微积分论文:简述微积分发展史

合集下载

高等教育数学微积分发展史论文

高等教育数学微积分发展史论文

微积分发展应用史学院:数学与计算机科学学院专业:数学与应用数学(1)班【摘要】:由于函数概念的产生和运用的加深,也由于科学技术发展的需要,一门新的数学分支就继解析几何之后产生了,这就是微积分学。

微积分学这门学科在数学发展中的地位是十分重要的,可以说它是继欧氏几何后,全部数学中的最大的一个创造。

整个17世纪有数十位科学家为微积分的创立做了开创性的研究,但使微积分成为数学的一个重要分支还是牛顿和莱布尼茨。

【关键词】:解析几何建立牛顿莱布尼兹发展史【正文】如果将整个数学比作一棵大树,那么初等数学是树的根,名目繁多的数学分支是树枝,而树干的主要部分就是微积分。

微积分堪称是人类智慧最伟大的成就之一。

从17世纪开始,随着社会的进步和生产力的发展,自文艺复新以来在资本主义生产力刺激下蓬勃发展的自然科学开始迈入综合与突破阶段,而这种综合与突破所面临的数学困难,是的微积分学的基本问题空前的成为人们关注的焦点:确定非匀速运动物体的速度与加速度使瞬时变化率问题成为研究;望远镜的光程设计需要确定透镜曲面上任意一点的法线这就是人以曲线的切线问题变得不可回避;确定炮弹的最大射程及寻求行星轨道的近日点与远日点等涉及的函数极大值、极小值问题也亟待解决与此同时,行星眼轨道运行的路程,行星矢径扫过的面积及物体的重心和引力的计算有使微积分学的基本问题——面积、体积、曲线长、重心和引力的计算的兴趣被重新激发起来。

在十七世纪中叶几乎所有的科学大师都致力于寻求解决这些难题的新的数学工具,在这种特殊的背景下微积分学即将应运而生。

任何新事物的产生都有一个准备的过程,微积分的诞生也不会例外,德国天文学家数学家开普勒(Johannes Kepler,1571-1630),意大利数学家卡瓦列里(Bonaventura Cavalier i,1598-1647)都为此做出不可磨灭的贡献,但他们主要采用几何方法并集中于积分问题,解析几何的诞生改变了这一状况,其创始人笛卡尔和费马将坐标方法引进微分学问题研究的先锋,笛卡尔在《几何学》中提出了切线的所谓“圆法”,其本质作为一种代数方法,在推动微积分的早期发展中有着很大影响,牛顿就是以笛卡尔原发为起点高踏上了研究微积分的道路。

微积分的发展史

微积分的发展史

微积分的发展史微积分的发展史微积分是数学中的一个重要分支,发挥着重要的作用,它具有重要的实用价值,是现代数学中一门重要的学科。

微积分在古代有着很长的历史,从古至今,在发展的过程中,受到了许多著名的数学家的不懈努力,其演变虽然有一定的规律,但是发展也呈现出复杂的趋势,下面来看看微积分的发展历史。

一:古代的微积分古代微积分的发源可以追溯到公元前三世纪古希腊哲学家斐波那契和欧几里德的古典时代,他们最早提出了微积分的相关概念,比如斐波那契提出的“变化率”的思想,欧几里德提出的“误差积分”的思想,他们发明出来的数学模型也是微积分发展的基础。

二:新罗马时代的微积分新罗马时期的微积分研究已经开始流行,公元七世纪达·索马里(d’Alembert)等科学家在此期间正式提出“积分”的概念,但他们只是把微积分引入到数学体系中,并没有真正深入的研究。

三:十七世纪的微积分在十七世纪,英国数学家派克完成了微积分的重大突破,他把斐波那契和欧几里德的相关概念作为微积分的基础,将微积分作为一个独立的学科,开始全面系统地研究微积分,由此开创了微积分的新观念,彻底改变了古代的微积分的思维模式,他的成果也在欧洲开始流行。

四:十八世纪的微积分到了十八世纪,派克的微积分在欧洲开始广泛受到关注和应用,微积分的研究开始更加深入和系统化,出现了许多在微积分领域有重大贡献的著名数学家,比如拉格朗日,瓦西里和弗拉基米尔,他们的成就使微积分的研究得到进一步的发展。

五:十九世纪的微积分到了十九世纪,微积分的研究开始发生重大变化,出现了许多在微积分领域有重大贡献的著名数学家,比如高斯,尤金和庞加莱,他们的发现把微积分推向了新的高度。

同时也有一些新的应用,使微积分的研究发生了重大变化,这个时期也是微积分发展史上的一个重要时期。

六:二十世纪的微积分到了二十世纪,微积分的研究取得了重大的进展,出现了许多在微积分领域有重大贡献的著名数学家,比如黎曼,爱因斯坦和明斯基,他们的成就使微积分的研究取得了突破性的进展,使微积分得到了全面的发展,成为现代数学中重要的学科之一。

论述微积分发展简史

论述微积分发展简史

论述微积分发展简史1一、微积分的萌芽微积分的思想萌芽可以追溯到古代,早在希腊时期,人类已经开始讨论无穷、极限以及无穷分割等概念。

这些都是微积分的中心思想;虽然这些讨论从现代的观点看有很多漏洞,有时现代人甚至觉得这些讨论的论証和结论都很荒谬,但无可否认,这些讨论是人类发展微积分的第一步。

公元前五世纪,希腊的德谟克利特提出原子论:他认為宇宙万物是由极细的原子构成。

在中国,《庄子.天下篇》中所言的一尺之捶,日取其半,万世不竭,亦指零是无穷小量。

这些都是最早期人类对无穷、极限等概念的原始的描述。

二、微积分的创立微积分的产生一般分为三个阶段:极限概念;求积的无限小方法;积分与微积分的互逆关系。

最后一个阶段是由牛顿、莱布尼茨完成的。

前两个阶段的工作,欧洲的大批数学家一直追溯到希腊的阿基米德都做出了各自的贡献。

中世纪时期,欧洲科学发展停滞不前,人类对无穷、极限和积分等观念的想法都没有甚麼突破。

中世纪以后,欧洲数学和科学急速发展,微积分的观念也於此时趋於成熟。

在积分方面,一六一五年,开普勒把酒桶看作一个由无数圆薄片积累而成的物件,从而求出其体积。

而伽利略的学生卡瓦列里即认为一条线由无穷多个点构成;一个面由无穷多条线构成;一个立体由无穷多个面构成。

这些想法都是积分法的前驱。

在微分方面,十七世纪人类也有很大的突破。

费马在一封给罗贝瓦的信中,提及计算函数的极大值和极小值的步骤,而这实际上已相当於现代微分学中所用,设函数导数為零,然后求出函数极点的方法。

另外,巴罗亦已经懂得透过「微分三角形」(相当於以dx、dy、ds為边的三角形)求出切线的方程,这和现今微分学中用导数求切线的方法是一样的。

由此可见,人类在十七世纪已经掌握了微分的要领。

英国著名数学家、物理学家牛顿从研究物理问题出发创立了微积分(1665—1666),牛顿称之为“流数术理论”.牛顿的“流数术”中,有三个重要的概念:流动量、流动率、瞬.牛顿的流数术以力学中的点的连续运动为原型,把随时问连续变化的量而产生的一个连续变化的变量,即以时间为独立变数的函数(生长中的量)称为流动量,流动率是流动量的变化速度,即变化率(生长率),称为导数牛顿专论微积分的著作有两部,第一部正式的、系统的论述流数术的重要著作是《流数术和无穷级数》,于1671年写成,在1736年才正式出版.另一部著作是《曲线求积论》,于1676—1691年写成,在1704年出版.德国数学家莱布尼兹从儿何角度出发独立地创立了微积分(1675—1676).莱布尼兹当时把微积分称为“无穷小算法”.他的微积分符号的使用最初体现在1675年的手稿中.1684年他在《教师学报》杂志上发表了微分法的论文《一种求极大值、极小值和切线的新方法,它也适用于无理量,以及这种新方法的奇妙类型的计算》.这是历史上最早发表的关于微积分的文章.1686年他在该杂志上又发表了最早的积分法的论文《潜在的几何与不可分量和无限的分析》。

