小学代数知识点汇总

合集下载

代数知识点归纳总结

代数知识点归纳总结

代数知识点归纳总结一、基本概念1.1 数与运算数是代数的基础,代数运算是数的运算的扩展和推广。

代数运算有四则运算和乘方、开方运算等。

1.2 代数式与方程代数式是由数、字母和运算符号组成的数学表达式,方程是代数式中包含等号的代数式。

方程的根是使方程成立的数值。

1.3 不等式不等式是数和字母之间的一种关系,在代数中有重要应用。

二、代数方程2.1 一元一次方程一元一次方程是代数中最基本的方程形式,它可以表示成ax+b=0的形式,其中a和b为已知数,x为未知数。

2.2 一元二次方程一元二次方程是形如ax^2+bx+c=0的方程,其中a、b和c为已知数,x为未知数。

一元二次方程的解法有因式分解法、配方法、公式法等。

2.3 基本不等式基本不等式是一种基本的不等式形式,它可以帮助我们解决更加复杂的不等式问题。

三、多项式3.1 多项式的概念与运算多项式是由若干项次幂之和组成的代数式,它可以进行加减乘除运算。

多项式的基本运算规律包括分配律、结合律和交换律等。

3.2 多项式的因式分解与综合除法多项式的因式分解是将一个多项式表示成几个因式的成绩的形式。

综合除法是一种快速求解多项式除法的方法。

3.3 多项式的根与系数关系多项式的根与系数之间有重要的关系,这种关系可以帮助我们研究多项式的性质。

四、函数4.1 函数基本概念函数是一种特殊的量和量之间的依存关系,它可以表示成f(x)的形式,其中x为自变量,f(x)为因变量。

4.2 函数的基本性质函数的定义域、值域、图象等是函数的重要性质,它们可以帮助我们更好地理解和分析函数。

4.3 函数的图像和性质函数的图像可以帮助我们直观地理解函数,函数的性质包括单调性、奇偶性等。

五、线性代数5.1 行列式行列式是矩阵的特殊形式,它具有重要的几何和代数意义。

5.2 矩阵矩阵是用矩形数组表示的数学对象,它在代数中有着重要的应用。

5.3 矩阵的运算矩阵相加、相减、相乘等是矩阵的基本运算。

5.4 向量向量是具有大小和方向的量,它在线性代数中有着重要的应用。

小学数学代数知识大全

小学数学代数知识大全

小学数学代数知识大全代数是数学中的一个重要分支,也是数学思维的基础。

它涉及到数和符号的关系,通过符号表示数值之间的关联。

对小学生来说,学习代数知识是培养逻辑思维和解决问题能力的关键一步。

本文将为您介绍小学数学代数知识的大全,帮助小学生掌握代数的基本概念和运算规则。

一、代数基础知识1. 数字与代数符号在代数中,用字母和符号来表示数字和未知量。

例如,用字母x表示一个未知数,用加号(+)表示相加,用等号(=)表示相等。

2. 变量变量是代数中的重要概念,它表示一个未知的数。

常用的变量有x、y、z等。

通过变量,我们可以用代数式来表示数值之间的关系。

3. 代数式代数式是由数字、变量和运算符组成的式子,它可以表示多个数值之间的关系。

例如,2x+3表示2乘以x再加上3的结果。

4. 算式与代数式算式是由数字和运算符组成的式子,它的值是确定的;而代数式中包含了变量,它的值可以是不确定的。

5. 等式与方程式等式是两个代数式之间用等号连接的表达式,表示这两个代数式相等。

例如,2x+3=7就是一个等式。

方程式是含有一个或多个未知数的等式。

通过解方程式,我们可以求出未知数的值。

二、代数运算规则1. 加法和减法加法和减法是最基本的代数运算,它们遵循以下规则:- 加法的交换律:a + b = b + a- 加法的结合律:(a + b) + c = a + (b + c)- 减法与加法的关系:a - b = a + (-b)2. 乘法和除法乘法和除法也是常见的代数运算,它们遵循以下规则:- 乘法的交换律:a * b = b * a- 乘法的结合律:(a * b) * c = a * (b * c)- 乘法的分配律:a * (b + c) = a * b + a * c- 除法与乘法的关系:a ÷ b = a * (1/b)三、代数方程的解法解代数方程是代数学习的重点,解方程的一般步骤如下:1. 对方程进行化简,消去括号和分数等运算。

小学数学数与代数知识点汇总

小学数学数与代数知识点汇总

小学数学数与代数知识点汇总一、数与运算1.数的认识:自然数、整数、有理数、实数2.顺序数的比较:大小比较、比大小的符号3.加法与减法:加法和减法的意义、加法和减法的性质、整数的加减法4.乘法与除法:乘法和除法的意义、乘法和除法的性质、整数的乘除法5.数的倍数和因数:整数的倍数、整数的因数、公倍数、最大公约数、最小公倍数6.小数:小数的读法、小数的比较、小数的四则运算7.分数:分数的意义、分数的大小比较、分数的加减法、分数的乘除法8.百分数:百分数的意义、百分数的相互转化、百分数的加减乘除二、代数式和方程1.代数式的认识:代数式的定义、代数式的运算、多项式2.代数式的计算:代数式的约分、代数式的化简、代数式的展开与因式分解3.代数式的应用:根据实际问题编写代数式、代数式的求值4.方程的认识:方程的定义、方程的解、解方程的意义、解方程的方法5.解一元一次方程:一元一次方程的解法、方程的意义、方程的实际应用6.解一元一次不等式:一元一次不等式的解法、不等式的意义、不等式的实际应用7.解一元一次方程组:一元一次方程组的解法、方程组的意义、方程组的实际应用三、数的性质和运算1.数的分类:分数、小数、整数及其运算2.数的性质:数的大小比较、数的相反数、数的绝对值、数的相反数与绝对值的关系3.定量关系:数与长度的关系、数与面积的关系、数与体积的关系4.倍数与公约数:整数的倍数和倍数的性质、整数的公约数和公约数的性质5.比例:比例的意义、比例的性质、比例的应用6.百分数:百分数的意义、百分数的相互转化、加减乘除百分数的方法7.降幂与乘方:降幂与升幂的意义、乘方及其运算法则、次乘方的意义和运算四、数据的应用1.数据的收集:问卷调查、实地调查、统计资料2.数据的整理:频数表、频数图、折线图3.数据的分析:数据的中心趋势、数据的离散程度、数据的比较4.数据的应用:数据的解读、数据的预测、数据的比较和判断五、几何基础1.点、线、面:基本图形的认识、基本图形的命名2.直线与线段:直线、线段、射线的认识和性质3.角的认识:角的定义、角的分类、角的性质4.三角形:三角形的分类、三角形的性质、等腰三角形、等边三角形5.四边形:平行四边形的性质、矩形的性质、菱形的性质、正方形的性质6.圆:圆的性质、圆的周长和面积7.空间几何图形:长方体、正方体、棱柱、棱锥、棱台、球体等的性质六、图形的应用1.图形的绘制:使用尺规作图仪器绘制图形2.图形的变换:平移、旋转、对称、放缩等图形的变换3.图形的投影:直线的平行投影、线段的视、上、右投影、线段的和、差投影以上是小学数学中的数与代数知识点汇总,希望对你的学习有所帮助。

