__塑料橡胶纤维
第三讲 环境降解高分子材料
环境降解高分子材料_概述
• 3.1 概述 • 塑料应用中存在的问题:
• 一是它的来源,绝大部分的塑料原料来源于石油化工, 而石油是一种不可再生的资源;
• 二是它在自然环境中很难分解,大量的废弃物成为了 环境污染的重要原因,也就是人们目前所称的“白色 污染”。
• 因此寻找一种可再生的塑料资源,进而解决其造成的 环境污染问题,成为塑料工业发展中的主要问题之一。
• 但目前大量使用的塑料材料如聚乙烯、聚丙烯等在自 然环境中是难于降解的,因此需对之进行改性或发展 新型的高分子材料。
• 降解塑料的发展:光降解塑料
•
填充型的降解塑料
•
全降解型塑料
环境降解高分子材料_概述
• 目前开发的降解塑料的种类: • ⑴ 光降解塑料 • 光降解塑料主要有两类,一类是引入光增感基团(合
最常见的有聚羟基脂肪酸、聚乳酸等, 其中聚乳酸的开发最为活跃。 通用聚乳酸是由玉米或甜菜中的糖类(包括淀粉与糖)经过发酵得 到乳酸再无溶剂聚合而制得。如果每㎏价格低至0.78~1.44$, 有望用于包装材料。利用天然高分子材料,2000年悉尼奥运会使 用的全淀粉快餐盒、一次性杯子等。
2、环境惰性高分子:为不能生物降解的高分子, 在不发生氧化及 光解的情况下不会污染环境。现在使用的通用高分子主要属于这一 类。应用后的垃圾处理是一大问题, 处理不当就会污染环境。填埋、 焚烧、再生与回收使用是废塑料处理的几种方法, 其中再生与回收 使用应成为重要的途径。
4、长寿命材料 发展超长寿命的高分子材料, 是降低资源开发速度, 有效利用资源, 减少高分子材料废弃物的有效途径之一。尤其对于用量大、影响 深远的农用地膜、棚膜, 以及建筑用高分子材料等, 应考虑长寿命 问题。可通过优化配方和工艺设计、开发功能优异的塑料合金体 系等方法来实现。无论材料的短寿命还是长寿命, 都应以维持生态 环境和节约资源及提高利用率为最基本目标。 5、研发环境友好的新型高分子功能材料
2018-2019学年化学同步鲁科版必修2学案:第3章第4节塑料 橡胶 纤维含答案
第4节塑料橡胶纤维[课标要求]1.了解有机高分子化合物的含义、结构特点和基本性质。
2.掌握聚合反应。
对常见类型的高分子材料,能准确地用化学方程式表示其聚合过程。
3.了解合成高分子化合物的主要类别及其在生产、生活和现代科技发展中的广泛应用。
4.学习和认识白色污染的防治、消除白色污染的途径和方法,培养绿色化学思想和环境保护意识,提高科学素养。
1.相对分子质量为几万到几百万,甚至高达几千万的有机物称为有机高分子化合物,简称高分子或聚合物。
2.有机高分子化合物分线型结构和体型结构;线型结构的有机高分子化合物具有热塑性,体型结构的有机高分子化合物具有热固性。
3.由相对分子质量小的化合物生成相对分子质量很大的有机高分子化合物的反应,叫做聚合反应。
像乙烯生成聚乙烯这样的聚合反应叫做加成聚合反应,简称加聚反应。
4.有机高分子化合物1.概念有机高分子化合物是相对分子质量很大的有机化合物,简称高分子或聚合物。
2.分类3.结构特点有机高分子化合物通常是由简单的结构单元重复连接而成的。
例如,聚氯乙烯 是由结构单元—CH 2—CH 2—重复连接而成的,其中的n 表示结构单元重复的次数。
4.基本性质有机高分子化合物通常难溶于水,即使在适当的有机溶剂中它溶解得也很缓慢,或者只有一定程度的溶胀。
有些有机高分子化合物(如聚乙烯)具有热塑性;而有些有机高分子化合物(如酚醛塑料,即电木)则具有热固性。
有机高分子化合物的组成元素主要是碳和氢,它们往往不耐高温,易燃烧。
1.下列物质中,一定不是天然高分子的是( ) A .橡胶 B .蛋白质 C .尼龙D .纤维素解析:选C 我国南方有橡胶树,盛产橡胶,所以天然橡胶、蛋白质、纤维素是天然高分子化合物;尼龙是人工合成的人造纤维的一种,不是天然高分子化合物。
2.下列关于高分子化合物的叙述正确的是( ) A .高分子化合物是纯净物B .高分子化合物结构复杂,相对分子质量很大C .带支链的高分子化合物也可能为线型分子D .对于一块高分子材料来说,n 是一个整数,因而它的相对分子质量是确定的解析:选C 对于一块高分子材料来说,它是由许多n 值相同或不相同的高分子组成的,因此高分子化合物是混合物,其相对分子质量也只是一个平均值,A 、D 错误;高分子化合物虽然相对分子质量很大,但它们往往是由简单的结构单元重复连接而成的,通常情况下结构比较简单,B 错误;高分子化合物是线型结构还是体型结构取决于分子链之间是否以价键相连,带支链的高分子化合物也可能为线型分子。
