高考数学第十一章概率11.2古典概型课件文新人教A版

合集下载

人教A版高中数学教材目录(全)

人教A版高中数学教材目录(全)

必修1第一章集合与函数概念1.1 集合1.2 函数及其表示1.3 函数的基本性质第二章基本初等函数(Ⅰ)2.1 指数函数2.2 对数函数2.3 幂函数第三章函数的应用3.1 函数与方程3.2 函数模型及其应用必修2第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质第三章直线与方程3.1 直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式必修3第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术第二章统计2.1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体阅读与思考生产过程中的质量控制图 2.3 变量间的相关关系阅读与思考相关关系的强与弱第三章概率3.1 随机事件的概率阅读与思考天气变化的认识过程3.2 古典概型3.3 几何概型必修4第一章三角函数1.1 任意角和弧度制1.2 任意角的三角函数1.3 三角函数的诱导公式1.4 三角函数的图象与性质1.5 函数y=Asin(ωx+ψ)1.6 三角函数模型的简单应用第二章平面向量2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积2.5 平面向量应用举例第三章三角恒等变换3.1 两角和与差的正弦、余弦和正切公式3.2 简单的三角恒等变换必修5第一章解三角形1.1正弦定理和余弦定理1.2应用举例1.3实习作业第二章数列2.1数列的概念与简单表示法2.2等差数列2.3等差数列的前n项和2.4等比数列2.5等比数列的前n项和第三章不等式3.1不等关系与不等式3.2一元二次不等式及其解法3.3二元一次不等式(组)与简单的线性规划问题3.3.1二元一次不等式(组)与平面区域3.3.2简单的线性规划问题3.4基本不等式选修1-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1椭圆2.2双曲线2.3抛物线第三章导数及其应用3.1变化率与导数3.2导数的计算3.3导数在研究函数中的应用3.4生活中的优化问题举例选修1-2第一章统计案例1.1回归分析的基本思想及其初步应用1.2独立性检验的基本思想及其初步应用第二章推理与证明2.1合情推理与演绎证明2.2直接证明与间接证明第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念3.2复数代数形式的四则运算第四章框图4.1流程图4.2结构图选修2-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1曲线与方程2.2椭圆2.3双曲线2.4抛物线第三章空间向量与立体几何3.1空间向量及其运算3.2立体几何中的向量方法选修2-2第一章导数及其应用1.1变化率与导数1.2导数的计算1.3导数在研究函数中的应用1.4生活中的优化问题举例1.5定积分的概念1.6微积分基本定理1.7定积分的简单应用第二章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明2.3数学归纳法第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念3.2复数代数形式的四则运算选修2-3第一章计数原理1.1分类加法计数原理与分步乘法计数原理1.2排列与组合1.3二项式定理第二章随机变量及其分布2.1离散型随机变量及其分布列2.2二项分布及其应用2.3离散型随机变量的均值与方差2.4正态分布第三章统计案例3.1回归分析的基本思想及其初步应用3.2独立性检验的基本思想及其初步应用选修3-1第一讲早期的算术与几何第二讲古希腊数学第三讲中国古代数学瑰宝第四讲平面解析几何的产生第五讲微积分的诞生第六讲近代数学两巨星第七讲千古谜题第八讲对无穷的深入思考第九讲中国现代数学的开拓与发展选修3-2选修3-3第一讲从欧氏几何看球面第二讲球面上的距离和角第三讲球面上的基本图形第四讲球面三角形第五讲球面三角形的全等第六讲球面多边形与欧拉公式第七讲球面三角形的边角关系第八讲欧氏几何与非欧几何选修3-4第一讲平面图形的对称群第二讲代数学中的对称与抽象群的概念第三讲对称与群的故事选修4-1第一讲相似三角形的判定及有关性质第二讲直线与圆的位置关系第三讲圆锥曲线性质的探讨选修4-2第一讲线性变换与二阶矩阵第二讲变换的复合与二阶矩阵的乘法第三讲逆变换与逆矩阵第四讲变换的不变量与矩阵的特征向量选修4-3选修4-4第一讲坐标系第二讲参数方程选修4-5第一讲不等式和绝对值不等式第二讲证明不等式的基本方法第三讲柯西不等式与排序不等式第四讲数学归纳法证明不等式选修4-6第一讲整数的整除第二讲同余与同余方程第三讲一次不定方程第四讲数伦在密码中的应用选修4-7第一讲优选法第二讲试验设计初步选修4-8选修4-9第一讲风险与决策的基本概念第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介高中人教版(B)教材目录介绍必修一第一章集合1.1 集合与集合的表示方法1.2 集合之间的关系与运算第二章函数2.1 函数2.2 一次函数和二次函数2.3 函数的应用(Ⅰ)2.4 函数与方程第三章基本初等函数(Ⅰ)3.1 指数与指数函数3.2 对数与对数函数3.3 幂函数3.4 函数的应用(Ⅱ)必修二第一章立体几何初步1.1 空间几何体1.2 点、线、面之间的位置关系第二章平面解析几何初步2.1 平面真角坐标系中的基本公式2.2 直线方程2.3 圆的方程2.4 空间直角坐标系必修三第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 中国古代数学中的算法案例第二章统计2.1 随机抽样2.2 用样本估计总体2.3 变量的相关性第三章概率3.1 随机现象3.2 古典概型3.3 随机数的含义与应用3.4 概率的应用必修四第一章基本初等函(Ⅱ)1.1 任意角的概念与弧度制1.2 任意角的三角函数1.3 三角函数的图象与性质第二章平面向量2.1 向量的线性运算2.2 向量的分解与向量的坐标运算2.3 平面向量的数量积2.4 向量的应用第三章三角恒等变换3.1 和角公式3.2 倍角公式和半角公式3.3 三角函数的积化和差与和差化积必修五第一章解直角三角形1.1 正弦定理和余弦定理1.2 应用举例第二章数列2.1 数列2.2 等差数列2.3 等比数列第三章不等式3.1 不等关系与不等式3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实际应用3.5 二元一次不等式(组)与简单线性规划问题选修1-1第一章常用逻辑用语1.1 命题与量词1.2 基本逻辑联结词1.3 充分条件、必要条件与命题的四种形式第二章圆锥曲线与方程2.1 椭圆2.2 双曲线2.3 抛物线第三章导数及其应用3.1 导数3.2 导数的运算3.3 导数的应用选修1-2第一章统计案例第二章推理与证明第三章数系的扩充与复数的引入第四章框图选修4-5第一章不等式的基本性质和证明的基本方法1.1 不等式的基本性质和一元二次不等式的解法1.2 基本不等式1.3 绝对值不等式的解法 1.4 绝对值的三角不等式 1.5 不等式证明的基本方法第二章柯西不等式与排序不等式及其应用2.1 柯西不等式2.2 排序不等式2.3 平均值不等式(选学) 2.4 最大值与最小值问题,优化的数学模型第三章数学归纳法与贝努利不等式3.1 数学归纳法原理3.2 用数学归纳法证明不等式,贝努利不等式。