微积分的发展史范文

微积分的发展史范文

微积分的发展史范文微积分是现代数学中的一个重要分支,涉及对函数的导数和积分等概念的研究。

微积分的发展经历了几个重要的阶段,从古希腊数学的一些零散的想法,到17世纪初牛顿和莱布尼茨的独立发现,再到19世纪的完善和推广,微积分已经成为现代科学和工程中的基础理论。

早在公元前4世纪,古希腊数学家欧几里得提出了一种用极限概念来研究曲线斜率的方法。

在此之后,亚历山大的阿基米德在第三世纪前后也使用了一些近似方法来研究圆周率和测量圆的面积。

然而,在古希腊时期,微积分的概念还没有被系统地发展出来。

微积分真正的发展始于17世纪初,当时牛顿和莱布尼茨几乎同时独立地发现了微积分的基本原理和方法。

牛顿将微积分应用于天文学和物理学,而莱布尼茨则将其应用于几何学和计算问题。

通过牛顿和莱布尼茨的努力,微积分的基本概念如导数和积分被建立起来,并形成了一套完整的理论体系。

在18世纪,微积分的研究得到了进一步的推广和完善。

欧拉是18世纪最重要的数学家之一,他对微积分进行了深入的研究。

欧拉发展了一些重要的概念和技巧,例如级数、复变函数和微分方程等,为微积分的应用和推进做出了巨大贡献。

此外,拉格朗日和拉普拉斯等数学家也对微积分进行了深入的研究,并为微积分的发展提供了许多重要的思想和方法。

到了19世纪,微积分的研究进入了一个全新的阶段。

拉格朗日的求导法则和莱布尼茨的积分法则等基本概念和技巧被进一步推广和完善。

庞加莱、魏尔斯特拉斯和威尔逊等数学家对微积分理论进行了深入研究,提出了许多重要的定理和方法。

特别是庞加莱在微分方程理论方面的贡献,使微积分得到了进一步的应用和发展。

20世纪是微积分研究的蓬勃发展阶段。

在这个时期,微积分被广泛应用于物理学、工程学、经济学和计算机科学等领域。

随着计算机的普及和计算能力的提高,微积分的数值方法和近似计算技术得到了极大的发展。

微分方程的数值解法、积分的数值计算、函数逼近和插值等都在这个时期得到了广泛的应用。

总体而言,微积分的发展历程可以概括为:古希腊数学的零散想法,17世纪牛顿和莱布尼茨的独立发现,18世纪的推广和完善,19世纪的深入研究,以及20世纪的应用和发展。