常见的高分子材料
常见的高分子材料
高分子材料是一类具有高分子量的大分子化合物,由许多重复单元组成,常见的高分子材料包括塑料、橡胶和纤维材料等。
这些材料具有许多优良的性质,如韧性、抗拉强度、耐磨损、耐腐蚀等,因此在各个领域都有广泛的应用。
塑料是一种常见的高分子材料,其分子结构由碳、氢等有机化合物组成。
塑料具有轻质、耐腐蚀、绝缘性能好等特点,因此广泛应用于包装、建筑、电子等领域。
常见的塑料有聚乙烯、聚丙烯、聚苯乙烯等。
橡胶是一种高分子弹性材料,其分子结构由重复的弹性单元组成。
橡胶具有良好的弹性、耐磨损和抗裂性能,因此被广泛应用于轮胎、密封件、橡胶管等领域。
常见的橡胶有天然橡胶和合成橡胶。
纤维材料是一种由长丝或纤维形成的高分子材料,其分子结构由多个重复单元组成。
纤维材料具有优异的拉伸性能、抗挤压性能和耐磨性能,因此被广泛应用于衣物、绳索、建筑材料等领域。
常见的纤维材料有棉纤维、尼龙纤维、涤纶纤维等。
除了上述常见的高分子材料外,还有许多其他种类的高分子材料。
例如,聚氨酯是一种具有良好弹性和耐磨损性能的高分子材料,常用于制作床垫、汽车内饰等产品。
聚碳酸酯是一种具有高耐热性和高透明度的高分子材料,常用于制作眼镜、手机壳等产品。
聚酰亚胺是一种具有优异的机械性能和耐热性能的高分子材料,常用于制作飞机零部件、电子器件等。
总之,高分子材料是一类具有重要应用价值的材料,其丰富的性能和广泛的应用领域使其成为现代工业发展的关键材料之一。
随着科学技术的不断进步,高分子材料的研究和开发也在不断推进,为人们创造更多的便利和可能性。
甲烷的化学性质
第一节 甲烷
复习:
1、什么是有机物?(比较)
答案:世界上绝大多数含碳的化合物。
2、举例常见的有机物? 答案:糖、醋、酒精、食油、塑料、橡 胶、纤维、动植物的有机体等等
有机物同无机物的比较
性质和反应
有机物
无 机物
溶解性 耐热性
可燃性
多数不溶于水,易溶 于有机溶剂
多数不耐热,熔点较 低,一般在400 ℃以 下
Na Cl
共价键
原子之间通过共 用电子对所形成的 相互作用,叫做共 价键。
非金属元素的原子之间或非金属元素的 原子与不活泼的某些金属元素原子之间形成 共价键。
新授
1、烃
烃是仅含碳和氢的有机物。
2、最简单的烃——甲烷
一、甲烷的存在
沼气——池沼底部
天然气——某些地方地下深处
瓦斯——煤矿的矿井里
二、甲烷的物理性质
无色、无味的气体,密度比空气小。极 难溶于水。
(讨论:甲烷的收集方法。)
向
下
排
排
空
水
气
法
法
三、甲烷的化学性质(结构决定性质) 1、甲烷的电子式
说明: “ • ”为碳原子的价电 子
“ × ”为氢原子的价电 子
提示:
结构式:用一根短线表示一对共用电子的图式。 2、甲烷分子的结构式。
电子式
结构式
3、甲烷分子的结构模型
甲烷正四面体结构
Ⅰ 球棍模型 Ⅱ 比例模型
三、甲烷的化学性质
1、甲烷的实验室制法 2、甲烷的氧化反应
不能使酸性的KMnO4溶液褪色 3、甲烷的实验室制法取代反应 4、甲烷受热分解
光照下甲烷与氯气发生取代反应
CH4 + Cl2 光照 CH3Cl + HCl CH3Cl + Cl2 光照 CH2Cl2 + HCl CH2Cl2 + Cl2 光照 CHCl3 + HCl CHCl3 + Cl2 光照 CCl4 + HCl
塑料纤维和橡胶
几乎不变
①纤 维
天然纤维:
纤维 如棉花、羊毛、蚕丝和麻等
合成纤维: 如腈纶(人造羊毛) 、锦纶(尼龙)、维纶、氯纶、涤纶 (旳确良)和 丙纶等“六大纶”
合成纤维具有优良旳性能:如 强度高、弹性好、耐磨、耐化 学腐蚀和不怕虫蛀等。
②橡 胶
橡胶是制造飞机、汽车和医疗器械等所必需 旳材料,是主要旳战略物资。
热固性塑料再次受热时, 链与链间会形成共价键, 产生某些交联,形成体型 网状构造,硬化定型
热固性塑料硬化后旳体型网状构造
☆线型构造和体型构造
线型构造:(直连或带支链)分子间主要是靠 分子间作用力而结合,所以相对分子质量越 热塑性塑料固态 大,链越长,分子间作用力越强,强度也就 时旳线型构造 越强。线型构造旳物质一般具有热塑性,能 溶于有机溶剂等特点。
什么是复合材料?使用复合材料旳例子有哪些? 它是怎样制得旳?主要应用于哪些?
