别为1,25,∴两个正方形的边长分别为CD =1,AB =5,设Rt △ABC 的AC 边为x ,则x 2+(x +1)2=52,解得x 1=3,x 2=-4(舍去),∴BC =4,∴cos α=BC AB =45.第5题解图6.D 【解析】根据题意可知,∠BAD =90°,∠BCA =45°,AB =5,∴AC =AB =5,在Rt △ABD中,∠D =30°,∴tan 30°=AB AD ,∴AD =AB tan 30°=5tan 30°=53,∴CD =AD -AC =53-5≈3.66(米).7.C 【解析】如解图,过点D 作DM ⊥BC 于点M ,过点E 作EN ⊥BC 于点N .由题意可知DM =EN =15,∵背水坡CD 的坡度i =1∶0.6,∴DM CM =53,∴CM =9.∵DE =MN =2,∴CN =7.∵背水坡EF 的坡度i =3∶4,∴EN NF =157+CF=34,解得CF =13.第7题解图8.2.7【解析】如解图,过点B 作BD ⊥OA 于点D ,过点C 作CE ⊥OA 于点E .在△BOD 中,∠BDO =90°,∠DOB =45°,∴BD =OD =2cm ,∴CE =BD =2cm.在△COE 中,∠CEO =90°,∠COE =37°,∵tan 37°=CE OE≈0.75,∴OE ≈2.7cm.∴OC 与尺上沿的交点C 在尺上的读数约为2.7cm.第8题解图9.43【解析】由平面镜反射知识可知α=∠A =β=∠B ,∴tan α=tan B =OD BD.易知△ACO ∽△BDO ,∴AC BD =OC OD =36=12.∵CD =12,∴OD =8,∴tan α=tan B =43.10.(3+2)【解析】如解图,过点O 作OC ⊥BT ,垂足为C ,由题意得BC ∥OM ,∴∠AOM =∠OBC =45°,∵AB =6米,AO ∶OB =2∶1,∴AO =4米,OB =2米,在Rt △OBC 中,BC =OB ·cos 45°=2×22=2(米).∵OM =3米,∴此时点B 到水平地面EF 的距离=BC +OM =(3+2)米.第10题解图11.解:如解图,设BD 的延长线与EF 交于点G ,由题意可得∠FDG =65°,∠FGD =90°,∴∠DFG =25°.AB =CD =EG =1米,AC =BD =38米,设FG =x 米,在Rt △BFG 中,∠FBG =30°,tan 30°=FG BG =x BG =33,解得BG =3x ,在Rt △DFG 中,∠DFG =25°,tan 25°=DG FG =DG x≈0.47,解得DG =0.47x ,∴BD =BG -DG =3x -0.47x =38,解得x ≈30,∴EF =FG +EG =30+1=31(米).∴主火炬塔EF 的高度约为31米.第11题解图12.解:如解图,过点A 作AF ⊥MN ,垂足为点F ,设BF =x cm ,∵BC =9cm ,∴CF =BC +BF =(x +9)cm.在Rt △ABF 中,∠ABF =∠DBN =35°,∴AF =BF ·tan 35°≈0.7x cm.在Rt △ACF 中,∠ACF =∠ECN =22°,∴AF =CF ·tan 22°≈0.4(x +9)cm ,∴0.7x =0.4(x +9),解得x =12,∴AF =0.7x =8.4cm ,∴新生物A 处到皮肤的距离约为8.4cm.第12题解图13.解:如解图,过点B 作BE ⊥MN 于点E ,过点D 分别作DF ⊥MN 于点F ,作DG ⊥BE 于点G ,则易得四边形DGEF 是矩形,DF =16cm ,∴EF =DG ,DF =GE .在Rt △CDF 中,∠CFD =90°,tan ∠DCF =DF CF ,∴CF =DF tan ∠DCF =16tan 30°=1633=163cm.∵∠BAE=45°,∴∠ABE=45°,AE=BE.∵∠ABD=85°,∴∠DBG=∠ABD-∠ABE=85°-45°=40°.在Rt△DBG中,∠BGD=90°,sin∠DBG=DGBD,cos∠DBG=BGBD,∴DG=BD·sin∠DBG=BD·sin40°≈0.64BD,BG=BD·cos∠DBG=BD·cos40°≈0.77BD,∴AE=BE=BG+GE=(0.77BD+16)cm.∵AF=AE+EF=AC+CF,∴0.77BD+16+0.64BD=14+163,解得BD≈18.2cm.答:支杆AB,CD的端点B,D之间的距离约为18.2cm.第13题解图。
往年成都中考数学试题及答案
往年成都中考数学试题及答案往年成都中考数学试题及答案是考生备考中的重要参考资料,通过查阅这些历年试题,考生可以了解中考数学的考点、题型分布以及难易程度。
本文将对往年成都中考数学试题及答案进行整理和介绍,供考生进行参考和复习。
第一部分:选择题1. 下列选项中,哪一个不是整数?A. -4B. 0C. 3/4D. 1答案:C2. 已知正整数a,b满足a/b=5/8,且(a-b)/(a+b)=3/5,则a的值是多少?A. 5/2B. 10/3C. 15/4D. 20/7答案:B3. 在平面直角坐标系中,点A(-3,4)关于y轴的对称点是?A. (-3,-4)B. (3,-4)C. (4,-3)D. (-4,3)答案:D4. 从0~9中共有多少个整数不含7?A. 3B. 4C. 5D. 6答案:D5. 若正数a和b满足a+b=12,且a/b=3/5,则a的值是多少?A. 4B. 6C. 8D. 10答案:C第二部分:填空题1. 用12构成一个不超过100的最大的偶数共有__个。
答案:82. 设函数f(x) = 5x - 3,那么f(2) = __。
答案:73. 化简√(24/4)的值为__。
答案:2√34. 若a:b = 3:4,b:c = 2:5,则a:c = __:__。
答案:6:105. 设平行四边形的长是2x+1,宽是x-5,则其周长等于__。
答案:6x-6第三部分:解答题1. 解方程6x+3=9。
解答:将等式两边减去3得到6x=6,再将等式两边除以6得到x=1。
因此,方程的解为x=1。
2. 某商品原价为120元,现在降价20%,求现价。
解答:原价120元降价20%,即价格减少120×0.2=24元。
因此,现价为120-24=96元。
3. 已知正方形的面积是16平方厘米,求正方形的边长。
解答:设正方形的边长为x厘米,根据面积的定义可得x²=16。
解方程得到x=4。
因此,正方形的边长为4厘米。
2024成都中考数学真题及答案
2024成都中考数学真题及答案第一部分:选择题1.若一条直线的斜率为1/2,该直线在坐标系中的斜率为() A. 1/2 B.-1/2 C. 2 D. -22.计算 3 - |-7| + 2×(-5) 的值是() A. -21 B. -13 C. -7 D. 13.已知若两个角互补,则其中一个角一定是() A. 锐角 B. 直角 C. 钝角D. 旋转角4.若一个正方形的边长为x,则其面积为() A. x^2 B. 2x C. x/2 D. 4x5.设直线L1和直线L2垂直,直线L1的斜率为3/4,则L2的斜率为() A. 4/3 B. 3/4 C. -3/4 D. -4/3第二部分:解答题问题1:三角形的内角和公式证明:一个三角形的三个内角之和等于180度。
解析:设三角形的三个内角分别为A、B、C度。
我们可以通过以下步骤来证明这个结论:1.假设线段AB、BC、AC分别构成三角形。
2.通过对角度度量的定义,我们知道直线AB与直线AC的夹角等于角A。
3.同样地,直线AB与直线BC的夹角等于角B,直线BC与直线AC的夹角等于角C。
4.根据直线上的任意两条线段之间的夹角恒等于两个夹角的和的性质,我们可以得出以下等式:角A + 角B = 直线AB与AC的夹角——(1)角B + 角C = 直线AB与BC的夹角——(2)5.根据直线上的任意两条线段之间的夹角恒等于两个夹角的和的性质,我们可以得出以下等式:角A + 角C = 直线AC与BC的夹角——(3)6.由于直线AC与BC的夹角等于180度(直线在平面上的性质),我们可以得出以下等式:角A + 角B + 角C = 180度——(4)7.因此,一个三角形的三个内角之和等于180度。
问题2:一元一次方程的解解:考虑以下一元一次方程:2x - 5 = 3x + 1。
我们需要找到满足这个方程的x的值。
首先,我们可以将方程转化为标准形式,即将未知数放在等号左边,常数放在右边:2x - 3x = 1 + 5。
成都初三数学试题及答案
成都初三数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是方程2x + 3 = 9的解?A. x = 3B. x = 4C. x = 2D. x = 5答案:A2. 如果一个数的平方等于其本身,那么这个数可以是:A. 0B. 1C. -1D. 0或1答案:D3. 函数y = 2x - 1的图像经过点:A. (0, -1)B. (1, 1)C. (2, 3)D. (3, 5)答案:A4. 一个圆的半径是5,那么它的面积是:A. 25πB. 50πC. 100πD. 200π答案:B5. 以下哪个是不等式2x - 5 > 3的解集?A. x > 4B. x < 4C. x > 1D. x < 1答案:A6. 一个三角形的三个内角之和是:A. 90°B. 180°C. 270°D. 360°答案:B7. 一个等腰三角形的两个底角相等,如果一个底角是40°,那么顶角是:A. 100°B. 80°C. 120°D. 140°答案:A8. 一个数的立方等于其本身,那么这个数可以是:A. 0B. 1C. -1D. 0, 1或-1答案:D9. 以下哪个是二次方程x² - 5x + 6 = 0的根?A. 2B. 3C. 4D. 6答案:B10. 一个长方体的长、宽、高分别是2cm、3cm、4cm,那么它的体积是:A. 24cm³B. 36cm³C. 48cm³D. 52cm³答案:A二、填空题(每题4分,共20分)11. 一个数的相反数是-5,那么这个数是______。
答案:512. 如果一个数的绝对值是4,那么这个数可以是______或______。
答案:4,-413. 一个直角三角形的两条直角边分别是3cm和4cm,那么它的斜边长度是______。
2024成都中考数学二轮复习专题:将军饮马求最小值1-对称【含答案】
将军饮马求最值1--对称内容导航方法点拨一、两条线段和的最小值。
基本图形解析:(一)、已知两个定点:1、在一条直线m上,求一点P,使PA+PB最小;(1)点A、B在直线m两侧:(2)点A、B在直线同侧:A、A’是关于直线m的对称点。
2、在直线m、n上分别找两点P、Q,使PA+PQ+QB最小。
(1)两个点都在直线外侧:(2)一个点在内侧,一个点在外侧:(3)两个点都在内侧:(4)、台球两次碰壁模型变式一:已知点A、B位于直线m,n的内侧,在直线n、m分别上求点D、E点,使得围成的四边形ADEB周长最短.变式二:已知点A位于直线m,n的内侧,在直线m、n分别上求点P、Q点PA+PQ+QA周长最短.二、求两线段差的最大值问题(运用三角形两边之差小于第三边)基本图形解析:1、在一条直线m上,求一点P,使PA与PB的差最大;(1)点A、B在直线m同侧:解析:延长AB交直线m于点P,根据三角形两边之差小于第三边,P’A—P’B<AB,而PA—PB=AB此时最大,因此点P为所求的点。