小学数学代数知识点大全

小学数学代数知识点大全

小学数学代数知识点大全代数是数学中的一个重要分支,也是小学数学的重要内容之一。

本文将介绍一些小学数学代数的基础知识点,帮助同学们更好地理解和掌握代数概念。

一、代数符号和表达式代数中使用的符号包括:希腊字母、拉丁字母和数字。

其中,希腊字母如α、β、γ等常用于表示角度,拉丁字母如x、y、z等常用于表示未知数或变量。

数字则表示具体的数值。

代数表达式由数字、字母和运算符号组成,可以表示数的计算关系。

例如:2x + 3y,其中2、3为数字,x、y为未知数,+为运算符号。

代数表达式可以进行运算,得到具体的数值。

二、代数式的基本运算代数式是由数字、字母和运算符号组成的表达式。

代数式的基本运算包括:加法、减法、乘法和除法。

1. 加法:代数式相加时,可以合并同类项。

例如:2x + 3x = 5x,其中2x和3x都是x的项,它们可以合并为5x。

2. 减法:代数式相减时,可以通过转化为加法运算来处理。

例如:2x - 3x = 2x + (-3x),其中-3x可以理解为3x的相反数。

3. 乘法:代数式相乘时,可以按照分配律进行展开。

例如:2(x + y) = 2x + 2y,其中2乘以括号内的每一项。

4. 除法:代数式相除时,可以利用乘法的逆运算。

例如:(2x + 4y) / 2 = 2x / 2 + 4y / 2,其中分子和分母都除以2。

基本运算是代数的基础,通过熟练掌握基本运算规则,可以简化复杂的代数计算。

三、代数方程和方程式代数方程是一个等式,其中包含一个或多个未知数,通过求解可以得到未知数的取值。

例如:2x + 3 = 7,这是一个代数方程,通过求解可以得到x的值为2。

解方程的基本步骤包括:移项、合并同类项、化简、消元和求解等。

求解代数方程可以通过反运算和化简等方法,逐步推导得到未知数的值。

四、代数中的比例和比例关系比例是代数中常见的概念,用于表示两个或多个量之间的关系。

比例关系可以用分数、整数比、百分数等形式表示。

代数知识点总结小学

代数知识点总结小学

代数知识点总结小学一、代数基础知识1. 数字的基本运算小学阶段,学生已经掌握了加减乘除四则运算,能够进行简单的数学计算。

学生需要熟练掌握加减乘除运算的基本规则,并能够独立完成简单的计算题目。

2. 字母的基本概念学生需要了解字母是代表数的符号,可以表示任意一个数。

字母通常用来表示未知数或变量,例如x,y,z等。

学生需要通过练习掌握字母的读音、书写和运用方法。

3. 数字和字母的组合在代数中,数字和字母可以组合成代数式,例如3x+5,9y-2等。

学生需要理解代数式的含义,并能够进行有关代数式的简单计算。

4. 代数式的基本性质代数式有着一些基本的性质,例如交换律、结合律、分配律等。

学生需要了解这些代数式的基本性质,并能够应用到实际问题中。

二、代数方程式1. 一元一次方程一元一次方程是指只含有一个未知数,并且未知数的最高次数为一的方程。

例如:2x+3=7。

学生需要掌握一元一次方程的求解方法,例如移项、通分、消元等。

2. 二元一次方程二元一次方程是指含有两个未知数,并且未知数的最高次数为一的方程。

例如:2x+y=3。

学生需要了解二元一次方程的概念,并能够进行简单的二元一次方程求解。

3. 一元二次方程一元二次方程是指含有一个未知数,并且未知数的最高次数为二的方程。

例如:x^2-4x+3=0。

学生需要了解一元二次方程的求解方法,例如配方法、公式法等。

4. 代数方程式的应用问题代数方程式可以应用到实际生活中的问题中,例如速度、距离、时间的关系问题等。

学生需要通过实际问题的训练,掌握代数方程式的应用方法。

三、代数知识的应用1. 代数公式在学习代数的过程中,学生需要掌握一些代数公式,例如整式乘法公式、完全平方公式、二次根公式等。

掌握这些代数公式可以帮助学生更好地解决实际问题。

2. 代数式的化简学生需要学会对代数式进行化简,例如x+x+3x可以化简为5x,2x^2+3x+4x^2可以化简为6x^2+3x。

化简代数式可以使计算更加简便和准确。

小学数学数与代数知识点整理

小学数学数与代数知识点整理

小学数学数与代数知识点整理一、数的大小和比较1.数的比较:数的大小关系,如大于、小于、等于。

2.数的顺序:自然数、整数、有理数的大小顺序。

二、数的性质和运算1.数的分类:自然数、整数、有理数、无理数。

2.数的性质:奇数、偶数、质数、合数。

3.数的运算:加法、减法、乘法、除法的基本概念和运算规则。

4.数的整除性:倍数、约数、公因数、最大公约数等概念。

三、数的分数表示和运算1.分数的概念:分子、分母、真分数、假分数。

2.分数与整数的运算:加法、减法、乘法、除法。

3.分数相比较:大小比较和等值判断。

四、数的小数表示和运算1.小数的定义:小数点的概念。

2.小数的读法和写法:整数、小数部分的读法和写法。

3.小数与分数的相互转化。

4.小数运算:加法、减法、乘法、除法。

五、数的倍数和约数1.倍数的概念:一个数能整除另一个数。

2.约数的概念:一个数能被另一个数整除。

3.最大公约数:两个数公共的约数中最大的那个数。

4.最小公倍数:两个数公共的倍数中最小的那个数。

六、数的代数式和数的应用1.代数式的概念:数、字母和运算符号的组合。

2.代数式的计算:代数式的加减乘除运算。

3.代数式的应用:通过代数式解决实际问题。

七、数的方程式1.方程式的概念:等号连接的代数式。

2.一元一次方程式:解方程的方法和步骤。

3.方程式的应用:通过方程式解决实际问题。

八、数的图形的认识与应用1.数的图形的概念:点、线、面。

2.平凡形的认识:正方形、长方形、三角形、圆形、梯形等。

3.图形的属性:边、角、面积、周长等。

4.图形的运算:图形的加法和减法。

总结:小学数学数与代数知识点主要包括数的大小和比较、数的性质和运算、数的分数表示和运算、数的小数表示和运算、数的倍数和约数、数的代数式和数的应用、数的方程式以及数的图形的认识与应用等内容。