复合材料:两种或两种以上高分子材料组合 成旳一种新型材料。一般涉及基体和增强剂
你能举出某些复合材料旳例子吗? 玻璃钢(即玻璃纤维增强塑料)
玻璃钢
玻璃钢即玻璃纤维增强塑料, 是将玻璃熔化并 迅速拉成细丝,得到异常柔软旳玻璃纤维,再将 玻璃纤维加到合成树脂中,就制得玻璃钢
性能:强度到达某些合金钢旳水平,耐化学腐蚀 性、电绝缘性和易加工性能,具有很好旳韧性。
应用:汽车车身、火车车箱和船体以及印刷电路板。
检: 1、在蚕丝、棉花、尼龙、涤纶、羊毛、人造羊毛中:
属于天然纤维旳是 蚕丝、棉花、羊毛 属于合成纤维旳是 尼龙、涤纶、人造羊毛
2、人造象牙中,主要成份旳构造是
聚反应制得旳,则合成象牙旳单体是:
A.(CH3)2O C. CH3CHO
高分子材料是什么
高分子材料是什么高分子材料是一种由多个重复单元(或者称为聚合单体)通过化学键连接而成的材料。
高分子材料的特点是分子链长且重复单元数目众多,通常具有较高的分子量。
高分子材料的分类非常广泛,涵盖了许多不同类型的聚合物。
其中最常见的高分子材料包括塑料、橡胶和纤维。
这些材料在日常生活中广泛应用,例如塑料制品、胶圈和衣物等。
塑料是一种由高分子材料制成的可塑性材料。
它们通常非常轻,并且可以在加热后变形或塑造成各种形状。
塑料的优点包括低成本、良好的物理性能和化学稳定性,因此成为制造各种产品的理想材料,如包装材料、电子产品外壳和家具等。
橡胶是一种高弹性材料,可以通过加热和加压将其变形成所需的形状。
橡胶具有很高的延展性和回弹性,因此广泛应用于制造胶圈、密封件、轮胎等。
橡胶还具有较好的耐磨性和抗化学腐蚀性,使其成为许多工业和汽车应用的首选材料。
纤维是一种由高分子材料制成的细长线状材料。
纤维通常很细且柔软,因此在纺织品、绳索、绳网等领域中得到了广泛应用。
纤维的特点包括高强度、耐磨性和耐高温性能。
常见的纤维材料包括棉、丝、麻和化学纤维等。
除了上述常见的高分子材料,还有许多其他类型的高分子材料,如聚合物复合材料和高分子泡沫材料等。
聚合物复合材料是由两类或多类不同的高分子材料混合而成的材料,具有更好的性能和多样化的应用。
高分子泡沫材料则是一种具有开放或闭合细孔结构的高分子材料,具有较低的密度和良好的绝热性能,因此广泛应用于保温材料和吸音材料等。
总之,高分子材料是一类由聚合单体通过化学键连接而成的材料,具有分子链长、分子量大的特点。
塑料、橡胶和纤维是其中最常见的高分子材料,广泛应用于日常生活和各个领域。
此外,还有许多其他类型的高分子材料存在,如聚合物复合材料和高分子泡沫材料,拓展了高分子材料的应用范围。
高中化学:塑料、纤维和橡胶
高中化学:塑料、纤维和橡胶
1、有机高分子材料分类:传统有机高分子材料(合成材料)和复合材料(玻璃钢)。
2、塑料:主要成分合成树脂(高聚物),还含有增塑剂和防老化剂等添加剂,分为热塑性塑料(多次使用线形结构如聚乙烯塑料,聚丙烯塑料等)和热固性塑料(一次使用立体网状结构如酚醛树脂,脲醛树脂等)
3、纤维:天然纤维(棉花、麻、羊毛和蚕丝)、人造纤维(用木材等为原料)和合成纤维(用
石油、天然气、煤核农副产品等为原料),其中人造纤维和合成纤维成为化学纤维。
“六大纶”
4、橡胶:分为天然橡胶(聚异戊二烯,其化学式为)和合成橡胶,合成橡
胶根据用途分为通用橡胶(丁苯橡胶、氯丁橡胶、顺丁橡胶)和特种橡胶(耐热耐酸碱的氟橡胶、耐高温耐严寒的硅橡胶)。
5、许多橡胶是线形结构,可塑性好,但强度和韧性差。
为了克服这个缺点,工业上用硫与橡胶
分子作用,使橡胶硫化。
硫化的作用使线形橡胶分子之间通过过硫键交联起来,形成稳定结构。
第1 页共1 页。
2020化学新鲁科必修:塑料橡胶纤维含解析
第4节塑料橡胶纤维[目标导航]1.了解有机高分子化合物的含义、结构特点和基本性质。
2.掌握聚合反应,对常见类型的高分子材料,能准确地用化学方程式表示其聚合过程。
3.了解合成高分子化合物的主要类别及其在生产、生活和现代科技发展中的广泛应用。
4.学习和认识白色污染的防治、消除白色污染的途径和方法。
一、有机高分子化合物1.概念相对分子质量很大的有机化合物称为有机高分子化合物,简称高分子或聚合物。
2.结构特点(1)特点:有机高分子化合物通常是由简单的结构单元重复连接而成的。
(2)举例:聚氯乙烯的结构简式为,它是由结构单元重复连接而成的,其中的n表示结构单元重复的次数。
(3)结构类型3.基本性质基本性质线型结构体型结构溶解性水难溶于水有机溶剂缓慢溶解只溶胀,不溶解热塑性与热固性具有热塑性具有热固性电绝缘性一般不导电,很好的绝缘性可燃性一般易燃烧【议一议】1.高分子材料是纯净物还是混合物?答案高分子材料是由很多高分子化合物聚集而成的,每个高分子化合物的n值并不确定,所以高分子材料为混合物。