(2)点A、B在直线m异侧:解析:过B作关于直线m的对称点B’,连接AB’交点直线m于P,此时PB=PB’,PA-PB最大值为AB’例题演练题组1:两定点一动点问题例1.已知,如图1,抛物线y=x2﹣2x﹣3与x轴交于点A,在抛物线第一象限的图象上存在一点B,x轴上存在一点C,使∠ACB=90°,AC=BC,抛物线的顶点为D.(1)求直线AB的解析式;(2)如图2,若点E是AB上一动点(点A、B除外),连接CE,OE,当EC+OE的值最小时,求△BDE的面积;【解答】解:(1)由题意A(﹣1,0),B(3,0),C(0,﹣3)设C(m,0),则B(m,m+1),把点B坐标代入抛物线的解析式得到:m+1=m2﹣2m﹣3,解得m=4或﹣1(舍弃),∴C(4,0),B(4,5),设直线AB的解析式为y=kx+b,则有,∴,∴直线AB的解析式为y=x+1.(2)如图1中,如图作点C关于直线AB的对称点C′,连接OC′交直线AB于E,连接EC、EO,此时EO+EC的值最小.∵C(4,0),CC′关于直线AB对称,∴C′(﹣1,5),∴直线OC′的解析式为y=﹣5x,由,解得,∴E(﹣,),∵D(1,﹣4),=9×(4+)﹣×3×9﹣×(1+)(4+)﹣×(4+)(5﹣)=12.5.∴S△BDE练1.1如图,已知抛物线y=x2+3x﹣8的图象与x轴交于A,B两点(点A在点B的右侧),与y轴交于点C.(1)求直线BC的解析式;(2)点F是直线BC下方抛物线上的一点,当△BCF的面积最大时,在抛物线的对称轴上找一点P,使得△BFP的周长最小,请求出点F的坐标和点P的坐标;【解答】解:(1)对于抛物线y=x2+3x﹣8,令y=0,得到x2+3x﹣8=0,解得x=﹣8或2,∴B(﹣8,0),A(2,0),令x=0,得到y=﹣8,∴A(2,0),B(﹣8,0),C(0,﹣8),设直线BC的解析式为y=kx+b,则有,解得,∴直线BC的解析式为y=﹣x﹣8.(2)如图1中,作FN∥y轴交BC于N.设F(m,m2+3m﹣8),则N(m,﹣m﹣8)=S△FNB+S△FNC=•FN×8=4FN=4[(﹣m﹣8)﹣(m2+3m﹣8)]=﹣2m2﹣16m=﹣∴S△FBC2(m+4)2+32,∴当m=﹣4时,△FBC的面积有最大值,此时F(﹣4,﹣12),∵抛物线的对称轴x=﹣3,点B关于对称轴的对称点是A,连接AF交对称轴于P,此时△BFP的周长最小,设直线AF的解析式为y=ax+b,则有,解得,∴直线AF的解析式为y=2x﹣4,∴P(﹣3,﹣10),∴点F的坐标和点P的坐标分别是F(﹣4,﹣12),P(﹣3,﹣10).题组2:两动点一定点问题例2.如图,抛物线y=﹣x2+bx+c与直线y=mx+n相交于点A(1,8)和点B(5,4).(1)求抛物线和直线AB的解析式.(2)如图1,直线AB上方的抛物线上有一点P,过点P作PQ垂直于AB所在直线,垂足为Q,在x轴正半轴和y轴正半轴上分别有两个动点M和N,连接PN,NM,MB,BP.当线段PQ的长度最大时,求四边形PNMB周长的最小值.【解答】解:(1)∵抛物线y=﹣x2+bx+c与直线y=mx+n相交于点A(1,8)和点B(5,4).∴,,解得,,∴抛物线解析式为y=﹣x2+5x+4,直线y解析式为=﹣x+9.(2)如图1中,设直线AB与x轴交于点F,与y轴交于点E,则E(0,9),F(9,0),连接PE、PF、PO.当PQ最大时,△PEF的面积最大,设P(m,﹣m2+5m+4)=S△POE+S△POF﹣S△EOF=×9×m+×9×(﹣m2+5m+4)﹣×9×9=﹣(m﹣3)∵S△PEF2+18,∵﹣<0,∴m=3时,△PEF的面积最大值为18,此时P(3,10),作点P关于y轴的对称点P′,B关于x轴的对称点B′,连接P′B,与y轴交于点N,与x轴交于点M,此时四边形PNMB的周长最小.理由:四边形PNMB周长=PN+MN+MB+PB=P′N+MN+MB′+PB=P′B′+PB,∵PB是定长,两点之间线段最短,∴此时四边形PNMB周长最小.∵P′(﹣3,10),B′(5,﹣4),∴P′B′==2,∵PB==2,∴四边形PNMB周长的最小值为2+2.练2.1如图,在平面直角坐标系中,抛物线y=﹣x2+x+3,分别交x轴于A、B两点,交y 轴交于C点,顶点为D.(1)如图1,连接AD,R是抛物线对称轴上的一点,当AR⊥AD时,求点R的坐标;(2)在(1)的条件下.在直线AR上方,对称轴左侧的抛物线上找一点P,过P作PQ⊥x轴,交直线AR于点Q,点M是线段PQ的中点,过点M作MN∥AR交抛物线对称轴于点N,当平行四边形MNRQ周长最大时,在抛物线对称轴上找一点E,y轴上找一点F,使得PE+EF+FA最小,并求此时点E、F的坐标.【解答】解:(1)对于抛物线y=﹣x2+x+3,令y=0,得﹣x2+x+3=0,解得x=﹣2或6,∴B(﹣2,0),A(6,0),∵y=﹣x2+x+3=﹣(x﹣2)2+4,∴抛物线顶点D坐标为(2,4),对称轴x=2,设直线AD的解析式为y=kx+b则有,解得,∴直线AD的解析式为y=﹣x+6,∵AR⊥AD,∴直线AR的解析式为y=x﹣2,∴点R坐标(2,﹣).(2)如图1中,设P(m,﹣m2+m+3),则Q(m,m﹣2),M(m,﹣m2+m+),由(1)可知tan∠DAB==,∴∠DAB=60°,∵∠DAQ=90°,∴∠BAQ=30°,∴平行四边形MNRQ周长=2(﹣m2+m+﹣m+2)+2(2﹣m)÷cos30°=﹣m2﹣m+,∴m=﹣时,平行四边形MNRQ周长最大,此时P(﹣,),如图2中,点P关于对称轴的对称点为M,点M关于y轴的对称点为N,连接AN交y轴于F,连接FM交对称轴于E,此时PE+EF+AF最小.理由:PE+EF+AF=EM+FE+AF=FM+AF=FN+AF=AN,根据两点之间线段最短,可知此时PE+EF+AF最小.∵M(,),N(﹣,),∴直线AN的解析式为y=﹣x+,∴点F坐标(0,),∴直线FM的解析式为y=x+,∴点E坐标(2,).题组3:线段之差的最大值问题例3.如图,二次函数y=﹣x2+2x+1的图象与一次函数y=﹣x+1的图象交于A,B两点,点C是二次函数图象的顶点,P是x轴下方线段AB上一点,过点P分别作x轴的垂线和平行线,垂足为E,平行线交直线BC于F.(1)当△PEF面积最大时,在x轴上找一点H,使|BH﹣PH|的值最大,求点H的坐标和|BH﹣PH|的最大值;【解答】解:(1)设点P(m,﹣m+1),则点E(m,0),联立两个函数表达式得,解得,即点A、B的坐标分别为(0,1)、(6,﹣5),由抛物线的表达式知,点C(2,3),由B、C的坐标得,直线BC的表达式为y=﹣2x+7,当y=﹣2x+7=﹣m+1时,x=,故点F(,﹣m+1),△PEF面积=×PE•PF=×(m﹣1)(﹣m)=﹣(m﹣1)(m﹣6),∵﹣<0,故△PEF面积有最大值,此时m=(1+6)=,故点P(,﹣),当P、B、H三点共线时,|BH﹣PH|的值最大,即点H为直线AB与x轴的交点,故点H(1,0),则|BH﹣PH|的最大值=BH﹣PH=BP==;练3.1已知抛物线ω:y=﹣x2﹣x+4与x轴交于A、B两点,与y轴交于C点,D点为抛物线的顶点,E为抛物线上一点,点E的横坐标为﹣5.(1)如图1,连接AD、OD、AE、OE,求四边形AEOD的面积.(2)如图2,连接AE,以AB,AE为边作▱AEFB,将抛物线w与▱AEFB一起先向右平移6个单位长度,再向上平移m个单位长度,得到抛物线w′和▱A′E′F′B′,在向上平移的过程中▱AEFB与▱A′E′F′B′重叠部分的面积为S,当S取得最大值时,E′F′与BF交于点Q,在直线A′B′上有两动点P,H,且PH=2(P在H的右边),当|PQ﹣HC|取得最大值时,求点P的坐标.【解答】解:(1)令﹣x2﹣x+4=0,解得:x1=﹣4,x2=2,∴A(﹣4,0),B(2,0)当x=﹣=﹣1时,y=,即D(﹣1,),当x=﹣5时,y=,即E(﹣5,﹣)=S△AOE+S△AOD=•AD•(y D﹣y E)=×4×()=16;∴S四边形AEOD(2)如图1,延长FE′交x轴于点H,由平移可知:F(1,),FH⊥x轴,FE′=m,FH=,∴BH=1,△FHB∽FE′Q,∴=,即=,∴E′Q=,由平移可知,重叠部分四边形为平行四边形,S重叠四边形=E′Q•HE′=()=m2+m,当m==时,平行四边形的面积有最大值,此时y Q=﹣当y=﹣时,即Q是线段FB的中,∴x Q==,即Q(,).如图2,作点Q关于直线A′B′的对称点Q′,将线段CH向右平移两个单位使点H与点P重合,点C的对应点为C′,延长Q′C′交直线A′B′于点N,当P在N点时,|PQ﹣HC|取得最大值.则=,则Q′(,),C′(2,4),y Q′C′=﹣,当y=时,解得x=,所以当P(,)时,|PQ﹣HC|取得最大值;练3.2如图1,二次函数y=的图象与x轴交于A,B两点(点A在点B的右边),与y轴交于点C,直线l是它的对称轴.(1)求直线l与直线AC交点的坐标;(2)如图2,在直线AC上方的抛物线上有一动点P,过点P作x轴的垂线,垂足为点D,与直线AC交于点E,过点P作直线AC的垂线,垂足为点F,当△PEF的周长最大时,在对称轴l 上找点M,使得|BM﹣PM|的值最大,求出|BM﹣PM|的最大值,并求出对应的点M的坐标;【解答】解:(1)在y=中,令y=0,则=0,解得:x1=﹣4,x2=1∴A(﹣4,0),B(1,0)令x=0,得y=,∴C(0,)设直线AC解析式为y=kx+b,则,解得∴直线AC解析式为y=x+,∵直线l解析式为x=﹣,将x=﹣代入y=x+中,得y=×(﹣)+=,∴直线l与直线AC交点的坐标为(﹣,);(2)∵PD⊥OA,PF⊥AC∴∠EDA=∠PFE=90°;∵∠PEF=∠AED∴∠EAD=∠EPF∵OC=,OA=4∴tan∠EPF=tan∠EAD=;∴∠EPF=30°∴sin∠EPF=,cos∠EPF=,∴EG=PE,PF=PE,∴△PEF的周长=PE+PF+EF=PE∴当PE取得最大值时,△PEF的周长最大;设点P(t,﹣t2﹣t+),则点E(t,t+),∵点P在点E的上方,∴PE=﹣t2﹣t+﹣(t+)=﹣t2﹣t=﹣(t+2)2+,∴当t=﹣2时,PE取得最大值,此时△PEF的周长取得最大值;∴P(﹣2,2),E(﹣2,);∵B(1,0)与A(﹣4,0)关于直线l对称,连接AM,AP,∴AM=BM|BM﹣PM|的值最大,即|AM﹣PM|的值最大,当P、M、A三点共线时,|AM﹣PM|=AP最大,∵AP===4∴|BM﹣PM|的最大值=4;设直线AP解析式为y=k′x+b′,将A(﹣4,0),P(﹣2,2)代入得解得:∴直线AP解析式为y=x+4,令x=﹣,得y=,∴M(﹣,);练3.3如图1,在平面直角坐标系中,抛物线y=﹣x2+x+3交x轴于A,B两点(点A在点B的左侧),交y轴于点W,顶点为C,抛物线的对称轴与x轴的交点为D.(1)求直线BC的解析式;(2)点E(m,0),F(m+2,0)为x轴上两点,其中2<m<4,EE′,FF′分别垂直于x轴,交抛物线于点E′,F′,交BC于点M,N,当ME′+NF′的值最大时,在y轴上找一点R,使|RF′﹣RE′|的值最大,请求出R点的坐标及|RF′﹣RE′|的最大值;【解答】解:(1)令y=0,则﹣x2+x+3=0,解方程得:x=6或x=﹣2,∴A(﹣2,0),B(6,0),又y=﹣x2+x+3=﹣(x﹣2)2+4,又顶点C(2,4),设直线BC的解析式为:y=kx+b,代入B、C两点坐标得:,解得:,∴y=﹣x+6;(2)如图1,∵点E(m,0),F(m+2,0),∴E′(m,﹣m2+m+3),F′(m+2,﹣m2+4),∴E′M=﹣m2+m+3﹣(﹣m+6)=﹣m2+2m﹣3,F′N=﹣m2+4﹣(﹣m+4)=﹣m2+m,∴E′M+F′N=﹣m2+2m﹣3+(﹣m2+m)=﹣m2+3m﹣3,当m=﹣=3时,E′M+F′N的值最大,∴此时,E′(3,)F′(5,),∴直线E′F′的解析式为:y=﹣x+,∴R(0,),根据勾股定理可得:RF′=10,RE′=6,∴|RF′﹣RE′|的值最大值是4;。
2024成都中考数学第一轮专题复习之第四章 微专题 手拉手模型解决全等、相似问题 知识精练(含答案)
