多元统计分析之聚类分析PPT课件
合集下载
聚类分析PPT
4.操作步骤
系统聚类 K-均值聚类
THANKS
感谢您的聆听!
聚类分析主要用于探索性研究,其分析结果可提供多个可能的解,最终解的选择需 要研究者的主观判断和后续分析
聚类分析的解完全依赖于研究者所选择的聚类变量,增加或删除一些变量对最终解 都可能产生实质性的影响
不管实际数据中是否存在不同的类别,利用聚类分析都能得到分成若干类别的解
聚类分析的概述
1.概念 2.分类 3.注意点
对样本进行分类称为Q型聚类分析 对指标进行分类称为R型聚类分析
聚类分析的概述
1.概念
2.分类
3.注意点 4.操作步骤
从数据挖掘的角度看,又可以大致分为四种:
划分聚类(代表是K-Means算法,也称K-均值聚类算法) 层次聚类 基于密度的聚类 基于网格的聚类
聚类分析的概述
1.概念
2.分类
3.注意点 4.操作步骤
聚类分析的概述
1.概念
2.分类 3.注意点 4.操作步骤
三个特征:
(1)适用于没有先验知识的分类。 (2)可以处理多个变量决定的分类。 (3)是一种探索性分析方法。
聚类分析的概述
1.概念
2.分类
3.注意点 4.操作步骤
从数据分析的角度看,它是对多个样本进行定量分析的多元统计分析方法,可以分为两种:
聚类分析的概述
1.概念
2.分类 3.注意点 4.操作步骤
两个距离概念 按照远近程度来聚类需要明确两个概念: ✓ 点和点念
2.分类 3.注意点 4.操作步骤
在商业上,其被用来发现不同的客户群,并且通过购买模式刻画不同的客户群的特征; 在生物上,其被用来动植物分类和对基因进行分类,获取对种群固有结构的认识; 在电子商务上,聚类分析在电子商务中网站建设数据挖掘中也是很重要的一个方面, 通过分组聚类出具有相似浏览行为的客户,并分析客户的共同特征,可以更好的帮助 电子商务的用户了解自己的客户,向客户提供更合适的服务; 在因特网应用上,聚类分析被用来在网上进行文档归类来修复信息。
系统聚类 K-均值聚类
THANKS
感谢您的聆听!
聚类分析主要用于探索性研究,其分析结果可提供多个可能的解,最终解的选择需 要研究者的主观判断和后续分析
聚类分析的解完全依赖于研究者所选择的聚类变量,增加或删除一些变量对最终解 都可能产生实质性的影响
不管实际数据中是否存在不同的类别,利用聚类分析都能得到分成若干类别的解
聚类分析的概述
1.概念 2.分类 3.注意点
对样本进行分类称为Q型聚类分析 对指标进行分类称为R型聚类分析
聚类分析的概述
1.概念
2.分类
3.注意点 4.操作步骤
从数据挖掘的角度看,又可以大致分为四种:
划分聚类(代表是K-Means算法,也称K-均值聚类算法) 层次聚类 基于密度的聚类 基于网格的聚类
聚类分析的概述
1.概念
2.分类
3.注意点 4.操作步骤
聚类分析的概述
1.概念
2.分类 3.注意点 4.操作步骤
三个特征:
(1)适用于没有先验知识的分类。 (2)可以处理多个变量决定的分类。 (3)是一种探索性分析方法。
聚类分析的概述
1.概念
2.分类
3.注意点 4.操作步骤
从数据分析的角度看,它是对多个样本进行定量分析的多元统计分析方法,可以分为两种:
聚类分析的概述
1.概念
2.分类 3.注意点 4.操作步骤
两个距离概念 按照远近程度来聚类需要明确两个概念: ✓ 点和点念
2.分类 3.注意点 4.操作步骤