2021高考数学一轮复习第11章概率第2节古典概型课件文北师大版

2021高考数学一轮复习第11章概率第2节古典概型课件文北师大版

(白,红),(白,白),(白,黑),(黑,红),(黑,白),(黑,黑),共9
种,其中2次取出的球颜色相同有3种,所以2次取出的球颜色不同的
概率为1-39=23.]
13
课堂考点探究
14
⊙考点1 古典概型的概率计算 求古典概型概率的步骤
(1)判断本试验的结果是否为等可能事件,设出所求事件A; (2)分别求出基本事件的总数n与所求事件A中所包含的基本事件 个数m; (3)利用公式P(A)=mn ,求出事件A的概率.
44
2.设平面向量a=(m,1),b=(2,n),其中m,n∈{1,2,3,4},记
“a⊥(a-b)”为事件A,则事件A发生的概率为( )
1
1
A.8
B.4
1
1
C.3
D.2
45
A [有序数对(m,n)的所有可能情况为(1,1),(1,2),(1,3),(1,4), (2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3), (4,4),共 16 个.由 a⊥(a-b)得 m2-2m+1-n=0,即 n=(m-1)2, 由于 m,n∈{1,2,3,4},故事件 A 包含的基本事件为(2,1)和(3,4),共 2 个,所以 P(A)=126=18.故选 A.]
31
②不妨设抽出的7名同学中,来自甲年级的是A,B,C,来自乙 年级的是D,E,来自丙年级的是F,G,则从抽出的7名同学中随机 抽取的2名同学来自同一年级的所有可能结果为{A,B},{A,C}, {B,C},{D,E},{F,G},共5种.
所以事件M发生的概率P(M)=251.
32
⊙考点2 古典概型与其他知识的交汇问题

古典概型 课件(1)-人教A版高中数学必修第二册(共30张PPT)

古典概型 课件(1)-人教A版高中数学必修第二册(共30张PPT)
解 不是,因为有无数个样本点.
做一做
1. 考虑下面的随机事件,如何度量事件A发生的可能性大小? 一个班级中有18名男生、22名女生.采用抽签的方式,从中随机选择一名学生, 事件A=“抽到男生”
解:班级中共有40名学生,从中选择一名学生,因为是随机选取的,所以选到 每个学生的可能性都相等,这是一个古典概型. 抽到男生的可能性大小,取决于男生数在班级学生数中所占的比例大小. 因此,可以用男生数与班级学生数的比值来度量,显然,这个随机试验的样 本空间中有40个样本点,而事件A=“抽到男生”包含18个样本点. 因此,事件A发生的可能性大小为18/40=0.45
1 1 (1,1) 2 (2,1) 3 (3,1) 4 (4,1) 5 (5,1) 6 (6,1)
2 (1,2) (2,2) (3,2) (4,2) (5,2) (6,2)
3 (1,3) (2,3) (3,3) (4,3) (5,3) (6,3)
1.根据2020年山东省模拟高考试题中发现,在咱们的数学考试中既有单选题又有多选 题,多选题是从A、B、C、D四个选项中选出所有正确答案,同学们可能有一种感觉,如 果不知道正确答案,多选题更难猜对,这是为什么?
典例解析
例2. 抛掷两枚质地均匀的骰子(标记为I号和Ⅱ号),观察两枚骰子分别可能出现的基本结果. (1)写出这个试验的样本空间,并判断这个试验是否为古典概型;
有限性
等可能性
思考2:某同学随机向一靶心进行射击,这一试验的结果有“命中
10环”,“命中9环”,“命中8环”,“命中7环”,
“命中6环”,“命中5环”和“不中环”,
这是古典概型吗?为什么?
归纳总结 判断一个试验是不是古典概型要抓住两点: 一是 有限性; 二是 等可能性