2.为什么实验室中盛放汽油、苯、四氯化碳的试剂瓶不能用橡胶塞?答案因为橡胶在有机溶剂中有一定程度的溶胀,使瓶塞难以打开。
3.具有什么结构特点的分子才能发生加聚反应?答案加聚反应从本质上讲也属于加成反应,所以能够发生加聚反应的小分子中含有碳碳双键()或碳碳叁键()等不饱和键。
二、塑料、橡胶、纤维(1)成分⎩⎪⎨⎪⎧主要成分:合成树脂添加剂⎩⎪⎨⎪⎧增塑剂:提高塑造性能防老剂:防止塑料老化 (2)几种常见塑料名称 反应方程式聚乙烯聚氯乙烯聚苯乙烯聚四氟乙烯①聚合反应:由相对分子质量小的化合物生成相对分子质量很大的有机高分子化合物的反应,叫做聚合反应。
②加聚反应:相对分子质量小的化合物通过加成反应的方式生成高分子化合物的反应。
(3)塑料的危害与防治 ①危害:造成白色污染。
②防治:回收废弃塑料,生产可降解塑料。
2.橡胶(1)特性:橡胶是具有高弹性的高分子化合物。
常用的绝缘材料有哪些
常用的绝缘材料有哪些
绝缘材料是一种能够阻止电流通过的材料,它在电气设备和电子产品中起着非
常重要的作用。
常用的绝缘材料有很多种,它们各有特点,适用于不同的场合。
下面我们来介绍一些常见的绝缘材料。
首先,最常见的绝缘材料之一是塑料。
塑料是一种非常常见的绝缘材料,它具
有良好的绝缘性能和机械性能,能够满足各种绝缘要求。
在电线电缆、电子元件和家用电器等领域,塑料都得到了广泛的应用。
其次,还有橡胶。
橡胶是一种优良的绝缘材料,具有良好的弹性和耐磨性,能
够有效地阻止电流通过。
橡胶广泛用于电力系统、电机绕组和电缆绝缘等领域。
另外,还有云母。
云母是一种天然的绝缘材料,具有优异的绝缘性能和耐高温
性能,被广泛应用于电机、变压器和高温电缆等领域。
此外,还有玻璃纤维。
玻璃纤维是一种无机非金属材料,具有优异的绝缘性能
和耐高温性能,被广泛应用于电力设备、航空航天和汽车制造等领域。
此外,还有陶瓷。
陶瓷是一种非常常见的绝缘材料,具有优异的绝缘性能和耐
高温性能,被广泛应用于电子元件、电力设备和照明器材等领域。
最后,还有树脂。
树脂是一种常见的绝缘材料,具有优异的绝缘性能和耐化学
性能,被广泛应用于电子元件、电力设备和航空航天等领域。
总的来说,常用的绝缘材料有塑料、橡胶、云母、玻璃纤维、陶瓷和树脂等。
它们各具特点,适用于不同的场合,为电气设备和电子产品提供了可靠的绝缘保护。
在选择绝缘材料时,需要根据具体的使用要求和环境条件进行综合考虑,以确保电气设备和电子产品的安全可靠运行。
常见聚合物材料范文
常见聚合物材料范文聚合物材料是由聚合物分子组成的材料,其由相同或不同的单体通过化学反应形成,具有特定的物理和化学性质。
常见的聚合物材料包括塑料、橡胶、纤维等。
以下将对几种常见的聚合物材料进行介绍。
1.塑料塑料是最常见的聚合物材料,广泛应用于各个领域。
常见的塑料有聚乙烯(PE)、聚丙烯(PP)、聚氯乙烯(PVC)、聚苯乙烯(PS)、聚四氟乙烯(PTFE)等。
塑料具有轻、耐腐蚀、绝缘性好等特点,被广泛应用于包装、建筑、电子、医疗等领域。
2.橡胶橡胶是一种弹性聚合物材料,具有优异的弹性和耐磨性。
常见的橡胶有天然橡胶、合成橡胶和丁腈橡胶等。
橡胶被广泛应用于汽车制造、轮胎、密封制品、鞋类制造等领域。
3.纤维纤维是一种聚合物材料,用于纺织制品的生产。
常见的纤维包括聚酯纤维、尼龙纤维、腈纶纤维等。
纤维具有柔软、轻、吸湿等特点,被广泛应用于服装、家居纺织品等领域。
4.导电聚合物导电聚合物是一种具有导电性能的聚合物材料,可用于制造导电电缆、导电塑料等产品。
常见的导电聚合物有聚苯胺(PANI)、聚噻吩(PT)等。
导电聚合物在电子、能源等领域有广泛应用。
5.聚合物泡沫聚合物泡沫是一种轻质、具有良好吸音性和隔热性能的材料。
常见的聚合物泡沫有聚苯乙烯泡沫(PS泡沫)、聚氨酯泡沫(PU泡沫)等。
聚合物泡沫广泛应用于建筑、包装、交通运输等领域。
6.聚合物复合材料聚合物复合材料是将聚合物与其他材料(如纤维增强材料)进行复合加工得到的材料。
常见的聚合物复合材料包括碳纤维复合材料、玻璃纤维复合材料等。
聚合物复合材料具有轻、强、刚性好等特点,被广泛应用于航空航天、汽车制造等领域。
除了上述常见的聚合物材料,还有许多特殊性能的聚合物材料,如形状记忆聚合物、生物可降解聚合物等。
这些聚合物材料具有特殊的性能,可应用于医疗、生物工程、新能源等领域。
总之,聚合物材料是一类广泛应用的材料,其种类繁多、性能各异,对于促进社会、经济的发展具有重要作用。
塑料、纤维和橡胶
复合材料汽车部件
复合材料战斗机
复合材料制成的假山
复合材料制成的塑料大棚支架
玻璃钢即玻璃纤维增强塑料, 是将玻璃熔化并迅速 拉成细丝,得到异常柔软的玻璃纤维,再将玻璃纤维 加到合成树脂中,就制得玻璃钢.