在学习过程中,要注重理论与实践相结合,通过解决实际问题来巩固所学知识。

同时,要培养学生的计算和推理能力,让他们能够自主思考和解决问题。

小学数学代数知识点总结

小学数学代数知识点总结

小学数学代数知识点总结在小学数学中,代数是一个重要的知识板块,它为学生今后学习更复杂的数学知识打下了基础。

接下来,让我们一起详细了解一下小学数学代数的主要知识点。

一、用字母表示数用字母表示数是代数的基础。

通过使用字母,我们可以更简洁、更普遍地表达数量关系。

例如,如果一个苹果的价格是 5 元,我们买了 x 个苹果,那么总价就是 5x 元。

这里的 x 可以代表任何数量的苹果,它具有不确定性和一般性。

用字母表示数时,需要注意以下几点:1、字母与数字相乘时,乘号可以省略,数字写在字母前面。

比如3×a 可以写成 3a。

2、当数字是 1 与字母相乘时,1 可以省略不写。

比如 1×a 写成 a。

二、简易方程方程是含有未知数的等式。

例如:x + 5 = 12 就是一个方程,其中 x 是未知数。

1、等式的性质(1)等式两边同时加上或减去同一个数,等式仍然成立。

(2)等式两边同时乘或除以同一个不为 0 的数,等式仍然成立。

2、解方程求解方程的过程就是解方程。

我们可以通过等式的性质来解方程。

比如,对于方程 2x + 3 = 9,首先在等式两边同时减去 3,得到 2x = 6,然后在等式两边同时除以 2,得到 x = 3。

三、列方程解决问题列方程解决问题是代数知识的重要应用。

在解决问题时,我们首先要找出题目中的等量关系,然后设未知数,根据等量关系列出方程,最后解方程并检验答案。

例如,小明有一些邮票,小红的邮票数比小明的 2 倍多 5 张,小红有 35 张邮票,求小明有多少张邮票。

我们设小明有 x 张邮票,根据等量关系“小明邮票数×2 + 5 =小红邮票数”,可以列出方程 2x + 5 = 35,解得 x = 15。

四、代数式代数式是由数和表示数的字母经有限次加、减、乘、除、乘方和开方等代数运算所得的式子。

例如:3x + 2、5y 1 等都是代数式。

代数式的运算遵循一定的规则,比如合并同类项。

小学数学代数初步知识

小学数学代数初步知识
的方向不变
不等式的传递性:如果 a>b,b>c,那么a>c
不等式的可逆性:如果 a>b,那么b<a
不等式的对称性:如果 a>b,那么b<a
不等式的单调性:如果 a>b,那么a+c>b+c,
a-c>b-c
04
函数初步知识
函数的定义与性质
函数的定义:函数是一种 特殊的数学关系,表示两 个变量之间的对应关系。
解一元一次不等式组的特殊技 巧:利用数轴、数形结合,找 出公共解集
二元一次不等式组的解法
解二元一次不等式组:通过解每个不等 式,得到解集,然后找出公共解集
解集表示:用集合的形式表示解集,如 {x|x>0, y>0}
解集画图:在坐标轴上画出解集,表示 不等式组的解集范围
解集性质:解集表示不等式组的解集, 包括所有满足不等式组的解

代数式的分类: 单项式、多项式、
整式、分式等
代数式的运算: 加减乘除、幂、
开方等
代数式的化简: 合并同类项、去 括号、去分母等
代数式的应用: 解方程、解不等 式、求函数值等
02
方程与方程组
一元一次方程的解法
解一元一次方程的基本步骤:去分母、去括号、移项、合并同类项、系数化为1 解一元一次方程的常用方法:代入法、加减法、交叉相乘法 解一元一次方程的注意事项:注意符号的变化,避免漏解或多解 解一元一次方程的应用:解决实际问题,如行程问题、工程问题等
二元一次方程组的解法
代入法:将方程组中的一个方程的未知 数用另一个方程的未知数表示,然后代 入另一个方程求解
加减法:将方程组中的两个方程相加或 相减,消去一个未知数,然后求解

小学数学数与代数知识点汇总

小学数学数与代数知识点汇总

小学数学《数与代数》知识点汇总(一)数的认识1整数【正数、0、负数】一、一个物体也没有,用0表示。

0和1、2、3……都是自然数。

自然数是整数。

二、最小的一位数是1,最小的自然数是0。

三、零上4摄氏度记作+4℃;零下4摄氏度记作-4℃。

“+4”读作正四。

“-4”读作负四。

+4也可以写成4。

四、像 +4、19、+8844这样的数都是正数。

像-4、-11、-7、-155这样的数都是负数。

五、0既不是正数,也不是负数。

正数都大于0,负数都小于0。

六、通常情况下,比海平面高用正数表示,比海平面低用负数表示。

七、通常情况下,盈利用正数表示,亏损用负数表示。

八、通常情况下,上车人数用正数表示,下车人数用负数表示。

九、通常情况下,收入用正数表示,支出用负数表示。

十、通常情况下,上升用正数表示,下降用负数表示。

2小数【有限小数、无限小数】一、分母是10、100、1000……的分数都可以用小数表示。

一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……二、整数和小数都是按照十进制计数法写出的数,个、十、百……以及十分之一、百分之一……都是计数单位。