在商业上,其被用来发现不同的客户群,并且通过购买模式刻画不同的客户群的特征; 在生物上,其被用来动植物分类和对基因进行分类,获取对种群固有结构的认识; 在电子商务上,聚类分析在电子商务中网站建设数据挖掘中也是很重要的一个方面, 通过分组聚类出具有相似浏览行为的客户,并分析客户的共同特征,可以更好的帮助 电子商务的用户了解自己的客户,向客户提供更合适的服务; 在因特网应用上,聚类分析被用来在网上进行文档归类来修复信息。
《多元统计分析》课件
采用L1正则化,通过惩罚项来选择最重要 的自变量,实现特征选择和模型简化。
比较
应用场景
岭回归适用于所有自变量都对因变量有影 响的情况,而套索回归更适用于特征选择 和模型压缩。
适用于数据集较大、自变量之间存在多重 共线性的情况,如生物信息学数据分析、 市场细分等。
主成分回归与偏最小二乘回归
主成分回归
适用于自变量之间存在多重 共线性的情况,同时要求高 预测精度,如金融市场预测 、化学计量学等。
06 多元数据的典型相关分析
典型相关分析的基本思想
01
典型相关分析是一种研究多个 随机变量之间相关性的多元统 计分析方法。
02
它通过寻找一对或多个线性组 合,使得这些线性组合之间的 相关性达到最大或最小,从而 揭示多个变量之间的关系。
原理
基于最小二乘法原理,通过最小化预 测值与实际值之间的平方误差来估计 回归系数。
应用场景
适用于因变量与自变量之间存在线性 关系的情况,如预测房价、股票价格 等。
注意事项
需对自变量进行筛选和多重共线性诊 断,以避免模型的不稳定性和误差。
岭回归与套索回归
岭回归
套索回归
是一种用于解决多重共线性的回归方法, 通过引入一个小的正则化项来稳定系数估 计。
层次聚类
01
步骤
02
1. 将每个数据点视为一个独立的集群。
2. 计算任意两个集群之间的距离或相似度。
03
层次聚类
01 3. 将最相近的两个集群合并为一个新的集群。 02 4. 重复步骤2和3,直到满足终止条件(如达到预
设的集群数量或最大距离阈值)。
03 应用:适用于探索性数据分析,帮助研究者了解 数据的分布和结构。
第8章-聚类分析PPT课件
5
XXXXXXXXX
XXX
XXXXX
XXXXX
XXX
6
XXXXXXXXX
XXX
XXXXX
XXXXX
X
X
7
X
XXXXXXX
XXX
XXXXX
XXXXX
X
X
8
X
XXXXXXX
XXX
XXX
X
XXXXX
X
X
9
X
XXXXXXX
XXX
XXX
X
X
XXXXX Nhomakorabea10
X
X
XXXXX
XXX
XXX
X
X
XXX
X
X
11
X
X
XXXXX
对于顺序变两量个:案例在变量上 值的 相取 同时S, ijk 1,取不同值 时,Sijk 0;
对于等距变量 Sijk: 1-
xik -xjk Rk
,
Rk为变量 k的全距。
-
17
8.3 聚类方法
8.3.1 层次聚类法(Hierarchical Cluster Procedures) •聚集法(Agglomerative Method) •分解法(Divisive Method)
以上几种方法,离差平方和法和平均联结法的分类效果
较好。
-
21
主要结果
•聚合进度表 •冰柱图(垂直、水平) •树状图 •案例归类表
-
22
Agglomeration Schedule
Stage Cluster First
Cluster Combined
Appears
聚 Stage Cluster 1 Cluster 2 Coefficients Cluster 1 Cluster 2 Next Stage
《应用多元统计分析》聚类分析 ppt课件
中间距离将类Gp与Gq类合并为类Gr,则任意的类Gk和Gr的距 离公式为
Dk2r
1 2