10-1-3古典概型(教学课件)-高中数学人教A版(2019)必修 第二册

10-1-3古典概型(教学课件)-高中数学人教A版(2019)必修 第二册

2.古典概型的概率计算
知识梳理
2.古典概型的概率计算公式
一般地,设试验E是古典概型,样本空间Ω包含n个样本
点,事件A包含其中的k个样本点,
k
n(A)
则 定 义 事 件 A 的 概 率 P ( A ) = _ _n_ _ _ = _ _n_(_Ω_ _)_ _ ,
其中n(A)和n(Ω)分别表示事件A和样本空间Ω包含的样 本点个数.
2.求基本事件总数的常用方法: (1)列举法:适合于较简单的问题. (2)列表法:适合求较复杂问题中的基本事件数. (3)树形图法:适合较复杂问题中基本事件的探求.
配套练习
袋中有2个标号分别为1,2的白球和2个标号分别为3,4的 黑球,这4个球除颜色、标号外完全相同,4个人按顺序依次 从中摸出1个球,求基本事件的个数. 解:4个人按顺序依次从袋中摸出1个球的所有可能结果用树 形图表示如下图,共24个基本事件.
P(A)= A所包含的基本事件的个数 = 2
基本事件的总数
21
5
因为(1,1)和(2,1)发生的可能性不相等, 这不符合古典概型
解:将两个红球编号为 1 , 2 ,三个黄球编号为 3 , 4 , 5 .第一次摸 球时有 5 种等可能的结果,对应第一次摸球的每个可能结果,第二 次摸球都有4种等可能的结果。将两次摸球的结果配对,组成20种等 可能的结果,如下表:
已知某多项选择题的正确答案是AC.某某同学不会做该题,他只想 得2分,就按单项选择题处理,随机填写了一个答案,求他得2分的概率.
补充两个计数原理
分类加法计数原理是指完成一件事有几类不同的方案, 在第1类方案中有m1种不同的的方法, 在第2类方案中有m2种不同的的方法…… 在第n类方案中有mn种不同的的方法, 那么完成这件事共有N=m1+m2+……+mn种方法。

高三数学一轮复习 第十一章 第2课时 古典概型课件

高三数学一轮复习 第十一章 第2课时 古典概型课件

3.概率的一般加法公式 P(A∪B)=P(A)+P(B)- P(A∩B) 公式使用中要注意: (1)公式的作用是求 A∪B 的概率,当 A∩B=∅时, A、B 互斥,此时 P(A∩B)=0,∴P(A∪B)=P(A) +P(B); (2)要计算 P(A∪B),需要求 P(A)、P(B),更重要 的是把握事件 A∩B,并求其概率;
(3)记“至少摸出 1 个黑球”为事件 B,则事 件 B 包含的基本事件为 ab,ac,ad,ae,bc, bd,be,共 7 个基本事件. 所以 P(B)=170=0.7. 答:至少摸出 1 个黑球的概率为 0.7.
求较复杂的古典概型概率
对于较复杂事件的概率,关键是理解题目的 实际含义,把实际问题转化为概率模型,用 分析法、列表法求出基本事件的总数,必要 时将所求事件转化成彼此互斥的事件的和, 或者先去求对立事件的概率,进而再用互斥 事件的概率加法公式或对立事件的概率公式 求出所求事件的概率.
(3)该公式可以看作一个方程,知三可求一.
从近两年的高考试题来看,古典概型是高考 的热点,可在选择题、填空题中单独考查, 也可在解答题中与统计或随机变量的分布列 一起考查,属容易或中档题.以考查基本概 念、基本运算为主.
(本小题满分12分)(2010·天津卷)有编号为A1, A2,…,A10的10个零件,测量其直径(单位: cm),得到下面数据:
解析: 由集合 P={x|x(x2+10x+24)=0} 可得 P={-6,-4,0}, 由 Q={y|y=2n-1,1≤n≤2,n∈N*},可得 Q ={1,3}, M=P∪Q={-6,-4,0,1,3}. 因为点 A(x′,y′)的坐标 x′∈M,y′∈M, 所以满足条件的 A 点共有 5×5=25 个. (1)正 好在第 三象限的 点有 (- 6,- 6), (- 4, -6),(-6,-4),(-4,-4)4 个点.

2022数学第十一章概率11.2古典概型学案文含解析新人教A版

2022数学第十一章概率11.2古典概型学案文含解析新人教A版

11。

2古典概型必备知识预案自诊知识梳理1.基本事件在一次试验中,我们常常要关心的是所有可能发生的基本结果,它们是试验中不能再分的最简单的随机事件,其他事件可以用它们来描绘,这样的事件称为。

2.基本事件的特点(1)任何两个基本事件是的.(2)任何事件(除不可能事件)都可以表示成的和.3。

古典概型具有以下两个特点的概率模型称为古典概率模型,简称古典概型。

(1)有限性:试验中所有可能出现的基本事件.(2)等可能性:每个基本事件出现的可能性。

4。

古典概型的概率公式.P(A)=A包含的基本事件的个数基本事件的总数1。

任一随机事件的概率都等于构成它的每一个基本事件概率的和。

2。

求试验的基本事件数及事件A包含的基本事件数的方法有列举法、列表法和树状图法。

考点自诊1.判断下列结论是否正确,正确的画“√”,错误的画“×”。

(1)在一次古典概型试验中,其基本事件的发生一定是等可能的.()(2)基本事件的概率都是1n。

若某个事件A包含的结果有m个,则P(A)=mn.()(3)掷一枚质地均匀的硬币两次,出现“两个正面”“一正一反"“两个反面”,这三个结果是等可能事件.()(4)在古典概型中,如果事件A中基本事件构成集合A,所有的基本事件构成集合I,那么事件A的概率为card(A)card(I)。

()(5)从1,2,3,4,5中任取出两个不同的数,其和为5的概率是0。

2.()2.某同学打算编织一条毛线围巾送给妈妈,决定从妈妈喜欢的白色、黄色和紫色中随机选择两种颜色的毛线编织,那么这条围巾是由白色、紫色两种颜色的毛线编织的概率是()A.14B.13C。