每相邻两个计数单位间的进率都是10。

三、每个计数单位所占的位置,叫做数位。

数位是按照一定的顺序排列的。

四、小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。

五、根据小数的性质,通常可以去掉小数末尾的“0”,把小数化简。

六、比较小数大小的一般方法:先比较整数部分的数,再依次比较小数部分十分位上的数,百分位上的数,千分位上的数,从左往右,如果哪个数位上的数大,这个小数就大。

七、把一个数改写成用“万”或“亿”作单位的数,在万位或亿位右边点上小数点,再在数的后面添写“万”字或“亿”字。

八、求小数近似数的一般方法:1先要弄清保留几位小数;2根据需要确定看哪一位上的数;3用“四舍五入”的方法求得结果。

九、整数和小数的数位顺序表:3分数【真分数、假分数】一、把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。

代数公式的知识点总结

代数公式的知识点总结

代数公式的知识点总结一、整式的加减。

1. 单项式。

- 定义:由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式。

例如:3x,-2y,5,a等都是单项式。

- 系数:单项式中的数字因数叫做这个单项式的系数。

例如在单项式3x中,系数是3;在单项式-(2)/(3)y中,系数是-(2)/(3)。

- 次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。

例如单项式x^2y的次数是2 + 1=3。

2. 多项式。

- 定义:几个单项式的和叫做多项式。

例如2x+3y,x^2-2x + 1等都是多项式。

- 项:在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。

例如在多项式x^2-2x+3中,x^2、-2x、3都是它的项,3是常数项。

- 次数:多项式里次数最高项的次数,叫做这个多项式的次数。

例如多项式x^3-x^2+2的次数是3。

3. 整式。

- 单项式和多项式统称为整式。

4. 同类项。

- 定义:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

几个常数项也是同类项。

例如3x^2y与-5x^2y是同类项,2与-7是同类项。

- 合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。

合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母连同它的指数不变。

例如3x^2y - 5x^2y=(3 - 5)x^2y=-2x^2y。

二、一元一次方程。

1. 方程。

- 定义:含有未知数的等式叫做方程。

例如2x+3 = 7,x - y=5等都是方程。

2. 一元一次方程。

- 定义:只含有一个未知数(元),未知数的次数都是1,等号两边都是整式的方程叫做一元一次方程。

一般形式是ax + b = 0(a≠0),例如3x+5 = 0就是一元一次方程。

- 解方程的步骤:- 去分母(若方程中有分母时):根据等式的性质2,在方程两边同时乘以各分母的最小公倍数,将分母去掉。

例如对于方程(x+1)/(2)+(x - 1)/(3)=1,先找出2和3的最小公倍数6,然后方程两边同时乘以6得到3(x + 1)+2(x - 1)=6。

小学数学代数知识点汇总

小学数学代数知识点汇总

小学数学代数知识点汇总一.整数和小数1.最小的一位数是1,最小的自然数是02.小数的意义:把整数“1”平均分成10份、100份、1000份……这样的一份或几份分别是十分之几、百分之几、千分之几……可以用小数来表示。

3.小数点左边依次是整数部分,小数点右边是小数部分,依次是十分位、百分位、千分位……4.小数的分类:小数有限小数5.整数和小数都是按照十进制计数法写出的数。

6.小数的性质:小数的末尾添上0或者去掉0,小数的大小不变。

7.小数点向右移动一位、二位、三位……原来的数分别扩大10倍、100倍、1000倍……小数点向左移动一位、二位、三位……原来的数分别缩小10倍、100倍、1000倍……二.数的整除1.整除:整数a除以整数b(b≠0),除得的商正好是整数而且没有余数,我们就说a能被b整除,或者说b能整除a。

2.约数、倍数:如果数a能被数b整除,a就叫做b的倍数,b就叫做a的约数。

3.一个数倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。

一个数约数的个数是有限的,最小的约数是1,最大的约数是它本身。

4.按能否被2整除,非0的自然数分成偶数和奇数两类,能被2整除的数叫做偶数,不能被2整除的数叫做奇数。

5.按一个数约数的个数,非0自然数可分为1、质数、合数三类。

质数:一个数,如果只有1和它本身两个约数,这样的数叫做质数。

质数都有2个约数。

合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。

合数至少有3个约数。

最小的质数是2,最小的合数是41~20以内的质数有:2、3、5、7、11、13、17、191~20以内的合数有“4、6、8、9、10、12、14、15、16、186.能被2整除的数的特征:个位上是0、2、4、6、8的数,都能被2整除。