Dk2p
1 2
Dk2q
D
2 pq
(1/4 0)
(5.15)
设Dkq>Dkp,如果采用最短距离法,则Dkr = Dkp,如果采用 最长距离法,则Dkr = Dkq。如图5.2所示,(5.15)式就是取它 们(最长距离与最短距离)的中间一点作为计算Dkr的根据。
聚类分析就是分析如何对样品(或变量)进行量化分类的问 题。通常聚类分析分为Q型聚类和R型聚类。Q型聚类是对样 品进行分类处理,R型聚类是对变量进行分类处理。
第二节 相似性的量度
一 样品相似性的度量 二 变量相似性的度量
一、样品相似性的度量
在聚类之前,要首先分析样品间的相似性。Q型聚类分析, 常用距离来测度样品之间的相似程度。每个样品有p个指标 (变量)从不同方面描述其性质,形成一个p维的向量。如 果把n个样品看成p维空间中的n个点,则两个样品间相似程 度就可用p维空间中的两点距离公式来度量。两点距离公式 可以从不同角度进行定义,令dij 表示样品Xi与Xj的距离,存 在以下的距离公式:
在生物、经济、社会、人口等领域的研究中,存在着大量量 化分类研究。例如:在生物学中,为了研究生物的演变,生 物学家需要根据各种生物不同的特征对生物进行分类。在经 济研究中,为了研究不同地区城镇居民生活中的收入和消费 情况,往往需要划分不同的类型去研究。在地质学中,为了 研究矿物勘探,需要根据各种矿石的化学和物理性质和所含 化学成分把它们归于不同的矿石类。在人口学研究中,需要 构造人口生育分类模式、人口死亡分类状况,以此来研究人 口的生育和死亡规律。
dij
Dk2r
1 2
Dk2p
1 2
Dk2q
D
2 pq
(1/4 0)
(5.15)
设Dkq>Dkp,如果采用最短距离法,则Dkr = Dkp,如果采用 最长距离法,则Dkr = Dkq。如图5.2所示,(5.15)式就是取它 们(最长距离与最短距离)的中间一点作为计算Dkr的根据。
聚类分析就是分析如何对样品(或变量)进行量化分类的问 题。通常聚类分析分为Q型聚类和R型聚类。Q型聚类是对样 品进行分类处理,R型聚类是对变量进行分类处理。
第二节 相似性的量度
一 样品相似性的度量 二 变量相似性的度量
一、样品相似性的度量
在聚类之前,要首先分析样品间的相似性。Q型聚类分析, 常用距离来测度样品之间的相似程度。每个样品有p个指标 (变量)从不同方面描述其性质,形成一个p维的向量。如 果把n个样品看成p维空间中的n个点,则两个样品间相似程 度就可用p维空间中的两点距离公式来度量。两点距离公式 可以从不同角度进行定义,令dij 表示样品Xi与Xj的距离,存 在以下的距离公式:
在生物、经济、社会、人口等领域的研究中,存在着大量量 化分类研究。例如:在生物学中,为了研究生物的演变,生 物学家需要根据各种生物不同的特征对生物进行分类。在经 济研究中,为了研究不同地区城镇居民生活中的收入和消费 情况,往往需要划分不同的类型去研究。在地质学中,为了 研究矿物勘探,需要根据各种矿石的化学和物理性质和所含 化学成分把它们归于不同的矿石类。在人口学研究中,需要 构造人口生育分类模式、人口死亡分类状况,以此来研究人 口的生育和死亡规律。
dij
聚类分析部分 PPT课件
距离
设xij 为第i个样品的第j个指标,数据矩阵表如下:
在上表中,每个样品有p个变量,故 p 每个样品都可以看成是 R 中的一个点,n p 个样品就是 R 中的n个点。在 R p中需定义 某种距离,将第i个样品与第j个样品之间 的距离记为dij ,在聚类过程冲,相距较近的 点倾向于归为一类,相距较远的点应归属 不同的类。