2024成都中考数学第一轮专题复习之第四章微专题手拉手模型解决全等、相似问题知识精练1.在Rt△ABC中,∠ACB=90°,∠BAC=30°,以AB,AC为一边向Rt△ABC的外侧作等边△ABE,等边△AC D.(1)如图①,连接BD,CE.(ⅰ)求证:△ABD≌△AEC;(ⅱ)若BC=1,求CE的长;(2)如图②,连接DE交AB于点F.求BFAF的值.图①)图②第1题图2.(2023黄冈)[问题呈现]△CAB和△CDE都是直角三角形,∠ACB=∠DCE=90°,CB=mCA,CE=mCD,连接AD,BE,探究AD,BE的位置关系.【问题探究】(1)如图①,当m=1时,直接写出AD,BE的位置关系:________.(2)如图②,当m≠1时,(1)中的结论是否成立?若成立,给出证明;若不成立,说明理由.【拓展应用】(3)当m=3,AB=47,DE=4时,将△CDE绕点C转,使A,D,E三点恰好在同一直线上,求BE的长.图①图②备用图第2题图参考答案与解析1.(1)(i)证明:∵△ABE 为等边三角形,∴AB =AE ,∠EAB =60°.∵△ACD 为等边三角形,∴AD =AC ,∠DAC =60°,∴∠EAC =∠DAB .在△ABD 和△AEC 中,=AE ,EAC =∠DAB ,=AC ,∴△ABD ≌△AEC (SAS);(ii)解:∵在Rt △ABC 中,∠BAC =30°,BC =1,∴AB =2BC =2,AC =AB 2-BC 2=3.∵△ABE 为等边三角形,∴AE =AB =2,∠EAB =60°.∵∠BAC =30°,∴∠CAE =30°+60°=90°,∴△ACE 为直角三角形,∴EC =AC 2+AE 2=7;(2)证明:如解图,过点E 作EG ⊥AB 于点G .∵AE =BE ,∴AG =12AB .∵BC =12AB ,∴AG =BC .在Rt △AEG 与Rt △BAC 中,=BC ,=BA ,∴Rt △AEG ≌Rt △BAC (HL),∴EG =AC =AD .又∵∠EGF =∠DAF =90°,∴在△GFE 与△AFD 中,EGF =∠DAF ,EFG =∠DFA ,=AD ,∴△GFE ≌△AFD (AAS),∴GF =AF ,∴BG =AG =2AF ,∴BF =3AF ,∴BF AF=3.第1题解图2.解:(1)AD ⊥BE ;【解法提示】如解图①,延长BE 交AD 于点G ,∵m =1,∴AC =BC ,DC =EC .∵∠DCE =∠ACB =90°,∴∠DCA +∠ACE =∠ACE +∠ECB =90°,∴∠DCA =∠ECB ,∴△DCA ≌△ECB ,∴∠DAC =∠CBE .∵∠CAB +∠ABG +∠CBE =90°,∴∠CAB +∠ABG +∠DAC =90°,即∠AGB =90°,∴AD ⊥BE .图①图②第2题解图(2)(1)中结论成立.证明:如解图②,延长BE 交AD 于点G ,∵∠ACB =∠DCE =90°,∴∠ACB -∠ACE =∠DCE -∠ACE ,∴∠ACD =∠BCE .∵CB =mCA ,CE =mCD ,∴CD CE =CA CB =1m,∴△DCA ∽△ECB ,∴∠DAC =∠CBE .∵∠CAB +∠ABG +∠CBE =90°,∴∠CAB +∠ABG +∠DAC =90°,即∠AGB =90°,∴AD ⊥BE .(3)当A ,D ,E ,三点恰好在同一直线上时,分两种情况讨论:①当点D 在线段AE 上时,如解图③,∵△DCA ∽△ECB ,∴BE AD =BC AC=m =3.∵DE =4,∴BE =3AD =3(AE -4).∵AD ⊥BE ,∴∠AEB =90°,∴AE 2+BE 2=AB 2,即AE 2+3(AE -4)2=112,解得AE =8或AE =-2(舍去),∴BE =43;图③图④第2题解图②当点D 在AE 的延长线上时,如解图④,∵△DCA ∽△ECB ,∴BEAD=BCAC=m=3.∵DE=4,∴BE=3AD=3(4+AE).∵AD⊥BE,∴∠AEB=90°,∴AE2+BE2=AB2,即AE2+3(4+AE)2=112,解得AE=2或AE=-8(舍去),∴BE=63.综上所述,BE的长为43或63.。
2024成都中考数学第一轮专题复习之第八章 第一节 数据的收集与整理 强化训练(含答案)
2024成都中考数学第一轮专题复习之第八章第一节数据的收集与整理强化训练基础题1. (2023舟山)在下面的调查中,最适合用全面调查的是()A. 了解一批节能灯管的使用寿命B. 了解某校803班学生的视力情况C. 了解某省初中生每周上网时长情况D. 了解京杭大运河中鱼的种类2. (2023聊城)4月15日是全民国家安全教育日.某校为了摸清该校1 500名师生的国家安全知识掌握情况,从中随机抽取了150名师生进行问卷调查.这项调查中的样本是()A. 1 500名师生的国家安全知识掌握情况B. 150C. 从中抽取的150名师生的国家安全知识掌握情况D. 从中抽取的150名师生3. (2022玉林)垃圾分类利国利民.某校宣传小组就“空矿泉水瓶应投放到哪种颜色的垃圾收集桶内”进行统计活动,他们随机采访50名学生并作好记录.以下是排乱的统计步骤:①从扇形统计图中分析出本校学生对空矿泉水瓶投放的正确率②整理采访记录并绘制空矿泉水瓶投放频数分布表③绘制扇形统计图来表示空矿泉水瓶投放各收集桶所占的百分比正确统计步骤的顺序应该是()A. ②→③→①B. ②→①→③C. ③→①→②D. ③→②→①4. [新考法—跨学科](2023扬州)空气的成分(除去水汽、杂质等)是:氮气约占78%,氧气约占21%,其他微量气体约占1%.要反映上述信息,宜采用的统计图是()A. 条形统计图B. 折线统计图C. 扇形统计图D. 频数分布直方图5. 我国近5年研究与试验发展(R&D)经费支出及增长速度的情况如图所示.第5题图根据该统计图,下列判断错误..的是()A. 2018—2022年研究与试验发展经费支出逐年上升B. 2021年研究与试验发展经费支出的增长速度最快C. 2022年研究与试验发展经费的支出比2018年的2倍还多D. 2018年至2022年,研究与试验发展经费支出的平均值超过20 000亿元6. (2023河南)某林木良种繁育试验基地为全面掌握“无絮杨”品种苗的生长规律,定期对培育的1 000棵该品种苗进行抽测.如图是某次随机抽测该品种苗的高度x(cm)的统计图,则此时该基地高度不低于300 cm的“无絮杨”品种苗约有________棵.第6题图7. (2023株洲)血压包括收缩压和舒张压,分别代表心脏收缩时和舒张时的压力.收缩压的正常范围是:90~140 mmHg,舒张压的正常范围是:60~90 mmHg.现五人A,B,C,D,E 的血压测量值统计如下:第7题图则这五人中收缩压和舒张压均在正常范围内的人有________个.8. (2022自贡)为了比较甲、乙两鱼池中的鱼苗数目,小明从两鱼池中各捞出100条鱼苗,每条做好记号,然后放回原鱼池.一段时间后,在同样的地方,小明再从甲、乙两鱼池中各捞出100条鱼苗,发现其中有记号的鱼苗分别是5条、10条,可以初步估计鱼苗数目较多的是________鱼池.(填甲或乙)9. (2023成都黑白卷)2023年2月10日,全国首个地铁数字艺术空间亮相成都地铁东大路站,首展《千里江山图》以全新面貌呈现.在这场数字文化艺术展览中,观众可以走进“数字科技+传统文化”地铁空间,体验一场千年穿越之旅.小宇在校园内随机抽取若干名学生,以“千里江山图”为主题对他们进行问卷式知识检测(满分100分),并将结果进行统计,绘制成如下不完整的统计图表.(A.60≤x<70,B.70≤x<80,C.80≤x<90,D.90≤x≤100)图①图②第9题图根据图表信息,解答以下问题:(1)随机调查的学生总人数为________;(2)计算扇形统计图中“A”组对应的圆心角的度数.拔高题10. [新考法—结论开放](2023连云港)为了解本校八年级学生的暑期课外阅读情况,某数学兴趣小组抽取了50名学生进行问卷调查.(1)下面的抽取方法中,应该选择()A. 从八年级随机抽取一个班的50名学生B. 从八年级女生中随机抽取50名学生C. 从八年级所有学生中随机抽取50名学生(2)对调查数据进行整理,得到下列两幅尚不完整的统计图表:暑期课外阅读情况统计表第10题图统计表中的a=________,补全条形统计图;(3)若八年级共有800名学生,估计八年级学生暑期课外阅读数量达到2本及以上的学生人数;(4)根据上述调查情况,写一条你的看法.11. (2023长春)近年来,肥胖已经成为影响人们身体健康的重要因素.目前,国际上常用身体质量指数(Body Mass Index,缩写BMI)来衡量人体胖瘦程度以及是否健康,其计算公式是BMI=体重(单位:kg)身高2(单位:m2).例如:某人身高1.60 m,体重60 kg,则他的BMI=601.602≈23.4.中国成人的BMI数值标准为:BMI<18.5为偏瘦;18.5≤BMI<24为正常;24≤BMI<28为偏胖;BMI≥28为肥胖.某公司为了解员工的健康情况,随机抽取了一部分员工的体检数据,通过计算得到他们的BMI值并绘制了如下两幅不完整的统计图.第11题图根据以上信息回答下列问题:(1)补全条形统计图;(2)请估计该公司200名员工中属于偏胖和肥胖的总人数;(3)基于上述统计结果,公司建议每个人制定健身计划.员工小张身高1.70 m,BMI值为27,他想通过健身减重使自己的BMI值达到正常,则他的体重至少需要减掉________kg.(结果精确到1kg)参考答案与解析1. B【解析】A.了解一批节能灯管的使用寿命,具有破坏性,适合采用抽样调查,不符合题意;B.了解某校803班学生的视力情况,适合采用普查,符合题意;C.了解某省初中生每周上网时长情况,适合采用抽样调查,不符合题意;D.了解京杭大运河中鱼的种类,适合采用抽样调查,不符合题意.2. C【解析】样本是总体中所抽取的一部分个体,∴样本是从中抽取的150名师生的国家安全知识掌握情况.3. A4. C【解析】扇形统计图是用整个圆表示总数,用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.故本题宜采用扇形统计图来表示.5. C【解析】由条形统计图,得2018-2022年研究与试验发展经费支出逐年上升,故A 正确,不符合题意;由折线统计图,得相比去年,研究与试验发展经费支出的增长速度最快的是2021年,故B正确,不符合题意;19 678×2=393 556>30 870,故C错误,符合题意;由条形统计图可直接判断出2018年至2022年,研究与试验发展经费支出的平均值超过20 000亿元,故D正确,不符合题意.6. 280【解析】由题意,得1 000×(18%+10%)=280(棵).7. 3【解析】收缩压在正常范围的有A,B,D,E,舒张压在正常范围的有B,C,D,E,这五人中收缩压和舒张压均在正常范围内的人有B,D,E,即3个.8. 甲【解析】由题意可得,甲鱼池中的鱼苗数量约为100÷5100=2 000(条),乙鱼池中的鱼苗数量约为100÷10100=1 000(条),∵2 000>1 000,∴初步估计鱼苗数目较多的是甲鱼池.9. 解:(1)400;【解法提示】140÷35%=400(人).(2)∵400×30%=120(人),400-140-80-120=60(人),∴“A”组所对应的圆心角的度数为360°×60400=54°.10. (1)C;【解法提示】为了解本校八年级学生的暑期课外阅读情况,应该选择从八年级所有学生中随机抽取50名学生,这样抽取的样本具有广泛性和代表性. (2)15;补全条形统计图如解图所示;第10题解图【解法提示】a =50-5-25-5=15. (3)800×15+550=320(人).答:八年级学生暑期课外阅读数量达到2本及以上的学生约为320人;(4)本次调查大部分同学暑期课外阅读数量达不到3本及以上,建议同学们多阅读,培养热爱读书的良好习惯(答案不唯一). 11. 解:(1)补全条形统计图如解图所示;第11题解图【解法提示】抽取了7÷35%=20人,属于偏胖的人数为20-2-7-3=8. (2)200×8+320=110(人),答:估计该公司200名员工中属于偏胖和肥胖的总人数为110人; (3)9.【解法提示】设小张体重需要减掉x kg ,依题意,得27-x1.702 <24,解得x >8.67,∴他的体重至少需要减掉9 kg.。
2023年四川省成都市数学中考真题(含解析)
“清洁卫生”“敬老服务”“文明宣传”“交通劝导”,每名参加志愿者服务的师生只参加其中
一项.为了解各项目参与情况,该校随机调查了参加志愿者服务的部分师生,将调查结
果绘制成如下两幅不完整的统计图.
根据统计图信息,解答下列问题: (1)本次调查的师生共有___________人,请补全条形统计图; (2)在扇形统计图中,求“敬老服务”对应的圆心角度数:
x 的图象的一个交点为 B(a, 4) ,过点 B 作 AB 的垂线 l.
(1)求点 A 的坐标及反比例函数的表达式; 试卷第 4 页,共 7 页
(2)若点 C 在直线 l 上,且 ABC 的面积为 5,求点 C 的坐标; (3)P 是直线 l 上一点,连接 PA,以 P 为位似中心画△ PDE ,使它与 PAB 位似,相似比 为 m.若点 D,E 恰好都落在反比例函数图象上,求点 P 的坐标及 m 的值.
BD n 是 AC 边上的动点,过点 D 作 DE 的垂线交直线 BC 于点 F.
试卷第 6 页,共 7 页
【初步感知】 (1)如图 1,当 n 1 时,兴趣小组探究得出结论: AE BF 2 AB ,请写出证明过
2 程. 【深入探究】 (2)①如图 2,当 n 2 ,且点 F 在线段 BC 上时,试探究线段 AE,BF,AB 之间的数量 关系,请写出结论并证明; ②请通过类比、归纳、猜想,探究出线段 AE,BF,AB 之间数量关系的一般结论(直 接写出结论,不必证明) 【拓展运用】 (3)如图 3,连接 EF ,设 EF 的中点为 M.若 AB 2 2 ,求点 E 从点 A 运动到点 C 的过 程中,点 M 运动的路径长(用含 n 的代数式表示).
