追及和相遇问题(教案与练习)

合集下载

(完整版)追及与相遇问题(含答案)

(完整版)追及与相遇问题(含答案)

追及与相遇问题1、追及与相遇的实质研究的两物体能否在相同的时刻到达相同的空间位置的问题。

2、理清两大关系:时间关系、位移关系。

3、巧用一个条件:两者速度相等;它往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。

4、三种典型类型(1)同地出发,初速度为零的匀加速直线运动A 追赶同方向的匀速直线运动B①当 B A v v =时,A 、B 距离最大;②当两者位移相等时, A 追上B ,且有B A v v 2=(2)异地出发,匀速直线运动B 追赶前方同方向的初速度为零的匀加速直线运动A判断B A v v =的时刻,A 、B 的位置情况①若B 在A 后面,则B 永远追不上A ,此时AB 距离最小②若AB 在同一处,则B 恰能追上A③若B 在A 前,则B 能追上A ,并相遇两次(3)异地出发,匀减速直线运动A 追赶同方向匀速直线运动B①当B A v v =时,A 恰好追上B ,则A 、B 相遇一次,也是避免相撞刚好追上的临界条件;②当B A v v =时,A 未追上B ,则A 、B 永不相遇,此时两者间有最小距离;③当B A v v >时,A 已追上B ,则A 、B 相遇两次,且之后当两者速度相等时,两者间有最大距离。

5、解追及与相遇问题的思路(1)根据对两物体的运动过程分析,画出物体运动示意图(2)根据两物体的运动性质,(巧用“速度相等”这一条件)分别列出两个物体的位移方程,注意要将两物体的运动时间的关系反映在方程中(3)由运动示意图找出两物体位移间的关联方程(4)联立方程求解注意:仔细审题,充分挖掘题目中的隐含条件,同时注意t v -图象的应用【典型习题】【例1】在十字路口,汽车以0.5m/s 2的加速度从停车线启动做匀加速运动,恰好有一辆自行车以5m/s 的速度匀速驶过停车线与汽车同方向行驶,求:(1)汽车追上自行车之前,什么时候它们相距最远?最远距离是多少?(2)在什么地方汽车追上自行车?追到时汽车的速度是多大?【练习1】一辆值勤的警车停在公路边,当警员发现从他旁边以s m v 80=的速度匀速行驶的货车有违章行为时,决定前去追赶。

【小学数学】小学数学常考相遇问题、追及问题(附例题、解题思路)

【小学数学】小学数学常考相遇问题、追及问题(附例题、解题思路)

相遇问题【含义】两个运动的物体同时由两地出发相向而行;在途中相遇。

这类应用题叫做相遇问题。

【数量关系】相遇时间=总路程÷(甲速+乙速)总路程=(甲速+乙速)×相遇时间【解题思路和方法】简单的题目可直接利用公式;复杂的题目变通后再利用公式。

例1南京到上海的水路长392千米;同时从两港各开出一艘轮船相对而行;从南京开出的船每小时行28千米;从上海开出的船每小时行21千米;经过几小时两船相遇?解392÷(28+21)=8(小时)答:经过8小时两船相遇。

例2小李和小刘在周长为400米的环形跑道上跑步;小李每秒钟跑5米;小刘每秒钟跑3米;他们从同一地点同时出发;反向而跑;那么;二人从出发到第二次相遇需多长时间?解“第二次相遇”可以理解为二人跑了两圈。

因此总路程为400×2相遇时间=(400×2)÷(5+3)=100(秒)答:二人从出发到第二次相遇需100秒时间。

例3甲乙二人同时从两地骑自行车相向而行;甲每小时行15千米;乙每小时行13千米;两人在距中点3千米处相遇;求两地的距离。

解“两人在距中点3千米处相遇”是正确理解本题题意的关键。

从题中可知甲骑得快;乙骑得慢;甲过了中点3千米;乙距中点3千米;就是说甲比乙多走的路程是(3×2)千米;因此;相遇时间=(3×2)÷(15-13)=3(小时)两地距离=(15+13)×3=84(千米)答:两地距离是84千米。

追及问题【含义】两个运动物体在不同地点同时出发(或者在同一地点而不是同时出发;或者在不同地点又不是同时出发)作同向运动;在后面的;行进速度要快些;在前面的;行进速度较慢些;在一定时间之内;后面的追上前面的物体。

这类应用题就叫做追及问题。

【数量关系】追及时间=追及路程÷(快速-慢速)追及路程=(快速-慢速)×追及时间【解题思路和方法】简单的题目直接利用公式;复杂的题目变通后利用公式。

相遇、追及问题教学设计

相遇、追及问题教学设计

相遇、追及问题教学设计教学目标1.知识与能力会画物体运动图,能分析不同类型的相遇、追及问题中的位移和速度关系,列出方程,解决问题。

2.过程与方法通过活动引导学生积极参与、合作探究,使学生进一步掌握解决追及与相遇问题的方法步骤。

3.情感态度与价值观让学生感受到物理与生活息息相关,增加其对物理学习的兴趣,并通过小组合作,加强学生之间的交流以及团结互助的精神。

教学重点找到相遇、追及问题中的等量关系,列出方程。

教学难点寻找相遇、追及问题中的等量关系。

教学过程师生活动设计意图一.观看猎豹追羚羊和汽车追尾视频,导入新课。

观看视频提出问题思考问题激发学生学习兴趣二.例题分析,掌握新知(一)追及问题1、追及问题中两者速度大小与两者距离变化的关系。

思考1.匀加速追匀速,追上的条件是什么?观看图片总结结论:当两物体在同一时刻到达同一位置时,则表示追上。

思考2.在追赶的过程中,两者之间的距离如何变化?结合V-t图像,总结:在匀加速直线运动追赶匀速直线运动中,当两物体速度相等时,有最大距离。

学生思考,教师点拨培养学生分析问题解决问题的能力例1:一辆执勤的警车停在公路边。

当警员发现从他旁边以v0=8m/s的速度匀速行驶的货车有违章行为时,立即前去追赶。

警车以加速度a=2m/s2做匀加速运动。

试问:(1)警车要多长时间才能追上违章的货车?(2)在警车追上货车之前,两车间的最大距离是多大?总结解追及、相遇问题的思路:1.根据对两物体运动过程的分析,画出两物体运动的示意图;2.根据两物体的运动性质,分别列出两个物体的速度和位移方程,注意要将两物体运动时间的关系反映在方程中;3.由运动示意图找出两物体位移间的关联方程,这是关键;4.联立方程求解,并对结果进行简单分析.三、变式练习,巩固新知1.一辆值勤的警车停在公路边,当警员发现从他旁边以v0=8 m/s的速度匀速行驶的货车有违章行为时,决定前去追赶,经t0=2.5 s,警车发动起来,以加速度a=2 m/s2做匀加速运动.试问:(1)警车要多长时间才能追上违章的货车?(2)在警车追上货车之前,两车间的最大距离是多大?(二)避免相撞问题思考1:在躲避的过程中,两者之间的距离如何变化?思考2:在躲避的过程中,如何保证两者不相撞?安排学生讲解教师总结点拨。