12D.343.(2019全国3,3)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是()A。

16B。

14C。

13D.124.从集合A={1,3,5,7,9}和集合B={2,4,6,8}中各取一个数,那么这两个数之和除以3余1的概率是()A。

人教版高中总复习一轮数学精品课件 第11章 概率 11.2 古典概型、条件概率与全概率公式

人教版高中总复习一轮数学精品课件 第11章 概率 11.2 古典概型、条件概率与全概率公式
一般地,设 A1,A2,…,An 是一组两两互斥的事件,A1∪A2∪…∪An=Ω,且

P(Ai)>0,i=1,2,…,n,则对任意的事件 B⊆Ω,有 P(B)= ∑ P(Ai)P(B|Ai).
=1
5.贝叶斯公式
设 A1,A2,…,An 是一组两两互斥的事件,A1∪A2∪…∪An=Ω,且 P(Ai)>0,
P(A|B)= ()
=
0.3×0.5
0.8
=
3
16
.
3
.
16
5.某公司在某地区对商品A进行调查,随机调查了100位购买商品A的顾客
的性别,其中男性顾客18位.已知该地区商品A的购买率为10%,该地区女性
人口占该地区总人口的46%.从该地区中任选一人,若此人是男性,则此人购
买商品A的概率为
1
30
.
10
故所求概率 P=
25
=
2
.
5
(2)将4个1和2个0随机排成一行,则2个0不相邻的概率为( C )
1
A.3
2
B.5
2
C.3
4
D.5
将 4 个 1 和 2 个 0 随机排成一行的总的排法有C62 =15(种),
其中 2 个 0 不相邻的排法有C52 =10(种),
所以 2 个 0
10
不相邻的概率为
( B )
3
A.8
3
B.10
3
C.11
3
D.5
设事件A表示“有1名主任医师被选派”,事件B表示“2名主任医师都被选
派”,则在有1名主任医师被选派的条件下,2名主任医师都被选派的概率为
()
P(B|A)= ()

古典概型【新教材】人教A版高中数学必修第二册课件

古典概型【新教材】人教A版高中数学必修第二册课件

支彩笔中含有红色彩笔的概率为
()
4
3
2
1
A.5
B.5
C.5
D.5
解析:从 5 支彩笔中任取 2 支不同颜色的彩笔,有以下 10 种
情况:(红,黄),(红,蓝),(红,绿),(红,紫),(黄,蓝),
(黄,绿),(黄,紫),(蓝,绿),(蓝,紫),(绿,紫).其中含
有红色彩笔的有 4 种情况:(红,黄),(红,蓝),(红,绿),(红,
B.从规格直径为 250 mm±0.6 mm 的一批合格产品中任意抽
一根,测量其直径 d
C.抛掷一枚硬币,观察其出现正面或反面
D.某人射击中靶或不中靶 解析:依据古典概型的特点判断,只有 C 项满足:①样本空
间的样本点只有有限个;②每个样本点发生的可能性相等. 答案:C
2.下列关于古典概型的说法中正确的是
1 0 . 1 .3 古 典 概 型-【新 教材】 人教A 版(20 19)高 中数学 必修第 二册课 件(共3 1张PPT )
古典概型的判断 [例 1] 判断下列概率模型中哪些是古典概型,为什么? ①从区间[1,10]内任意取出一个数,求取到 1 的概率; ②从含有 1 的 10 个整数中任意取出一个数,求取到 1 的概率; ③向一个正方形 ABCD 内投掷一点 P,求 P 恰好与 A 点重合的 概率; ④向上抛掷一枚不均匀的旧硬币,求正面朝上的概率.
1 0 . 1 .3 古 典 概 型-【新 教材】 人教A 版(20 19)高 中数学 必修第 二册课 件(共3 1张PPT )
1 0 . 1 .3 古 典 概 型-【新 教材】 人教A 版(20 19)高 中数学 必修第 二册课 件(共3 1张PPT )
判断一个试验是不是古典概型要抓住两点:一是 有限性;二是等可能性.

高考数学大一轮复习第十一章概率11.2古典概型课件文新人教A版

高考数学大一轮复习第十一章概率11.2古典概型课件文新人教A版
21,41,共 2
2
个,因此所求的概率为9.
关闭
2
9
第十页,共34页。
解析
答案
答案
-11-11
知识(zhī shi)
梳理
双基自测(zì
cè)
自测(zì cè)
点评
1.在一次试验中,其基本事件的发生不一定是等可能的,如一粒种子是否发芽,其
发芽和不发芽的可能性是不相等的.
2.古典概型中基本事件的探求方法:
件有(1,2),(1,4),(1,5),(2,4),(2,5),(4,5),共 6 种,所取的 2 个数的和为 6
包含的基本事件有(1,5),(2,4),共 2 种,故所取的 2 个数的和为 6 的概
2
1
率为6 = 3.故选 A.
(2)基本事件总数有 10 个,即
(a,b),(a,c),(a,d),(a,e),(b,c),(b,d),(b,e),(c,d),(c,e),(d,e),其中含 a 的基本
11.2
古典(gǔdiǎn)概型
第一页,共34页。
-2知识(zhī shi)梳

双基自测(zì
cè)
自测(zì cè)
点评
1
2
3
4
1.基本事件的特点
互斥
(1)任何两个基本事件是
的.
(2)任何事件(除不可能事件)都可以表示成
第二页,共34页。
基本事件
的和.
-3知识(zhī shi)
梳理
双基自测(zì
2 +2
≤ √2,即 a2≤b2 的数组(a,b)
有(1,1),(1,2),(1,3),(1,4),…,(6,6),共 6+5+4+3+2+1=21 种,因此所