聚类时,比较相似的变量倾向于 归为一类,不太相似的变量归属不同 的类。
相似系数性质
变量 xi 与 x j 的相似系数用 cij 来表示,它一般应满 足如下三个条件: (1)cij 1 ,当且仅当 xi ax j b, a( 0)和b为常 数; (2) cij 1,对一切i,j; (3) cij c ji ,对一切i,j。
正因为如此,判别分析和聚类 分析往往联合起来使用,例如判别 分析是要求先知道各类总体情况才 能判断新样品的归类,当总体分类 不清楚时,可先用聚类分析对原来 的一批样品进行分类,然后再用判 别分析建立判别式以对新样品进行 判别。
聚类分析与判别分析、主成分 分析、回归分析等方法联合起来使 用,往往效果更好。
x1 y1
s11
2
x2 y2 s22
2
x
p
yp
2
1 1 所加的权是 k1 , k2 , s11 s22
1 , k p ,即用样本方差 s pp
s pp
除相应坐标。当取 y1 y2 y p 0 时,就是点P 到原点O的距离。若 s11 s22 s pp 时,为欧氏距 离。
距离的性质
距离dij 一般应满足如下四个条件: (1) dij 0,对一切i,j; dij 0,当且仅当第i个样品与第j个样品的 (2) 各变量值都相同; dij d ji ,对一切i,j; (3) dij dik dkj ,对一切i,j,k。 (4)
聚类分析(共8张PPT)
第4页,共8页。
聚类分析
三、聚类分析中的测度与标准化
在聚类分析技术的发展过程中,形成了很多种测度相似性的方法。每一种方法 都从不同的角度测度了研究对象的相似性。
在数据采集过程中,一般可以用三种方式采集数据:二分类型数据、等级类型 数据和连续类型数据。在进行聚类分析时可以根据不同的数据特点采用相应的测度 方法。
尽量避免绝对数据。
研究个案 A B C
受教育年限 10 16 6
年收入(万元) 2
1.5 1
年收入(元) 20000 15000 10000
A、B、C在不同距离单位时的距离图
A
B
B
10.01
C
A
10000
C
单位:万元
第6页,共8页。
单位:元
聚类分析
四、常用两种聚类分析方法
1.快速聚类法
快速聚类过程是初始分类的有效方法。适用于大容量样本的情形,由用户指定须聚类的 类数之后,系统采用标准迭代算法进行运算,把所有的个案归并在不同的类中。
m维空间中点与点之间的某种距离就可用来描述样品之间的亲疏程度。 而聚类分析则较常使用于将变量属性相似程度较高的观察值,加以分类,使类与类间的异质性达到最大,而同一类的几个观察值同质性很高。 ③对数据进行变换处理,(如标准化或规格化);
mm维维空 空间间中中点点与与点点实之之际间间的的应某某用种种距距时离离,就就可可两用用者来来描描的述述主样样品品要之之差间间的的别亲亲在疏疏程程于度度因。。子分析是针对“变量”予以分组,而聚类分析 按照这种方则法是不断将进“行合观并察,直值到个把所体有”的样予品以合为分一组个,大类亦为即止。因子分析时,根据因变量(题项)间关系密切与 四⑦、最常 后用绘两制否种系,聚统类聚将分类变析谱方系量法图予,按以不分同的类分(类标分准为或不几同个的层分类面原因则,子得)出不;同而的分聚类类结果分。析则较常使用于将变量属性相似 从数据结构程和度统计较形高式上的看观,因察子值分析,是加一种以“横分向类合并,”的使方类法,与聚类类分间析的则是异一质种“性纵向达合到并”最的方大法,。 而同一类的几个观察值 适每用一于 种大方容法同量都质样从本不性的同很情的形角高,度。由测用度户了指研定究须对聚象类的的相类似数性之。后,系统采用标准迭代算法进行运算,把所有的个案归并在不同的类中。 研究学生学业差异、因教师素教分学水析平:等等横,向都需简要化对研,究聚对象类进分行分析类:。纵向分组