能被5整除的数的特征:个位上是0或者5的数,都能被5整除。

能被3整除的数的特征:一个数的各位上数的和能被3整除,这个数就能被3整除。

7.质因数:如果一个自然数的因数是质数,这个因数就叫做这个自然数的质因数。

小学数学代数知识点大全

小学数学代数知识点大全

小学数学代数知识点大全代数是数学的一个重要分支,通过符号和变量的运算来研究数学问题。

在小学阶段,学生开始接触代数知识,这有助于培养他们的逻辑思维和问题解决能力。

以下是小学数学代数的一些重要知识点:一、基础概念:1. 变量与常数:数学中常用的字母表示未知数,如x、y,这些称为变量。

而具体的数值称为常数。

2. 表达式与算式:由数字、运算符、变量和常数通过运算得到的式子称为表达式。

具有等号的式子称为算式。

3. 代数式:由数字、变量和运算符组成的式子称为代数式。

代数式可以是一个项,也可以是多个项的和、差、积或商。

4. 多项式:含有两个或两个以上不同变量的代数式称为多项式。

多项式的每一部分称为一个项,项之间通过加号或减号连接。

5. 方程与等式:含有未知数的等式称为方程。

通过求解方程可以确定未知数的值。

二、基本运算:1. 加法与减法:两个数的和称为它们的和,减法是加法的逆运算。

2. 乘法与除法:两个数的积称为它们的乘积,除法是乘法的逆运算。

3. 混合运算:将加法、减法、乘法和除法结合运用。

三、方程与不等式:1. 一元一次方程:含有一个未知数的一次方程,如2x+3=7。

2. 一元一次不等式:含有一个未知数的一次不等式,如3x-5<10。

3. 一元二次方程:含有一个未知数的二次方程,如x^2+2x-3=0。

4. 一元二次不等式:含有一个未知数的二次不等式,如x^2-4>0。

5. 两个未知数的方程:含有两个未知数的方程,如2x+3y=8。

四、函数:1. 函数是自变量与因变量之间的一种对应关系,常用f(x)表示。

2. 定义域与值域:函数中自变量的所有可能取值称为函数的定义域,而因变量的所有可能取值称为函数的值域。

3. 图像与坐标轴:函数的图像可以在坐标轴上表示,自变量在横轴上,因变量在纵轴上。

4. 一次函数与二次函数:只含有一次项的函数称为一次函数,如y=2x+1;含有二次项的函数称为二次函数,如y=x^2。

简单代数知识点归纳总结

简单代数知识点归纳总结

简单代数知识点归纳总结一、代数的基本概念1. 数:数是我们用来计算的基本单位。

数可以分为自然数、整数、有理数和实数等。

自然数是最简单的数,它从1开始一直往上数;整数是包括0在内的正整数和负整数;有理数是可以写成分数形式的数;实数是包括有理数和无理数的所有数的集合。

2. 代数式:代数式是由数字、字母和运算符号组成的表达式。

代数式中的字母通常表示未知数,我们用字母来代替具体的数,这样就可以用代数式来表示一类数。

3. 方程和不等式:方程是含有未知数的等式,通常是用来表示两个量相等的关系;不等式是含有未知数的不等式,通常是用来表示大小关系。

4. 函数:函数是一种特殊的映射关系,它描述的是自变量和因变量之间的对应关系。

函数通常用f(x)表示,其中x为自变量,f(x)为因变量。

二、代数的基本运算1. 加法和减法:加法和减法是最基本的运算,它们描述的是两个数的相对位置关系。

在加法中,我们将两个数相加得到一个数,称为和;在减法中,我们将一个数减去另一个数,得到一个差。

2. 乘法和除法:乘法和除法是加法和减法的扩展,它们描述的是两个数的数量关系。

在乘法中,我们将两个数相乘得到一个数,称为积;在除法中,我们将一个数除以另一个数,得到一个商。

3. 幂运算和根运算:幂运算和根运算是乘法和除法的扩展,它们描述的是一个数的指数关系。

在幂运算中,我们将一个数乘以自身多次得到一个数,称为幂;在根运算中,我们将一个数开多次方得到一个数,称为根。

4. 多项式的加法和减法:多项式是由单项式相加组成的代数式,我们可以对多项式进行加法和减法运算,将同类项相加或相减得到一个新的多项式。

5. 多项式的乘法:多项式的乘法是代数中比较复杂的运算,我们可以使用分配律和结合律来进行多项式的乘法运算,得到一个新的多项式。

6. 多项式的除法:多项式的除法是指将一个多项式除以另一个多项式,得到商和余数的过程。

我们可以使用长除法或者综合除法来进行多项式的除法运算。

小学代数知识点汇总

小学代数知识点汇总

专题一数的认识第一课时整数的基本认识基础知识一、整数的意义1、整数的分类:整数分为:正整数、0、负整数2、自然数定义:表示物体个数的数(如0,1,2,3,4……)叫自然数,一个物体也没有用“0”表示,“0”是最小的自然数,自然数有无限多个,所以自然数没有最大值。

基本单位:“1”是自然数的基本单位,任何非零的自然数都有若干个“1”组成。

两种含义:(1)基数:自然数表示物体多少时叫做基数,如“8个苹果”中“8”是基数。

(2)序数:自然数表示物体次序时叫做序数,如“丽丽站在9排3列的位置”,这里“9”“3”都是序数。

二、计数和计数单位1、计数定义:计数亦称数数。

算术的基本概念之一。

指数事物个数的过程。

计数时,通常是手指着每一个事物,一个一个地数,口里念着正整数列里的数1,2,3,4,5等,和所指的事物进行一一对应,这种过程称为计数。

上述逐个地计算事物的方法,称为逐一计数。

若按几个一群的方法计数,则称为分群计数。

2、计数单位:计数单位应包含整数部分和小数部分两大块,并按以下顺序排列:……千亿、百亿、十亿、亿、千万、百万、十万、万、千、百、十、个,整数部分没有最大的计数单位。