2020高考数学总复习第十章概率10.2古典概型课件文新人教A版

2020高考数学总复习第十章概率10.2古典概型课件文新人教A版

如表是年龄的频数分布表.
区间 [25,30) [30,35) [35,40) [40,45) [45,50]
人数 25
a
b
(1)求正整数 a,b,N 的值;
(2)现要从年龄较小的第 1,2,3 组中用分层抽样的方法抽取 6 人,则
年龄在第 1,2,3 组的人数分别是多少?
(3)在(2)的条件下,从这 6 人中随机抽取 2 人参加社区宣传交流活
动,求恰有 1 人在第 3 组的概率.
解:①由题干中的频率分布直方图可知,a=25,且 b= 25×00..0082=100,总人数 N=0.0225×5=250.
②因为第 1,2,3 组共有 25+25+100=150(人),利用分层抽样 在 150 人中抽取 6 人,每组抽取的人数分别为:
第 1 组的人数为 6×12550=1(人), 第 2 组的人数为 6×12550=1(人), 第 3 组的人数为 6×110500=4(人), 所以第 1,2,3 组分别抽取 1 人、1 人、4 人.
应用古典概型求某事件概率的步骤 第一步,判断试验的结果是否有限、是否为等可能事件,设 出所求事件 A; 第二步,分别求出基本事件的总数 n 与所求事件 A 中所包含 的基本事件个数 m; 第三步,利用公式 P(A)=mn ,求出事件 A 的概率. 提醒:古典概型中的基本事件都是互斥的.
(1)(2015·全国卷Ⅰ)如果 3 个正整数可作为一个直角三角形三条边
(2)记“xy≥8”为事件 B,“3<xy<8”为事件 C.则事件 B 包含 的基本事件共 6 个,
即(2,4),(3,3),(3,4),(4,2),(4,3),(4,4), 所以 P(B)=166=38. 事件 C 包含的基本事件共 5 个, 即(1,4),(2,2),(2,3),(3,2),(4,1), 所以 P(C)=156. 因为38>156, 所以小亮获得水杯的概率大于获得饮料的概率.

人教版高考数学总复习第十一章计数原理概率、随机变量及其分布第六节离散型随机变量及其分布列、均值与方差

人教版高考数学总复习第十一章计数原理概率、随机变量及其分布第六节离散型随机变量及其分布列、均值与方差

3ቤተ መጻሕፍቲ ባይዱ基础知识 4.基本方法 5.基本能力 6.基本应用
3.(多选题)(离散型随机变量的概念)下列随机变量 X 是离散型随机变量的是( ) A.某市每天查到违章驾车的车辆数 X B.某网站中的歌曲《爱我中华》一天内被点击的次数 X C.一天内的温度 X D.射手对目标进行射击,击中目标得 1 分,未击中目标得 0 分,用 X 表示该射手在 一次射击中的得分 【解析】选 ABD.因为 A,B,D 的结果均可以一一列出,而 C 不能一一列出.
第六节 离散型随机变量及其
分布列、均值与方差
第十一章
计数原理、概率、随机变量及其分布
知识梳理·思维激活 考点探究·悟法培优
【考试要求】 1.了解离散型随机变量的概念,理解离散型随机变量分布列及数字特点 2.掌握离散型随机变量的分布列 3.掌握离散型随机变量的均值与方差 【高考考情】 考点考法:离散型随机变量的分布列、均值及方差是高考考查重点,一般以 实际问题为命题载体,考查分布列、均值与方差在决策问题中的应用.试题 以选择题、填空题、解答题形式呈现,难度中档. 核心素养:数据分析、数学运算、逻辑推理
x+0.1+0.3+y=1, 【解析】选 D.由
7x+8×0.1+9×0.3+10y=8.9,
解得 y=0.4.
6.(离散型随机变量的方差)有甲、乙两种品牌的手表,它们的日误差分别为 X,Y(单 位:s),其分布列如下:
X -1 0 1 P 0.1 0.8 0.1
Y -2 -1 0 1 2 P 0.1 0.2 0.4 0.2 0.1 则两种品牌中质量好的是__________. 【解析】E(X)=E(Y)=0,D(X)=0.2,D(Y)=1.2. 因为 E(X)=E(Y),D(X)<D(Y),所以甲品牌质量好. 答案:甲