微积分的发展史

微积分的发展史

聊城大学本科生毕业论文题目:微积分的发展史专业代码:070101作者姓名:学号:单位:指导教师:年月日目录前言 (1)1.古代东西方微积分思想的萌芽 (1)2.微积分的产生 (2)2.1微积分的诞生 (2)2.2柯西与魏尔斯特拉斯的贡献 (3)3.微积分的意义 (5)4.东西方微积分发展差异分析 (5)结论 (6)参考文献 (8)致谢 (9)摘要微积分作为数学的一个重要分支,是许多学科的重要工具.那么它是如何产生的,对于微积分的发展史我们从中能发现什么规律和启示呢?通过研究微积分的历史可以有助于我们的科研与生产,对于理解微积分也有很大的帮助.关键词:微积分;发展史;启示;意义AbstractCalculus as an important branch of mathematics, is an important tool in manydisciplines. So how it is produced, the development history of calculus from which we can find out what rules and Enlightenment Through the study of calculus of history can contribute to the scientific research and production of our calculus, for the understanding is also a great help.Key words:Calculus; development history; inspiration; law微积分的发展史前言微积分学是微分学与积分学的总称,微积分作为现代数学的一个分支,它的触角几乎遍布当今科学的各个角落,更是当今科学的重要基石.微积分堪称是人类智慧最伟大的成就之一.微积分的发展同时推动了天文学和物理学前进的步伐,摧毁了笼罩在天体上的神秘主义、迷信和神学.不仅如此,微积分在数学这一学科中同时又贯穿了多个分支体系,如极限、微分学、积分学、以及导数等.1.古代东西方微积分思想的萌芽微积分作为一门学科是在十七世纪产生的,标志是牛顿——莱布尼兹公式.然而正如牛顿所说:“如果说我比别人看的更远些,那是因为我站在了巨人的肩上”.作为一门学科,它的产生绝不是偶然,那是无数先人的努力与支持.公元前三世纪,古希腊的阿基米德在研究解决“抛物弓形的面积,球和球冠面积,螺旋下面积和旋转双曲体的体积”的问题中,就隐含着近代积分学的思想.再比如古希腊数学家安提丰的“穷竭法”,前四世纪由欧多克斯作了补充和完善,它们用来求平面的面积和立体的体积.而在东方,在中国,前四世纪的春秋战国时代者惠施称:“一尺之棰,日取其半,万世不竭”,引出收敛的数列2111,......222n⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭在这里安提丰的“穷竭法”和惠施的“一尺之棰”都是极限思想的滥觞.至公元三世纪,三国魏人刘徽作《九章算术》注,提出“割圆术”——割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体而无所失矣.他的数学表述是以圆的内接正()()6211,2...n n ⨯-=边形的面积n A 近似单位圆的面积()n A ππ≈,算的629174⨯=边形,得 3.14π≈,又进一步通过6×29=174边形,得到一个相当于3.14159的分数,即n 愈大,n A π-愈小;,0n n A π→∞-→.剩余面积可以被竭尽.在中国古代此方法用来求圆周率,在刘徽极限思想的影响下,后来者祖冲之进一步求得更精确的圆周率.南宋大数学家秦九韶于1274年撰写了划时代巨着《数书九章》十八卷,创举世闻名的“大衍求一术”——增乘开方法解任意次数字(高次)方程近似解,比西方早500多年.北宋大科学家沈括的《梦溪笔谈》独创了“隙积术”、“会圆术”和“棋局都数术”开创了对高阶等差级数求和的研究.在此可见在古代的东西方微积分的极限思想已普遍产生,并已经能够解决实际问题,并且在我国的一些文学或哲学文献中也有极限的思想.思想家荀子“尽小者大,积微者着”,“不积跬步,无以至千里;不积小流,无以成江海”.沈括在《梦溪笔谈》中也提到了“造微之术”当时沈括已经知道分割的单元愈小,所求得的体积,面积俞精确.尽管中国在古代已有微积分思想的萌芽,但微积分最终还是诞生在了西方.2.微积分的产生在十七世纪,随着人们思想的不断解放,科学研究的不断深入,不少科学问题都以解决,但同样还有新的问题出现,这些问题主要涉及物理学、天文学、军事等,总结起来就是求曲线围成的面积、体积.以及曲线上任意一点的斜率.解决这些迫切需要解决的问题,需要经过长时间的研究、讨论、酝酿,有关知识渐渐积累起来,一些最活跃的人理应称为微积分的先驱.2.1微积分的诞生在微积分被发现之前,求面积只能求规则图形的面积,一些在解析几何中出现的不规则的图形的面积,由于没有公式而无从下手.在十七世纪求不规则面积、体积、曲线长,始于开普勒.他怀疑酒商的酒桶体积,认为旋转体的体积是非常薄的圆盘体积之和,卡瓦列里求积提出不可分量法,认为面积是无数个等距平行线段构成的.线是由点构成的,就像链由珠子穿成一样;面是由直线构成,就像布是由线织成一样;立体是由平面构成,就像书是由页组成一样.卡瓦列里的理论来自“穷竭法”,而费马的方法更接近现代的积分,他用小矩形面积近似小曲边形的面积,最后用相当于和式极限的方法,得到正确的结果,求得一个幂函数曲线下的曲变形的面积.此后还有华里斯、罗贝瓦儿、这些人都已来到微积分的大门口.微积分的研究源于运动学,即对切线极值、运动速度的研究.对于切线,有笛卡尔的早期研究,开普勒用列表法确定了最大体积,他注意到体积接近最大值时,由尺寸的变化引起体积的变化越来越小,这正是()'0f x =的原始形式,当时人们已认识到y x∆∆的重要性. 最后的冲刺来自牛顿与莱布尼兹.牛顿总结了先辈思想和方法,1664-1666年提出流数理论,建立了一套导数方法,他称之为“流数术”,牛顿称连续变化的量为流动的量或流量(fluent ),用英文字母,,,v x y z 等表示,x 的无限小的增量x ∆为x 的瞬,即无限小时间间隔为瞬,用小写字母o 表示.流量的速度,即流量在无限小的时间间隔内的变化率,称为流数(fluxion of flutnt),用带点的字母表示.牛顿的“流数术”就是以流量和瞬为基本概念的微积分,牛顿用有限差分的最初比和最终比来描述“流数术”,如函数()n y x n =为正整数,流量x 从x 流到x o +,函数值的增量()n n x o x +-,瞬o 与增量之比(最初比),当o 消失时,最后比即1:(1)n nx -,相当于1n y nx x∆=-∆.牛顿不仅仅引入导数,还明确了导数是增量比极限的思想,在1669年写的《运用无限多项方程的分析学》不仅给出求一个变量对另一个变量的瞬时变化率的普遍方法,还证明了“面积可以由变化率的逆过程得到”即“如果[],o x 区间上曲线是1y ma xm =⨯-则它下面的曲边形面积为Z a xm =⨯或dy y dx=,这一结论称为牛顿-莱布尼兹定理,此外牛顿还引入分部积分法、变量代换法、方程求根切线法,曲线弧长计算方法.牛顿足迹几乎遍布每一个数学分支.莱布尼兹在同期也做出同样的贡献,因此微积分的根本定理是由牛顿与莱布尼兹共同命名.他们的贡献在于将微分、积分的知识联系起来,发现了更具有本质、更有普遍意义的内涵,给出了纯洁的概念,特别是建立了变化的概念,创立了有普遍意义的微积分方法等.初创的微积分尚有不少问题,其数学基础的建立有待后世数学家给其注入严密性.2.2柯西与魏尔斯特拉斯的贡献 微积分学创立以后,由于运算的完整性和应用的广泛性,使微积分学成为了研究自然科学的有力工具.但微积分学中的许多概念都没有精确严密的定义,特别是对微积分的基础—无穷小概念的解释不明确,在运算中时而为零,时而非零,出现了逻辑上的困境.多方面的批评和攻击没有使数学家们放弃微积分,相反却激起了数学家们为建立微积分的严格而努力.从而也掀起了微积分乃至整个分析的严格化运动.?微积分的严格化工作经过近一个世纪的尝试,到19世纪初已开始显现成效.对分析的严密性真正有影响的先驱则是伟大的法国数学家柯西.柯西在数学上的最大贡献是在微积分中引进了极限概念,并以极限为基础建立了逻辑清晰的分析体系.这是微积分发展史上的精华,也是柯西对人类科学发展所做的巨大贡献.与此同时,柯西还在此基础上创建了复变函数的微积分理论.?柯西对定积分作了最系统的开创性工作,他把定积分定义为和的“极限”.在定积分运算之前,强调必须确立积分的存在性.他利用中值定理首先严格证明了微积分基本定理.柯西关于分析基础的最具代表性的着作是他的《分析教程》(1821)、《无穷小计算教程》(1823)以及《微分计算教程》(1829),它们以分析的严格化为目标,对微积分的一系列基本概念给出了明确的定义,在此基础上,柯西严格地表述并证明了微积分基本定理、中值定理等一系列重要定理,定义了级数的收敛性,研究了级数收敛的条件等,他的许多定义和论述已经非常接近于微积分的现代形式.柯西的工作在一定程度上澄清了在微积分基础问题上长期存在的混乱,向分析的全面严格化迈出了关键的一步.另一位为微积分的严密性做出卓越贡献的是德国数学家魏尔斯特拉斯.魏尔斯特拉斯是一个有条理而又苦干的人,在中学教书的同时,他以惊人的毅力进行数学研究.?魏尔斯特拉斯定量地给出了极限概念的定义,这就是今天极限论中的“ε-δ”方法.魏尔斯特拉斯用他创造的这一套语言重新定义了微积分中的一系列重要概念,特别地,他引进的一致收敛性概念消除了以往微积分中不断出现的各种异议和混乱.另外,魏尔斯特拉斯认为实数是全部分析的本源,要使分析严格化,就首先要使实数系本身严格化.而实数又可按照严密的推理归结为整数(有理数).因此,分析的所有概念便可由整数导出.这就是魏尔斯特拉斯所倡导的“分析算术化”纲领.基于魏尔斯特拉斯在分析严格化方面的贡献,在数学史上,他获得了“现代分析之父”的称号.通过柯西以及后来魏尔斯特拉斯的艰苦工作,数学分析的基本概念得到严格的论述.从而结束微积分二百年来思想上的混乱局面,把微积分及其推广从对几何概念,运动和直观了解的完全依赖中解放出来,并使微积分发展成为现代数学最基础最庞大的数学学科.?3.微积分的意义众所周知,由古希腊继承下来的数学是常量的数学,是静态的数学.自从有了解析几何和微积分,就开辟了变量数学的时代,是动态的数学.数学开始描述变化、描述运动,改变了整个数学世界的面貌.数学也由几何的时代而进人分析的时代.微积分给数学注入了旺盛的生命力,使数学获得了极大的发展,取得了空前的繁荣.如微分方程、无穷级数、变分法等数学分支的建立,以及复变函数,微分几何的产生.严密的微积分的逻辑基础理论进一步显示了它在数学领域的普遍意义.微积分的建立是人类理性思维的结晶.他给出一整套科学的方法,开创了科学的新纪元,并因此加强了数学与其他学科的联系,加深了数学的应用.它极大的推动力天文学、力学、物理学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学各个分支的发展,并在这些学科中有越来越广泛的应用.特别是在物理学方面,有了微积分人们才能把握运动过程,万有引力被发现并导出了开普勒行星运动三定律,卫星、宇宙飞船、航天飞机不在是梦.与我们联系密切的现代工程技术,直接影响到人们的物质生产,而工程技术的基础是数学,都离不开微积分.如今微积分不但成了自然科学和工程技术的基础,而且还渗透到人们广泛的经济、金融活动中,也就是说微积分在人文社会科学领域中也有着其广泛的应用.一场空前巨大的,席卷近代世界的科学运动开始了,毫无疑问,微积分的发展是世界近代科学的开端.4.东西方微积分发展差异分析在13世纪40年代到14世纪初,各主要(数学)领域都达到了中国古代数学的高峰,出现了现通称贾宪三角形的“开方作法本源图”和增乘开方法、“正负开方术”、“大衍求一术”、“大衍总数术”(一次同余式组解法)、“垛积术”(高阶等差级数求和)、“招差术”(高次差内差法)、“天元术”(数字高次方程一般解法)、“四元术”(四元高次方程组解法)、勾股数学、弧矢割圆术、组合数学、计算技术改革和珠算等都是在世界数学史上有重要地位的杰出成果,中国古代数学有着微积分前两阶段的出色工作,其中许多都是微积分得以创立的关键.中国已具备了17世纪发明微积分前夕的全部内在条件,已经接近了微积分的大门.可惜中国元朝以后,八股取士制度造成了学术上的大倒退,封建统治的文化专制和盲目排外致使包括数学在内的科学水平日渐衰落,在微积分创立的最关键一步落伍了.为什么微积分会产生在西方,而不是中国.东西方(东方特指中国)微积分的思想几乎同时产生,并且中国古代的数学成就也是相当辉煌.在东西方极限思想一般是用来计算平面面积和立体的体积,如上文中刘徽求圆的面积,欧多克斯用“穷竭法”求面积与体积等,这与古代的分田,交税等活动是分不开的,而在近代的西方,文艺复兴、启蒙运动极大地解放了人们的思想,随之而来的资产阶级革命更使西方在底层发生了改变,生产力大发展,人们对知识的渴望从未如此强烈,一批批各领域的大师纷纷登上历史的舞台,推动者科学的发展,当时间来到牛顿等人之时,微积分的大门被打开了.反观中国,小农经济,所谓男耕女织,一直都是不变的信条,国内没有发展自然科学的土壤,明朝更是大兴文字狱,人们的思想进一步被禁锢.在这里说明一下,中国的科技,大多是技术,比如:医学、农学、水利工程等.这与近代西方的科学有着本质的不同,近代西方科学是建立在近代科学方法论的基础之上,是通过实验、数学模型和数学推导演绎来研究的,是科学的,严谨的,中国则更像是经验的积累,这也是微积分没有产生在中国的原因.当然中国古代由几何问题引起极限,微积分等观念思想萌芽的出现,所用方法本质上是静态的,只有牛顿、莱布尼兹在他们先驱者所做工作的基础上才发展成动态分析的方法.结论微积分的发明不是一蹴而就的,而是人类集体智慧的结晶,是无数科学家长期奋斗的结果.数学来源于实践,没有当时大量实际问题的涌现,没有科学家深入实际,将大量实际问题转化为数学问题的研究,是不可能产生微积分理论的.东西方微积分发展差异在于:早期东西方都产生了微积分的极限思想,他们都用来解决一些实际问题,比如:求圆的面积、分田等,不同的是西方在后来有了更科学的研究体系,现有的数学知识不能解决当时的问题,如:牛顿求物体的位移。