追及和相遇问题专题教案

追及和相遇问题专题教案

追及问题和相遇问题专题学习目标:1.知道两种问题的各种处理方法2.能归纳两种问题的临界条件3.理解数学方法和图象法在处理物体问题中的重要性课时安排:1课时教学过程追及问题的实质就是:当两物体在同一直线上运动,分析讨论两物体在同一时刻是否能达到同一空间位置的问题.在分析追及问题时,必须明确以下几点:一个条件,两个关系,三种解题方法.1. 一个条件即两物体的速度相等,它往往是追上追不上(两物体间距离有极值(最大值,最小值))的的临界条件,也是分析判断此类问题的切入点.2.两个关系即两物体运动的时间关系和位移关系.(1)若两物体同时开始运动则运动时间相等,若不同时开始运动则应找出时间关系.(2)若两物体从同一位置开始运动则追上的位移关系是s1=s2;若开始运动时两物体相距s0,则追上的位移关系是s1-s2=s03.三种解题方法解这类问题一般可用物理分析法,数学极值法,图象法.(1)物理分析法 基本的解题思路是:①分别对两物体研究②画出运动过程示意图③列出位移方程④找出时间关系速度关系,位移关系⑤解出结果,必要时进行讨论.例1. 甲物体作匀速直线运动的速度是5m/s ,经过乙物体时,乙物体从静止开始以1m/s 2的加速度追赶甲物体,求:①乙在追上甲之前,经过多长时间甲乙相距最远?此距离是多少?②什么时候乙追上甲?此时乙物体的速度是多少?解析:①乙物体运动后速度由零逐渐增大,而甲的速度不变,在乙的速度小于甲物体的速度前,二者间的距离将越来越大,一旦乙的速度超过甲物体的速度时两物体间的距离就将缩小,因此当两物体的速度相等时,两物体相距最远.因此有:甲乙乙v t a v == ∴s 5s 15a v t ===乙甲t v x 甲甲= 2at 21x =乙 由位移关系:乙甲x x x -=∆ 带入数据得Δx =12.5m②设经过t1时间乙追上甲,此时甲乙的位移相等. 则121t v at 21甲= s 10a v 2t 1==∴甲s /m 10at v 1==乙 (2)数学极值法运用物理规律将物理问题转化成数学问题,通过函数运算得出结果.上题也可以用数学极值法求解.解析:①设乙在追上甲之前经t时间两物体相距最远.乙甲x x x -=∆=2at 21t v -甲=5t-0.5t2 由二次函数求极值公式知:当s 5a2b t ==时Δs最大,代入数据得Δx =12.5m ②同物理分析法②(3)图象法①甲乙的v-t图像如图所示,根据速度图像的物理意义,图像与坐标轴所围面积表示位移的大小由图像可看出:在乙追上甲之前的t 时刻,两物体的速度相等,甲的位移(矩形面积)与乙的位移(三角形的面积)之差(画斜线部分)达最大,所以:甲乙乙v t a v == ∴s 5s 15a v t ===乙甲乙甲s s x -=∆=S 矩形-S 三角形 =12.5m②由图像可知:在t 时刻后,由甲与乙的速度图线所围三角形的面积与阴影三角形的面积相等时,两物体的位移相等(即追上),所以由图可得:乙追上甲时,t '=2t=10s , 10v 2v ==甲乙m/s 点评:(1)追和被追两者的速度相等常是能追上、追不上、二者距离有极值的临界条件。

夏墅中学高中物理《第5课时 追及与相遇问题(2课)》教案 新人教版必修1

夏墅中学高中物理《第5课时 追及与相遇问题(2课)》教案 新人教版必修1

某某省某某市西夏墅中学高中物理必修一《第5课时:追及与相遇问题(2课)》教案班级学号某某1、追及问题在追及问题中,只有后者的速度大于前者的速度,才有追上的可能性。

若是后者做匀减速运动,两者速度相等时,后者若还没有追上前者,则后者永远不能追上前者若前者做匀加速运动,后者做匀速运动,同样,当两者速度相等时,后者若没有追上前者,则永远追不上前者以上两种情况,说明在追及问题中,只有后者的速度大于前者的速度,两者之间的距离越来越小,否则越来越大。

若以前者为参照物,则后者相对前者的速度大于零时,才能追上前者2、相遇问题两个运动的物体相遇,即相对同一参考点来讲,它们的位移相等,这里往往要分析它们相遇的可能性,也就是当它们的位移相等时,它们的运动时间是否存在着相遇的可能性。

特别是对抛体运动,它们若在空中相遇的时间与它们在空中的运动是否存在着矛盾,如相遇时间大于它们在空中运动的时间就是矛盾的3、处理着类问题应把握以下三点:(1)时间关系(2)位移关系(3)速度大小相等时,两追及物体相距最远或最近例1、甲、乙两车同时从同一地点出发,向同一方向运动,其中甲以10m/s的速度匀速行驶,乙以2m/s2的加速度由静止起动,求:(1)经多长时间乙车追上甲车?此时甲、乙两车速度有何关系?(2)追上前经过多长时间两车相距最远?此时二者的速度有何关系?两车相距的最远距离是多大?例2、A、B两物体在同一直线上运动,它们相距s0=7m时,A正以v A=4m/s的速度向右做匀速运动,而B此时速度v B=10m/s向右,以大小a=2m/s2匀减速运动,则经过多长时间A追上B?若v A=8m/s,则又经过多长时间A追上B?例3、一列快车正以20m/s的速度在平直轨道上运动时,发现前方180m处有一货车正以6m/s 速度匀速同向行驶,快车立即制动,快车作匀减速运动,经40s才停止,问是否发生碰车事故?活学活用:火车以速度v1匀速行驶,司机发现前方同轨道上相距s处有另一列火车沿同方向以速度v2匀速行驶(v2<v1)。