三、十进制计数法十进制计数法的定义:所谓“十进制”就是每相邻的两个计数单位之间的关系是:一个大单位等于十个小单位,也就是说它们之间的进率是“十”。

四、数位顺序表1、数位、位值和位数数位:记数时,计数单位要按照一定的顺序排列起来,它们所占的位置叫做数位。

如8346中“4”排在右起第二位,即“4”所在的数位是十位。

位值:数字本身与它所占的位置结合起来所表示的数值叫做“位值”。

如“3567”中,个位上的“7”表示7个一,百位上的“5”表示5个百。

位数:一个自然数用几个数字写出来,有几个数字就是几位数。

如“8865”用4个数字写出来就是四位数。

2、整数的数位顺序表通常把按照数位的顺序从右到左排列的数位表,叫做数位顺序表。

数级:按照我国的读数习惯,采用四位分级法,即从个位起,每四个数位作为一级。

小学数学_数与代数知识点总结

小学数学_数与代数知识点总结

【数与代数】一、数的相关概念(一)整数1.整数:自然数和负整数都是整数。

2.自然数:我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。

一个物体也没有,用0表示。

0也是自然数。

3.计数单位:一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。

每相邻两个计数单位之间的进率都是10。

这样的计数法叫做十进制计数法。

4.数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。

5.能被2整除的数叫做偶数;不能被2整除的数叫做奇数。

0也是偶数。

自然数按能否被2整除的特征可分为奇数和偶数。

6.倍数和因数的特征:一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。

一个数的倍数的个数是无限的,其中最小的倍数是它本身。

个位上是0、2、4、6、8的数,都能被2整除。

个位上是0或5的数,都能被5整除。

一个数的各位上的数的和能被3整除,这个数就能被3整除。

一个数的各位数上的和能被9整除,这个数就能被9整除。

能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。

7.只有1和它本身两个因数的数叫做质数(或素数);除了1和它本身还有别的因数的数叫做合数。

1不是质数也不是合数。

100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。

8.公因数只有1的两个数,叫做互质数。

成互质关系的两个数,有下列几种情况: 1和任何自然数互质;相邻的两个自然数互质;两个不同的质数互质。

9.公倍数和公因数的特征:如果较小数是较大数的因数,那么较小数就是这两个数的最大公因数。

如果两个数是互质数,它们的最大公因数就是1。

如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。

如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。

几个数的公因数的个数是有限的,而几个数的公倍数的个数是无限的。

小学数学数与代数知识点归纳汇总

小学数学数与代数知识点归纳汇总

小学数学数与代数知识点归纳汇总数与代数是小学数学的一大重要内容,它包括了数的认识、数的运算、数的应用以及代数的基础知识。

下面将对小学数与代数的知识点进行归纳汇总。

一、数的认识1.自然数:自然数是最基本的数,包括0和正整数。

2.整数:在自然数的基础上添加了负整数。

3.分数:分数是整数除法的结果,由分子和分母组成。

4.小数:小数是有限小数和无限循环小数的统称。

5.百分数:将数值表示为百分数形式。

6.负数:负数是表示比零更小的数。

二、数的运算1.加减运算:加法是将两个数的值进行相加,减法是用一个数减去另一个数。

2.乘除运算:乘法是将两个数相乘,除法是一个数除以另一个数。

3.乘方运算:乘方是一个数自乘若干次。

4.多位数的加减乘除运算:多位数的运算需要先进行位数对齐再进行运算。

5.逆运算:加法的逆运算是减法,减法的逆运算是加法,乘法的逆运算是除法,除法的逆运算是乘法。

三、数的应用1.排列与组合:排列是指从给定的元素中按照一定规则选取若干个元素进行排序,组合是从给定的元素中按照一定规则选取若干个元素不进行排序。

2.数据统计:包括数据的收集、整理、画图以及数据的分析与总结。

3.平均数:平均数是一组数据的总和除以数据的个数。

4.画图:小学数学中常常涉及到的画图内容包括直线、曲线、圆、矩形、三角形、长方体等。

四、代数的基础知识1.代数式:代数式是用字母表示数的式子。

2.字母代数式:用字母代表数的代数式。

3.代数式的运算:包括代数式的加减乘除运算。

4.代数方程与解方程:代数方程是含有未知数的等式,解方程是求方程的解。

5.代数不等式:代数不等式是含有不等号的代数式。

6.平方与平方根:平方是一个数自乘两次,平方根是一个数的的算术平方根。

7.正比例与反比例:正比例是两个量成正比,反比例是两个量成反比。

8.函数与方程:函数是两个变量之间的一种特殊关系,方程是含有未知数的等式。

以上就是小学数与代数的知识点的简要归纳汇总。

通过学习这些知识点,可以帮助学生建立数学思维、培养逻辑思维能力,为深入学习高中阶段的数学打下坚实的基础。

小学数学数与代数知识点

小学数学数与代数知识点

小学数学数与代数知识点1.自然数与整数:自然数是从1开始的数,用N表示。

自然数集合是一个无限集合。

整数由正整数、0和负整数组成,用Z表示。

2.定义和性质:自然数有加法和乘法运算,满足结合律、交换律、分配律等性质。

零是加法的单位元,即对于任意自然数n,n+0=0+n=n。

乘法有单位元1,即对于任意自然数n,n×1=1×n=n。

加法和乘法满足交换律和结合律。

3.数的比较和排序:通过数的大小可以进行比较和排序,比较时大于用“>”表示,小于用“<”表示,等于用“=”表示。

可以通过图形和数轴对数进行排序,数轴上靠右的数较大,靠左的数较小。

4.相反数和绝对值:对于任意整数a,存在唯一的整数-b,使得a+b=0,称-b为a的相反数,记作-a。

绝对值是一个非负数,表示一个数与0的距离。

对于任意实数a,记作,a,有以下性质:①若a≥0,则,a,=a。

②若a<0,则,a,=-a。

③,a,≥0,且,a,=0的充分必要条件是a=0。

5.加减法运算:加法是将两个数相加,得到一个和。

减法是从一个数中减去另一个数,得到一个差。

加法和减法具有逆运算的性质。

对于任意实数a,b,c,有以下性质:①加法交换律:a+b=b+a。

②减法定义:a-b=a+(-b)。

③减法的逆运算:a+(-a)=0,a-0=a。

④加法和减法的结合律:(a+b)+c=a+(b+c),(a-b)-c=a-(b+c)。

6.乘法和除法运算:乘法是将两个数相乘,得到一个积。

除法是将一个数分成若干等分,得到一个商。

乘法和除法具有逆运算的性质。

对于任意实数a,b,c(其中b≠0,c≠0),有以下性质:①乘法交换律:a×b=b×a。

②除法定义(不考虑除0):a÷b=a×(1÷b)。

③除法的逆运算:a×(1÷a)=1,a÷1=a。

④乘法和除法的结合律:(a×b)×c=a×(b×c),(a÷b)÷c=a÷(b÷c)。

小学数学—代数初步知识

小学数学—代数初步知识

第三章代数初步知识一、用字母表示数1 用字母表示数的意义和作用* 用字母表示数,可以把数量关系简明的表达出来,同时也可以表示运算的结果。

2用字母表示常见的数量关系、运算定律和性质、几何形体的计算公式(1)常见的数量关系路程用s表示,速度v用表示,时间用t表示,三者之间的关系:s=vtv=s/tt=s/v总价用a表示,单价用b表示,数量用c表示,三者之间的关系:a=bcb=a/cc=a/b(2)运算定律和性质加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)乘法交换律:ab=ba乘法结合律:(ab)c=a(bc)乘法分配律:(a+b)c=ac+bc减法的性质:a-(b+c) =a-b-c(3)用字母表示几何形体的公式长方形的长用a表示,宽用b表示,周长用c表示,面积用s表示。

c=2(a+b)s=ab正方形的边长a用表示,周长用c表示,面积用s表示。

c=4as=a²平行四边形的底a用表示,高用h表示,面积用s表示。

s=ah三角形的底用a表示,高用h表示,面积用s表示。

s=ah/2梯形的上底用a表示,下底b用表示,高用h表示,中位线用m表示,面积用s表示。

s=(a+b)h/2s=mh圆的半径用r表示,直径用d表示,周长用c表示,面积用s表示。

c=∏d=2∏rs=∏r²扇形的半径用r表示,n表示圆心角的度数,面积用s表示。

s=∏nr²/360长方体的长用a表示,宽用b表示,高用h表示,表面积用s表示,体积用v表示。

v=shs=2(ab+ah+bh)v=abh正方体的棱长用a表示,底面周长c用表示,底面积用s表示,体积用v表示.s=6a²v=a³圆柱的高用h表示,底面周长用c表示,底面积用s表示,体积用v表示.s侧=chs表=s侧+2s底v=sh圆锥的高用h表示,底面积用s表示,体积用v表示.v=sh/33 用字母表示数的写法数字和字母、字母和字母相乘时,乘号可以记作“.”,或者省略不写,数字要写在字母的前面。