微积分发展简史

微积分发展简史

微积分发展简史一.微积分思想萌芽微积分的思想萌芽,部分可以追溯到古代。

在古代希腊、中国和印度数学家的著作中,已不乏用朴素的极限思想,即无穷小过程计算特别形状的面积、体积和曲线长的例子。

在中国,公元前5世纪,战国时期名家的代表作《庄子?天下篇》中记载了惠施的一段话:"一尺之棰,日取其半,万世不竭",是我国较早出现的极限思想。

但把极限思想运用于实践,即利用极限思想解决实际问题的典范却是魏晋时期的数学家刘徽。

他的"割圆术"开创了圆周率研究的新纪元。

刘徽首先考虑圆内接正六边形面积,接着是正十二边形面积,然后依次加倍边数,则正多边形面积愈来愈接近圆面积。

用他的话说,就是:"割之弥细,所失弥少。

割之又割,以至于不可割,则与圆合体,而无所失矣。

"按照这种思想,他从圆的内接正六边形面积一直算到内接正192边形面积,得到圆周率的近似值3.14。

大约两个世纪之后,南北朝时期的著名科学家祖冲之(公元429-500年)祖恒父子推进和发展了刘徽的数学思想,首先算出了圆周率介于3.1415926与3.1415927之间,这是我国古代最伟大的成就之一。

其次明确提出了下面的原理:"幂势既同,则积不容异。

"我们称之为"祖氏原理",即西方所谓的"卡瓦列利原理"。

并应用该原理成功地解决了刘徽未能解决的球体积问题。

欧洲古希腊时期也有极限思想,并用极限方法解决了许多实际问题。

较为重要的当数安提芬(Antiphon,B.C420年左右)的"穷竭法"。

他在研究化圆为方问题时,提出用圆内接正多边形的面积穷竭圆面积,从而求出圆面积。

但他的方法并没有被数学家们所接受。

后来,安提芬的穷竭法在欧多克斯(Eudoxus,B.C409-B.C356)那里得到补充和完善。

之后,阿基米德(Archimedes,B.C287-B.C212)借助于穷竭法解决了一系列几何图形的面积、体积计算问题。

《微积分的发展简史综述6300字》

《微积分的发展简史综述6300字》

微积分的发展简史综述目录1 引言 (1)2 微积分简介 (1)3 微积分产生背景 (2)4 微积分酝酿时期 (2)5 微积分的发展历程 (3)5.1 牛顿的微积分 (3)5.2 莱布尼茨的微积分 (3)5.3 柯西与魏尔斯特拉斯的贡献 (3)5.4 外国其他人的贡献 (4)5.5 中国数学家的思想 (5)6 微积分创建的历史意义 (6)结论 (6)参考文献 (7)1 引言微积分是研究数学分支的微分,积分及相关概念和应用的函数,微积分的基本概念是函数,极限,实数,导数,积分等,其中极限是基础。

它与自然科学,社会科学和天文学,力学,化学,生物学,工程学,经济学等其他科学领域有着非常密切的联系,其应用非常广泛。

在许多国家,中学数学教育对于研究微积分学的发展具有重要意义,以适应科学技术发展的趋势。

2 微积分简介微积分是微分科学和积分科学的总称。

这是一个数学思想,“无限细分”是微分,“无限求和”是积分。

导数是从曲线的切线和函数的最大值和最小值的问题得出的。

古希腊学者已经进行了切线曲线尝试,比如阿基米德《论螺线》,用于确定切线方法给定点处的螺旋线;《圆锥曲线论》中的阿波里纽论述了圆锥曲线的切线等等。

关于差别法的第一个引人注目的先驱作品起源于费马特1629年声明的概念,他提出了确定最大值和最小值的方法。

随后,英国剑桥大学三一学院教授巴罗提出了一种找到切线的方法,并进一步推广了差别理论的概念。

与差别理论相比,整体论的起源要早得多。

积分的概念是由寻找一些面积,体积和弧长造成的。

古希腊数学家阿基米德使用排气法以《抛物线求积法》找到弧形抛物线的区域。

他的数学思想包含微积分的思想,但缺乏极限概念,但他的思想本质延伸到17世纪的无限小分析领域,它告诉微积分的诞生。

在十七世纪下半叶,根据前几代人的工作,英国科学家牛顿和德国数学家莱布尼茨分别独立研究并完成了本国微积分的建立。

自那时以来,Cauchy和Weiersterasi微积分等得到了完善。

微积分的发展史

微积分的发展史

微积分的发展历史摘要:我国和西方古代微积分的萌芽到近现代微积分的巨大发展,以及从牛顿到柯西等人为微积分的发明。

关键词:微积分;中国;西方;牛顿;“流数术”;微积分(Calculus)是高等数学中研究函数的微分、积分以及有关概念和应用的数学分支。

它是数学的一个基础学科。

内容主要包括极限、微分学、积分学及其应用。

微分学包括求导数的运算,是一套关于变化率的理论。

它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。

积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。

(一)我国的微积分思想萌芽:公元前5世纪,战国时期名家的代表作《庄子•天下篇》中记载了惠施的一段话:“一尺之棰,日取其半,万世不竭”,是我国较早出现的极限思想。

魏晋时期的数学家刘徽的“割圆术”开创了圆周率研究的新纪元,用他的话说,就是:“割之弥细,所失弥少。

割之又割,以至于不可割,则与圆合体,而无所失矣。

”(二)西方的微积分思想萌芽:安提芬的“穷竭法”。

他在研究化圆为方问题时,提出用圆内接正多边形的面积穷竭圆面积,从而求出圆面积。

之后,阿基米德借助穷竭法解决了一系列几何图形的面积、体积计算问题。

刺激微分学发展的主要科学问题是求曲线的切线、求瞬时变化率以及求函数的极大值极小值等问题。

(三)近现代微积分的发展:1635年意大利数学家卡瓦列里在其著作《用新方法促进的连续不可分量的几何学》中发展了系统的不可分量方法。

1665年,牛顿对微积分问题的研究始于,当时他反复阅读笛卡儿《几何学》,牛顿首创了小○记号表示x 的无限小且最终趋于零的增量。

并发明“正流数术”(微分法),次年5月又建立了“反流数术”(积分法),这就是牛顿的“流数术”。

在牛顿发明“流数术”的同时,莱布尼茨几乎和牛顿取得了同样的成就,并得到了著名的牛顿—莱布尼茨公式:从17世纪到18世纪的过渡时期,法国数学家罗尔在其论文《任意次方程一个解法的证明》中给出了微分学的一个重要定理,也就是我们现在所说的罗尔微分中值定理。