组数据的中位数是( )
A. 26
B. 27
2024成都中考数学第一轮专题复习之二次函数图象与系数a,b,c的关系 知识精练(含答案)
2024成都中考数学第一轮专题复习之第三章微专题二次函数图象与系数a ,b ,c 的关系1.(2023贵州)已知二次函数y =ax 2+bx +c 的图象如图所示,则点P (a ,b )所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限第1题图2.如图,二次函数y =ax 2+bx +c 的图象与x 轴相交于A (-1,0),B 两点,对称轴是直线x =1,下列说法正确的是()第2题图A.a >0B.b >0C.点B 的坐标为(4,0)D.当x >-1时,y 的值随x 值的增大而增大3.(2023日照)在平面直角坐标系xOy 中,抛物线y =ax 2+bx (a ≠0)a +b >0+b <0,已知点(-3,m ),(2,n ),(4,t )在该抛物线上,则m ,n ,t 的大小关系为()A.t <n <mB.m <t <nC.n <t <mD.n <m <t 4.(2023凉山州)已知抛物线y =ax 2+bx +c (a ≠0)的部分图象如图所示,则下列结论中正确的是()第4题图A.abc<0B.4a-2b+c<0C.3a+c=0D.am2+bm+a≤0(m为实数)5.(2023恩施州改编)如图,在平面直角坐标系xOy中,O为坐标原点,抛物线y=ax2+bx +c(a≠0)的对称轴为x=1,与x轴的交点为(x1,0),(x2,0),其中一个交点为位于(2,0),(3,0)两点之间.下列结论正确的是()A.2a+b>0B.bc<0c D.-3<x1·x2<0C.a>-13第5题图6.如图,二次函数y=ax2+bx+c的图象关于直线x=1对称,与x轴交于A(x1,0),B(x2,0)两点,若-2<x1<-1,则下列结论正确的是()第6题图A.3a+2b>0B.b2<a+c+4acC.a>b>cD.a(m+1)(m-1)<b(1-m)7.二次函数y=ax2+bx+c(a≠0)的图象如图所示.下列结论正确的是()第7题图A.10a+3b+c>0B.a+b>am2+bmC.3a+c<0D.若ax21+bx1=ax22+bx2且x1≠x2,则x1+x2=4参考答案与解析1.D【解析】由二次函数的图象开口方向向上,对称轴在y轴的右侧,知a>0,x=-b2a >0,∴b<0,∴P(a,b)在第四象限.2.B【解析】A.由图可知:抛物线开口向下,a<0,故选项A错误,不符合题意;B.∵抛物线开口向下,∴a<0.∵抛物线的对称轴是直线x=-b2a=1,∴b=-2a>0,故选项B正确,符合题意;C.由A(-1,0),抛物线的对称轴是直线x=1可知,点B的坐标为(3,0),故选项C错误,不符合题意;D.∵抛物线的对称轴是直线x=1,开口向下,∴当x>1时,y随x的增大而减小,x<1时,y随x的增大而增大,故选项D错误,不符合题意,故选B.3.C【解析】∵当x=0时,y=ax2+bx=0,∴抛物线恒过(0,0)a+b>0+b<0,∴9a+3b>0,∴当x=3时,y=ax2+bx=9a+3b>0,当x=1时,y=ax2+bx=a+b<0,∴抛物线开口向上,∴抛物线的对称轴在直线x=12与x=32之间.∵点(-3,m)到对称轴的距离在72到92之间,点(2,n)到对称轴的距离在12到32之间,点(4,t)到对称轴距离在52到72之间,∴n<t<m.4.C【解析】∵抛物线开口向上,与y轴交于负半轴,∴a>0,c<0.∵抛物线的对称轴为直线x=1,∴-b2a=1,∴b=-2a<0,∴abc>0,故A选项错误,不符合题意;∵当x=4时,y>0,抛物线的对称轴为直线x=1,∴当x=-2时,y>0,∴4a-2b+c>0,故B 选项错误,不符合题意;∵当x=3时,y=0,抛物线的对称轴为直线x=1,∴当x=-1时,y=0,∴a-b+c=0,又∵b=-2a,∴3a+c=0,故C选项正确,符合题意;∵抛物线的对称轴为直线x=1,且抛物线开口向上,∴抛物线的最小值为a+b+c=a-2a+c=-a+c,∴am2+bm+c≥-a+c,∴am2+bm+a≥0,故D选项错误,不符合题意.5.D【解析】∵抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,∴-b2a=1,∴b=-2a,∴2a+b=0,故A错误;∵抛物线开口向下,与y轴交于正半轴,∴a<0,b=-2a>0,c>0,∴bc>0,故B错误;∵抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,x=3时y<0,∴x=-1时,y<0,即a-b+c<0,∴a-(-2a)+c<0,∴a<-13c,故C错误;∵抛物线与x轴的交点为(x1,0),(x2,0),∴x1,x2为方程ax2+bx+c=0的两个根,由函数图象与x轴交点可知-1<x1<0,2<x2<3,∴-3<x1·x2<0,故D正确.6.C【解析】∵二次函数y=ax2+bx+c的图象关于直线x=1对称,∴其对称轴为直线x=1,即-b2a=1,∴b=-2a,∴3a+2b=3a-4a=-a.由图象可知该抛物线开口向上,∴a>0,∴3a+2b=-a<0,故A错误;∵抛物线与x轴有两个交点,∴Δ=b2-4ac>0.由图象结合题意可知当x=-1时,y<0,∴a-b+c<0,∴a+c<b.∵a>0,∴b=-2a<0,∴a+c<0,∴b2-4ac>a+c,即b2>a+c+4ac,故B错误;∵抛物线开口向上,与y轴的交点在x轴下方,∴a>0,c<0,∴a>c,由②可知a-b+c<0,b=-2a,∴3a+c<0,∴c<-3a,∴b>c,∴a>b>c,故C正确;由图象可知当x=1时,y有最小值,且为a +b+c.∵a(m+1)·(m-1)-b(1-m)=am2+bm-a-b=am2+bm+c-(a+b+c),又∵对于任意实数m,都有y m≥y=a+b+c,∴am2+bm+c-(a+b+c)≥0,即a(m+1)(m-1)-b(1-m)≥0,∴a(m+1)(m-1)≥b(1-m),故D错误.7.C【解析】∵对称轴是直线x=1,与x轴交点在(3,0)左边,∴9a+3b+c<0,∵图象开口向下,∴a<0,∴10a+3b+c<0,故A错误;∵对称轴是直线x=1,图象开口向下,∴x=1时,函数最大值是a+b+c,∴m为任意实数时a+b+c≥am2+bm+c,∴a+b≥am2+bm,故B错误;∵对称轴是直线x=1,∴-b2a=1,b=-2a.由图可知抛物线与x轴交点在(3,0)左边,∴由对称得另一个交点在(-1,0)右边,得a-b+c<0,∴3a+c<0,故C正确;∵ax21+bx1=ax22+bx2,∴ax21+bx1-ax22-bx2=0,∴a(x1+x2)(x1-x2)+b(x1-x2)=0,∴(x1-x2)[a(x1+x2)+b]=0.∵x1≠x2,∴a(x1+x2)+b=0,∴x1+x2=-ba.∵b=-2a,∴x1+x2=2,故D错误.。
2024成都中考数学第一轮专题复习之第三部分 重难题型分类练 题型七 二次函数与几何图形综合题
题型七 二次函数与几何图形综合题类型一 与线段有关的问题1. (2022武汉)抛物线y =x 2-2x -3交x 轴于A ,B 两点(A 在B 的左边),C 是第一象限抛物线上一点,直线AC 交y 轴于点P .(1)直接写出A ,B 两点的坐标;(2)如图①,当OP =OA 时,在抛物线上存在点D (异于点B ),使B ,D 两点到AC 的距离相等,求出所有满足条件的点D 的横坐标;(3)如图②,直线BP 交抛物线于另一点E ,连接CE 交y 轴于点F ,点C 的横坐标为m .求FPOP 的值(用含m的式子表示).第1题图2. (2022山西)综合与探究如图,二次函数y =-14 x 2+32 x +4的图象与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C.点P 是第一象限内.....二次函数图象上的一个动点,设点P 的横坐标为m .过点P 作直线PD ⊥x 轴于点D ,作直线BC 交PD 于点E .(1)求A,B,C三点的坐标,并直接写出直线BC的函数表达式;(2)当△CEP是以PE为底边的等腰三角形时,求点P的坐标;(3)连接AC,过点P作直线l∥AC,交y轴于点F,连接DF.试探究:在点P运动的过程中,是否存在点P,使得CE=FD,若存在,请直接写出m的值;若不存在,请说明理由.第2题图3. (2022包头)如图,在平面直角坐标系中,抛物线y=ax2+c(a≠0)与x轴交于A,B两点,点B的坐标是(2,0),顶点C的坐标是(0,4),M是抛物线上一动点,且位于第一象限,直线AM与y轴交于点G.(1)求该抛物线的解析式;(2)如图①,N是抛物线上一点,且位于第二象限,连接OM,记△AOG,△MOG的面积分别为S1,S2.当S1=2S2,且直线CN∥AM时,求证:点N与点M关于y轴对称;(3)如图②,直线BM与y轴交于点H,是否存在点M,使得2OH-OG=7.若存在,求出点M的坐标;若不存在,请说明理由.第3题图类型二与图形面积有关的问题4. (2022贺州)如图,抛物线y=-x2+bx+c过点A(-1,0),B(3,0),与y轴交于点C.(1)求抛物线的解析式;(2)点P为抛物线对称轴上一动点,当△PCB是以BC为底边的等腰三角形时,求点P的坐标;(3)在(2)条件下,是否存在点M为抛物线第一象限上的点,使得S△BCM=S△BCP?若存在,求出点M的横坐标;若不存在,请说明理由.第4题图5. (2022内江)如图,抛物线y=ax2+bx+c与x轴交于A(-4,0),B(2,0),与y轴交于点C(0,2).(1)求这条抛物线所对应的函数的表达式;(2)若点D为该抛物线上的一个动点,且在直线AC上方,求点D到直线AC的距离的最大值及此时点D的坐标;(3)点P为抛物线上一点,连接CP,直线CP把四边形CBP A的面积分为1∶5两部分,求点P的坐标.6. (2022福建)在平面直角坐标系xOy中,已知抛物线y=ax2+bx经过A(4,0),B(1,4)两点.P是抛物线上一点,且在直线AB的上方.(1)求抛物线的解析式;(2)若△OAB面积是△P AB面积的2倍,求点P的坐标;(3)如图,OP交AB于点C,PD∥BO交AB于点D.记△CDP,△CPB,△CBO的面积分别为S1,S2,S3.判断S 1S 2 +S 2S 3是否存在最大值.若存在,求出最大值;若不存在,请说明理由.第6题图类型三 角度问题7. (2022无锡)已知二次函数y =-14 x 2+bx +c 图象的对称轴与x 轴交于点A (1,0),图象与y 轴交于点B (0,3),C ,D 为该二次函数图象上的两个动点(点C 在点D 的左侧),且∠CAD =90°. (1)求该二次函数的表达式;(2)若点C 与点B 重合,求tan ∠CDA 的值;(3)点C 是否存在其他的位置,使得tan ∠CDA 的值与(2)中所求的值相等?若存在,请求出点C 的坐标;若不存在,请说明理由.第7题图8. (2022呼和浩特)如图,抛物线y =-12 x 2+bx +c 经过点B (4,0)和点C (0,2),与x 轴的另一个交点为A ,连接AC ,B C.(1)求抛物线的解析式及点A 的坐标;(2)如图①,若点D 是线段AC 的中点,连接BD ,在y 轴上是否存在点E ,使得△BDE 是以BD 为斜边的直角三角形?若存在,请求出点E 的坐标;若不存在,请说明理由;(3)如图②,点P 是第一象限内抛物线上的动点,过点P 作PQ ∥y 轴,分别交BC ,x 轴于点M ,N ,当△PMC 中有某个角的度数等于∠OBC 度数的2倍时,请求出满足条件的点P 的横坐标.第8题图类型四与特殊三角形判定有关的问题考向1等腰三角形判定问题9. (2022百色)已知抛物线经过A(-1,0),B(0,3),C(3,0)三点,O为坐标原点,抛物线交正方形OBDC 的边BD于点E,点M为射线BD上一动点,连接OM,交BC于点F.(1)求抛物线的表达式;(2)求证:∠BOF=∠BDF;(3)是否存在点M,使△MDF为等腰三角形?若不存在,请说明理由;若存在,求ME的长.10. (2022遂宁)如图,在平面直角坐标系中,抛物线y=x2+bx+c与x轴交于A,B两点,与y轴交于点C,其中点A的坐标为(-1,0),点C的坐标为(0,-3).(1)求抛物线的解析式;(2)如图①,E为△ABC边AB上的一动点,F为BC边上的一动点,D点坐标为(0,-2),求△DEF周长的最小值;(3)如图②,N为射线CB上的一点,M是抛物线上的一点,M,N均在第一象限内,B,N位于直线AM的同侧,若M到x轴的距离为d,△AMN面积为2d,当△AMN为等腰三角形时,求点N的坐标.第10题图考向2 直角三角形判定问题11. (2022抚顺本溪辽阳)如图,抛物线y =ax 2-3x +c 与x 轴交于A (-4,0),B 两点,与y 轴交于点C (0,4),点D 为x 轴上方抛物线上的动点,射线OD 交直线AC 于点E ,将射线OD 绕点O 逆时针旋转45°得到射线OP ,OP 交直线AC 于点F ,连接DF . (1)求抛物线的解析式;(2)当点D 在第二象限且DE EO =34时,求点D 的坐标;(3)当△ODF为直角三角形时,请直接写出点D的坐标.12. (2022柳州)已知抛物线y=-x2+bx+c与x轴交于A(-1,0),B(m,0)两点,与y轴交于点C(0,5).(1)求b,c,m的值;(2)如图①,点D是抛物线上位于对称轴右侧的一个动点,且点D在第一象限内,过点D作x轴的平行线交抛物线于点E,作y轴的平行线交x轴于点G,过点E作EF⊥x轴,垂足为点F,当四边形DEFG的周长最大时,求点D的坐标;(3)如图②,点M是抛物线的顶点,将△MBC沿BC翻折得到△NBC,NB与y轴交于点Q,在对称轴上找一点P,使得△PQB是以QB为直角边的直角三角形,求出所有符合条件的点P的坐标.