(完整版)相遇问题与追及问题

(完整版)相遇问题与追及问题

相遇与追及问题一、学习目标1.理解相遇与追及的运动模型,掌握相遇与追及这两种情况下路程、时间、速度这三个基本量之间的关系.会利用这个关系来解决一些简单的行程问题.2.体会数形结合的数学思想方法.二、主要内容1.行程问题的基本数量关系式:路程二时间X速度;速度二路程F时间;时间二路程F速度.2.相遇问题的数量关系式:相遇路程二相遇时间X速度和;速度和二相遇路程F相遇时间;相遇时间二相遇路程F速度和.3.追及问题的数量关系式:追及距离二追及时间X速度差;速度差二追及距离F追及时间;追及时间二追及距离F速度差.4.能熟练运用路程、时间、速度这三个基本量的关系,结合图形分析,解决一些简单的行程问题.三、例题选讲例1两辆汽车同时分别从相距500千米的A,B两地出发,相向而行,速度分别为每小时40千米和每小时60千米.求几小时后两车相遇.例2甲车在乙车前200千米,同时出发,速度分别为每小时40千米与60千米.问多少小时后,乙车追上甲车.例3一辆公共汽车和一辆小轿车同时从相距598千米的两地相向而行.公共汽车每小时行40千米,小轿车每小时行52千米,问几小时后两车相距138千米?例4甲、乙两辆汽车同时从东、西两地相向开出,甲车每小时行56千米,乙车每小时行48千米,两车在离中点32千米处相遇.求东、西两地相距多少千米?例6一辆卡车和一辆摩托车同时从A、B两地相对开出,两车在途中距A地60千米处第一次相遇•然后,两车继续前进,卡车到达B地,摩托车到达A地后都立即返回,两车又在途中距B地30千米处第二次相遇.求A、B两地相距多少千米?例7甲、乙、丙三人进行100米赛跑•当甲到达终点时,乙离终点还有20米,丙离终点还有40米.如果甲、乙、丙赛跑的速度都不变,那么当乙到达终点时,丙离终点还有多远?例8小明步行上学,每分行75米,小明离家12分后,爸爸骑单车去追,每分行375米.问爸爸出发多少分后能追上小明?例9解放军某部快艇追击敌舰,追到A岛时,敌舰已逃离该岛15分钟,已测出敌舰每分钟行驶1000米,解放军快艇每分钟行驶1360米,在距离敌舰600米处可开炮射击.问解放军快艇从A岛出发经过多少分钟就可以开炮射击敌舰?例10甲、乙两人在环形跑道上以各自的不变速度跑步,如果两人同时从同地相背而行乙跑4分钟后两人第一次相遇,已知甲跑一周需6分钟,那么乙跑一周需要多少分钟?例11两名运动员在湖周围环形道上练习长跑,甲每分跑250米,乙每分跑200米,两人同时从两地同向出发,经过45分甲追上乙,如果两人同时同地反向出发,经过多少分两人相遇?例12甲、乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米,如果她们同时分别从直路两端点出发,跑了6分,那么,这段时间内,两人共迎面相遇了多少次?巩固练习:1、甲、乙两站相距980千米,两列火车由两站相对开出,快车每小时行50千米,慢车每小时行多少千米,两车经10小时能相遇?2、甲车每小时行60千米,1小时后,乙车紧紧追赶,速度为每小时80千米,几小时后乙车可追上甲车?3、早晨6时,有一列货车和一列客车同时从相距360千米的甲、乙两城相对开出,中途相遇,这期间,货车停车一次60分钟,客车停车两次各30分钟,已知货车每小时行42千米,客车每小时行78千米,问两车在几点钟相遇?4、东、西两镇相距240千米,一辆客车从上午8时从东镇开往西镇,一辆货车在上午9时从西镇开往东镇,到正午12点,两车恰好在两镇间的中点相遇,如果两车都从上午8时由两地相向开出,速度不变,到上午10时,两车还相距多少千米?5、骑单车从甲地到乙地,以每小时10千米的速度行进,下午1点到,以每小时15千米的速度行进,上午11点到.如果希望中午12点到,那么应以怎样的速度行进呢?6、某人由甲地去乙地,如果他从甲地先骑摩托车行了12小时,再换骑自行车行9小时,恰好到达乙地.如果他从甲地先骑自行车行了21小时,再换骑摩托车行8小时,也恰好到达乙地.问:全程骑摩托车需要多少小时才能到达乙地?7、兄妹两人同时由家上学,哥哥每分钟走90米,妹妹每分钟走60米,哥哥到校门口时,发现忘了带课本,立即沿原路返回去取,行至离校门口180米处与妹妹相遇,他们家离学校多少米?8、兄妹两人在周长300米的圆形水池边玩.从同一地点同时背向饶水池而行.哥哥每分钟走13米,妹妹每分钟走12米.他们第5次相遇时,哥哥共走了多长的路?课后作业:1.甲以每小时4千米的速度步行去学校,乙比甲晚4小时骑自行车从同一地点出发去追甲,乙每小时行12千米,乙多少小时可追上甲?2.小张从家到公园,原打算每分钟走50米,为了提早10分钟到,他把速度加快,每分钟走75米.小张家到公园有多少米?3.父亲和儿子都在某厂工作,他们从家里出发步行到工厂,父亲用40分钟,儿子用30分钟.如果父亲比儿子早5分钟离家,问儿子用多少分钟可赶上父亲?4.解放军某部小分队,以每小时6千米的速度到某地执行任务,途中休息30分后继续前进,在出发5.5小时后,通讯员骑摩托车以56千米的速度追赶他们。

专题4 追及与相遇问题-2024年高考物理一轮复习专题讲义(教案)

专题4  追及与相遇问题-2024年高考物理一轮复习专题讲义(教案)

专题4 追及与相遇问题-2024年高考物理一轮复习专题讲义(教案)追及与相遇问题考点一速度大追速度小1.分析思路: 可概括为“一个临界条件”“两个等量关系”。

一个临界条件:速度大者追速度小者:二者速度相等是判断能否追上的临界条件,若此时追不上,二者距离最小。

两个等量关系: 时间等量关系和位移等量关系,通过画草图找出两物体的时间关系和位移关系是解题的突破口。

2.常见情况解析:典型示例图像说明匀减速追匀速开始追时,两物体间距离为x0,之后两物体间的距离在减小,当两物体速度相等时,即t=t0时刻:①若Δx=x0,则恰能追上,两物体只能相遇一次,这也是避免相撞的临界条件;②若Δxx0,则相遇两次,设t1时刻Δx1=x0,两物体第一次相遇,则t2时刻两物体第二次相遇(t2-t0=t0-t1)匀速追匀加速匀减速追匀加速题型一匀减速追匀加速在水平轨道上有两列火车A和B,相距x,A车在后面做初速度为v0、加速度大小为2a的匀减速直线运动,而B车同时做初速度为零、加速度大小为a的匀加速直线运动,两车运动方向相同。

要使两车不相撞,求A车的初速度v0满足什么条件?v0≤两车不相撞的临界条件:A车追上B车时其速度与B车相等。

设A、B两车从相距x到A车追上B车时,A车的位移为xA、末速度为vA、所用时间为t′,B车的位移为xB、末速度为vB,运动过程如图甲所示。

现用三种方法解答如下:法一情境分析法对A车有xA=v0t′+(-2a)×t′2,vA=v0+(-2a)×t′对B车有xB=at′2,vB=at′两车位移关系有x=xA-xB追上时,两车不相撞的临界条件是vA=vB联立以上各式解得v0=故要使两车不相撞,A车的初速度v0应满足的条件是v0≤。

法二函数判断法利用判别式求解,由题意可知xA=x+xB,即v0t′+×(-2a)×t′2=x+at′2整理得3at′2-2v0t′+2x=0这是一个关于时间t′的一元二次方程,当根的判别式Δ=(-2v0)2-4·3a·2x=0时,两车刚好不相撞,解得v0=,所以要使两车不相撞,A车的初速度v0应满足的条件是v0≤。

追及相遇教案

追及相遇教案

追及和相遇问题教学目标:1.能灵活运用匀变速直线运动的位移速度公式2.能处置追及相遇问题。

判定追上的条件,及相距最近,最远时的条件。

教学重点:常见的几种相遇问题教学难点:判定可否被追上教学方式:分析法推理法一、新课教学一、追及问题1、追及问题中二者速度大小与二者距离转变的关系。

甲物体追赶前方的乙物体,假设甲的速度大于乙的速度,那么二者之间的距离。

假设甲的速度小于乙的速度,那么二者之间的距离。

假设一段时刻内二者速度相等,那么二者之间的距离。

例:一小汽车从静止开始以3m/s2的加速度启动,恰有一自行车以6m/s的速度从车边匀速驶过,(1)试定性分析汽车从开动后至追上自行车前两车间的距离随时刻转变的情形。

(2)汽车在追上自行车前通过量长时刻后二者距离最远?此刻距离是多少?分析:汽车追自行车先距离愈来愈大后距离愈来愈小直到追上汽车在追上自行车前通过2S钟二者距离最远。