微积分的历史与发展

微积分的历史与发展

微积分的历史与发展微积分是数学中的一个重要分支,广泛应用于科学、工程、经济学等领域。

本文将介绍微积分的历史与发展,并探讨其在现代社会中的应用。

一、古代对微积分的探索古代的数学家们通过几何学的方法进行了对曲线和面积的研究,这可以看作是微积分的雏形。

在公元前300年,古希腊的数学家欧多克斯提出了求解平面图形面积的方法,称为欧几里得几何。

他将面积问题转化为与角度、线段有关的问题。

进一步的发展出现在17世纪,最著名的数学家之一阿基米德提出了方法求解圆的面积,这也是微积分的基础之一。

然而,在古代,微积分作为一个独立的数学分支并未得到完全的发展。

二、牛顿与莱布尼茨的发现17世纪末,英国的牛顿和德国的莱布尼茨几乎同时独立发现微积分。

牛顿将微积分应用于自然科学领域,莱布尼茨则将其应用于工程和计算学。

牛顿发现了微积分的两个核心概念:导数和积分。

他用导数来研究物体运动的速度和加速度,用积分来求解曲线下的面积。

他的工作被收录在《自然哲学的数学原理》一书中,对后来的数学家产生了深远的影响。

莱布尼茨的微积分符号体系则更加直观和易于应用。

他引入了微积分中的核心概念:微分和积分。

莱布尼茨的符号体系后来成为了微积分的标准符号,并被广泛应用于科学和工程领域。

三、微积分的发展与应用微积分在18世纪逐渐发展成熟。

欧拉、拉格朗日等数学家进一步推动了微积分的应用和发展。

欧拉是微积分的集大成者,他提出了复变函数概念,并将微积分应用于力学、光学等领域。

19世纪,微积分经历了一次革命。

柯西、魏尔斯特拉斯等数学家对微积分进行了严格的定义和建立了新的理论基础。

微积分的发展使得数学和其他科学领域的研究更加深入和准确。

在现代社会,微积分已经成为科学与工程领域不可或缺的工具。

从物理学中的运动学和力学到经济学中的边际分析和优化问题,微积分的应用无处不在。

总结:微积分作为一门数学分支,经历了数千年的发展和演变。

古代的几何学为微积分的发展奠定了基础,而牛顿和莱布尼茨则几乎同时发现了微积分的核心概念。

微积分的发展历程

微积分的发展历程

微积分的发展历程微积分的创立,被誉为“人类精神的最高胜利”,在18世纪,微积分进一步深入发展,这种发展与广泛的应用紧密交织在一起,刺激和推动了许多数学新分支的产生,从而形成了“分析”这样一个在观念和方法上都具有鲜明特点的数学领域。

在数学史上,18世纪可以说是分析研究的时代,也是向现代数学过渡的重要时期。

1)微积分的发展无限小算法的推广,在英国和欧洲大陆国家是循着不同的路线进行的。

不列颠的数学家们在剑桥、牛津、伦敦和爱丁堡等著名的大学里教授和研究牛顿的流数术,他们中的优秀代表有泰勒(B.Taylor)、麦克劳林(C.Maclaurin)、棣莫弗(A.de Moivre)、斯特林(J.Stirling)等。

泰勒(1685_1731)做过英国皇家学会秘书。

他在1715年出版的《正的和反的增量方法》一书中,陈述了他早在1712年就已获得的著名定理其中v为独立变量z的增量,和为流数。

泰勒假定z随时间均匀变化,故为常数,从而上述公式相当于现代形式的“泰勒公式”:。

泰勒公式使任意单变量函数展为幂级数成为可能,是微积分进一步发展的有力武器。

但泰勒对该定理的证明很不严谨,也没有考虑级数的收敛性。

泰勒公式在x=0时的特殊情形后来被爱丁堡大学教授麦克劳林重新得到,现代微积分教科书中一直把x=0时的泰勒级数称为“麦克劳林级数”。

麦克劳林(1698_1746)是牛顿微积分学说的竭力维护者,他在这方面的代表性著作《流数论》,以纯熟却难读的几何语言论证流数方法,试图从“若干无例外的原则”出发严密推演牛顿的流数论,这是使微各分形式化的努力,但因囿于几何传统而并不成功。

《流数论》中还包括有麦克劳林关于旋转可耻椭球体的引力定理,证明了两个共焦点的椭球体对其轴或赤道上一个质点的引力与它们的体积成正比。

麦克劳林之后,英国数学陷入了长期停滞的状态。

微积分发明权的争论滋长了不列颠数学家的民族保守情绪,使他们不能摆脱牛顿微积分学说中弱点的束缚。

微积分发展简史

微积分发展简史

微积分发展简史一、微积分的创立微积分中的极限、穷竭思想可以追溯到两千五百年前的古希腊文明,著名的毕达哥拉斯学派,经过了漫长时期的酝酿,到了17世纪,在工业革命的刺激下,终于通过牛顿(Newton)和莱布尼兹(Leibniz)的首创脱颖而出了。

大约从15世纪初开始的文艺复兴时期起,工业、农业、航海事业与上古贸易的大规模发展,刺激着自然科学蓬勃发展,到了17世纪开始进入综合突破的阶段,而所有这些所面临的数学困难,最后汇总成四个核心问题,并最终导致微积分的产生。

这四个问题是:1.运动中速度、加速度与距离之间的虎丘问题,尤其是非匀速运动,使瞬时变化率的研究成为必要;2.曲线求切线的问题,例如要确定透镜曲面上的任一点的法线等;3.有确定炮弹最大射程,到求行星轨道的近日点与远日点等问题提出的求函数的极大值、极小值问题;4.当然还有千百年来人们一直在研究如何计算长度、面积、体积与重心等问题。

第一、二、三问题导致微分的概念,第四个问题导致积分的概念。

微分与积分在17世纪之前还是比较朦胧的概念,而且是独立发展的。

开普勒(Kepler)、伽利略(Galileo)、费马(Fermat)、笛卡尔(Descartes)、卡瓦列里(Cavalieri)等学者都做出了杰出贡献。

1669,巴罗(Barrow,牛顿的老师)发表《几何讲义》,首次以几何的面貌,用语言表达了“求切线”和“求面积”是两个互逆的命题。

这个比较接近于微积分基本定理。

牛顿和莱布尼兹生长在微积分诞生前的水到渠成的年代,这时巨人已经形成,牛顿和莱布尼兹之所以能完成微积分的创立大业,正事由于它们占到了前辈巨人们的肩膀上,才能居高临下,才能高瞻远瞩,终于或得了真理。

可以这样说:微积分的产生是量变(先驱们的大量工作的积累)到质变(牛顿和莱布尼兹指出微分与积分是对矛盾)的过程,是当时历史条件(资本主义萌芽时期)下的必然产物。

微积分基本定理的建立标志着微积分的诞生。

牛顿自1664年起开始研究微积分,钻研了伽利略、开普勒、瓦利斯(Wallis),尤其是笛卡尔的著作。

微积分的发展史论文-论文

微积分的发展史论文-论文

内容摘要】一般地,导数概念的起点是极限,即从数列→数列的极限→函数的极限→导数,但对于高中的学生来说,极限是非常抽象和不容易理解的,而新课标导数教学并没有介绍形式化的极限定义,改从变化率入手,用形象直观的“逼近”方法定义导数。

本文就是从微积分的发展史来弄清为什么可以这样引入导数的概念。

【关键词】流数;变化率;瞬时变化率;导数一般地,导数概念的起点是极限,即从数列→数列的极限→函数的极限→导数。

这种概念建立方式有严密的逻辑性和系统性,但是也产生了一些问题:就高中学生的认知水平而言,他们很难理解极限的形式化定义。

由此产生的困难也影响了对导数本质的理解。

而新课标导数概念是怎样讲呢?教科书(人教版)没有介绍形式化的极限定义及相关知识。

而是从变化率入手,用形象直观的“逼近”方法定义导数。

这种概念建立方式当然就没有严密的逻辑性和系统性了,有这种必要吗?笔者从微积分的发展史找到答案。

一、微积分的发展史简介众所周知,微积分是由伊萨克?牛顿(Isac Newton,1643-1727)与戈特弗里?威廉?莱布尼茨(Gottfried Wilhelm,1646-1716)分别通过研究不同的问题而创立的。