新课标人教A版高中数学教材目录

新课标人教A版高中数学教材目录

新课标人教A版高中数学教材目录(必修+选修)必修1第一章集合与函数概念1.1 集合1.2 函数及其表示1.3 函数的基本性质第二章基本初等函数(Ⅰ)2.1 指数函数2.2 对数函数2.3 幂函数第三章函数的应用3.1 函数与方程3.2 函数模型及其应用必修2第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图 1.3 空间几何体的表面积与体积第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质第三章直线与方程3.1 直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式第四章圆与方程4.1 圆的方程4.2 直线、圆的位置关系4.3 空间直角坐标系必修3第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例第二章统计2.1 随机抽样2.2 用样本估计总体2.3 变量间的相关关系第三章概率3.1 随机事件的概率阅读与思考天气变化的认识过程3.2 古典概型3.3 几何概型必修4第一章三角函数1.1 任意角和弧度制1.2 任意角的三角函数1.3 三角函数的诱导公式1.4 三角函数的图象与性质1.5 函数y=Asin(ωx+ψ)1.6 三角函数模型的简单应用第二章平面向量2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积2.5 平面向量应用举例第三章三角恒等变换3.1 两角和与差的正弦、余弦和正切公式3.2 简单的三角恒等变换必修5第一章解三角形1.1 正弦定理和余弦定理1.2 应用举例1.3 实习作业第二章数列2.1 数列的概念与简单表示法2.2 等差数列2.3 等差数列的前n项和2.4 等比数列2.5 等比数列前n项和阅读与思考九连环第三章不等式3.1 不等关系与不等式3.2 一元二次不等式及其解法3.3 二元一次不等式(组)与简单的线性规划问题3.4 基本不等式选修1-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词第二章圆锥曲线与方程2.1 椭圆2.2 双曲线2.3 抛物线阅读与思考圆锥曲线的光学性质及其应用第三章导数及其应用3.1 变化率与导数3.2 导数的计算3.3 导数在研究函数中的应用3.4 生活中的优化问题举例走进微积分选修1-2第一章统计案例1.1 回归分析的基本思想及其初步应用1.2 独立性检验的基本思想及其初步应用第二章推理与证明2.1 合情推理与演绎证明阅读与思考科学发现中的推理2.2 直接证明与间接证明第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算第四章框图4.1 流程图4.2 结构图选修2-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词第二章圆锥曲线与方程2.1 曲线与方程2.2 椭圆2.3 双曲线2.4 抛物线选修2-2第一章导数及其应用1.1 变化率与导数1.2 导数的计算1.3 导数在研究函数中的应用1.4 生活中的优化问题举例1.5 定积分的概念1.6 微积分基本定理1.7 定积分的简单应用第二章推理与证明2.1 合情推理与演绎推理2.2 直接证明与间接证明2.3 数学归纳法第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算选修2-3第一章计数原理1.1 分类加法计数原理与分步乘法计数原理1.2 排列与组合1.3 二项式定理第二章随机变量及其分布2.1 离散型随机变量及其分布列2.2 二项分布及其应用2.3 离散型随机变量的均值与方差2.4 正态分布第三章统计案例3.1 回归分析的基本思想及其初步应用3.2 独立性检验的基本思想及其初步应用选修3-1数学史选讲第一讲早期的算术与几何一古埃及的数学二两河流域的数学三丰富多彩的记数制度第二讲古希腊数学一希腊数学的先行者二毕达哥拉斯学派三欧几里得与《原本》四数学之神──阿基米德第三讲中国古代数学瑰宝一《周髀算经》与赵爽弦图二《九章算术》三大衍求一术四中国古代数学家第四讲平面解析几何的产生一坐标思想的早期萌芽二笛卡儿坐标系三费马的解析几何思想四解析几何的进一步发展第五讲微积分的诞生一微积分产生的历史背景二科学巨人牛顿的工作三莱布尼茨的“微积分”第六讲近代数学两巨星一分析的化身──欧拉二数学王子──高斯第七讲千古谜题一三次、四次方程求根公式的发现二高次方程可解性问题的解决三伽罗瓦与群论四古希腊三大几何问题的解决第八讲对无穷的深入思考一古代的无穷观念二无穷集合论的创立三集合论的进一步发展与完善第九讲中国现代数学的开拓与发展一中国现代数学发展概观二人民的数学家──华罗庚三当代几何大师──陈省身选修3-3球面上的几何第一讲从欧氏几何看球面一平面与球面的位置关系二直线与球面的位置关系和球幂定理三球面的对称性第二讲球面上的距离和角一球面上的距离二球面上的角第三讲球面上的基本图形一极与赤道二球面二角形三球面三角形1.球面三角形2.三面角3.对顶三角形4.球极三角形第四讲球面三角形一球面三角形三边之间的关系二、球面“等腰”三角形三球面三角形的周长四球面三角形的内角和第五讲球面三角形的全等1.“边边边”(s.s.s)判定定理2.“边角边”(s.a.s.)判定定理3.“角边角”(a.s.a.)判定定理4.“角角角”(a.a.a.)判定定理第六讲球面多边形与欧拉公式一球面多边形及其内角和公式二简单多面体的欧拉公式三用球面多边形的内角和公式证明欧拉公式第七讲球面三角形的边角关系一球面上的正弦定理和余弦定理二用向量方法证明球面上的余弦定理1.向量的向量积2.球面上余弦定理的向量证明三从球面上的正弦定理看球面与平面四球面上余弦定理的应用──求地球上两城市间的距离第八讲欧氏几何与非欧几何一平面几何与球面几何的比较二欧氏平行公理与非欧几何模型──庞加莱模型三欧氏几何与非欧几何的意义选修3-4对称与群第一讲平面图形的对称群一平面刚体运动1.平面刚体运动的定义2.平面刚体运动的性质二对称变换1.对称变换的定义2.正多边形的对称变换3.对称变换的合成4.对称变换的性质5.对称变换的逆变换三平面图形的对称群第二讲代数学中的对称与抽象群的概念一n元对称群Sn二多项式的对称变换三抽象群的概念1.群的一般概念2.直积第三讲对称与群的故事一带饰和面饰二化学分子的对称群三晶体的分类四伽罗瓦理论选修4-1几何证明选讲第一讲相似三角形的判定及有关性质一平行线等分线段定理二平行线分线段成比例定理三相似三角形的判定及性质1.相似三角形的判定2.相似三角形的性质四直角三角形的射影定理第二讲直线与圆的位置关系一圆周角定理二圆内接四边形的性质与判定定理三圆的切线的性质及判定定理四弦切角的性质五与圆有关的比例线段第三讲圆锥曲线性质的探讨一平行射影二平面与圆柱面的截线三平面与圆锥面的截线选修4-2第一讲线性变换与二阶矩阵一线性变换与二阶矩阵(一)几类特殊线性变换及其二阶矩阵1.旋转变换2.反射变换3.伸缩变换4.投影变换5.切变变换(二)变换、矩阵的相等二二阶矩阵与平面向量的乘法(二)一些重要线性变换对单位正方形区域的作用第二讲变换的复合与二阶矩阵的乘法一复合变换与二阶矩阵的乘法二矩阵乘法的性质第三讲逆变换与逆矩阵一逆变换与逆矩阵1.逆变换与逆矩阵2.逆矩阵的性质二二阶行列式与逆矩阵三逆矩阵与二元一次方程组1.二元一次方程组的矩阵形式2.逆矩阵与二元一次方程组第四讲变换的不变量与矩阵的特征向量一变换的不变量—矩阵的特征向量1.特征值与特征向量2.特征值与特征向量的计算二特征向量的应用1.Aa的简单表示2.特征向量在实际问题中的应用选修4-4第一讲坐标系第二讲参数方程选修4-5不等式选讲第一讲不等式和绝对值不等式一不等式1.不等式的基本性质2.基本不等式3.三个正数的算术-几何平均不等式二绝对值不等式1.绝对值三角不等式2.绝对值不等式的解法第二讲讲明不等式的基本方法一比较法二综合法与分析法三反证法与放缩法第三讲柯西不等式与排序不等式一二维形式柯西不等式二一般形式的柯西不等式三排序不等式第四讲数学归纳法证明不等式一数学归纳法二用数学归纳法证明不等式选修4-6初等数论初步第一讲整数的整除一整除1.整除的概念和性质2.带余除法3.素数及其判别法二最大公因数与最小公倍数1.最大公因数2.最小公倍数三算术基本定理第二讲同余与同余方程一同余1.同余的概念2.同余的性质二剩余类及其运算三费马小定理和欧拉定理四一次同余方程五拉格朗日插值法和孙子定理六弃九验算法第三讲一次不定方程一二元一次不定方程二二元一次不定方程的特解三多元一次不定方程第四讲数伦在密码中的应用一信息的加密与去密二大数分解和公开密钥选修4-7优选法与试验设计初步第一讲优选法一什么叫优选法二单峰函数三黄金分割法——0.618法1.黄金分割常数2.黄金分割法——0.618法四分数法1.分数法2.分数法的最优性五其他几种常用的优越法1.对分法2.盲人爬山法3.分批试验法4.多峰的情形六多因素方法1.纵横对折法和从好点出发法2.平行线法3.双因素盲人爬山法第二讲试验设计初步一正交试验设计法1.正交表2.正交试验设计3.试验结果的分析4.正交表的特性二正交试验的应用选修4-9风险与决策第一讲风险与决策的基本概念一风险与决策的关系二风险与决策的基本概念1.风险(平均损失)2.平均收益3.损益矩阵4.风险型决策探究与发现风险相差不大时该如何决策第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介一马尔可夫链简介1.马尔可夫性与马尔可夫链2.转移概率与转移概率矩阵二马尔可夫型决策简介三长期准则下的马尔可夫型决策理论1.马尔可夫链的平稳分布2.平稳分布与马尔可夫型决策的长期准则3.平稳准则的应用案例。