小学数学数与代数知识点整理

小学数学数与代数知识点整理

小学数学数与代数知识点整理小学数学数与代数知识点整理第一章数和数的运算一、概念一)整数1.整数的意义:整数包括自然数和负整数。

2.自然数:自然数是用来表示物体个数的数,从1开始逐个增加。

3.计数单位:计数单位包括一(个)、十、百、千、万、十万、百万、千万、亿等。

这种计数法被称为十进制计数法,相邻两个计数单位的进率都是10.4.数位:计数单位按一定顺序排列,它们所占的位置叫做数位。

5.数的整除:当整数a除以整数b(b≠0)时,如果商是整数而没有余数,我们就说a能被b整除,或者说b能整除a。

如果数a能被数b(b≠0)整除,a就叫做b的倍数,b就叫做a的因数(或a的约数)。

倍数和因数是相互依存的。

例如,35能被7整除,所以35是7的倍数,7是35的因数。

1)一个数的因数个数有限,其中最小的因数是1,最大的因数是它本身。

例如,10的因数有1、2、5、10,其中最小的因数是1,最大的因数是10.2)一个数的倍数个数无限,其中最小的倍数是它本身。

3的倍数有:3、6、9、12……其中最小的倍数是3,没有最大的倍数。

3)常用规律:①个位上是2、4、6、8的数都能被2整除,例如202、480、304等。

②个位上是0或5的数都能被5整除,例如5、30、405等。

③一个数的各位数之和能被3整除,这个数就能被3整除,例如12、108、204等。

④一个数各位数之和能被9整除,这个数就能被9整除。

能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。

⑤一个数的末两位数能被4或25整除,这个数就能被4或25整除,例如16、404、1256都能被4整除,50、325、500、1675都能被25整除。

⑥能被2整除的数叫做偶数,不能被2整除的数叫做奇数。

自然数按能否被2整除的特征可分为奇数和偶数。

⑦质数和合数的概念:一个数如果只有1和它本身两个因数,这样的数叫做质数(或素数)。

100以内的质数有:2、3、5、7、11、13、17、…79、83、89、97.一个数如果除了1和它本身还有别的因数,这样的数叫做合数,例如4、6、8、9、12都是合数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题一 数的认识 第一课时 整数的基本认识基础知识、 整数的意义1、整数的分类:整数分为:正整数、 0、负整数2、自然数进行一一对应,这种过程称为计数。

上述逐个地计算事物的方法,称为逐一计数。

若按几 个一群的方法计数,则称为分群计数。

2、计数单位:计数单位应包含整数部分和小数部分两大块,并按以下顺序排列:……千亿、百亿、 十亿、亿、千万、百万、十万、万、千、百、十、个,整数部分没有最大的计数单位。

三、 十进制计数法 十进制计数法的定义:所谓“十进制”就是每相邻的两个计数单位之间的关系是: 位,也就是说它们之间的进率是“十”。

四、 数位顺序表 1、 数位、位值和位数数位: 记数时,计数单位要按照一定的顺序排列起来,它们所占的位置叫做数位。

如 8346 中“ 4”排在右起第二位,即“ 4”所在的数位是十位。

位值: 数字本身与它所占的位置结合起来所表示的数值叫做“位值”。

如“ 个位上的“ 7”表示 7 个一,百位上的“ 5”表示 5 个百。

定义:表示物体个数的数(如 0,1,2,3,4 )叫自然数,一个物体也没有用“0”表示,0”是最小的自然数,自然数有无限多个,所以自然数没有最大值。

基本单位:“ 1”是自然数的基本单位,任何非零的自然数都有若干个“ 1”组成。

两种含义:( 1)基数:自然数表示物体多少时叫做基数,如“8 个苹果”中“ 8”是基数。

2)序数:自然数表示物体次序时叫做序数, 如“丽丽站在 9排 3列的位置” ,这里“ 9”“ 3”都是序数。

计数和计数单位1、计数定义:计数亦称数数。

算术的基本概念之一。

指数事物个数的过程。

计数时,通常是手指着每一个事物,一个一个地数,口里念着正整数列里的数1,2,3,4,5 等,和所指的事物一个大单位等于十个小单 3567”中,位数:一个自然数用几个数字写出来,有几个数字就是几位数。

如“ 8865 ”用4个数字写出来就是四位数。

2、整数的数位顺序表 通常把按照数位的顺序从右到左排列的数位表,叫做数位顺序数级:按照我国的读数习惯,采用四位分级法,即从个位起,每四个数位作为一级。

个、十、百、千四个计数单位叫做个级;万、十万、百万和千万四个计数单位叫做万级; 亿、 十亿、百亿和千亿四个计数单位叫做亿级……个级、万级、亿级……称为数级。

准确数和近似数 准确数:即这个数的最原始数据,没有经过约分、化简、或者四舍五入等任何运算之前的 表达方法。

近似数:近似数即经过四舍五入、 进一法或者去尾法等方法得到的一个与原始数据相差 大的一个数 五、基本方法 1、整数的读写法 (1)整数的读法:从高位到低位,一级一级地读。

读亿级、万级时,先按照个级的读法 去读,再在后面加一个“亿”或“万”字。

每一级末尾的 0都不读出来,其它数位连续有 几个0都只读一个零。

(2)整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在 那个数位上写0。

2、整数的改写法 整数改写成用"万"或"亿"作单位的数:把一个较大的多位数,改写成用 ”万"(或"亿") 作单位的数,只要在”万”位或(”亿”位)的右下角点上小数点,去掉小数末尾的 0,再在 这个数的末尾添上”万"字(或”亿"字)。

3、求近似数的方法: (1)四舍五入法值小,“五入” 时近似数比准确值大。

2)进一法在实际生活中, 有时把一个数的尾数省略后,不管尾数最高位上的数是几,都要向前一位 进一。

比如一辆车能容纳 4个人,现在有 1 5个人,则需要的车辆数目为 15除以 4等于 3.75 约定于 4 3)去尾法在实际生活中,有时把一个数的尾数省略后,不管尾数的最高位上的数是几,都不要向它 的前一位进一。

例如一个牛皮盒子需要 3平方分米的牛皮才能完成,而现在只有 10平方分米的牛皮,则只能完成 10除以3等于3,3约等于 3个。

4、整数比较大小的方法比较两个整数的大小 ,要看他们的数位 , 如果数位不同 ,那么数位多的数就大 ,如果数 位相同 , 相同数位上的数大的那个数就大 五、负数1 、负数的定义正数的定义:像 3、1.5、 、58等大于 0的数,叫做正数,以前所学的所有数( 0除外) 都是正数,也就是说正数前面的“ +”是可以省略不写的,正数比0 大。