第12题图考向3等腰直角三角形判定问题13. (2022吉林省卷)如图,在平面直角坐标系中,抛物线y=x2+bx+c(b,c是常数)经过点A(1,0),点B(0,3).点P在此抛物线上,其横坐标为m.(1)求此抛物线的解析式;(2)当点P在x轴上方时,结合图象,直接写出m的取值范围;(3)若此抛物线在点P左侧部分(包括点P)的最低点的纵坐标为2-m.①求m的值;②以P A为边作等腰直角三角形P AQ,当点Q在此抛物线的对称轴上时,直接写出点Q的坐标.第13题图考向4等边三角形判定问题14. (2021朝阳)如图,在平面直角坐标系中,抛物线y=-x2+bx+c与x轴分别交于点A(-1,0)和点B,与y轴交于点C(0,3).(1)求抛物线的解析式及对称轴;(2)如图,点D与点C关于对称轴对称,点P在对称轴上,若∠BPD=90°,求点P的坐标;(3)点M是抛物线上位于对称轴右侧的点,点N在抛物线的对称轴上,当△BMN为等边三角形时,请直接写出点M的横坐标.类型五 与特殊四边形判定有关的问题考向1 平行四边形判定问题15. (2022重庆A 卷)如图,在平面直角坐标系中,抛物线y =12 x 2+bx +c 与直线AB 交于点A (0,-4),B (4,0).(1)求该抛物线的函数表达式;(2)点P 是直线AB 下方抛物线上的一动点,过点P 作x 轴的平行线交AB 于点C ,过点P 作y 轴的平行线交x 轴于点D ,求PC +PD 的最大值及此时点P 的坐标;(3)在(2)中PC +PD 取得最大值的条件下,将该抛物线沿水平方向向左平移5个单位,点E 为点P 的对应点,平移后的抛物线与y轴交于点F,M为平移后的抛物线的对称轴的一点,在平移后的抛物线上确定一点N,使得以点E,F,M,N为顶点的四边形是平行四边形,写出所有符合条件的点N的坐标,并写出求解点N 的坐标的其中一种情况的过程.考向2矩形判定问题16. (2022黔东南州)如图,抛物线y=ax2+2x+c的对称轴是直线x=1,与x轴交于点A,B(3,0),与y轴交于点C,连接A C.(1)求此抛物线的解析式;(2)已知点D是第一象限内抛物线上的一个动点,过点D作DM⊥x轴,垂足为点M,DM交直线BC于点N,是否存在这样的点N,使得以A,C,N为顶点的三角形是等腰三角形.若存在,请求出点N的坐标,若不存在,请说明理由;(3)已知点E是抛物线对称轴上的点,在坐标平面内是否存在点F,使以点B、C、E、F为顶点四边形为矩形,若存在,请直接写出点F的坐标;若不存在,请说明理由.考向3 菱形判定问题17. (2022烟台)如图,已知直线y =43 x +4与x 轴交于点A ,与y 轴交于点C ,抛物线y =ax 2+bx +c 经过A ,C 两点,且与x 轴的另一个交点为B ,对称轴为直线x =-1. (1)求抛物线的表达式;(2)D 是第二象限内抛物线上的动点,设点D 的横坐标为m ,求四边形ABCD 面积S 的最大值及此时D 点的坐标;(3)若点P 在抛物线对称轴上,是否存在点P ,Q ,使以点A ,C ,P ,Q 为顶点的四边形是以AC 为对角线的菱形?若存在,请求出P ,Q 两点的坐标;若不存在,请说明理由.第17题图考向4 正方形判定问题18. (2022海南)如图①,抛物线y =ax 2+2x +c 经过点A (-1,0),C (0,3),并交x 轴于另一点B ,点P (x ,y )在第一象限的抛物线上,AP 交直线BC 于点D. (1)求该抛物线的函数表达式;(2)当点P 的坐标为(1,4)时,求四边形BOCP 的面积;(3)点Q 在抛物线上,当PDAD的值最大且△APQ 是直角三角形时,求点Q 的横坐标;(4)如图②,作CG ⊥CP ,CG 交x 轴于点G (n ,0),点H 在射线CP 上,且CH =CG ,过GH 的中点K 作KI ∥y 轴,交抛物线于点I ,连接IH ,以IH 为边作出如图所示正方形HIMN ,当顶点M 恰好落在y 轴上时,请直.接写出...点G的坐标.第18题图类型六与三角形全等、相似有关的问题考向1全等三角形判定19. (2020陕西)如图,抛物线y=x2+bx+c经过点(3,12)和(-2,-3),与两坐标轴的交点分别为A,B,C,它的对称轴为直线l.(1)求该抛物线的表达式;(2)点P是该抛物线上的点,过点P作l的垂线,垂足为点D,点E是l上的点.要使以点P,D,E为顶点的三角形与△AOC全等,求满足条件的点P,点E的坐标.第19题图考向2相似三角形判定20. (2022衡阳)如图,已知抛物线y=x2-x-2交x轴于A,B两点,将该抛物线位于x轴下方的部分沿x轴翻折,其余部分不变,得到的新图象记为“图象W”,图象W交y轴于点C.(1)写出图象W位于线段AB上方部分对应的函数关系式;(2)若直线y=-x+b与图象W有三个交点,请结合图象,直接写出b的值;(3)P为x轴正半轴上一动点,过点P作PM∥y轴交直线BC于点M,交图象W于点N,是否存在这样的点P,使△CMN与△OBC相似?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.第20题图类型七与圆有关的问题21. (2021张家界)如图,已如二次函数y=ax2+bx+c的图象经过点C(2,-3).且与x轴交于原点及点B(8,0).(1)求二次函数的表达式;(2)求顶点A的坐标及直线AB的表达式;(3)判断△ABO的形状,试说明理由;(4)若点P为⊙O上的动点,且⊙O的半径为22,一动点E从点A出发,以每秒2个单位长度的速度沿线段AP匀速运动到点P,再以每秒1个单位长度的速度沿线段PB匀速运动到点B后停止运动,求动点E 的运动时间t的最小值.第21题图。
2024成都中考数学第一轮专题复习之一线三等角模型解决全等、相似问题 知识精练(含答案)
2024成都中考数学第一轮专题复习之第四章微专题一线三等角模型解决全等、相似问题知识精练1.如图,△ABC 为等边三角形,D 是BC 上一点,连接AD ,点P ,Q 在AD 上,连接BP ,CQ ,且∠BPD =∠CQD =60°,若BP =3,CQ =5,则PQ 的长为________.第1题图2.如图,在四边形ABCD 中,AD =4,AB =10,点E 是AB 的中点,连接DE ,CE ,若∠A =∠B =∠DEC ,则BE BC的值为________.第2题图3.(2023重庆A 卷)如图,在Rt △ABC 中,∠BAC =90°,AB =AC ,点D 为BC 上一点,连接A D.过点B 作BE ⊥AD 于点E ,过点C 作CF ⊥AD 交AD 的延长线于点F .若BE =4,CF =1,则EF 的长度为________.第3题图4.如图,在等腰Rt △ABC 中,AB =AC ,点D 是CB 延长线上一点,且AB =DB ,连接AD ,若AD =6,则△ACD 的面积为________.第4题图5.(2023荆州)如图①,点P 是线段AB 上与点A ,点B 不重合的任意一点,在AB 的同侧分别以A ,P ,B 为顶点作∠1=∠2=∠3,其中∠1与∠3的一边分别是射线AB 和射线BA ,∠2的两边不在直线AB 上,我们规定这三个角互为等联角,点P 为等联点,线段AB 为等联线.(1)如图②,在5×3个方格的纸上,小正方形的顶点为格点、边长均为1,AB为端点在格点的已知线段.请用三种不同连接格点........的方法,作出以线段AB为等联线、某格点P为等联点的等联角,并标出等联角,保留作图痕迹;(2)如图③,在Rt△APC中,∠A=90°,AC>AP,延长AP至点B,使AB=AC,作∠A的等联角∠CPD和∠PBD,将△APC沿PC折叠,使点A落在点M处,得到△MPC,再延长PM 交BD的延长线于E,连接CE并延长交PD的延长线于F,连接BF.①确定△PCF的形状,并说明理由;②若AP∶PB=1∶2,BF=2k,求等联线AB和线段PE的长(用含k的式子表示).图①图②图③第5题图参考答案与解析1.2【解析】∵∠BPD =∠CQD =60°,∴∠APB =∠CQA .∵△ABC 是等边三角形,∴AB =AC ,∠BAC =60°.∵∠BPD =∠BAP +∠ABP =60°,∠BAC =∠BAP +∠CAQ =60°,∴∠ABP =∠CAQ .在△ABP 和△CAQ ABP =∠CAQ ,APB =∠CQA ,=CA ,∴△ABP ≌△CAQ (AAS),∴BP =AQ =3,AP =CQ =5.∵AP =AQ +PQ =BP +PQ ,∴PQ =AP -BP =5-3=2.2.45【解析】∵∠A =∠B =∠DEC ,∴△DAE ∽△EBC [钝角一线三等角(同侧)],∴AD BE =AE BC .∵AD =4,AB =10,点E 是AB 的中点,∴AE =BE =5,∴BE BC =AD AE =45.3.3【解析】∵BE ⊥AD ,CF ⊥AD ,∴∠AEB =∠CFA =90°,∴∠ABE +∠BAE =90°.∵∠BAC =90°,∴∠CAF +∠BAE =90°,∴∠ABE =∠CAF .又∵AB =AC ,∴△ABE ≌△CAF ,∴AE =CF =1,AF =BE =4,∴EF =AF -AE =4-1=3.4.9【解析】如解图,过点B 作BG ⊥AD 于点G ,过点C 作CH ⊥AD 交DA 的延长线于点H ,CH 即为点C 到直线AD 的距离.∵BG ⊥AD ,AB =DB ,∴∠AGB =90°,AG =DG =12AD =3.∵△ABC 为等腰直角三角形,AB =AC ,∴∠ABC =∠ACB =45°,∴∠BAC =90°,∴∠GAB +∠HAC =90°.又∵CH ⊥AD ,∴∠AGB =∠CHA =90°,∴∠HCA +∠HAC =90°,∴∠GAB =∠HCA .在△ABG 和△CAH AGB =∠CHA ,GAB =∠HCA ,=CA ,∴△ABG ≌△CAH (AAS),∴AG =CH =3,∴S △ACD =12AD ·CH =12×6×3=9.第4题解图5.解:(1)作图如解图①;(注:只需作出其中三种)方法2方法3方法4方法5方法6方法7方法8第5题解图①(2)①△PCF是等腰直角三角形.理由如下:如解图②,过点C作CN⊥BE交BE的延长线于点N.由折叠的性质得AC=CM,∠CMP=∠CME=∠A=90°,∠1=∠2,∵∠A,∠CPD,∠PBD互为等联角,∴∠A=∠CPD=∠PBD=90°.∵AC=AB,∠A=∠PBD=∠N=90°,∴四边形ABNC为正方形,∴CN=AC=CM.又∵CE=CE,∴Rt△CME≌Rt△CNE(HL),∴∠3=∠4.∵∠1+∠2+∠3+∠4=90°,∠CPF=90°,∴∠PCF=∠2+∠3=∠CFP=45°,∴△PCF是等腰直角三角形.第5题解图②②如解图②,过点F作FQ⊥BE于点Q,作FR⊥PB交PB的延长线于点R,则∠R=∠A =90°.∵∠1+∠5=∠5+∠6=90°,∴∠1=∠6.由△PCF是等腰直角三角形,得PC=PF,∴△APC≌△RFP(AAS),∴AP=FR,AC=PR.∵AC=AB,∴AP=BR=FR.∵在Rt △BRF 中,BR 2+FR 2=BF 2,BF =2k ,∴AP =BR =FR =k .∵AP ∶PB =1∶2,∴PB =2AP =2k ,∴AB =AP +PB =BN =3k .由BR =FR ,∠QBR =∠R =∠FQB =90°,得四边形BRFQ 为正方形,∴BQ =QF =k ,由FQ ⊥BN ,CN ⊥BN ,得FQ ∥CN ,∴QE NE =QF NC,而QE =BN -NE -BQ =3k -NE -k =2k -NE ,即2k -NE NE=k 3k =13,解得NE =32k ,由①知PM =AP =k ,ME =NE =32k ,∴PE =PM +ME =k +32k =52k .。
2024成都中考数学第一轮专题复习之第七章 第二节 视图与投影 知识精练(含答案)
2024成都中考数学第一轮专题复习之第七章第二节视图与投影知识精练基础题1. 下列图形中为圆柱的是()A B C D2. (2023连云港)下列水平放置的几何体中,主视图是圆形的是()A B C D3. (2023福建)右图是由一个长方体和一个圆柱组成的几何体,它的俯视图是()A B C D第3题图4. (2023恩施州)用5个完全相同的小正方体组成如图所示的立体图形,它的左视图是()第4题图A B C D5. (2023绥化)如图是一个正方体被切去一角,则其左视图是()第5题图A B C D6. (2022贵阳)如图,用一个平行于圆锥底面的平面截圆锥,截面的形状是()A B C D第6题图7. (2023安徽)某几何体的三视图如图所示,则该几何体为()第7题图A B C D8. (2023泸州)一个立体图形的三视图如图所示,则该立体图形是()A. 圆柱B. 圆锥C. 长方体D. 三棱柱第8题图9. 某同学学习了正方体的表面展开图后,在如图所示的正方体的表面展开图上写下了“成都成就梦想”六个字,还原成正方体后,“就”的对面是()第9题图A. 成B. 都C. 梦D. 想10. (2023苏州改编)小东同学准备送给父亲一个小礼物,已知礼物外包装的主视图如图所示,则该礼物的外包装不可..能是()第10题图A. 长方体B. 正方体C. 圆柱D. 三棱锥11. 如图①是由5个大小相同的小正方体组成的几何体,移走一个小正方体后,余下几何体的左视图如图②所示,则移走的小正方体是()第11题图A. ①B. ②C. ③D. ④12. 如图,一个圆柱体在正方体上沿虚线从后向前平移,平移过程中不变的是()第12题图A. 主视图B. 左视图C. 俯视图D. 俯视图和左视图13. (2023广元)某几何体是由四个大小相同的小立方块拼成,其俯视图如图所示,图中数字表示该位置上的小立方块个数,则这个几何体的左视图是()A B C D第13题图14. 由若干个相同的小正方体构成的几何体的三视图如图所示,那么构成这个几何体的小正方体的个数是________.第14题图15. 若一个几何体由若干大小相同的小立方体搭成,如图分别是它的左视图与俯视图,该几何体所用小立方体的个数是m,则m的最小值是________.第15题图拔高题16. (2023牡丹江)由若干个完全相同的小正方体搭成的几何体的主视图和左视图如图所示,则搭成该几何体所用的小正方体的个数最多是()第16题图A. 6B. 7C. 8D. 917. (2023威海)如图是一正方体的表面展开图,将其折叠成正方体后,与顶点K距离最远的顶点是()第17题图A. A点 B. B点C. C点D. D点参考答案与解析1. B2. C3. D4. C5. B6. B7. B8. D【解析】根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体应该是三棱柱.9. B【解析】∵正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,∴在此正方体上与“就”字相对的面上的汉字是“都”.10. D11. D【解析】移走小正方体前,几何体的左视图为,移走小正方体后,左视图第1列图形发生变化,故移走的小正方体是④.12. A13. D【解析】从左面看,一共两排,左边底部有1个小正方形,右边有2个小正方形,故选D.14. 515. 9【解析】如解图,m的最小值=2+3+1+1+1+1=9.第15题解图16. B【解析】根据主视图和左视图可得,这个几何体有2层,3列,最底层最多有3×2=6个正方体,第二层有1个正方体,则搭成这个几何体的小正方体的个数最多是6+1=7.17. D【解析】折叠之后如解图所示,则点K与点D的距离最远.第17题解图。