高中数学《古典概型》(47张) 新人教A版必修3PPT课件

高中数学《古典概型》(47张) 新人教A版必修3PPT课件
n
我们把可以作古典概型计算的概率称为古典概率.
注: A即是一次随机试验的样本空间的一个子集, 而m是这个子集里面的元素个数;n即是一次随机 试验的样本空间的元素个数.
古典概率
3、概率的性质 (1) 随机事件A的概率满足
0<P(A)<1
(2)必然事件的概率是1,不可能的事件的概率是0,

P(Ω) =1 , P(Φ) =0.
• (1)试问:一共有多少种不同的结果?请
•思维点拨:用空间坐标(a,b,c)的形式列出 所有可能结果,再把事件“3次摸球所得总分 为5分”的个数列出,根据古典概型概率公式 可求. •解答:(1)一共有8种不同的结果,列举如下: •(红、红、红)、(红、红、黑)、(红、黑、红)、
• 思维点拨:用空间坐标(a,b,c)的形式列 出所有可能结果,再把事件“3次摸球所得 总分为5分”的个数列出,根据古典概型概 率公式可求.
【答题模板】
•解析:基本事件有20个,只要通过枚举的方法 找到随机事件“卡片上两个数的各位 •数字之和不小于14”所包含的基本事件的个数, 再按照等可能性事件的概率公式计 •算.大于14的点数的情况通过列举可得,有5
【分析点评】
• 1. 本题中,当两个数字k,k+1是一位数时, 只有k≥7时,才会使两个数的各位数字之和 不小于14;当k,k+1是两位数时,只有当 第一个两位数的数字之和不小于7才有可 能.这类题目也曾出现在高考中,如2008年 江西卷中:电子钟一天显示的时间是从
(1)两枚硬币都出现正面的概率是 0.25 (2)一枚出现正面,一枚出现反面的概率是 0.5
4、在一次问题抢答的游戏,要求答题者在问题所列出的 4个答案中找出唯一正确答案。某抢答者不知道正确答案 便随意说出其中的一个答案,则这个答案恰好是正确答

新人教A版必修二 概率.古典概型 课件(45张)

新人教A版必修二   概率.古典概型   课件(45张)