解法一、利用二次函数极值法求解设通过时刻t 汽车和自行车之间的距离Δx,Δx=x自-x汽=v自t-at2/2=6t-3t2/2二次函数求极值的条件可知:当t=-b/2a=6/3=2s 时,两车之间的距离有极大值,且Δx m=6×2-3×22/2=6m解法二、利用分析法求解当汽车的速度与自行车的速度相等时,两车之间的距离最大。

由上述分析可知当两车之间的距离最大时有v汽=at=v自∴ t=v自 /a=6/3=2s∵Δx m=x自-x汽∴Δx m=v自t-at2/2=6×2-3×22/2=6m解法三、利用图象求解当t=t0 时矩形与三角形的面积之差最大。

Δx m=6t0/2 (1)因为汽车的速度图线的斜率等于汽车的加速度大小∴a=6/t0∴ t0=6/a=6/3=2s(2)由上面(1)、(2)两式可得Δx m=6m(3)何时追上自行车?此刻汽车的速度是多少?v自t =at2/26×t=3×t2/2t=4sv汽=at=3×4 =12m/s例2.车从静止开始以1m/s2的加速度前进,车后相距x0为25m处,某人同时开始以6m/s的速度匀速追车,可否追上?如追不上,求人、车间的最小距离。

小学数学常考相遇问题、追及问题(附例题、解题思路)

小学数学常考相遇问题、追及问题(附例题、解题思路)

相遇问题【含义】两个运动的物体同时由两地出发相向而行,在途中相遇.这类应用题叫做相遇问题.【数量关系】相遇时间=总路程÷(甲速+乙速)总路程=(甲速+乙速)×相遇时间【解题思路和方法】简单的题目可直接利用公式,复杂的题目变通后再利用公式.例1南京到上海的水路长392千米,同时从两港各开出一艘轮船相对而行,从南京开出的船每小时行28千米,从上海开出的船每小时行21千米,经过几小时两船相遇?解392÷(28+21)=8(小时)答:经过8小时两船相遇.例2小李和小刘在周长为400米的环形跑道上跑步,小李每秒钟跑5米,小刘每秒钟跑3米,他们从同一地点同时出发,反向而跑,那么,二人从出发到第二次相遇需多长时间?解“第二次相遇”可以理解为二人跑了两圈.因此总路程为400×2相遇时间=(400×2)÷(5+3)=100(秒)答:二人从出发到第二次相遇需100秒时间.例3甲乙二人同时从两地骑自行车相向而行,甲每小时行15千米,乙每小时行13千米,两人在距中点3千米处相遇,求两地的距离.解“两人在距中点3千米处相遇”是正确理解本题题意的关键.从题中可知甲骑得快,乙骑得慢,甲过了中点3千米,乙距中点3千米,就是说甲比乙多走的路程是(3×2)千米,因此,相遇时间=(3×2)÷(15-13)=3(小时)两地距离=(15+13)×3=84(千米)答:两地距离是84千米.追及问题【含义】两个运动物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的,行进速度要快些,在前面的,行进速度较慢些,在一定时间之内,后面的追上前面的物体.这类应用题就叫做追及问题.【数量关系】追及时间=追及路程÷(快速-慢速)追及路程=(快速-慢速)×追及时间【解题思路和方法】简单的题目直接利用公式,复杂的题目变通后利用公式.例1好马每天走120千米,劣马每天走75千米,劣马先走12天,好马几天能追上劣马?解(1)劣马先走12天能走多少千米?75×12=900(千米)(2)好马几天追上劣马?900÷(120-75)=20(天)列成综合算式75×12÷(120-75)=900÷45=20(天)答:好马20天能追上劣马.例2小明和小亮在200米环形跑道上跑步,小明跑一圈用40秒,他们从同一地点同时出发,同向而跑.小明第一次追上小亮时跑了500米,求小亮的速度是每秒多少米.解小明第一次追上小亮时比小亮多跑一圈,即200米,此时小亮跑了(500-200)米,要知小亮的速度,须知追及时间,即小明跑500米所用的时间.又知小明跑200米用40秒,则跑500米用[40×(500÷200)]秒,所以小亮的速度是(500-200)÷[40×(500÷200)]=300÷100=3(米)答:小亮的速度是每秒3米.例3我人民解放军追击一股逃窜的敌人,敌人在下午16点开始从甲地以每小时10千米的速度逃跑,解放军在晚上22点接到命令,以每小时30千米的速度开始从乙地追击.已知甲乙两地相距60千米,问解放军几个小时可以追上敌人?解敌人逃跑时间与解放军追击时间的时差是(22-16)小时,这段时间敌人逃跑的路程是[10×(22-6)]千米,甲乙两地相距60千米.由此推知追及时间=[10×(22-6)+60]÷(30-10)=220÷20=11(小时)答:解放军在11小时后可以追上敌人.例4一辆客车从甲站开往乙站,每小时行48千米;一辆货车同时从乙站开往甲站,每小时行40千米,两车在距两站中点16千米处相遇,求甲乙两站的距离.解这道题可以由相遇问题转化为追及问题来解决.从题中可知客车落后于货车(16×2)千米,客车追上货车的时间就是前面所说的相遇时间,这个时间为16×2÷(48-40)=4(小时)所以两站间的距离为(48+40)×4=352(千米)列成综合算式(48+40)×[16×2÷(48-40)]=88×4=352(千米)答:甲乙两站的距离是352千米.。

教案 追及和相遇问题

教案 追及和相遇问题
知 识 教 学 能 目 标 思 想 力
习题三: 习题三:两个物理 A、B 从同一地点同时出发,沿同一直线运 动,其速度图像如图所示,由图像可知,A、B 出发后将相遇 几次?除此之外,你还能由图像提出什么问题?你能解决这 些问题吗?

相遇问题

解:追 、相遇的 : 解追 、相遇问题的 路 : 追 、相遇问题时 的几个问题
在匀变速运动的位移表达式中有时间的二次方, 我们可列出位移方程,利用二次函数求极值的方 法求解,有时也可借助 v-t 图象求解。 习题一: 习题一:两辆完全相同的汽车,沿水平平直路一前一 后匀速行驶,速度均为 v0,若前车突然以恒定的加速 度刹车,在它刚停住时,后车以前车刹车时的加速度 开始刹车,已知前车在刹车过程中所行的距离为 x, 若要保证两辆车在上述情况中不相撞,则两车在匀速 行驶时保持的距离至少应为( ) A.x B.2x C.3x D.4x
3. 分析追及、相遇问题时要注意 分析追及、 ⑴分析问题时,一定要注意抓住一个条件两个关系。 一个条件是:两物体速度相等时满足临界条 件,如两物体的距离是最大还是最小及是否恰好 追上等。 两个关系是:时间关系和位移关系。 时间关系是指两物体运动时间是否相等,两 物体是同时运动还是一先一后等;而位移关系是 指两物体同地运动还是一前一后运动等,其中通 过画运动示意图找到两物体间位移关系就是解题 的突破口,因此在学习中一定要养成画草图分析 问题的良好习惯,对帮助我们理解题意,启迪思 维大有裨益。 ⑵若被追赶的物体做匀减速运动,一定要注意,追上 前该物体是否停止运动。 ⑶仔细审题,注意抓住题目中的关键字眼,充分挖掘 题目中的隐含条件,如“刚好”“恰好”“最多”“至 、 、 、 少”等,往往对应一个临界状态,满足相应的临界条 件。