2024成都中考数学二轮复习专题 整式及其运算 (含解析)
2024成都中考数学二轮复习专题整式及其运算一、单选题1.(2023·四川乐山·统考中考真题)计算:2a a -=()A .aB .a-C .3aD .12.(2023·四川眉山·统考中考真题)下列运算中,正确的是()A .3232a a a-=B .()222a b a b +=+C .322a b a a÷=D .()2242a b a b =3.(2023·江西·统考中考真题)计算()322m 的结果为()A .68m B .66m C .62m D .52m 4.(2023·江苏苏州·统考中考真题)下列运算正确的是()A .32a a a-=B .325a a a ⋅=C .321a a ÷=D .()23a a=5.(2023·山东滨州·统考中考真题)下列计算,结果正确的是()A .235a a a ⋅=B .()325a a =C .33()ab ab =D .23a a a÷=6.(2023·湖南·统考中考真题)计算:()23a =()A .5aB .23a C .26a D .29a 7.(2023·湖南常德·统考中考真题)若2340a a +-=,则2263a a +-=()A .5B .1C .1-D .08.(2023·全国·统考中考真题)下列算式中,结果等于5a 的是()A .23a a +B .23a a ⋅C .23()a D .102a a ÷9.(2023·浙江宁波·统考中考真题)下列计算正确的是()A .23x x x +=B .632x x x ÷=C .()437x x =D .347x x x ⋅=10.(2023·云南·统考中考真题)下列计算正确的是()A .236a a a ⋅=B .22(3)6a a =C .632a a a ÷=D .22232a a a -=11.(2023·新疆·统考中考真题)计算2432a ab ab ⋅÷的结果是()A .6aB .6abC .26a D .226a b 12.(2023·湖南怀化·统考中考真题)下列计算正确的是()A .235a a a ⋅=B .623a a a ÷=C .()2329ab a b =D .523a a -=A .3a +4b =7abB .x 12÷x 6=x 6C .(a +2)2=a 2+4D .(ab 3)3=ab 625.(2023·山西·统考中考真题)下列计算正确的是()A .236a a a ⋅=B .()2236a b a b -=-C .632a a a ÷=D .()326a a =26.(2023·湖北宜昌·统考中考真题)下列运算正确的是().A .4322x x x÷=B .()437x x =C .437x x x +=D .3412x x x ⋅=27.(2023·湖南郴州·统考中考真题)下列运算正确的是()A .437a a a ⋅=B .()325a a =C .2232a a -=D .()222a b a b -=-28.(2023·广西·统考中考真题)下列计算正确的是()A .347a a a +=B .347a a a ⋅=C .437a a a ÷=D .()437a a =29.(2023·四川·统考中考真题)下列计算正确的是()A .22ab a b -=B .236a a a ⋅=C .233ab a a÷=D .222()()4a a a +-=-30.(2023·湖北荆州·统考中考真题)下列各式运算正确的是()A .23232332a b a b a b -=B .236a a a ⋅=C .623a a a ÷=D .()325a a =31.(2023·山东·统考中考真题)下列各式运算正确的是()A .236x x x ⋅=B .1226x x x ÷=C .222()x y x y +=+D .()3263x yx y =32.(2023·山东·统考中考真题)下列运算正确的是()A .632a a a ÷=B .235a a a ⋅=C .()23622a a =D .()222a b a b +=+33.(2023·湖南张家界·统考中考真题)下列运算正确的是()A .22(2)4x x +=+B .248a a a ⋅=C .()23624x x =D .224235x x x +=34.(2023·黑龙江·统考中考真题)下列运算正确的是()A .22(2)4a a -=-B .222()a b a b -=-C .()()2224m m m -+--=-D .()257a a =35.(2023·黑龙江齐齐哈尔·统考中考真题)下列计算正确的是()A .22434b b b +=B .()246a a =C .()224x x -=D .326a a a⋅=36.(2023·湖南·统考中考真题)下列计算正确的是()A .824a a a ÷=B .23a a a +=C .()325a a =D .235a a a ⋅=37.(2023·内蒙古·统考中考真题)下列各式计算结果为5a 的是()A .()23a B .102a a ÷C .4a a⋅D .15(1)a --38.(2023·内蒙古赤峰·统考中考真题)已知2230a a --=,则2(23)(23)(21)a a a +-+-的值是()A .6B .5-C .3-D .439.(2023·内蒙古赤峰·统考中考真题)下列运算正确的是()A .()22346a b a b =B .321ab ab -=C .34()a a a -⋅=D .222()a b a b +=+40.(2023·福建·统考中考真题)下列计算正确的是()A .()326a a =B .623a a a ÷=C .3412a a a ⋅=D .2a a a-=41.(2023·广东深圳·统考中考真题)下列运算正确的是()A .326a a a ⋅=B .44ab ab -=C .()2211a a +=+D .()236a a -=二、填空题42.(2023·湖南永州·统考中考真题)22a 与4ab 的公因式为________.43.(2023·天津·统考中考真题)计算()22xy 的结果为________.44.(2023·河南·统考中考真题)某校计划给每个年级配发n 套劳动工具,则3个年级共需配发______套劳动工具.45.(2023·全国·统考中考真题)计算:(3)a b +=_________.46.(2022秋·上海·七年级专题练习)计算:2232a a -=________.47.(2023·湖北十堰·统考中考真题)若3x y +=,2y =,则22x y xy +的值是___________________.48.(2023·广东深圳·统考中考真题)已知实数a ,b ,满足6a b +=,7ab =,则22a b ab +的值为______.49.(2023春·广东梅州·八年级校考阶段练习)计算:(a 2b )3=___.三、解答题参考答案一、单选题1.【答案】A【分析】根据合并同类项法则进行计算即可.【详解】解:2a a a -=,故A 正确.故选:A .【点拨】本题主要考查了合并同类项,解题的关键是熟练掌握合并同类项法则,准确计算.2.【答案】D【分析】根据合并同类项可判断A ,根据完全平方公式可判断B ,根据单项式除以单项式可判断C ,根据积的乘方与幂的乘方运算可判断D ,从而可得答案.【详解】解:33a ,2a 不是同类项,不能合并,故A 不符合题意;()2222a b a ab b +=++,故B 不符合题意;3222a b a ab ÷=,故C 不符合题意;()2242a b a b =,故D 符合题意;故选:D.【点拨】本题考查的是合并同类项,完全平方公式的应用,单项式除以单项式,积的乘方与幂的乘方运算的含义,熟记基础运算法则是解本题的关键.3.【答案】A【分析】根据积的乘方计算法则求解即可.【详解】解:()32628m m =,故选:A .【点拨】本题主要考查了积的乘方计算,熟知相关计算法则是解题的关键.4.【答案】B【分析】根据合并同类项法则、同底数幂的乘法法则、同底数幂的除法法则、幂的乘方法则分别计算即可.【详解】解:3a 与2a 不是同类项,不能合并,故A 选项错误;33522a a a a +⋅==,故B 选项正确;32a a a ÷=,故C 选项错误;()236a a =,故D 选项错误;B 选项,根据同底数幂的乘法可知,底数不变,指数相加,结果是235a a +=,符合题意;C 选项,根据幂的乘方可知,底数不变,指数相乘,结果是236a a ⨯=,不符合题意;D 选项,根据同底数幂的除法可知,底数不变,指数相减,结果是1028a a -=,不符合题意;故选:B .【点拨】本题主要考查同底数幂的混合运算法则,掌握同底数幂的运算法则是解题的关键.9.【答案】D 【分析】根据同底数幂的乘法、除法,幂的乘方,合并同类项进行运算,然后判断即可.【详解】解:A.23x x x +≠,错误,故不符合要求;B.6332x x x x ÷=≠,错误,故不符合要求;C.()43127x x x =≠,错误,故不符合要求;D.347x x x ⋅=,正确,故符合要求;故选:D .【点拨】本题考查了同底数幂的乘法、除法,幂的乘方,合并同类项.解题的关键在于正确的运算.10.【答案】D 【分析】利用同底数幂的乘法和除法、幂的乘方、合并同类项法则解出答案.【详解】解:52233a a a a ⨯⋅==,故A 错误;2222(3)39a a a ==,故B 错误;63633a a a a -÷==,故C 错误;()22223312a a a a -=-=,故D 正确.故选:D .【点拨】本题考查了同底数幂的乘法和除法、幂的乘方、合并同类项法则,对运算法则的熟练掌握并运用是解题的关键.11.【答案】C 【分析】先计算单项式乘以单项式,然后根据单项式除以单项式进行计算即可求解.【详解】解:2432a a b ab⋅÷3122a b ab=÷26a =,故选:C .【点拨】本题考查了单项式除以单项式,熟练掌握单项式除以单项式的运算法则是解题的关键.12.【答案】A 【分析】根据同底数幂的乘法、同底数幂的除法、积的乘方和幂的乘方、合并同类项分别计算后,即可得到答案.【详解】解:A .235a a a ⋅=,故选项正确,符合题意;B .624a a a ÷=,故选项错误,不符合题意;C .()2326ab a b =,故选项错误,不符合题意;D .523a a a -=,故选项错误,不符合题意.故选:A .【点拨】此题考查了同底数幂的乘法、同底数幂的除法、积的乘方和幂的乘方、合并同类项,熟练掌握运算法则是解题的关键.13.【答案】B【分析】先计算单项式乘以多项式,再合并同类项即可.【详解】解:()222222a a a a a a a +-=+-=,故选:B.【点拨】此题考查了整式的四则混合运算,熟练掌握单项式乘以多项式的运算法则是解题的关键.14.【答案】D【分析】根据积的乘方以及同底数幂的乘法进行计算即可求解.【详解】解:43()a a ⋅-()437a a a =⨯-=-,故选:D .【点拨】本题考查了积的乘方以及同底数幂的乘法,熟练掌握积的乘方以及同底数幂的乘法的运算法则是解题的关键.15.【答案】C【分析】根据合并同类项、幂的乘方、同底数幂的乘法、同底数幂的除法的运算法则逐项排查即可解答.【详解】解:A.2222a a a +=,故该选项不正确,不符合题意;B.()32628a a =,故该选项不正确,不符合题意;C.235a a a ⋅=,故该选项正确,符合题意;D.826a a a ÷=,故该选项不正确,不符合题意.【详解】解:A.32a a a -=,故选项错误,不符合题意;B.222()2a b a ab b -=-+,故选项错误,不符合题意;C.()2510a a =,故选项错误,不符合题意;D.325326a a a ⋅=,故选项正确,符合题意;故选:D .【点拨】本题考查整式的运算,熟练掌握相关运算法则,是解题的关键.23.【答案】C 【分析】根据积的乘方,同底数幂的乘法,除法法则,合并同类项法则,逐一进行计算即可得出结论.【详解】解:A.4442x x x +=,选项计算错误,不符合题意;B.