对牛顿的数学思想影响最深的要数笛卡儿的《几何学》和沃利斯的《无穷算术》,正是这两部著作引导牛顿走上了创立微积分之路。

1666年牛顿将其前两年的研究成果整理成一篇总结性论文—《流数简论》,这也是历史上第一篇系统的微积分文献。

在简论中,牛顿以运动学为背景提出了微积分的基本问题,发明了“正流数术”(微分);从确定面积的变化率入手通过反微分计算面积,又建立了“反流数术”;并将面积计算与求切线问题的互逆关系作为一般规律明确地揭示出来,将其作为微积分普遍算法的基础论述了“微积分基本定理”。

“微积分基本定理”也称为牛顿—莱布尼茨定理,牛顿和莱布尼茨各自独立地发现了这一定理。

而莱布尼茨与牛顿的切入点不同,他创立微积分首先是出于几何问题的思考,尤其是特征三角形的研究。

微积分发展简史

微积分发展简史

微积分发展简史自发明解析几何以后,变量就登上了数学的舞台。

函数概念提出以后,描述物体运动规律便有了相应的数学方法。

然而在处理变量规律这个问题上,当时的科学家并没有找到强有力的方法,这极大地阻碍了科学研究。

然而自牛顿和莱布尼茨两位科学大师创立微积分这一强有力的工具之后,这些问题都迎刃而解,一场属于数学的盛宴便开始了。

背景关于“无穷”的思想,无论在古代西方还是中国,都有萌芽。

“割圆术”就是这一思想的提现,阿基米德利用圆内正96变形得到圆周率π的值在223/71到22/7之间,而我国魏晋时期的著名数学家更是以惊人的圆内正3072边形将π的值精确到了3.1416。

这些方法都体现了“无限分割之后再无限求和”的微积分数学思想。

然而限于低下的生产实践水平,这些思想难以进一步发展完善。

时间很快到了16世纪,社会生产实践活动水平已经上了一个新台阶。

天文学和物理学的快速发展带来了许多数学问题,例如如何求时候瞬时速度和加速度,如何计算曲边三角形的面积。

进入17世纪之后,科学家们的注意力逐渐聚焦到了四大类问题上:1.已知物体的位移-时间关系函数,求其在任意时刻的速度与加速度;反过来,已知物体的加速度-时间函数,求速度与位移。

2.求已知曲线的切线。

3.求已知函数的最大值与最小值。

4.求曲线长、曲线围成的面积、曲面围成的体积、物体的重心位置、物体(比如行星)作用于另一物体上的引力等。

在这些问题的探索中,笛卡尔、巴罗(牛顿在剑桥大学的老师,微积分早期先驱之一)、开普勒、卡瓦列里(意大利数学家,“祖暅原理”的西方发现者)等科学家做出了开创性贡献。

然而仍然没有形成完整的理论。

在大量知识和方法的积累下,一门崭新的学科已经呼之欲出了。

巨人与大师:牛顿和莱布尼茨牛顿(1642-1727)出生于一个纯粹的农民家庭,父亲早亡之后母亲又迫于生计改嫁给一个牧师,之后牛顿便和祖母一起生活。

残酷的家庭处境造成了牛顿沉默寡言又倔强的性格。

中学时代的牛顿成绩并不出众但好奇心和求知欲都相当旺盛,慧眼识人的中学校长和牛顿的叔父都十分鼓励牛顿去读大学,于是牛顿便以减费生的身份进入了剑桥大学三一学院,开始了他的科学巨人之路。

浅谈微积分的发展历史

浅谈微积分的发展历史

浅谈微积分的发展历史李飞姜攀牛晋徽微积分是数学史上一个伟大的发明。

微积分在两千多年前就开始萌芽,但真正开始发展是从16世纪开始的,并由牛顿和莱布尼兹在17世纪建立,然而为它打好逻辑基础的是19世纪柯西。

从此之后,微积分成了各学科中重要的数学工具。

1 引言在高等数学的教学中,微积分是教学难点之一,学生普遍反应微积分的许多概念和公式比较难以理解。

近几年国内外越来越多的大学在数学教材引入数学史的知识,通过“历史线索”和“历史原型”来组织高等数学的教学,使学生真正理解课本上抽象的概念和形式化的公式背后的实际内涵。

为便于将数学史引入高等数学的教学中,本文简单地介绍一下微积分的发展历史。

2 微积分的发展历史微积分从发端至今已有两千多年的历史,并且其发展并不是一帆风顺的,本文将其分为四个阶段:萌芽阶段;酝酿阶段;创立阶段;发展阶段。

2.1 萌芽阶段2000多年前东西方的数学家就开始对微积分思想的萌芽和探索。

这个阶段对后世最有影响的是古希腊的数学发展。

古希腊的数学并不是单独的一个分支 ,而是与天文 、哲学密不可分的,其研究对象以几何学为主。

这一阶段最重要的两个哲学思想是“穷竭法”和“原子论”。

公元前5世纪,古希腊诡辩学派的安提丰(Antiphon)为解决“化圆为方”的问题,提出如下方法:“先作一圆内接正方形,将边数加倍,得内接8边形;再加倍,得16边形。

如此作下去,最后正多边形穷竭了圆。

”该方法被阿基米德(Archimedes)发展为“穷竭法”。

同样在公元前5世纪,德谟克利特(Demokritos)提出了“原子论”,并用“原子论”解释数学概论,提出:“线段、面积和立体都是由一些不可再分的原子构成的 ,而计算面积 、体积就是将这些‘原子’累加起来”。

他根据这一思想来求解圆锥体的体积,发现“圆锥体积等于具有同底同高的圆柱体积的三分之一”。

但这一结论的证明是由攸多克萨斯(Eudoxus)完成的。

德谟克利特认为圆锥体是由一系列底面积不等的不可再分的圆形薄片构成,因此圆锥体的表面不光滑。

关于微分发展的文献综述

关于微分发展的文献综述

关于微分发展的文献综述
3.2.在微积分发展史上为什么我国长期发展缓慢
中国的地理环境对中华民族政治、经济和文化的形成与发展有重要影响,在一定程度 上阻碍了微积分的发展。高度中央集权的封建政治体系也严重阻碍了我国微积分发展
关于微分发展的文献综述
4微积分发展史上的美学思考
4.1数与形的等同观念
毕达哥拉斯有句名言"万物皆数";柏拉图也有句名言"上帝常以几何学家自居"。这表 示在公元前五世纪,数与形的研究都提到了相当显要的位置。数与形的等同观是美的 ,显示了大自然与人类知识既一致又和谐的信念,数较形抽象。尽管几何的形是实物 形状的抽象,而数已属第二次抽象,当数形等同观受到冲击后,迫使希腊数学家采取 迥避的态度,放弃了数形等同的企图。在那个时代,他们对无理数还很不理解
关于微分发展的文献综述
3.从微积分发展史上看古代中国科学羁绊
中华民族以历史悠久、文化发达著称,中国人民的聪明才智誉满全球,时达两千五百年的微 积分发展史,中国应当作出比实际大得多的贡献,可是,为什么在古代中国,微积分的发明权 几乎是空白呢?
关于微分发展的文献综述
3.1我国微积分溯源及引进
古代刘徽之,祖冲之是伟大的实践家,首次计算出圆周率小数点后七位。后来,在《代数 积拾级》传入我国之前的17、18世纪之交,法国曾送给我国一批图书, 有笛卡尔的数 学和托里拆里的微积分.18世纪中期,俄国彼得堡科学院赠给我国的图书中,也有欧拉的微 积分
关于微分发展的文献综述
2.微积分的发展史
17世纪伊始,随着社会的进步和生产力的 发展,数学开始研究变化的量,逐步迈入 一个以"变量数学"为标志的时代,即微积 分渐渐从无到有、逐渐发展壮大进而不断 成熟和完善,最终成为一门独立学科