追及与相遇问题知识详解及典型例题

追及与相遇问题知识详解及典型例题

追及与相遇问题知识详解及典型例题(精品)知识要点追及和相遇问题主要涉及在同一直线上运动的两个物体的运动关系,所应用的规律是匀变速直线运动的相关规律。

追及、相遇问题常常涉及到临界问题,分析临界状态,找出临界条件是解决这类问题的关键。

速度相等是物体恰能追上或恰不相碰、或间距最大或最小的临界条件。

在两物体沿同一直线上的追及、相遇或避免碰撞问题中关键的条件是:两物体能否同时到达空间某位置。

因此应分别对两物体研究,列出位移方程,然后利用时间关系、速度关系、位移关系解出。

解答追及、相遇问题时要特别注意明确两物体的位移关系、时间关系、速度关系,这些关系是我们根据相关运动学公式列方程的依据。

1. 追及追和被追的两者的速度相等常是能追上、追不上、二者距离有极值的临界条件。

如匀减速运动的物体追从不同地点出发同向的匀速运动的物体时,若二者速度相等了,还没有追上,则永远追不上,此时二者间有最小距离。

若二者相遇时(追上了),追者速度等于被追者的速度,则恰能追上,也是二者避免碰撞的临界条件;若二者相遇时追者速度仍大于被追者的速度,则被追者还有一次追上追者的机会,其间速度相等时二者的距离有一个较大值。

再如初速度为零的匀加速运动的物体追从同一地点出发同向匀速运动的物体时,当二者速度相等时二者有最大距离,位移相等即追上。

“追上”的主要条件是两个物体在追赶过程中处在同一位置,常见的情形有三种:一是初速度为零的匀加速运动的物体甲追赶同方向的匀速运动的物体乙时,一定能追上,在追上之前两者有最大距离的条件是两物体速度相等,即v甲=v乙;二是匀速运动的物体甲追赶同方向做匀加速运动的物体乙时,存在一个恰好追上或恰好追不上的临界条件:两物体速度相等,即v甲>v乙,此临界条件给出了一个判断此种追赶情形能否追上的方法,即可通过比较两物体处在同一位置时的速度大小来分析,具体方法是:假定在追赶过程中两者能处在同一位置,比较此时的速度大小,若v甲>v乙,则能追上去,若v甲<v乙,则追不上,如果始终追不上,当两物体速度相等时,两物体的间距最小;三是匀减速运动的物体追赶同方向的匀速运动的物体时,情形跟第二种相类似。

追及和相遇问题(教案与练习)

追及和相遇问题(教案与练习)

追及和相遇问题(教案与练习)追击与相遇专题(1).匀加速运动追匀速运动的情况(开始时v1< v2):v1< v2时,两者距离变⼤;v1= v2时,两者距离最⼤;v1>v2时,两者距离变⼩,相遇时满⾜x1= x2+Δx,全程只相遇(即追上)⼀次。

【例1】⼀⼩汽车从静⽌开始以3m/s2的加速度⾏驶,恰有⼀⾃⾏车以6m/s的速度从车边匀速驶过.求:(1)⼩汽车从开动到追上⾃⾏车之前经过多长时间两者相距最远?此时距离是多少?(2)⼩汽车什么时候追上⾃⾏车,此时⼩汽车的速度是多少?(2).匀速运动追匀加速运动的情况(开始时v1> v2):v1> v2时,两者距离变⼩;v1= v2时,①若满⾜x1 x2+Δx,则后者撞上前者(或超越前者),此条件下理论上全程要相遇两次。

【例2】⼀个步⾏者以6m/s的最⼤速率跑步去追赶被红灯阻停的公共汽车,当他距离公共汽车25m 时,绿灯亮了,汽车以1m/s2的加速度匀加速启动前进,问:⼈能否追上汽车?若能追上,则追车过程中⼈共跑了多少距离?若不能追上,⼈和车最近距离为多少?(3).匀减速运动追匀速运动的情况(开始时v1> v2):v1> v2时,两者距离变⼩;v1= v2时,①若满⾜x1 x2+Δx,则后者撞上前者(或超越前者),此条件下理论上全程要相遇两次。

【例3】汽车正以10m/s的速度在平直公路上前进,突然发现正前⽅有⼀辆⾃⾏车以4m/s 的速度做同⽅向的匀速直线运动,汽车⽴即关闭油门做加速度⼤⼩为6 m/s2的匀减速运动,汽车恰好不碰上⾃⾏车。

求关闭油门时汽车离⾃⾏车多远?(4).匀速运动追匀减速运动的情况(开始时v1v2时,两者距离变⼩,相遇时满⾜x1= x2+Δx,全程只相遇⼀次。

注意:若被追赶的物体做匀减速运动,⼀定要注意追上前该物体是否停⽌运动.【例4】当汽车B在汽车A前⽅7m时,A正以v A=4m/s的速度向前做匀速直线运动,⽽汽车B此时速度v B=10m/s,并关闭油门向前做匀减速直线运动,加速度⼤⼩为a=2m/s2。

第二章 拓展题 追及相遇问题(教案)高一上学期物理人教版(2019)必修第一册

第二章 拓展题 追及相遇问题(教案)高一上学期物理人教版(2019)必修第一册

第二章拓展题追及相遇问题(教案)教学目标核心素养物理观念:了解什么是追及、相遇问题;科学思维:1.通过软件演示分析追及问题中物体速度、位移的变化。

2.通过实际生活中的演示场景培养学生建立科学的物理模型。

3.通过教师引导会根据追及问题列速度关系和位移关系方程。

实验探究:通过现实的学生场景视频加入到课堂中和软件动画让学生直观的了解物体追及与相遇问题。

科学态度和责任:培养实事求是的科学态度,增强运动规律服务生产生活的意识。

教学重难点教学重点:1.追及相遇条件2.速度关系和位移关系的确定教学难点:1.建立追及与相遇问题的物理模型2..如何根据位移关系列方程教学过程一、复习引入回顾平均速度公式、速度时间公式、位移时间公式、速度时间公式;(通过随机点名软件,随机抽取学生上台,做游戏,回答问题)并给出适当的评价,鼓励学生,激发学生的学习兴趣。

今天我们来学习一个新的内容二、追及与相遇问题概念:当两个物体在同一直线上运动时,由于两个物体的运动情况不同,所以两个物体之间的距离会不断发生变化,两个物体间距会越来越大或者越来越小,这时就会涉及追及、相遇或者避免相撞等问题。

(动图演示)演示一:两车相遇学生观察说出这是相遇问题、还是追及相遇问题?(相遇问题)演示二:两车追及相遇学生观察说出这些是相遇问题、还是追及相遇问题?(追及相遇问题)以上四种情景总结得出:相遇问题有两种(用随机抽签,抽取学生回答问题)1.相向运动:各自发生的位移大小之和等于开始时两物体的距离时即相遇。