()32628x x -=-,选项计算错误,不符合题意;C.633x x x ÷=,选项计算正确,符合题意;D.235x x x ×=,选项计算错误,不符合题意;故选:C .【点拨】本题考查积的乘方,同底数幂的乘法,除法,合并同类项.熟练掌握相关运算法则,是解题的关键.24.【答案】B 【分析】根据同类项的定义、同底数幂的除法性质、完全平方公式、积的乘方公式进行判断.【详解】解:A .3a 和4b 不是同类项,不能合并,所以此选项不正确;B.x 12÷x 6=x 6,所以此选项正确;C.(a +2)2=a 2+4a +4,所以此选项不正确;D.(ab 3)3=a 3b 9,所以此选项不正确;故选:B .【点拨】本题主要考查了合并同类项、同底数幂的除法、完全平方公式、积的乘方,熟练掌握运算法则是解题的关键.25.【答案】D【分析】根据同底数幂乘除法法则、积的乘方及幂的乘方法则逐一计算即可得答案.【详解】A .235a a a ⋅=,故该选项计算错误,不符合题意,B .()2362a b a b -=,故该选项计算错误,不符合题意,C .633a a a ÷=,故该选项计算错误,不符合题意,D .()326a a =,故该选项计算正确,符合题意,故选:D .【点拨】本题考查同底数幂乘除法、积的乘方及幂的乘方,熟练掌握运算法则是解题关键.26.【答案】A【分析】根据单项式除以单项式,幂的乘方、合并同类项以及同底数幂的乘法法则计算后再判断即可.【详解】解:A.4322x x x ÷=,计算正确,故选项A 符合题意;B.()4312x x =,原选项计算错误,故选项B 不符合题意;C.4x 与3x 不是同类项不能合并,原选项计算错误,故选项C 不符合题意;D.347x x x ⋅=,原选项计算错误,故选项D 不符合题意.故选:A .【点拨】本题主要考查单项式除以单项式,幂的乘方、合并同类项以及同底数幂的乘法,解答的关键是对相应的运算法则的掌握.27.【答案】A【分析】根据同底数幂的乘法,幂的乘方,合并同类项,完全平方公式进行计算,即可得出结论.【详解】解:A.437a a a ⋅=,选项计算正确,符合题意;B.()326a a =,选项计算错误,不符合题意;C.22232a a a -=选项计算错误,不符合题意;D.()2222a b a ab b -=-+,选项计算错误,不符合题意;故选:A .【点拨】本题考查整式的运算.熟练掌握相关运算法则,是解题的关键.28.【答案】B 【分析】根据合并同类项,同底数幂的乘法,同底数幂的除法,幂的乘方进行计算即可.【详解】A.347a a a +≠,故该选项不符合题意;B.347a a a ⋅=,故该选项符合题意;C.437a a a a ÷=≠,故该选项不符合题意;D.()43127a a a =≠,故该选项不符合题意;故选:B .【点拨】本题考查了合并同类项,同底数幂的乘法,同底数幂的除法,幂的乘方,熟练掌握以上运算法则是解题的关键.29.【答案】D【分析】根据合并同类项,同底数幂的乘法,同底数幂的除法,平方差公式进行计算即可求解.【详解】A.22ab a b -≠,故该选项不正确,不符合题意;B.235a a a ⋅=,故该选项不正确,不符合题意;C.233a b a ab ÷=,故该选项不正确,不符合题意;D.222()()4a a a +-=-,故该选项正确,符合题意;故选:D .【点拨】本题考查了合并同类项,同底数幂的乘法,同底数幂的除法,平方差公式,熟练掌握以上知识是解题的关键.30.【答案】A 【分析】根据同底数幂的乘法,同底数幂的除法,幂的乘方,合并同类项,逐项分析判断即可求解.【详解】解:A.23232332a b a b a b -=,故该选项正确,符合题意;B.235a a a ⋅=,故该选项不正确,不符合题意;C.624a a a ÷=,故该选项不正确,不符合题意;D.()326a a =,故该选项不正确,不符合题意;故选:A .【点拨】本题考查了同底数幂的乘法,同底数幂的除法,幂的乘方,合并同类项,熟练掌握以上运算法则是解题的关键.31.【答案】D 【分析】根据同底数幂的乘除、完全平方公式、积的乘方逐个计算即可.【详解】A .235x x x ×=,所以A 选项不符合题意;B .12210x x x ÷=,所以B 选项不符合题意;C .222()2x y x y xy +=++,所以C 选项不符合题意;D .()3263x y x y =,所以D 选项符合题意.故选:D .【点拨】此题主要考查了同底数幂的乘除、完全平方公式、积的乘方,熟记运算法则是解题关键.32.【答案】B 【分析】利用同底数幂的乘除法、积的乘方与幂的乘方以及完全平方公式分别判断即可.【详解】解:A.633a a a ÷=,故选项错误;B.235a a a ⋅=,故选项正确;C.()23624a a =,故选项错误;D.()2222a b a ab b +=++,故选项错误;故选:B .【点拨】此题主要考查了整式的混合运算,同底数幂的乘除法、积的乘方、幂的乘方以及完全平方公式,正确掌握相关乘法公式是解题关键.33.【答案】C 【分析】根据完全平方公式及合并同类项、积的乘方运算依次判断即可.【详解】解:A.22(2)44x x x +=++,选项计算错误,不符合题意;B.246a a a ⋅=,选项计算错误,不符合题意;C.()23624x x =,计算正确,符合题意;D.222235x x x +=,选项计算错误,不符合题意;故选:C .【点拨】题目主要考查完全平方公式及合并同类项、积的乘方运算,熟练掌握运算法则是解题关键.34.【答案】C【分析】分别根据积的乘方,完全平方公式,平方差公式和幂的乘方法则进行判断即可.【详解】解:A.()2224a a -=,原式计算错误;B.()2222a b a ab b -=-+,原式计算错误;C.()()2224m m m -+--=-,计算正确;D.()2510a a =,原式计算错误.故选:C .【点拨】本题考查了积的乘方,完全平方公式,平方差公式和幂的乘方,熟练掌握运算法则,牢记乘法公式是解题的关键.35.【答案】C【分析】根据单项式乘以单项式,幂的乘方,积的乘方,合并同类项,进行计算即可求解.【详解】解:A.22234b b b +=,故该选项不正确,不符合题意;B.()248a a =,故该选项不正确,不符合题意;C.()224x x -=,故该选项正确,符合题意;D.2326a a a ⋅=,故该选项不正确,不符合题意;故选:C .【点拨】本题考查了单项式乘以单项式,幂的乘方,积的乘方,合并同类项,熟练掌握以上运算法则是解题的关键.36.【答案】D【分析】根据同底数幂的乘法,同底数幂的除法,幂的乘方,合并同类项,逐项分析判断即可求解.【详解】解:A.826a a a ÷=,故该选项不正确,不符合题意;B.23a a a +≠,故该选项不正确,不符合题意;C.()326a a =,故该选项不正确,不符合题意;D.235a a a ⋅=,故该选项正确,符合题意;故选:D .【点拨】本题考查了同底数幂的乘法,同底数幂的除法,幂的乘方,合并同类项,熟练掌握以上运算法则是解题的关键.37.【答案】C【分析】根据同底数幂的乘除法及幂的乘方运算法则即可判断.【详解】解:A.()236a a =,不符合题意;B.1028a a a ÷=,不符合题意;C.45a a a ⋅=,符合题意;D.515(1)a a --=-,不符合题意;故选:C .【点拨】题目主要考查同底数幂的乘除法及幂的乘方运算法则,熟练掌握运算法则是解题关键.38.【答案】D【分析】2230a a --=变形为223a a -=,将2(23)(23)(21)a a a +-+-变形为()2428a a --,然后整体代入求值即可.【详解】解:由2230a a --=得:223a a -=,∴2(23)(23)(21)a a a +-+-2249441a a a =-+-+2848a a =--()2428a a =--438=⨯-4=,故选:D .【点拨】本题主要考查了代数式求值,解题的关键是熟练掌握整式混合运算法则,将2(23)(23)(21)a a a +-+-变形为()2428a a --.39.【答案】A 【分析】根据幂的运算法则,乘法公式处理.【详解】A.()22346a b a b =,正确,符合题意;B.32ab ab ab -=,原计算错误,本选项不合题意;C.34()a a a -⋅=-,原计算错误,本选项不合题意;D.222()2a b a b ab +=++,原计算错误,本选项不合题意;【点拨】本题考查幂的运算法则,整式的运算,完全平方公式,掌握相关法则是解题的关键.40.【答案】A【分析】根据幂的乘方法、同底数幂的除法法则、同底数幂的乘法以及合并同类项逐项判断即可.【详解】解:A .()23236a a a ⨯==,故A 选项计算正确,符合题意;B .62624a a a a -÷==,故B 选项计算错误,不合题意;C .34347a a a a +==⋅,故C 选项计算错误,不合题意;D .2a 与a -不是同类项,所以不能合并,故D 选项计算错误,不合题意.故选:A .【点拨】本题主要考查同底数幂的乘除运算、幂的乘方运算以及整式的加减运算等知识点,同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不变,指数相减;幂的乘方,底数不变,指数相乘.41.【答案】D 【分析】根据同底数幂的乘法法则、合并同类项法则、完全平方公式和幂的乘方的运算法则进行计算即可.【详解】解:∵325a a a ⋅=,故A 不符合题意;∵4=3ab ab ab -,故B 不符合题意;∵()22211a a a ++=+,故C 不符合题意;∵()236a a -=,故D 符合题意;故选:D .【点拨】本题考查同底数幂的乘法法则、合并同类项法则、完全平方公式和幂的乘方的运算法则,熟练掌握相关法则是解题的关键.二、填空题42.【答案】2a 【分析】根据确定公因式的确定方法:系数取最大公约数;字母取公共字母;字母指数取最低次的,即可解答.【详解】解:根据确定公因式的方法,可得22a 与4ab 的公因式为2a ,故答案为:2a .【点拨】本题考查了公因式的确定,掌握确定公因式的方法是解题的关键.43.【答案】24x y 【分析】直接利用积的乘方运算法则计算即可求得答案.【详解】解:()2224xy x y =故答案为:24x y .【点拨】本题考查了积的乘方运算,解题的关键是熟练掌握运算法则.44.【答案】3n【分析】根据总共配发的数量=年级数量⨯每个年级配发的套数,列代数式.【详解】解:由题意得:3个年级共需配发得套劳动工具总数为:3n 套,故答案为:3n .【点拨】本题考查了列代数式,解答本题的关键是读懂题意,找出合适的等量关系,列代数式.45.【答案】3ab a +【分析】根据单项式乘多项式的运算法则求解.【详解】解:(3)3a b ab a +=+.故答案为:3ab a +.【点拨】本题主要考查了单项式乘多项式的运算法则,掌握单项式乘多项式的运算法则是解答关键.46.【答案】2a 【分析】直接根据合并同类项法则进行计算即可得到答案.【详解】解:222232(32)a a a a -=-=故答案为:2a .【点拨】本题主要考查了合并同类项,掌握合并同类项运算法则是解答本题的关键.47.【答案】6【分析】先提公因式分解原式,再整体代值求解即可.【详解】解:22x y xy +()xy x y =+,∵3x y +=,2y =,∴1x =,∴原式123=⨯⨯6=,故答案为:6.【点拨】本题主要考查因式分解,熟练掌握因式分解的方法,利用整体思想方法是解答的关键.48.【答案】42【分析】首先提取公因式,将已知整体代入求出即可.【详解】22a b ab +()ab a b =+76=⨯42=.故答案为:42.【点拨】此题考查了求代数式的值,提公因式法因式分解,整体思想的应用,解题的关键是掌握以上知识点.49.【答案】a6b3【详解】试题分析:根据积的乘方运算法则可得(a2b)3=a6b3.故答案为:a6b3.三、解答题。
2024成都中考数学复习专题 实数(含二次根式) (含答案)