微积分的发展

微积分的发展

微积分的发展微积分是数学中的一个分支,探讨函数的变化率和积分,是一门应用广泛且重要的学科。

自其诞生以来,微积分在数学、物理学和工程学等领域中扮演着重要的角色。

本文将回顾微积分的发展历程,对其重要概念和应用进行介绍。

1. 历史回顾微积分的起源可以追溯至古希腊时期,但其真正的发展始于17世纪。

数学家牛顿和莱布尼兹几乎同时独立地发展出微积分的基本原理和方法。

牛顿以几何和力学的角度解释微积分,而莱布尼兹则以代数和分析的方式探索微积分。

2. 重要概念微积分的核心概念包括导数和积分。

导数描述了函数在某一点上的变化率,表示为函数的斜率。

积分则描述了函数在某一区间上的累积变化,表示为曲线下面积。

这两个概念相辅相成,构成了微积分的基础。

3. 应用领域微积分在许多领域中都有广泛的应用。

在物理学中,微积分用于描述物体的运动和力学规律。

在经济学中,微积分用于建立经济模型和分析市场行为。

在工程学中,微积分用于解决复杂的工程问题,如结构设计和电路分析。

此外,微积分还在生物学、计算机科学和统计学等领域中有重要的应用。

4. 发展趋势随着科学和工程技术的进步,微积分的应用范围和深度也在不断扩展。

新的数值方法和计算技术的出现,使得微积分的计算更加高效和精确。

同时,数学家们也在不断研究微积分的理论基础,推动微积分的发展和应用。

总结:微积分的发展有着悠久的历史,起源于古希腊并在17世纪得到了牛顿和莱布尼兹等数学家的初步发展。

微积分的重要概念包括导数和积分,它们对于描述函数的变化率和积累变化起着关键作用。

微积分在物理学、经济学、工程学等领域中有着广泛的应用,随着技术和数学理论的进步,微积分的应用也在不断扩展。

微积分的发展仍在持续,将继续为科学研究和工程技术提供强大的支持。

微积分论文:简述微积分发展史

微积分论文:简述微积分发展史

微积分论文:简述微积分发展史一、微积分学的创立微积分作为一门学科,是在十七世纪产生的。

它的主要内容包括两部分:微分学和积分学。

然而早在古代微分和积分的思想就已经产生了。

公元前三世纪,古希腊的阿基米德在研究解决抛物弓形的面积、球和球冠面积、旋转双曲体的体积等问题中,就隐含着近代积分学的思想。

作为微分学基础的极限理论来说,早在古代就有了比较清楚的论述。

如我国的庄周所著的《庄子》一书的“天下篇”中,记有“一尺之棰,日取其半,万世不竭”。

这些都是朴素的极限概念。

到了十七世纪,人们因面临着有许多科学问题需要解决,如研究运动的时候直接出现的,也就是求即时速度的问题;求曲线的切线的问题等,这些问题也就成了促使微积分产生的因素。

十七世纪的许多著名的数学家都为解决上述几类问题作了大量的研究工作。

十七世纪下半叶,在前人工作的基础上,英国大科学家牛顿和德国数学家莱布尼茨分别在自己的国度里独自研究和完成了微积分的创立工作。

在创立微积分方面,莱布尼茨与牛顿功绩相当。

这两位数学家在微积分学领域中的卓越贡献概括起来就是:他们总结出处理各种有关问题的一般方法,认识到求积问题与切线问题互逆的特征,并揭示出微分学与积分学之间的本质联系。

两人各自建立了微积分学基本定理,并给出微积分的概念、法则、公式及其符号。

有了这些理论知识作为前提为以后的微积分学的进一步发展奠定了坚实而重要的基础。

微积分学的创立,极大地推动了数学的发展,过去很多初等数学束手无策的问题,运用微积分,往往迎刃而解,显示出微积分学的非凡威力。

可以说微积分学的诞生是数学发展的一个里程碑式的事件。

二、微积分诞生的重要意义微积分诞生之前,人类基本上还处在农耕文明时期。

微积分学是继解析几何产生后的又一个伟大的数学创造。

微积分为创立许多新的学科提供了源泉。

微积分的建立是人类头脑最伟大的创造之一,是人类理性思维的结晶。

它给出一整套的科学方法,开创了科学的新纪元,并因此加强与加深了数学的作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微积分论文:简述微积分发展史[摘要]本文介绍了微积分学产生的背景、建立过程以及其产生重大的历史意义。

此外,在文章中也对微积分学的理论知识、基本内容进行了介绍和与说明。

[关键词]微积分微分积分发展史一、微积分学的创立微积分作为一门学科,是在十七世纪产生的。

它的主要内容包括两部分:微分学和积分学。

然而早在古代微分和积分的思想就已经产生了。

公元前三世纪,古希腊的阿基米德在研究解决抛物弓形的面积、球和球冠面积、旋转双曲体的体积等问题中,就隐含着近代积分学的思想。

作为微分学基础的极限理论来说,早在古代就有了比较清楚的论述。

如我国的庄周所著的《庄子》一书的“天下篇”中,记有“一尺之棰,日取其半,万世不竭”。

这些都是朴素的极限概念。

到了十七世纪,人们因面临着有许多科学问题需要解决,如研究运动的时候直接出现的,也就是求即时速度的问题;求曲线的切线的问题等,这些问题也就成了促使微积分产生的因素。

十七世纪的许多著名的数学家都为解决上述几类问题作了大量的研究工作。

十七世纪下半叶,在前人工作的基础上,英国大科学家牛顿和德国数学家莱布尼茨分别在自己的国度里独自研究和完成了微积分的创立工作。

在创立微积分方面,莱布尼茨与牛顿功绩相当。

这两位数学家在微积分学领域中的卓越贡献概括起来就是:他们总结出处理各种有关问题的一般方法,认识到求积问题与切线问题互逆的特征,并揭示出微分学与积分学之间的本质联系。

两人各自建立了微积分学基本定理,并给出微积分的概念、法则、公式及其符号。

有了这些理论知识作为前提为以后的微积分学的进一步发展奠定了坚实而重要的基础。

微积分学的创立,极大地推动了数学的发展,过去很多初等数学束手无策的问题,运用微积分,往往迎刃而解,显示出微积分学的非凡威力。

可以说微积分学的诞生是数学发展的一个里程碑式的事件。

二、微积分诞生的重要意义微积分诞生之前,人类基本上还处在农耕文明时期。

微积分学是继解析几何产生后的又一个伟大的数学创造。

微积分为创立许多新的学科提供了源泉。

微积分的建立是人类头脑最伟大的创造之一,是人类理性思维的结晶。

它给出一整套的科学方法,开创了科学的新纪元,并因此加强与加深了数学的作用。

微积分的产生不仅具有伟大的科学意义,而且具有深远的社会影响。

有了微积分,就有了工业革命,有了大工业生产,也就有了现代化的社会。

在微积分的帮助下,万有引力定律发现了。

微积分学强有力地证明了宇宙的数学设计,摧毁了笼罩在天体上的神秘主义、迷信和神学。

这一切都表明微积分学的产生是人类认识史上的一次空前的飞跃。

三、微积分理论的基本介绍微积分学是微分学和积分学的总称。

微积分学基本定理指出,求不定积分与求导函数是互为逆运算的过程,而把上下限代入不定积分即得到积分值,微分则是导数值与自变量增量的乘积。

作为一种数学的思想微分就是“无限细分”,而积分就是“无限求和”。

牛顿和莱布尼茨建立微积分的出发点是直观的无穷小量,但是理论基础是不牢固的。

因为“无限”的概念是无法用已经拥有的代数公式进行演算,所以,直到十九世纪,柯西和维尔斯特拉斯建立了极限理论,康托尔等建立了严格的实数理论,这门学科才得以严密化。

学习微积分学,首要的一步就是要理解到,“极限”引入的必要性:因为,代数是人们已经熟悉的概念,但是,代数无法处理“无限”的概念。

所以,必须要利用代数处理代表无限的量,这时就精心构造了“极限”的概念。

在“极限”的定义中,我们可以知道,这个概念绕过了用一个数除以0的麻烦,相反引入了一个过程任意小量ε。

就是说,除的数不是零,所以有意义,同时ε可以取任意小,只要满足在δ区间,都小于ε,我们就说他的极限就是这个数。

虽然这个概念给出的比较取巧,但是,它的实用性证明,这样的定义还算比较完善,给出了正确推论的可能性。

因此这个概念是成功的。

四、微积分的基本内容五、小结随着社会的进步,科学的发展,微积分学也在不断的发展与完善。

微积分学是与科学应用紧密联系着发展起来的。

最初,牛顿应用微积分学及微分方程对天文观测数据进行了分析运算,得到了万有引力定律,并进一步导出了开普勒行星运动三定律。

微积分学成了推动近代数学发展强大的引擎,同时也极大的推动了天文学、物理学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学各个分支中的发展,并在这些学科中有着越来越广泛的应用。