2.同向运动:两物体追及即相遇。

(同一时刻到达同一位置)1.相向运动练习一下:视频切入(相向运动)【例1】两人相距L=20m,甲从静止开始,以a=2m/s2的加速度加速向乙奔去,而同时乙向甲以V0=2m/s的速度向甲奔去,请问他们在多少秒之后相遇?让学生自己构建物理模型,解:设时间为t甲走的距离为L1=1/2at2乙走的距离为L2=v0t则L=L1+L220=1/2at2 +v0t得t=4s 或者t=-5s(舍去)通过鸿合平板交互投屏,把学生答案投放到班班通上,方便课堂点评。

追击相遇问题高中物理教案

追击相遇问题高中物理教案

追击相遇问题高中物理教案
主题:追击相遇问题
教学目标:
1. 理解追击相遇问题的基本原理和解题方法。

2. 掌握计算追击相遇问题中速度、时间、距离等物理量的方法。

3. 提高学生解决实际问题的能力。

教学步骤:
一、导入(5分钟)
1. 引导学生回想日常生活中可能遇到过的类似问题,如两辆车相向而行相遇的问题。

2. 提出一个简单的追击相遇问题让学生思考,如:A、B两个人同时从同一起点出发,A 的速度为5m/s,B的速度为3m/s,如果B追A,时间过了多久会相遇?
二、讲解(15分钟)
1. 介绍追击相遇问题的基本原理,即两个物体相向而行时,它们之间的距离会逐渐减小,最终相遇。

2. 解释如何根据两个物体的速度和出发点的距离来计算它们相遇的时间。

3. 提供几个示例让学生跟随老师一起计算相遇时间。

三、练习(20分钟)
1. 让学生自行解决几个追击相遇问题,鼓励他们使用所学的方法进行计算。

2. 鼓励学生之间合作讨论,互相帮助解决较难的问题。

3. 教师巡视课堂,对学生的解答进行指导和纠正。

四、总结(10分钟)
1. 结合实际情况,总结解决追击相遇问题的方法。

2. 强调速度、时间、距离等物理量之间的关系,以及如何应用这些关系解决问题。

3. 鼓励学生将所学知识应用到实际生活中,提高解决问题的能力。

五、作业(5分钟)
1. 布置相关的练习题目作为作业,加深学生对追击相遇问题的理解和掌握。

2. 鼓励学生自主查找更多相关问题进行练习,提高解决问题的能力。

本教案可以根据具体情况适当调整和修改,以便更好地适应学生的学习需求和能力水平。

课题:追及与相遇问题教案

课题:追及与相遇问题教案

【课题】 电场力的性质 、【三维目标】1、 知识与技能:掌握追及与相遇问题的特点以及解决这类问题的一般方法.2、 过程与方法通过具体问题的分析总结出处理追击、相碰问题的关键和处理追击、相碰问题的思路3、 情感态度与价值观培养学生学会分析和处理追及与相遇问题的一般方法。

【教学重难点】教学重点:会分析两个物体追击、相碰的运动教学难点:会分析两个物体追击、相碰的运动【课时】1课时【典型例题】1、1、甲车以10 m/s 的速度在平直的公路上匀速行驶,乙车以4 m/s 的速度与甲车平行同向做匀速直线运动.甲车经过乙车旁边时开始以0.5 m/s 2的加速度刹车,从甲车刹车开始计时,求:(1)乙车在追上甲车前,两车相距的最大距离;(2)乙车追上甲车所用的时间.解析 (1)当甲车速度减至等于乙车速度时两车的距离最大,设该减速过程所用时间为t ,则有v 乙=v 甲-at ,解得t =12 s ,此时甲、乙间距离为v 甲t -12at 2-v 乙t =36 m (2)设甲车减速到零所需时间为t 1,则有t 1=v 甲a=20 s t 1时间内,x 甲=v 甲2t 1=102×20 m =100 m x 乙=v 乙t 1=4×20 m =80 m 此后乙车运动时间t 2=x 甲-x 乙v 乙=204 s =5 s 故乙车追上甲车需t 1+t 2=25 s. 答案 (1)36 m (2)25 s2、A 、B 两车相距100m ,A 车在后以10m/s 匀速运动,B 车在前同时以5m/s 的速度沿同一直线 同方向匀速运动。

求(1)经过多长时间两车相遇?(2)相遇时A 、B 的位移?(3)试问这两车会相碰吗?(4)若会相碰,如何才能避相碰?讨论:(1)其它条件同上题,若是A 车司机看到后开始刹车,则A 车至少以多大的加速度减速才不会相碰(2)其它条件同上题,若两车以同样的加速度A减速,而B加速,则加速度为多大时两车才不会相碰?【思路方法总结】1.解题思路和方法2.解题技巧(1)紧抓“一图三式”,即:过程示意图,时间关系式、速度关系式和位移关系式.(2)审题应抓住题目中的关键字眼,充分挖掘题目中的隐含条件,如“刚好”、“恰好”、“最多”、“至少”等,它们往往对应一个临界状态,满足相应的临界条件.【课堂演练】1、客车以20m/s的速度行驶,突然发现同轨前方120m处有一列车正以6m/s的速度匀速前进。

(完整版)追及与相遇问题(含答案)

(完整版)追及与相遇问题(含答案)

追及与相遇问题1、追及与相遇的实质研究的两物体能否在相同的时刻到达相同的空间位置的问题。

2、理清两大关系:时间关系、位移关系。

3、巧用一个条件:两者速度相等;它往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。

4、三种典型类型(1)同地出发,初速度为零的匀加速直线运动A 追赶同方向的匀速直线运动B①当 B A v v =时,A 、B 距离最大;②当两者位移相等时, A 追上B ,且有B A v v 2=(2)异地出发,匀速直线运动B 追赶前方同方向的初速度为零的匀加速直线运动A判断B A v v =的时刻,A 、B 的位置情况①若B 在A 后面,则B 永远追不上A ,此时AB 距离最小②若AB 在同一处,则B 恰能追上A③若B 在A 前,则B 能追上A ,并相遇两次(3)异地出发,匀减速直线运动A 追赶同方向匀速直线运动B①当B A v v =时,A 恰好追上B ,则A 、B 相遇一次,也是避免相撞刚好追上的临界条件;②当B A v v =时,A 未追上B ,则A 、B 永不相遇,此时两者间有最小距离;③当B A v v >时,A 已追上B ,则A 、B 相遇两次,且之后当两者速度相等时,两者间有最大距离。

5、解追及与相遇问题的思路(1)根据对两物体的运动过程分析,画出物体运动示意图(2)根据两物体的运动性质,(巧用“速度相等”这一条件)分别列出两个物体的位移方程,注意要将两物体的运动时间的关系反映在方程中(3)由运动示意图找出两物体位移间的关联方程(4)联立方程求解注意:仔细审题,充分挖掘题目中的隐含条件,同时注意t v -图象的应用【典型习题】【例1】在十字路口,汽车以0.5m/s 2的加速度从停车线启动做匀加速运动,恰好有一辆自行车以5m/s 的速度匀速驶过停车线与汽车同方向行驶,求:(1)汽车追上自行车之前,什么时候它们相距最远?最远距离是多少?(2)在什么地方汽车追上自行车?追到时汽车的速度是多大?【练习1】一辆值勤的警车停在公路边,当警员发现从他旁边以s m v 80=的速度匀速行驶的货车有违章行为时,决定前去追赶。