2024成都中考数学复习专题 实数(含二次根式)基础题1. (2023江西)下列各数中,正整数...是( ) A. 3 B. 2.1 C. 0 D. -2 2. (2023武汉)实数3的相反数是( )A. 3B. 13C. -13 D. -33. (2023烟台)-23的倒数是( )A. 32B. 23C. -23D. -32 4. (2023大连)-6的绝对值是( )A. -6B. 6C. 16D. -165. (2023舟山)-8的立方根是( ) A. -2 B. 2 C. ±2 D. 不存在6. (2023河南)下列各数中最小的数是( )A. -1B. 0C. 1D. 37. 某段水域水位低于警戒线10 cm ,由于当天晚上下雨,第二天水位上涨了15 cm ,若以警戒线为基准,则第二天水位( ) A. 高于警戒线10 cm B. 高于警戒线15 cm C. 低于警戒线15 cm D. 高于警戒线5 cm8. (北师七上P33习题第5题改编)小红和她的同学共买了4袋标注质量为450 g 的食品,她们对这4袋食品的实际质量进行了检测,检测结果(用正数记超过标注质量的克数,用负数记不足标注质量的克数)如下表:最接近标准质量的是( )A. 第1袋B. 第2袋C. 第3袋D. 第4袋9. (2023广东省卷)2023年5月28日,我国自主研发的C919国产大飞机商业首航取得圆满成功.C919可储存约186 000升燃油,将数据186 000用科学记数法表示为()A. 0.186×105B. 1.86×105C. 18.6×104D. 186×10310. “雪龙2”号极地科考破冰船是我国继“向阳红10”号、“极地”号和“雪龙”号之后的第4艘极地科考船,总长122.5米,排水量近1.4万吨,将数据1.4万用科学记数法表示为()A. 1.4×105B. 1.4×104C. 14×103D. 0.14×10611. (2023青羊区模拟)清代诗人袁枚创作了一首诗《苔》:“白日不到处,青春恰自来.苔花如米小,也学牡丹开.”歌颂了苔在恶劣环境下仍有自己的生命意向.若苔花的花粉粒直径约为0.000 008 4米,用科学记数法表示0.000 008 4=8.4×10n,则n为()A. -5B. 5C. -6D. 612. (2023包头)定义新运算“⊗”,规定:a⊗b=a2-|b|,则(-2)⊗(-1)的运算结果为()A. -5B. -3C. 5D. 313. (2023江西)若a-4有意义,则a的值可以是()A. -1B. 0C. 2D. 614. (北师七上P74复习题第9题改编)如图,数轴上的单位长度为1,有三个点A,B,C,若点A,B表示的数互为相反数,则图中点C对应的数是()第14题图A. -2B. 0C. 1D. 415. (2023威海)面积为9的正方形,其边长等于()A. 9的平方根B. 9的算术平方根C. 9的立方根D. 9的算术平方根16. (2023扬州)已知a=5,b=2,c=3,则a,b,c的大小关系是()A. b>a>cB. a>c>bC. a>b>cD. b>c>a17. 下列计算正确的是( ) A. 22=2 B. (-2)2=-2 C. 22=±2 D.(-2)2=±218. 下列式子中,属于最简二次根式的是( )A. 4B. 5C. 0.2D. 1319. (2023烟台改编)可以与2合并的是( )A. 4B. 6C. 8D. 12 20. (2023大连)下列计算正确的是( ) A. (2)0= 2 B. 23+33=56 C. 8=4 2 D. 3(23-2)=6-2321. 如图,将一把损坏的刻度尺贴放在数轴上(数轴的单位长度是1 cm),刻度尺上“0 cm”和“3 cm”分别对应数轴上的-3和0,则x 的值可以是( )第21题图A. 2B. 3C. 2D. 5 22. (2023徐州) 2 023的值介于( ) A. 25与30之间 B. 30与35之间 C. 35与40之间 D. 40与45之间23. (2023河北)若a =2,b =7,则14a 2b 2=( ) A. 2 B. 4 C. 7 D. 224. [新考法—结论开放](2023武汉)写出一个小于4的正无理数是________. 25. (2023滨州)计算2-|-3|的结果为________. 26. (2023黄冈)(-1)2+(13)0=________.27. (2023杭州)计算:2-8=________.28. (2023山西)计算:(6+3)(6-3)的结果为________.29. (2023连云港)如图,数轴上的点A ,B 分别对应实数a ,b ,则a +b ________0.(用“>”“<”或“=”填空)第29题图30. (2023营口)若二次根式1+3x 有意义,则x 的取值范围是________. 31. (2023湘潭)已知实数a ,b 满足(a -2)2+|b +1|=0,则a b =________. 32. (2023陕西)计算:5×(-10)-(17)-1+|-23|.33. (2023济宁)计算:12-2cos 30°+|3-2|+2-1.34. 计算:(-1)3+8÷22+|2-1|×22.35. (2023沈阳改编)计算:(π-2 023)0+(-3)2+(13)-2-4sin 30°.拔高题36. (2023河北)光年是天文学上的一种距离单位,一光年是指光在一年内走过的路程,约等于9.46×1012 km.下列正确的是( ) A. 9.46×1012-10=9.46×1011 B. 9.46×1012-0.46=9×1012 C. 9.46×1012是一个12位数 D. 9.46×1012是一个13位数37. (2023杭州)已知数轴上的点A ,B 分别表示数a ,b ,其中-1<a <0,0<b <1.若a ×b =c ,数c 在数轴上用点C 表示,则点A , B ,C 在数轴上的位置可能是( )A BC D38. (2023重庆A 卷)估计2(8+10)的值应在( ) A. 7和8之间 B. 8和9之间 C. 9和10之间 D. 10和11之间39. (2023黄冈)请写出一个正整数m 的值使得8m 是整数:m =________. 40. (2023包头)若a ,b 为两个连续整数,且a <3<b ,则a +b =________. 41. (2023成都定心卷)比较大小:3-52____38.(填“>”“<”或“=”)第42题图42. (2023兰州)如图,将面积为7的正方形OABC 和面积为9的正方形ODEF 分别绕原点O 顺时针旋转,使OA ,OD 落在数轴上,点A ,D 在数轴上对应的数字分别为a ,b ,则b -a =________.43. (2022随州)已知m 为正整数,若189m 是整数,则根据189m =3×3×3×7m =33×7m 可知m 有最小值3×7=21.设n 为正整数,若300n是大于1的整数,则n 的最小值为________,最大值为________.参考答案与解析1. A2. D3. D4. B5. A【解析】根据立方根的定义,(-2)3=-8,∴-8的立方根是-2.6. A7. D【解析】∵15+(-10)=5(cm),∴第二天水位高于警戒线5 cm.8. D9. B10. B【解析】1.4万=1.4×104 .11. C【解析】0.000 008 4=8.4×10-6,∴n=-6.12. D【解析】由题意可得(-2)⊗(-1)=(-2)2-|-1|=4-1=3.13. D【解析】∵二次根式a-4有意义,∴a-4≥0,解得a≥4,结合选项可知D符合条件.14. C【解析】∵点A,B表示的数互为相反数,故C点左边一个单位处为0点,则点C 对应的数是1.15. B【解析】∵正方形的面积等于边长的平方,∴面积为9的正方形,其边长等于9的算术平方根.16. C【解析】∵3<4<5,∴3<4<5,即3<2<5,则a>b>c.17. A【解析】A.22=|2|=2,符合题意;B.(-2)2=|-2|=2,不符合题意;C.22=|2|=2,不符合题意;D.(-2)2=|-2|=2,不符合题意.18. B【解析】4=2,0.2=55,13=33,只有5为最简二次根式.19. C【解析】∵8=22,与2是同类二次根式,只有同类二次根式才可以合并,故选C.20. D【解析】A.(2)0=1,故该选项不正确,不符合题意;B.23+33=53,故该选项不正确,不符合题意;C.8=22,故该选项不正确,不符合题意;D.3(23-2)=6-23,故该选项正确,符合题意.21. D【解析】结合题图可知,x的值在刻度尺的“5 cm”和“6 cm”之间,即x的值在数轴上的2和3之间,∵(5)2=5,∴(5)2在4和9之间,∴5在2和3之间,则x的值可以是5.22. D【解析】∵252=625,302=900,352=1 225,402=1 600,452=2 025,∴1 600<2 023<2 025,∴ 2 023的值介于40与45之间.23. A 【解析】∵a =2 ,b =7 ,∴14a 2b 2 =14×27=4 =2. 24. 2 (答案不唯一)25. -1 【解析】原式=2-3=-(3-2)=-1. 26. 2 27. -228. 3 【解析】原式=(6 )2-(3 )2=6-3=3.29. < 【解析】由题图知,a <0<b ,且|a |>|b |,∴a +b <0. 30. x ≥-13 【解析】根据题意得1+3x ≥0,∴x ≥-13.31. 12 【解析】∵(a -2)2+|b +1|=0,(a -2)2≥0,|b +1|≥0,∴a -2=0,b +1=0,∴a=2,b =-1,∴a b =2-1=12 .32. 解:原式=-52 -7+|-8| =-52 -7+8 =-52 +1.33. 解:原式=23 -2×32 +2-3 +12=23 -3 +2-3 +12=52. 34. 解:原式=-1+8÷4+1-22=-1+2+1-22=2-22. 35. 解:原式=1+3+9-4×12=1+3+9-2 =11.36. D 【解析】9.46×1012复原后的数有12+1=13位整数.37. B 【解析】∵-1<a <0,0<b <1,a ×b =c ,∴-1<-b <a ×b <0,∴-1<-b <c <0.∵|a ×b |<|a |,∴|c |<|a |,∴点A ,B ,C 在数轴上的位置可能的只有B 选项.38. B 【解析】原式=4+20 ,∵16 <20 <25 ,∴4<20 <5,∴8<4+20 <9.39. 2(答案不唯一) 【解析】当m =2时,8m =16 =4,符合题意,∴m 的值可以为2(答案不唯一).40. 3 【解析】∵1<3<4,∴1<3 <2,∴a =1,b =2,则a +b =1+2=3. 41. > 【解析】∵5 ≈2.236,∴3-52 ≈0.382,38 =0.375,∴3-52 >38.42. 3-7 【解析】∵正方形OABC 的面积为7,∴OA =7 ,∴a =7 .∵正方形ODEF 的面积为9,∴OD =9 =3,∴b =3,∴b -a =3-7 . 43. 3;75 【解析】∵300n=100×3n=103n为整数,且n 为正整数,∴n 的最小值为3.∵300n 是大于1的整数,∴当103n=2时,n 取得最大值,∴3n =15,解得n =75.。
成都中考数学考试真题试卷
成都中考数学考试真题试卷一、选择题(本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母填入题后的括号内。
)1. 下列哪个数是正整数?()A. -3B. 0C. 1D. -12. 一个圆的半径为5,那么这个圆的面积是多少?(π取3.14)()A. 78.5B. 25C. 3.14D. 1573. 如果一个三角形的两边长分别为3和4,第三边的长x满足1<x<7,那么这个三角形是()A. 直角三角形B. 等腰三角形C. 等边三角形D. 钝角三角形4. 已知函数f(x) = 2x + 3,求f(-1)的值。
()A. -1B. 1C. -5D. 55. 一个数的平方根是4,这个数是多少?()A. 16B. -16C. 8D. -86. 已知一个长方体的长、宽、高分别为2cm、3cm、4cm,求其体积。
()A. 24cm³B. 12cm³C. 6cm³D. 36cm³7. 如果一个数的绝对值是5,这个数可以是()A. 5B. -5C. 5或-5D. 都不是8. 一个直角三角形的两个直角边分别是3和4,求斜边的长度。
(根据勾股定理)()A. 5B. 6C. 7D. 89. 一个数列的前三项是2, 4, 6,这是一个()A. 等差数列B. 等比数列C. 几何数列D. 既不是等差也不是等比数列10. 一个圆的周长是12.56cm,求这个圆的半径。
(π取3.14)()A. 2cmB. 4cmC. 6cmD. 8cm二、填空题(本题共5小题,每小题3分,共15分。
请将答案填写在题中的横线上。
)11. 一个数的相反数是-8,这个数是______。
12. 一个数的倒数是1/4,这个数是______。
13. 如果一个等腰三角形的底边长为6cm,两腰长为5cm,那么这个三角形的周长是______。
14. 已知一个数列1, 3, 9, 27, ...,这个数列的第5项是______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
成都数学中考复习题
成都数学中考复习题
数学作为一门学科,无论在学校还是社会中都占据着重要的地位。
而对于即将参加成都市中考的学生们来说,数学考试无疑是他们最为关注和重视的科目之一。
为了帮助同学们更好地复习数学知识,我整理了一些成都市中考的数学复习题,希望能够对同学们有所帮助。
一、选择题
1. 一辆汽车以每小时60公里的速度行驶,行驶了4小时,共行驶了多少公里?
A. 120公里
B. 160公里
C. 200公里
D. 240公里
2. 一条长方形的长是3cm,宽是2cm,它的面积是多少?
A. 4平方厘米
B. 5平方厘米
C. 6平方厘米
D. 7平方厘米
3. 一桶水装满后重40千克,倒掉1/5后桶子里的水重多少千克?
A. 32千克
B. 34千克
C. 36千克
D. 38千克
二、填空题
1. 简化下列分数:4/8 = ________
2. 一个正方形的边长是5cm,它的周长是 ________ cm。
3. 一个长方体的长、宽、高分别是3cm、4cm、5cm,它的体积是 ________ 立方厘米。
三、解答题
1. 小明买了一本书,原价是120元,现在打8折出售,请计算小明需要支付的金额。
2. 一辆汽车以每小时50公里的速度行驶,行驶了2小时,然后以每小时40公里的速度行驶了3小时,最后以每小时30公里的速度行驶了4小时。
请计算这辆汽车行驶的总里程。
3. 一个长方体的长、宽、高分别是5cm、6cm、7cm,请计算它的体积和表面积。
通过以上的选择题、填空题和解答题,同学们可以对中考数学知识进行全面的复习。
在解答题的过程中,同学们需要灵活运用所学的知识,进行数据计算和问题分析,培养自己的逻辑思维和解决问题的能力。
除了以上的题目,同学们还可以通过做一些模拟试题来检验自己的学习成果。
模拟试题可以帮助同学们熟悉考试的形式和要求,提前适应考试的紧张氛围,从而更好地应对中考数学考试。
在复习数学的过程中,同学们还要注重掌握数学的基本概念和运算方法。
要多做题,多思考,多总结,不断提高自己的数学水平。
同时,要注意平时的课堂学习,及时解决自己的疑惑,与老师和同学们进行交流和讨论,共同进步。
总之,数学是一门需要不断练习和思考的学科。
通过对成都市中考数学复习题的学习和掌握,同学们可以更好地备战中考,取得优异的成绩。
希望同学们能够认真对待数学学习,努力提高自己的数学水平,为自己的未来铺就坚实的基础。