参考文献:[1]同济大学应用数学系.高等数学[m].北京:高等教育出版社,2008.1.高等数学概念高等数学概念2.湖南人民出版社出版图书湖南人民出版社出版图书3.高等教育出版社图书高等教育出版社图书微积分产生到了十七世纪,有许多科学问题需要解决,这些问题也就成了促使微积分产生的因素。

归结起来,大约有四种主要类型的问题:第一类是研究运动的时候直接出现的,也就是求即时速度的问题。

第二类问题是求曲线的切线的问题。

第三类问题是求函数的最大值和最小值问题。

第四类问题是求曲线长、曲线围成的面积、曲面围成的体积、物体的重心、一个体积相当大的物体作用于另一物体上的引力。

十七世纪的许多著名的数学家、天文学家、物理学家都为解决上述几类问题作了大量的研究工作,如法国的费马、笛卡尔、罗伯瓦、笛沙格;英国的巴罗、瓦里士;德国的开普勒;意大利的卡瓦列利等人都提出许多很有建树的理论。

为微积分的创立做出了贡献。

十七世纪下半叶,在前人工作的基础上,英国大科学家牛顿和德国数学家莱布尼茨分别在自己的国度里独自研究和完成了微积分的创立工作,虽然这只是十分初步的工作。

他们的最大功绩是把两个貌似毫不相关的问题联系在一起,一个是切线问题(微分学的中心问题),一个是求积问题(积分学的中心问题)。

牛顿和莱布尼茨建立微积分的出发点是直观的无穷小量,因此这门学科早期也称为无穷小分析,这正是现在数学中分析学这一大分支名称的来源。

牛顿研究微积分着重于从运动学来考虑,莱布尼茨却是侧重于几何学来考虑的。

牛顿牛顿在1671年写了《流数法和无穷级数》,这本书直到1736年才出版,它在这本书里指出,变量是由点、线、面的连续运动产生的,否定了以前自己认为的变量是无穷小元素的静止集合。

他把连续变量叫做流动量,把这些流动量的导数叫做流数。

牛顿在流数术中所提出的中心问题是:已知连续运动的路径,求给定时刻的速度(微分法);已知运动的速度求给定时间内经过的路程(积分法)。

莱布尼茨德国的莱布尼茨是一个博才多学的学者,1684年,他发表了现在世界上认为是最早的微积分文献,这篇文章有一个很长而且很古怪的名字《一种求极大极小和切线的新方法,它也适用于分式和无理量,以及这种新方法的奇妙类型的计算》。

就是这样一篇说理也颇含糊的文章,却有划时代的意义。

它已含有现代的微分符号和基本微分法则。

1686年,莱布尼茨发表了第一篇积分学的文献。

他是历史上最伟大的符号学者之一,他所创设的微积分符号,远远优于牛顿的符号,这对微积分的发展有极大的影响。

现在我们使用的微积分通用符号就是当时莱布尼茨精心选用的。

微积分学的创立的意义微积分学的创立,极大地推动了数学的发展,过去很多初等数学束手无策的问题,运用微积分,往往迎刃而解,显示出微积分学的非凡威力。

前面已经提到,一门科学的创立决不是某一个人的业绩,他必定是经过多少人的努力后,在积累了大量成果的基础上,最后由某个人或几个人总结完成的。

微积分也是这样。

不幸的是,由于人们在欣赏微积分的宏伟功效之余,在提出谁是这门学科的创立者的时候,竟然引起了一场悍然大波,造成了欧洲大陆的数学家和英国数学家的长期对立。

英国数学在一个时期里闭关锁国,囿于民族偏见,过于拘泥在牛顿的“流数术”中停步不前,因而数学发展整整落后了一百年。

其实,牛顿和莱布尼茨分别是自己独立研究,在大体上相近的时间里先后完成的。

比较特殊的是牛顿创立微积分要比莱布尼茨早10年左右,但是正式公开发表微积分这一理论,莱布尼茨却要比牛顿发表早三年。

他们的研究各有长处,也都各有短处。

那时候,由于民族偏见,关于发明优先权的争论竟从1699年始延续了一百多年。

应该指出,这是和历史上任何一项重大理论的完成都要经历一段时间一样,牛顿和莱布尼茨的工作也都是很不完善的。

他们在无穷和无穷小量这个问题上,其说不一,十分含糊。

牛顿的无穷小量,有时候是零,有时候不是零而是有限的小量;莱布尼茨的也不能自圆其说。

这些基础方面的缺陷,最终导致了第二次数学危机的产生。

直到19世纪初,法国科学学院的科学家以柯西为首,对微积分的理论进行了认真研究,建立了极限理论,后来又经过德国数学家维尔斯特拉斯进一步的严格化,使极限理论成为了微积分的坚定基础。

才使微积分进一步的发展开来。

任何新兴的、具有无量前途的科学成就都吸引着广大的科学工作者。

在微积分的历史上也闪烁着这样的一些明星:瑞士的雅科布·贝努利和他的兄弟约翰·贝努利、欧拉、法国的拉格朗日、柯西……欧氏几何也好,上古和中世纪的代数学也好,都是一种常量数学,微积分才是真正的变量数学,是数学中的大革命。

微积分是高等数学的主要分支,不只是局限在解决力学中的变速问题,它驰骋在近代和现代科学技术园地里,建立了数不清的丰功伟绩。

编辑本段基本内容1.数学分析研究函数,从量的方面研究事物运动变化是微积分的基本方法。

这种方法叫做数学分析。

本来从广义上说,数学分析包括微积分、函数论等许多分支学科,但是现在一般已习惯于把数学分析和微积分等同起来,数学分析成了微积分的同义词,一提数学分析就知道是指微积分。

微积分的基本概念和内容包括微分学和积分学。

2.微积分微分学的主要内容包括:极限理论、导数、微分等。

积分学的主要内容包括:定积分、不定积分等。

3.微积分是与科学应用联系着发展起来的微积分是与科学应用联系着发展起来的。

最初,牛顿应用微积分学及微分方程对第谷浩瀚的天文观测数据进行了分析运算,得到了万有引力定律,并进一步导出了开普勒行星运动三定律。

此后,微积分学成了推动近代数学发展强大的引擎,同时也极大的推动了天文学、物理学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学各个分支中的发展。

并在这些学科中有越来越广泛的应用,特别是计算机的出现更有助于这些应用的不断发展。

编辑本段一元微分定义设函数y = f(x)在某区间内有定义,x0及x0 + Δx在此区间内。

如果函数的增量Δy = f(x0 + Δx) – f(x0)可表示为Δy = AΔx + o(Δx)(其中A是不依赖于Δx的常数),而o(Δx)是比Δx高阶的无穷小,那么称函数f(x)在点x0是可微的,且AΔx称作函数在点x0相应于自变量增量Δx的微分,记作dy,即dy = AΔx。

通常把自变量x的增量Δx称为自变量的微分,记作dx,即dx = Δx。

于是函数y = f(x)的微分又可记作dy = f'(x)dx。

相关文档
最新文档