聚类分析
三、聚类分析中的测度与标准化
在聚类分析技术的发展过程中,形成了很多种测度相似性的方法。每一种方法 都从不同的角度测度了研究对象的相似性。
在数据采集过程中,一般可以用三种方式采集数据:二分类型数据、等级类型 数据和连续类型数据。在进行聚类分析时可以根据不同的数据特点采用相应的测度 方法。
尽量避免绝对数据。
研究个案 A B C
受教育年限 10 16 6
年收入(万元) 2
1.5 1
年收入(元) 20000 15000 10000
A、B、C在不同距离单位时的距离图
A
B
B
10.01
C
A
10000
C
单位:万元
第6页,共8页。
单位:元
聚类分析
四、常用两种聚类分析方法
1.快速聚类法
快速聚类过程是初始分类的有效方法。适用于大容量样本的情形,由用户指定须聚类的 类数之后,系统采用标准迭代算法进行运算,把所有的个案归并在不同的类中。
m维空间中点与点之间的某种距离就可用来描述样品之间的亲疏程度。 而聚类分析则较常使用于将变量属性相似程度较高的观察值,加以分类,使类与类间的异质性达到最大,而同一类的几个观察值同质性很高。 ③对数据进行变换处理,(如标准化或规格化);
mm维维空 空间间中中点点与与点点实之之际间间的的应某某用种种距距时离离,就就可可两用用者来来描描的述述主样样品品要之之差间间的的别亲亲在疏疏程程于度度因。。子分析是针对“变量”予以分组,而聚类分析 按照这种方则法是不断将进“行合观并察,直值到个把所体有”的样予品以合为分一组个,大类亦为即止。因子分析时,根据因变量(题项)间关系密切与 四⑦、最常 后用绘两制否种系,聚统类聚将分类变析谱方系量法图予,按以不分同的类分(类标分准为或不几同个的层分类面原因则,子得)出不;同而的分聚类类结果分。析则较常使用于将变量属性相似 从数据结构程和度统计较形高式上的看观,因察子值分析,是加一种以“横分向类合并,”的使方类法,与聚类类分间析的则是异一质种“性纵向达合到并”最的方大法,。 而同一类的几个观察值 适每用一于 种大方容法同量都质样从本不性的同很情的形角高,度。由测用度户了指研定究须对聚象类的的相类似数性之。后,系统采用标准迭代算法进行运算,把所有的个案归并在不同的类中。 研究学生学业差异、因教师素教分学水析平:等等横,向都需简要化对研,究聚对象类进分行分析类:。纵向分组
聚类分析详解ppt课件
以上我们对例6.3.1采用了多种系统聚类法进行聚类,其结果 都是相同的,原因是该例只有很少几个样品,此时聚类的过 程不易有什么变化。一般来说,只要聚类的样品数目不是太 少,各种聚类方法所产生的聚类结果一般是不同的,甚至会 有大的差异。从下面例子中可以看到这一点。
动态聚类法(快速聚类)
(4) 对D1 重复上述对D0 的两步得 D2,如此下去 直至所有元素合并成一类为止。
如果某一步Dm中最小的元素不止一个,则称此现 象为结(tie),对应这些最小元素的类可以任选一对 合并或同时合并。
27
二、最长距离法
类与类之间的距离定义为两类最远样品间的距离, 即
DKL
max
iGK , jGL
聚类分析应注意的问题
(1)所选择的变量应符合聚类的要求
如果希望依照学校的科研情况对高校进行分类,那么可以 选择参加科研的人数、年投入经费、立项课题数、支出经 费、科研成果数、获奖数等变量,而不应选择诸如在校学 生人数、校园面积、年用水量等变量。因为它们不符合聚 类的要求,分类的结果也就无法真实地反映科研分类的情 况。