性能:强度达到某些合金钢的水平,耐化学腐蚀性、电绝缘性和 易加工性能,具有较好的韧性。 用途:应用于小型汽艇、救生艇、游艇,以及汽车制造业等,节 约了不少钢材。同时还有玻璃钢花盆、玻璃钢瓦、玻璃钢桌椅也 十分普遍。
高分子化合物通常结构并不复杂,往往由简 单的结构单元重复连接而成; 如聚乙烯
[CH2 CH2] n
中:
(A)-CH2-CH2-叫聚乙烯的结构单元(或链 节); (B)n表示每个高分子化合物中链节的重复次数, 叫聚合度;n越大,相对分子质量越大; (C)合成小分子的物质叫单体。如乙烯是聚乙 烯的单体。
合成材料
塑料 Plastic
纤维 橡胶 Fiber Rubber
天然橡胶:
人工合成橡胶
有机玻璃
聚氯乙烯
聚乙烯
玻璃钢
聚 四 氟 乙 烯
硅 橡 胶
酚醛树脂
聚丙烯
棉花、麻(主要成分是纤维素)
有 机 高 分 子 材 料 合成高分子材料
天然高分子材料
羊毛、蚕丝(主要成分是蛋白质) 天然橡胶(主要成分是聚异戊二稀) 塑料 PE 、PVC、PP 合成纤维
二、复合材料(composite)
• 学与问
金属材料强度(大 ),但易(腐蚀 );陶瓷材料 耐( );合成材料密度(小), 高温),但( 脆性大 大)、耐 但不耐( )。但航天工业需要强度( 高温 高温)、密度(小 ( )的材料,海洋工程需要耐 高压)、耐( 腐蚀 ( )的材料。怎样才能获得这些 特殊的材料呢? 将两种或两种以上不同性能的材料组合起来, 就可以得到比单一材料性能优越的符合材料。
橡胶塑料纤维对比
橡胶是具有可逆形变的高弹性聚合物材料。
在室温下富有弹性,在很小的外力作用下能产生较大形变,除去外力后能恢复原状。
橡胶属于完全无定型聚合物,它的玻璃化转变温度低,分子量往往很大,大于几十万。
橡胶在加工前要经过炼胶这个环节,炼胶是为了剪切作用使得分子链段断开,分子链段长,分子量最大。
随分子量上升,橡胶粘度逐步增大,流动性变小,在溶剂中的溶解度渐降,软化点渐升,力学性能也逐步提高。
但分子量超过一定值后,由于分子链过长,纠缠过剧,弹性反而下降,对加工性能不利,具体反映为门尼粘度增加,塑炼效果变劣,功率消耗增大,对设备磨损加剧等。
塑料是指以树脂为主要成分,以增塑剂、填充剂、润滑剂、着色剂等添加剂为辅助成分,在加工过程中能流动成型的材料。
塑料为合成的高分子化合物,可以自由改变形体样式。
塑料是利用单体原料以合成或缩合反应聚合而成的材料,由合成树脂及填料、增塑剂、稳定剂、润滑剂、色料等添加剂组成的,它的主要成分是合成树脂。
塑料分子量次之,因为在塑料加工时还是要加热。
而且塑料的分子量分布越窄越好,分布越窄,说明不同分子间的分子量越接近,所表现出来的形状也越接近。
聚合物经一定的机械加工(牵引、拉伸、定型等)后形成细而柔软的细丝,形成纤维。
纤维具有弹性模量大,受力时形变小,强度高等特点,有很高的结晶能力,分子量小,一般为几万。
因为纤维在成丝加工时在溶液中就可以,所以相对分子量最小的。
高分子材料有哪些
高分子材料有哪些
高分子材料是一类由高分子化合物构成的材料,它们具有分子量大、结构多样、性能丰富等特点。
高分子材料在工业、农业、医药、电子、建筑等领域都有着广泛的应用。
那么,高分子材料具体有哪些呢?接下来我们将对高分子材料的种类和应用进行介绍。
首先,我们来看看高分子材料的种类。
高分子材料主要包括塑料、橡胶、纤维
和树脂等几大类。
塑料是一种由合成树脂为主要成分,通过加工制品成型的材料,它具有轻质、耐腐蚀、绝缘等特点,广泛应用于日常生活用品、包装材料、建筑材料等领域。
橡胶是一种弹性材料,具有良好的拉伸性和弹性,常用于制作轮胎、密封件、管道等。
纤维是一种由天然或合成高分子物质构成的细长物质,如棉纤维、涤纶纤维等,广泛用于纺织品、绳索、过滤材料等领域。
树脂是一种具有粘合性的高分子化合物,常用于粘接、涂料、包装材料等。
其次,我们来了解一下高分子材料的应用。
高分子材料在各个领域都有着重要
的应用价值。
在工业领域,塑料袋、塑料瓶、塑料管等塑料制品广泛应用于包装、输送、储存等方面。
橡胶制品如轮胎、密封件、管道等在汽车、建筑、化工等行业中扮演着重要角色。