负数的定义:像- 3、-1.5、 、-584等在正数前面加“-” (读作负 )号的数,叫做负数。

即在正数前面加上“ -”就是负数。

负数比 0小。

注意点:负数前面必定有“ - ”如果前面不是“ - ”(可能没有符号或者是“+”) 都是正数0 除外)0 既不属于正数,也不属于负数,它是正数和负数的分界。

对于正数和负数的概念,不能简单理解为:带“+”号的数是正数,带 -”号的数是负数。

例如:一a 一定是负数吗?答案是不一定,因为字母 a 可以表示任意的数,若 a 表示的是正数,则一a 是负数;若a 表示的是0,则一a 仍是0;当a 表示负数时,一a 就不 是负数了(此时- a 是正数)。

2、负数的作用1 )负数是在人为规定正方向的前提下出现的。

2)负数常用来表示和正数意义相反的量。

3)在选择用正数还是负数表示时,首先看是否规定了正方向。

这种最常用的求近似数的方法,主要是看它省略的尾数是如果省略的尾数最高位上的数是 5或比 5 大时,把尾数省略去掉后,要向前一位进一。

如 万,1 + 3=0.333……-0.3。

从上面两例可以看出“四舍”时近似数比准确4 或比 4 小时,就把尾数舍去;3096401^3103)一般含有褒义的量用正数表示,含有贬义的量则用负数表示。

例:零上5°用+5C 表示;零下5°用-5 C 表示。

收入2000元用+2000元表示;支出 500 元用 -500 元表示。

3、常见负数的意义1)地图上的负数:中国地形图上,可以看到我国有一座世界最高峰—珠穆朗玛峰,图上标着 8848,在西北部有一吐鲁番盆地,地图上标着-3)电梯间的负数:- 3 层4、负数的读法和写法5、认识数轴处为该数。

对于负数的表示:负数都在 0的左面,正数都在 0的右面。

例: +3.5 在3和4中间, 而-3.5 在 -3 和 -4 中间。

3)根据数轴比较数的大小① 所有的正数都大于负数;所有的负数都小于正数 ② 0 左边的数都是负数, 0 右边的数都是正数; ③ 在数轴上越靠右边的数越大,越靠左边的数越小; ④ 负数比较大小,不考虑负号,数字部分大的数反而小;六、常用单位换算 1、长度单位换算155 米。

2)收入与支出:收入: 2600 元,教育支出: -300元 娱乐支出: -500 元1)读法:在所读数的前面加上 负” 2)写法:在所写数的前面加上a ??1)数轴的要素:正方向(箭头表示)、原点(0 刻度)、单位长度 刻度)。

正方向:根据题意要求确定正方向,一般以向上或向右为正方向。

原点: 也就是数字 0 所在的位置, 一般根据表示数字的分布情况来确定, 如果需要表示 的正负数差不多相等时原点在数轴中间; 如果正数比负数多得多原点偏左; 如果负数比正数多得多原点偏右。

单位长度: 由所要表示多的大小来决定刻度之间距离的大小,如果数字偏大刻度距离可以适当小一些, 如果数字偏小刻度距离可以适当大一些。

单位长度不一定每个刻度只能表示 1。

2)用数轴表示数在已给数轴上表示数:根据数字在对应的刻度上描点表示。

对于非整数的表示:将刻度进一步细分如,需要将0—1之间线段分为 3等分则 2等分0 大于所有的负数,小于所有的正数。

负数 < 0 < 正数①1千米=1000米 ②1米=10分米 ③1分米=10厘米 ④1米=100厘米 ⑤1厘米=10毫米 2、面积单位换算4、重量单位换算①1 吨=1000 千克 ②1 千克=1000 克 ③1 千克=1 公斤 5、人民币单位换算①1 元=10角 ②1 角=10 分 ③1 元=100分 6、时间单位换算①1 世纪 =100年 1 年=12月②大月 (31 天)有:1\3\5\7\8\10\12 月练习题、填空。

位,计数单位是(①1 平方千米 =100 公顷 ② 1 公顷 =10000 平方米 ③ 1 平方米 =100 平方分米④ 1 平方分米 =100 平方厘米 ⑤ 1 平方厘米 =100 平方毫米3、体 ( 容)积单位换算 ①1 立方米 =1000 立方分米 ②1 立方分米 =1000立方厘米 ③1 立方分米 =1 升 ④1 立方厘米 =1 毫升⑤ 1 立方米 =1000 升小月(30 天)有:4\6\9\1 1 月 ③平年 2 月 28 天 闰年 2月 29 天 平年全年 365 天 闰年全年 366 天 ④1 日=24 小时 1时 =60 分1分 =60 秒 1时=3600 秒1.万级的包含有()四个数位;亿级的计数单位有( )。

2. 10 个一千万是( ),一百万包含有()个万。

3.一个数从右边起,第五位是( )位,计数单位是();第八位是4. 3003003 的最高位是( )位,左边的 3 表示( ),中间的 3 表示( ),右边的 3 表示()。

5. 把 12800000000 改成用“万”作单位的数是(),再改成用“亿” 作单位的数是)。

6. 一个数由 3个千万、 4个十万、 9个千、 2个一组成,这个数写作( )。

7. 用 0,1 , 5,6,8 组成的最大的五位数是( ),最小的五位数是()。

8. 比最小的 8 位数少 1 的数是(),比最大的 5 位数多 1 的数是()。

9. 最高位是千万位的数是一个( )位数,其中最大的一个数是( ),最小12.小丽家住在幸福小区八栋5门3层1号,她家门牌号为 XF0805031,贝贝家也住幸福14、一物体可以左右移动,向左移动12m,记作-12m,"记作8m'表示向( ) m.15、用 3、 7、 9 和 4 个 0 组成一个七位数: . 一个零都不读的数是(A.4B.5C.6A. 一百万B. 一千万C. 一亿1. 写一个含有两级的数,应先写万级,再写个级。

2. 俩个数相比,最高位上的数越大,这个数就越大。

(的一个数是()。

10. 在数位顺序表中,百万位的右边是 ( ) 位, 亿位的左边是( )位,十万位右边一位的计数单位是()。

11.用四舍五入法 6□ 7890000〜6亿,□里可以填(),最大可以填()。

小区,门牌号为 XF1110111,她家住在()栋()门()层()号。

13、在-1,+18,-15,-20,+7,41与-100中,正数有( ),负数有()。

)移动);只读一个零的数是();读俩个零的数是 ()。

相关文档
最新文档