追击相遇问题高中物理教案5篇

追击相遇问题高中物理教案5篇

追击相遇问题高中物理教案5篇追击相遇问题高中物理教案5篇作为一名人民教师,课堂教学是重要的工作之一,教学的心得体会可以总结在教学反思中,物理学专业本科生知识体系由知识体系和主要实践性教学环节两部分构成。

那么应当如何写教案呢?以下是小编为大家带来的初中物理教学教案7篇,欢迎大家参考。

追击相遇问题高中物理教案(篇1)培养差生非智力因素的途径是多方面的。

这里,仅介绍我对三种类型差生进行非智力因素培养的情况。

强化自制,控制自我。

统计资料表明,由于自我控制能力薄弱而成为差生的比例较大。

调查中,我发现他们的自我意识还是比较强的,有一定的评价别人和自我评价的能力。

例如,在他们的心目中,物理学得好的学生往往是学习成绩优秀,观察能力、实验能九思维能力、分析和解决物理问题的能力都很强的学生。

当问他们想不想向这个标准靠拢时,几乎都说心里想达到,但做起来太不容易。

他们之所以想的做的不能同步,是由于不能控制自己,容易受外界的干扰。

调查中还发现,这类学生的自我控制能力往往同兴趣、情感、意志等有关。

针对这类差生的特点,我做了以下一些转化工作。

1、激发差生的学习动机,提高学习物理的兴趣。

首先,根据物理的特点,引导差生正确认识学习物理的目的和社会意义,用所学的物理知识解决简单的实际问题,以激发差生的学习兴趣,从而强化内驱力,增强自制力。

其次,在教学中严格把好教材深度关,注意突破难点。

在习题教学中,重视物理过程的分析,并充分运用实验的优点,采用灵活新颖的教学方式,创设轻松愉快的教学气氛,使学生乐于学习。

2、锻炼差生的意志,增强学好物理的信心差生有一个显著的特点,就是情绪波动大,意志薄弱,缺乏毅力,害怕困难和挫折,这无疑影响了他们的学习,因为学习是一件充满困难和挫折的事情,物理又是一门较难学的学科。

因此,我注意引导他们把战胜困难,攻下难题当作一大乐事,让他们在合适的练习中磨练克服困难的意志,能搞到在情景中循序渐进,合理上升,产生向上攀登的情感。

追击与相遇问题教案

追击与相遇问题教案

选自行车为参照物,则从开始运动到两车相距最远过程中,以汽
车相对地面的运动方向为正方向,汽车相对此参照物的各个物理
量的分别为:v0=-6m/s,a=3m/s2,v=0
对汽车由公式 vv0 at
tvv0 0(6)2s
a
3
由v2 v02 2ax
xv2v0 20(6)2m6m 2a 23
以自行车为参照物, 公式中的各个量都 应是相对于自行车 的.注意:物理量的 正负号.
当t=t0两物体速度相等时: ①若Δx=x0,则恰能追及,且两 物体只能相遇一次。
这也是甲乙避碰的临界条件。
②若Δx<x0,则不能追及。 此时两物体最小距离为x0-Δx ③若Δx>x0,则相遇两次。 其中相遇时刻t1和t2由下列方程 求出:
x甲=x0+x乙
练习两辆完全相同的汽车,沿水平直路一前一后以相
2a1 21.5
x2=
v2 2
102
m =100 m
2a2 20.5
x=x1+x2=175 m 两车需在相隔175 m处刹车才不相碰.
2、考虑反应时间的避碰
例5.为了安全,在公路上行驶的汽车之间应保持必要的距离. 已知某高速公路的最高限速为120 km/h。假设前方车辆突 然停止,后车司机从发现这一情况开始,经操纵刹车到汽车 开始减速所经历的时间为(即反应时间)t=0.5 s,刹车时汽车加 速度为4 m/s2.则该段高速公路上汽车间应保持的最小距离 是多少
①t=t0以前,两物体间距离增 大
②t=t0时,两物体相距最 远为x0+Δx ③t=t0以后,甲物体比乙物体 快,两者间距减小
④只能相遇一次,相遇时刻 由方程求出:
x甲=x乙+x0

《追及与相遇问题》教学设计

《追及与相遇问题》教学设计

《追及与相遇问题》教学设计
一、教学目标
1.掌握追及与相遇问题的分析方法。

2.学会运用物理公式解决追及与相遇问题。

3.培养学生的逻辑思维和问题解决能力。

二、教学重难点
1.重点:追及与相遇问题的分析和求解。

2.难点:判断追及与相遇的条件。

三、教学方法
讲授法、例题分析法、讨论法。

四、教学过程
1.导入
通过实际生活中的追及与相遇现象,引入课题。

2.问题分析
(1)分析追及与相遇问题的特点和类型。

(2)讲解判断追及与相遇的条件。

3.公式应用
运用物理公式解决追及与相遇问题,如位移公式、速度公式等。

4.例题讲解
通过典型例题,讲解追及与相遇问题的具体求解方法。

5.课堂讨论
组织学生讨论追及与相遇问题的实际应用和注意事项。

6.课堂小结
总结追及与相遇问题的分析方法和求解步骤。

7.作业布置
布置课后作业,包括不同类型的追及与相遇问题。

《追及和相遇问题》教学设计

《追及和相遇问题》教学设计
明确解决此类问题的两个重要关系。
②位移关系:二者运动是否同地开始运动,还是一前一后。
解决追及相遇问题



题目:一小汽车从静止开始以3m/s2的加速度行驶,恰有一自行车以6m/s的速度从车边匀速驶过。求:
(1)经历多长时间追上自行车?
(4)汽车追上自行车时速度是多少?
学生活动
设计意图
课堂引入
复习引入
前面几节课的学习中,学生已经认识了匀变速直线运动,了解了相关的公式和结论。在此基础上我们要带领学生运用所学知识解决实际问题。
复习:匀变速直线运动的公式和相关结论。
为课程的学习打好知识基础。
创设问题情境
①运动会中接力赛跑时传递的接力棒。
思考:在接力跑和集合两个问题中涉及的追及和相遇问题。
【教学重点】
追及和相遇问题中时间、位移和速度的关系。
【教学难点】
追及和相遇问题中时间、位移和速度的关系。
【教学用具】
PPT;实物投影
【教学方法】
创设问题情境,启发思维,创造学生参与的机会,结合探究法、讲授法,借助多媒体辅助教学,充分调动学生的积极性与主动性。
【教学流程图】
【教学过程】
教学
环节
教师活动
临界条件:当二者速度相等时,二者距离最远。
分析临界条件。
使学生认识到什么是此类问题中的临界条件。
③列式计算:
规定初速度方向为正方向
(1)
(2)
(3)
(4)
学生自己动手解题,并进行结果的分享。
锻炼学生的解题能力。
总结做题过程
总结做题过程
为下一环节做铺垫
解题思路
①分别分析两物体的运动状态;
②画出运动的示意图和V-T图象;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