纤维制品如衣服、家居用品、工业材料等在日常生活和工业生产中都有广泛应用。
树脂作为粘合剂、涂料、包装材料等,在建筑、家具、电子等领域都有着不可替代的作用。
总的来说,高分子材料种类繁多,应用广泛,对于推动工业发展、提高生活质
量都起着重要作用。
随着科技的不断进步,高分子材料的种类和应用也在不断扩展和深化,相信在未来的发展中,高分子材料将会发挥更加重要的作用。
第四节 塑料 橡胶 纤维教案
第四节 塑料 橡胶 纤维一、教材分析1、知识脉络本节教材在学生学习了淀粉、纤维素、蛋白质等天然有机高分子化合物之后,很自然地过渡到学习合成有机高分子化合物,首先介绍有机高分子化合物的相对分子质量,然后初浅地以聚乙烯、聚氯乙烯为例介绍有机高分子化合物的结构与基本性质,合成高分子化合物在溶剂中的溶解和在不同温度时的性能变化等性质是与合成高分子化合物的科学研究及生产加工密切相关的;最后简单介绍了常见高分子塑料、橡胶、纤维中某些有代表性的品种。
2、知识框架3、新教材的主要特点: 新教材依然保持紧密联系实际和新的化学知识从生活和生产实际切入的风格,也注意了紧密联系学生已学过的知识如烯烃的加成反应、羧酸的酯化反应等,以帮助他们理解高分子化合物的性质、正确书写重要高聚物加聚反应的化学方程式,复习巩固已学的有机化学知基本性质 有机高分子化合结构特点天然有机高分子化合物塑料 橡胶 纤维合成有机高分子化合物识,也为他们选择后续的选修模块“有机化学基础”奠定必要基础。
二.教学目标(一)知识与技能目标1.引导学生初步认识有机高分子化合物的结构、性质及其应用,学会书写重要加聚反应的化学方程式,了解合成高分子化合物的主要类别及其在生产、生活、现代科技发展中的广泛应用。
2.引导学生学习和认识由塑料废弃物所造成的白色污染和防治、消除白色污染的途径和方法,培养他们的绿色化学思想和环境意识,提高他们的科学素养。
3.通过多样化的学习活动(自主检索、收集、分类比较、展示等)使学生了解塑料、合成橡胶、合成纤维的主要品种以及它们的原料来源与石油化工、煤化工的密切联系,同时提高他们的学习能力,丰富他们的学习方式。
(二)过程与方法目标1. 让学生通过网络、书籍等途径收集各种各样的材料及图片、实物,课堂上采用互动式教学,激发学生探究有机合成材料的组成、性能的兴趣。
2、通过“迁移·应用”、“交流·研讨”、“活动·探究”等活动,提高学生分析、联想、类比、迁移以及概括的能力。
塑料纤维橡胶分子量
塑料纤维橡胶分子量塑料、纤维和橡胶是我们日常生活中常见的材料,它们的性质和用途各不相同。
然而,它们有一个共同的特点,那就是它们都是由分子构成的。
而这些分子的分子量对于这些材料的性质和用途有着至关重要的影响。
首先,让我们来了解一下什么是分子量。
分子量是指一个分子中所含有的原子数量的总和。
对于聚合物来说,分子量就是指聚合物分子中所含有的单体数量的总和。
分子量的大小直接影响着聚合物的物理性质和化学性质。
对于塑料来说,分子量的大小对于塑料的硬度、韧性、透明度、耐热性、耐寒性等性质有着重要的影响。
一般来说,分子量越大,塑料的硬度和韧性就越高,透明度就越好,耐热性和耐寒性也就越好。
因此,在制造高强度、高透明度、高耐热性和高耐寒性的塑料制品时,需要选择分子量较大的聚合物。
对于纤维来说,分子量的大小对于纤维的强度、柔软度、耐磨性、吸湿性等性质有着重要的影响。
一般来说,分子量越大,纤维的强度就越高,柔软度就越好,耐磨性也就越好,但吸湿性就越差。
因此,在制造高强度、高柔软度、高耐磨性的纤维制品时,需要选择分子量较大的聚合物。
对于橡胶来说,分子量的大小对于橡胶的弹性、耐磨性、耐油性、耐酸碱性等性质有着重要的影响。
一般来说,分子量越大,橡胶的弹性就越好,耐磨性和耐油性也就越好,但耐酸碱性就越差。
因此,在制造高弹性、高耐磨性、高耐油性的橡胶制品时,需要选择分子量较大的聚合物。
总之,分子量是影响塑料、纤维和橡胶性质和用途的重要因素之一。
在制造这些材料的过程中,需要根据不同的要求选择不同分子量的聚合物,以达到最佳的性能和效果。
塑料 橡胶 纤维的区别
塑料:具有塑性行为的材料,所谓塑性是指受外力作用时,发生形变,外力取消后,仍能保持受力时的状态。
塑料的弹性模量介于橡胶和纤维之间,受力能发生一定形变。