2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4, 3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5, 4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6, 5),(6,6).共 36 个基本事件.
解:(1)由题意知,从 6 个国家中任选两个国家,其 一切可能的结果组成的基本事件有:{A1,A2},{A1,A3}, {A1,B1},{A1,B2},{A1,B3},{A2,A3},{A2,B1},{A2, B2},{A2,B3},{A3,B1},{A3,B2},{A3,B3},{B1, B2},{B1,B3},{B2,B3},共 15 个.
包括 A1 但不包括 B1 的事件所包含的基本事件有: {A1,B2},{A1,B3},共 2 个,则所求事件的概率为 P=29.
归纳升华 求古典概型概率的计算步骤
1.确定基本事件的总数 n; 2.确定事件 A 包含的基本事件的个数 m; 3.计算事件 A 的概率 P(A)=mn .
[变式训练] (1)已知 5 件产品中有 2 件次品,其余为
1.列表法:将基本事件用表格的方式表示出来,通 过表格可以清楚地弄清基本事件的总数,以及要求的事 件所包含的基本事件数.列表法适合于较简单的试验的 题目,基本事件较多的试验不适合用列表法(关键词:基 本事件的总数).
2.树状图法:树状图法是用树状的图形把基本事件
列举出来的一种方法,树状图法便于分析基本事件间的 结构关系,对于较复杂的问题,可以作为一种分析问题 的主要手段.树状图法适合于较复杂的试验的题目(关键 词:结构关系).
4.整数值随机数的产生及应用 (1)产生整数值随机数的方法. 用计算器的随机函数 RANDI(a,b)或计算机的随机 函数 RANDBETWEEN(a,b)可以产生从整数 a 到整数 b 的取整数值的随机数;也可用计算机中的 Excel 软件产生 随机数. 用计算机或计算器模拟试验的方法称为随机模拟方 法或蒙特卡罗方法.

高中数学(新人教A版)必修第二册:古典概型【精品课件】

高中数学(新人教A版)必修第二册:古典概型【精品课件】

知识点二 样本点的计数问题 [例 2] (1)4 张卡片上分别写有数字 1,2,3,4,从这 4 张卡片中
随机抽取 2 张,则取出的 2 张卡片上的数字之和为奇数的所有样
本点个数为()A来自2B.3C.4
D.6
(2)连续掷 3 枚质地均匀的硬币,观察这 3 枚硬币落在地面上
时是正面朝上还是反面朝上.
[变式训练]
从含有两件正品 a1,a2 和一件次品 b 的三件产品中,每次 任取一件. (1)若每次取后不放回,连续取两次,求取出的两件产品中 恰有一件次品的概率; (2)若每次取后放回,连续取两次,求取出的两件产品中恰 有一件次品的概率.
解:(1)每次取出一个,取后不放回地连续取两次,其一切 可能的结果组成的样本点有 6 个,即(a1,a2),(a1,b),(a2, a1),(a2,b),(b,a1),(b,a2).其中小括号内左边的字母 表示第 1 次取出的产品,右边的字母表示第 2 次取出的产 品.总的事件个数为 6,而且可以认为这些样本点是等可 能的. 设事件 A=“取出的两件中恰有一件次品”,所以 A= a1,b,a2,b,b,a1,b,a2,所以 n(A)=4, 从而 P(A)=nnΩA=46=23.
[知识小结一]
判断一个试验是不是古典概型要抓住两点:一是 有限性;二是等可能性.
[变式训练]
某同学随机地向一靶心进行射击,这一试验的结果只有有限 个:命中 10 环、命中 9 环、……、命中 5 环和不中环.你认 为这是古典概型吗?为什么?
解:不是古典概型,因为试验的所有可能结果只有 7 个,而命 中 10 环、命中 9 环、……、命中 5 环和不中环的出现不是等 可能的,即不满足古典概型的第二个条件.
紫),所以所求事件的概率 P=140=25.故选 C. 答案:C

概率的基本性质 课件-高二上学期数学人教A版必修 第二册

概率的基本性质 课件-高二上学期数学人教A版必修 第二册

例8:在学校运动会开幕式上,100 名学生组成一个方阵进行表演,他
们按照性别(M (男)、F (女) )及年级(G1 (高一)、G2(高二)、G3(高三)) 分类统计的人数如下表:
G1
G2
G3
M
18
20
14
F
17
24
7
若从这100名学生中随机选一名学生, 求下列概率:
P(M) =_0__.5__2_,P(F) =_0_._4_8__,
(1)C=“抽到红花色”,求P(C);
(2)D=“抽到黑花色”,求P(D).
解:(1)因为C=A∪B,A与B是互斥事件.
根据互斥事件的概率加法公式,得
11 1
P(C)=P(A)+P(B)= 4 4 2
(2)因为C与D互斥,又因为C∪D是必然
事件,所以C与D互为对立事件.因此
P(D)=1-P(C)=
(1)互斥事件的概率的加法公式P(A∪B)=P(A)+P(B).
(2)对于一个较复杂的事件,一般将其分解成几个简单的事件, 当这些事件彼此互斥时,原事件的概率就是这些简单事件的概率的和.
(3)当求解的问题中有“至多”“至少”“最少”等关键词语时, 常常考虑其反面,通过求其反面,然后转化为所求问题.
【注意】有限个彼此互斥事件的ห้องสมุดไป่ตู้的概率,等于这些事件的概
P(M∪F) =_1_____, P(MF) =_0_____,
P(G1) = _0__.3__5_, P(M∪G2) =_0__.7__6__, P(FG3) =_0__.0__7_.
练习1:从不包含大小王牌的52张扑克牌中随机抽取一张,设事件 A=“抽到红心”,事件B=“抽到方片”,P(A)=41P(B)= ,那么
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档