追击与相遇专题
类型
图象
说明
匀加速追 匀速
①t =t 0以前,后面物体与前面①物体间距离增

②t =t 0时,两物体相距最远为s 0+Δs
③t =t 0以后,后面物体与前面物体间距离减小 ④能追及且只能相遇一次
匀速追匀 减速
匀加速追 匀减速
匀减速追 匀速
开始追及时,后面物体与前面物体间的距离在减小,当两物体速度相等时,即t =t 0时刻:①若Δs =s 0,则恰能追及,两物体只能相遇一次,这也是避免相撞的临界条件
②若Δs <s 0,则不能追及,此时两物体最小距离为s 0-Δs
③若Δs >s 0,则相遇两次,设t 1时刻Δs 1=s 0,两物体第一次相遇,则t 2时刻两物体第二次相遇
匀速追匀 加速
匀减速追 匀加速
(1).匀加速运动追匀速运动的情况(开始时v 1< v 2):v 1< v 2时,两者距离变大;v 1= v 2时, 两者距离最大;v 1>v 2时,两者距离变小,相遇时满足x 1= x 2+Δx ,全程只相遇(即追上)一次。

【例1】一小汽车从静止开始以3m/s 2的加速度行驶,恰有一自行车以6m/s 的速度从车边匀速驶过.求:(1)小汽车从开动到追上自行车之前经过多长时间两者相距最远?此时距离是多少? (2)小汽车什么时候追上自行车,此时小汽车的速度是多少?
(2).匀速运动追匀加速运动的情况(开始时v 1> v 2):v 1> v 2时,两者距离变小;v 1= v 2时,①若满足x 1< x 2+Δx ,则永远追不上,此时两者距离最近;②若满足x 1=x 2+Δx ,则恰能追上,全程只相遇一次;③若满足x 1> x 2+Δx ,则后者撞上前者(或超越前者),此条件下理论上全程要相遇两次。

【例2】一个步行者以6m/s 的最大速率跑步去追赶被红灯阻停的公共汽车,当他距离公共汽车25m 时,绿灯亮了,汽车以1m/s 2的加速度匀加速启动前进,问:人能否追上汽车?若能追上,则追车过程中人共跑了多少距离?若不能追上,人和车最近距离为多少?
(3).匀减速运动追匀速运动的情况(开始时v 1> v 2):v 1> v 2时,两者距离变小;v 1= v 2时,①若满足x 1<x 2+Δx ,则永远追不上,此时两者距离最近;②若满足x 1= x 2+Δx ,则恰能追上,全程只相遇一次;③若满足x 1> x 2+Δx ,则后者撞上前者(或超越前者),此条件下理论上全程要相遇两次。

【例3】汽车正以10m/s 的速度在平直公路上前进,突然发现正前方有一辆自行车以4m/s 的速度做同方向的匀速直线运动,汽车立即关闭油门做加速度大小为 6 m/s 2的匀减速运动,汽车恰好不碰上自行车。

求关闭油门时汽车离自行车多远?
(4).匀速运动追匀减速运动的情况(开始时v 1< v 2):v 1< v 2时,两者距离变大;v 1= v 2时,两者距离最远;v 1>v 2时,两者距离变小,相遇时满足x 1= x 2+Δx ,全程只相遇一次。

注意:若被追赶的物体做匀减速运动,一定要注意追上前该物体是否停止运动.
【例4】当汽车B 在汽车A 前方7m 时,A 正以v A =4m/s 的速度向前做匀速直线运动,而汽车B 此时速度v B =10m/s ,并关闭油门向前做匀减速直线运动,加速度大小为a =2m/s 2。

此时开始计时,则A 追上B 需要的时间是多少?
【课后巩固】
1、两个物体M 、N 同时从同一地点沿同一直线向同一方向运动,速度图象如图,则( ) A .在t=30s 时N 恰好追上M
B .M 的加速度为零,N 的加速度不为零
C .前30s 内,M 在前N 在后,后30S 内N 在前M 在后
D .前30s 内MN 之间距离越来越大,后30s 内MN 之间距离越来越小 2、甲、乙两辆汽车在平直的公路上沿同一方向作直线运动,t =0时
刻同时经过公路旁的同一个路标。

在描述两车运动的v -t 图中,直线a 、b 分别描述了甲乙两车在0-20s 的运动情况。

关于两车之间的位置关系,下列说法正确的是( )
A .在0~10 s 内两车逐渐靠近
B .在10~20 s 内两车逐渐远离
C .在5-15 s 内两车的位移相等
D .在t =10 s 时两车在公路上相遇 3、如图所示,a 、b 分别表示先后从同一地点以相同的初速度做匀变速直线运动的两个物体的速度—时间图象,则下列说法正确的是( )
A .5 s 末两物体相遇
B .4 s 末两物体在途中相遇
C .5 s 末两物体的速率相等
D .4 s 末两物体的速度相同 4、如图为两个物体A 和B 在同一直线上沿同一方向同时作匀加速运动的v-t 图线。

已知在第3s 末两个物体在途中相遇,则下列说法正确的是( ) A .两物体从同一地点出发 B .出发时B 在A 前3m 处
C .3s 末两个物体相遇后,两物体不可能再相遇
D .运动过程中B 的加速度大于A 的加速度
5、汽车B 在平直公路上行驶,发现前方沿同方向行驶的汽车A 速度较小,为了避免相撞,距A 车25m 处B 车制动,此后它们的v -t 图像如图所示,则 A .B 的加速度大小为 3.75m /s 2 B .A 、B 在t =4s 时的速度相同 C .A 、B 在O ~4s 内的位移相同 D .A 、B 两车不会相撞
6公共汽车从车站开出以4m/s 的速度沿平直公路行驶,2s 后一辆摩托车从同一车站开出匀加速追
赶,加速度为2m/s 2。

试问
(1)摩托车出发后,经多少时间追上汽车? (2)摩托车追上汽车时,离出发点多远?
(3)摩托车追上汽车前,两者最大距离是多少?
7. A 、B 两辆汽车在平直的公路上同向行驶.当A 车的速度为20 m/s 、 B 车的速度为4 m/s 且B 车
在A 车前84 m 处时,B 车开始以2 m/s 2
的加速度做匀加速运动,经过6s 后,B 车加速度突然变为零,A 车一直做匀速运动,问两车经过多长时间相遇?
8.一辆客车在平直公路以30m/s 的速度行驶,突然发现正前方40m 处有一货车正以20m/s 的速度沿同一方向匀速行驶,于是客车立刻刹车,以2m/s 2的加速度做匀减速直线运动,问此后的过程中客车能否撞到货车?
9. 某人骑自行车以8m/s 的速度匀速前进,某时刻在他前面8m 处以10m/s 的速度同向行驶的汽车开始关闭发动机,而以2m/s 2
的加速度减速前进,求: ①自行车未追上前,两车的最远距离; ②自行车需要多长时间才能追上汽车
10.2008年北京奥运会,中国男子4×100m 接力队历史性的闯入了决赛。

决赛上却因交接棒失误,被取消了比赛成绩。

假设在交接棒时,乙从起跑后到接棒前的运动视为匀加速度。

甲保持9m/s 的速度送棒,甲在跑到接力区前S 0=13.5m 的标记处时向乙发出起跑口令。

乙在接力区的前端听到口令时起跑,并恰好在速度达到与甲相同时被甲追上,完成交接棒。

求: (1)此次练习中乙在接棒前的加速度a ;
(2)若接力区的长度为L=20m ,则在完成交接棒时乙离接力区末端的距离
5 10 10 15 20 5
t /s v /(m/s)
b (乙)
a (甲)
参考答案:
1、BD
2、C
3、B
4、BC
5、BD
6、(1)5.46s (2)29.86m (3)12m
7、12s
8、不能
9、4s追上
10、(1)3米每二次方秒(2)6.5米。

相关文档
最新文档