软塑料接近橡胶,硬塑料接近纤维。
塑料是指以树脂(或在加工过程中用单体直接聚合)为主要成分,以增塑剂、填充剂、润滑剂、着色剂等添加剂为辅助成分,在加工过程中能流动成型的材料。
塑料为合成的高分子化合物,可以自由改变形体样式。
塑料是利用单体原料以合成或缩合反应聚合而成的材料,由合成树脂及填料、增塑剂、稳定剂、润滑剂、色料等添加剂组成的,它的主要成分是合成树脂。
橡胶(Rubber):具有可逆形变的高弹性聚合物材料。
在室温下富有弹性,在很小的外力作用下能产生较大形变,除去外力后能恢复原状。
橡胶属于完全无定型聚合物,它的玻璃化转变温度(T g)低,分子量往往很大,大于几十万。
橡胶一词来源于印第安语cau-uchu,意为“流泪的树”。
天然橡胶就是由三叶橡胶树割胶时流出的胶乳经凝固、干燥后而制得。
1770年,英国化学家J.普里斯特利发现橡胶可用来擦去铅笔字迹,当时将这种用途的材料称为rubber,此词一直沿用至今。
橡胶的分子链可以交联,交联后的橡胶受外力作用发生变形时,具有迅速复原的能力,并具有良好的物理力学性能和化学稳定性。
橡胶是橡胶工业的基本原料,广泛用于制造轮胎、胶管、胶带、电缆及其他各种橡胶制品纤维(Fiber):聚合物经一定的机械加工(牵引、拉伸、定型等)后形成细而柔软的细丝,形成纤维。
纤维具有弹性模量大,受力时形变小,强度高等特点,有很高的结晶能力,分子量小,一般为几万。
纤维大体分人造纤维和合成纤维[人造纤维] 人造纤维是利用自然界的天然高分子化合物——纤维素或蛋白质作原料(如木材、棉籽绒、稻草、甘蔗渣等纤维或牛奶、大豆、花生等蛋白质),经过一系列的化学处理与机械加工而制成类似棉花、羊毛、蚕丝一样能够用来纺织的纤维。
如人造棉、人造丝等。
[合成纤维] 合成纤维的化学组成和天然纤维完全不同,是从一些本身并不含有纤维素或蛋白质的物质(如石油、煤、天然气、石灰石或农副产品加工提炼出来的有机物质),再用化学合成与机械加工的方法制成纤维。
《塑料 橡胶 纤维》 讲义
《塑料橡胶纤维》讲义一、塑料塑料是我们日常生活中随处可见的材料,它在各个领域都发挥着重要作用。
塑料是由高分子化合物组成的,其主要成分是合成树脂。
塑料的种类繁多,常见的有聚乙烯(PE)、聚丙烯(PP)、聚苯乙烯(PS)、聚氯乙烯(PVC)等。
聚乙烯是一种应用广泛的塑料,具有良好的柔韧性和耐低温性能,常用于制作塑料袋、保鲜膜等。
聚丙烯则具有较高的强度和耐热性,常用于制造餐具、家电外壳等。
聚苯乙烯质地轻盈、透明度高,常用于制作一次性餐具、包装材料等。
聚氯乙烯具有良好的耐腐蚀性和阻燃性,但在高温下可能会释放有害物质,常用于制作管道、电线电缆外皮等。
塑料的优点众多。
首先,它具有良好的可塑性,可以通过模具加工成各种形状和尺寸的制品。
其次,塑料的重量轻,便于运输和使用。
此外,塑料还具有良好的耐腐蚀性、绝缘性和耐磨性等。
然而,塑料也存在一些缺点。
例如,大多数塑料不易降解,大量废弃塑料会造成严重的环境污染。
此外,塑料在高温下可能会释放出有害物质,对人体健康和环境造成潜在威胁。
为了减少塑料对环境的影响,我们可以采取一些措施。
例如,推广使用可降解塑料,加强塑料的回收和再利用,减少一次性塑料制品的使用等。
二、橡胶橡胶是一种具有高弹性的高分子材料。
天然橡胶是从橡胶树中采集的胶乳经过加工而成的。
它具有良好的弹性、耐磨性和绝缘性,但在耐油性、耐老化性等方面存在不足。
合成橡胶则是通过化学方法合成的,常见的有丁苯橡胶、顺丁橡胶、氯丁橡胶等。
丁苯橡胶综合性能较好,广泛应用于轮胎、胶管等制品。
顺丁橡胶具有优异的弹性和耐磨性,常用于制造轮胎的胎面。
氯丁橡胶具有良好的耐油性、耐老化性和阻燃性,常用于制造胶管、输送带等。
橡胶的应用非常广泛。
在交通运输领域,橡胶被用于制造轮胎、密封件、减震部件等。
在工业领域,橡胶可用于制作输送带、橡胶衬里等。
在日常生活中,橡胶制品如橡胶手套、橡皮筋等也随处可见。
橡胶的性能特点主要包括高弹性、耐磨性、耐腐蚀性和绝缘性等。
高中化学 第三章 第4节 塑料、橡胶、纤维 第2课时 塑料教案化学教案
第三章第4节塑料橡胶纤维(1)【教材分析】本节是鲁科版化学必修二第三章第四节塑料橡胶纤维第一课时,在学生学习了淀粉、纤维素、蛋白质等天然有机高分子化合物之后,自然过渡到合成有机高分子化合物,首先由相对分子质量入手帮助学生认识有机高分子化合物,然后以聚乙烯、聚氯乙烯为例介绍有机高分子化合物的结构特点与基本性质,合成高分子材料在实际的生活和生产中有着重要应用,本节属于常识性介绍,教学要求层次比较低,但与前面学生已学习过的如烯烃的加成反应、羧酸的酯化反应等知识有紧密联系,以此帮助学生理解高分子化合物的性质、正确书写重要高聚物加聚反应的方程式、复习巩固已学习的有机化学知识,也为后续选修模块“有机化学反应基础”的学习奠定基础。
【教学目标】◆ 知识与技能目标:1、学生对生活中和学习过的材料能进行简单的归类2、了解有机高分子化合物的结构特点和基本性质,会书写重要加聚反应的化学方程式3、了解高分子化合物在生产、生活和现代科技发展中的重要应用◆ 过程与方法1、通过图片的展示和学生的阅读导学,了解有机高分子化合物的分类和结构特点2、通过实验展示和归纳总结,使学生掌握有机高分子化合物的基本性质◆ 情感、态度和价值观引导学生学习和认识由塑料废弃物所造成的白色污染及防治、消除白色污染的途径和方法,培养他们的绿色化学思想和环境意识,提高他们的科学素质。
【教学重点】重要高聚物的加聚反应及其化学反应方程式【教学难点】有机高分子的化合物的基本性质;重要高聚物的加聚反应方程式;【教具准备】多媒体(电脑、投影仪)、实验仪器、球棍模型材料:聚乙烯保险膜、聚氯乙烯塑料袋、、电木片(废旧的白色电源插座外壳)等试剂:汽油、水、乳胶管(橡胶塞)仪器:每组试管(比乳胶管内径大)各4支、胶头滴管、镊子、酒精灯、火柴等【教学方法】本课时采用:自主学习→图片导引→观察对比→老师引导→交流研讨→启发诱导→实验验证→整合概括→拓展提升的方法【学习方法】结合本课时的特点和所涉及的教学方法,以图片导引的方式引领学生认识到高分子材料在生活中随处可见,以学习过甲烷、乙醇、乙酸、油脂等物质进行类比归纳认识高分子化合物,以聚乙烯、聚氯乙烯为例介绍高分子化合物的结构特点与基本性质,通过实验验证和生活常识,使学生主动参与知识的建构过程,从中体验到学习化学的乐趣。
每种化学元素用途
每种化学元素用途化学元素是构成物质世界的基本单位,以各种不同的方式应用于各个领域。
以下是一些常见的化学元素及其应用:1. 碳(C):碳是有机化学的基础,主要用于制造有机化合物,如塑料、橡胶、纤维和药物。
此外,石墨是一种常见的碳形式,用于生产铅笔芯、涂料和电池。
2. 氢(H):氢气是一种重要的能源,通常用于氢燃料电池产生电能。
此外,氢也用于合成氨和甲醇等工业化学反应。
3. 氮(N):氮气广泛用于防腐和灭火。
此外,氮也是合成高分子化合物的重要成分,用于生产塑料、橡胶和纤维。
4. 氧(O):氧气广泛用于氧化反应和燃烧过程,同时也是人类进行呼吸所需。
氧气还用于医学、金属焊接和化学工业中的氧化过程。
5. 钠(Na):钠是一种重要的金属元素,广泛用于制造玻璃、肥皂和溶液。
此外,钠还是钠-硫电池的关键组成部分,也被用作冶金和防锈剂。
6. 镁(Mg):镁是一种轻金属元素,用途广泛。
它被广泛应用于铝合金、火箭燃料、镁粉炸药和钢铁冶炼等领域。
7. 铝(Al):铝是一种轻便且具有良好导电性的金属,广泛用于飞机、汽车和建筑材料等制造业。
同时,铝还用于制造食品包装、电线和电器。
8. 硅(Si):硅是一种非常重要的元素,广泛用于电子行业。
它是制造晶体管、太阳能电池板和光纤的关键材料。
硅还被用作合金添加剂和玻璃制造。
9. 磷(P):磷是生命中不可或缺的元素之一,广泛应用于农业和制药行业。
它是肥料、洗涤剂、火药和磷酸盐的重要成分。
10. 硫(S):硫广泛用于制造硫酸和硫酸盐等化学品。
硫化合物也用于制造橡胶、杀菌剂和颜料。
11. 铁(Fe):铁是一种重要的金属,用于制造钢铁、汽车和建筑材料等。
铁的磁性也使其成为电磁铁和磁记录介质的关键成分。
12. 铜(Cu):铜是一种良好的导电金属,用于制造电线、电缆和电子设备。
同时,铜也是一种重要的合金材料,用于制造铜制品和硬质合金。
13. 锌(Zn):锌是镀锌钢铁的关键成分,用于提高钢铁的耐腐蚀性。