主要内容
引言 聚类分析原理 聚类分析的种类 聚类分析应注意的问题 聚类分析应用 聚类分析工具及案例分析
聚类分析的种类
(1)系统聚类法(也叫分层聚类或层次聚类) (2)动态聚类法(也叫快速聚类) (3)模糊聚类法 (4)图论聚类法
系统聚类法
对比
常用的系统聚类方法
一、最短距离法 二、最长距离法 三、中间距离法 四、类平均法 五、重心法 六、离差平方和法(Ward方法)
对比
k均值法的基本步骤
(1)选择k个样品作为初始凝聚点,或者将所有样品分成k 个初始类,然后将这k个类的重心(均值)作为初始凝聚点。
聚类分析法ppt课件全
8/21/2024
25
1.2.2 动态聚类分析法
1.2 聚类分析的种类
(3)分类函数
按照修改原则不同,动态聚类方法有按批修改法、逐个修改法、混合法等。 这里主要介绍逐步聚类法中按批修改法。按批修改法分类的原则是,每一步修 改都将使对应的分类函数缩小,趋于合理,并且分类函数最终趋于定值,即计 算过程是收敛的。
8/21/2024
23
1.2.2 动态聚类分析法
1.2 聚类分析的种类
(2)初始分类 有了凝聚点以后接下来就要进行初始分类,同样获得初始分类也有不同的
方法。需要说明的是,初始分类不一定非通过凝聚点确定不可,也可以依据其 他原则分类。
以下是其他几种初始分类方法: ①人为分类,凭经验进行初始分类。 ②选择一批凝聚点后,每个样品按与其距离最近的凝聚点归类。 ③选择一批凝聚点后,每个凝聚点自成一类,将样品依次归入与其距离
8/21/2024
14
1.2 聚类分析的种类
(2)系统聚类分析的一般步骤 ①对数据进行变换处理; ②计算各样品之间的距离,并将距离最近的两个样品合并成一类; ③选择并计算类与类之间的距离,并将距离最ቤተ መጻሕፍቲ ባይዱ的两类合并,如果累的个
数大于1,则继续并类,直至所有样品归为一类为止; ④最后绘制系统聚类谱系图,按不同的分类标准,得出不同的分类结果。
8/21/2024
18
1.2 聚类分析的种类
(7)可变法
1 2 D kr
2 (8)离差平方和法
(D k 2 pD k 2 q)D p 2q
D k 2 rn n ir n n p i D i2 pn n ir n n q iD i2 qn rn in iD p 2 q
8/21/2024
多元统计分析——基于R 语言 PPT课件-聚类分析
步骤:
(1)把样品粗略分成K个初始类。
(2)进行修改,逐个分派样品到其最近均值类中(通常用标准化数据或非标准化数据计算欧氏距
离)。重新计算接受新样品的类和失去样品的类的形心(均值)。
(3)重复第2步,直到各类无元素进出。
注意:
样品的最终聚类在某种程度上依赖于最初的划分或种子点的选择。
为了检验聚类的稳定性,可用一个新的初始分类重新检验整个聚类算法。如果最终分类与原来
✓有序样品的聚类:n个样品按某种原因(时间、地层深度等)排成次序,必须是
次序相邻的样品才能聚成一类。
✓分解法:首先所有的样品均在一类,然后用某种最优准则将它分为两类,再试
图用同种准则将这两类各自分裂为两类,从中选一个使目标函数较好者,这样
由两类变成三类,如此下去,一直分裂到每类只有一个样品为止(或采用其他停
1. 可能的分类数目
′
对于有序样品,n个样品分成k类的一切可能的分法有: , =
−
−
2. 最优分割法(又称Fisher算法)
(1)定义类的直径
设某一类 是{ , +1 , … , }( > ),均值为ഥ
,ഥ
=
σ= 。
−+
(2)定义目标函数
= ≤≤ { − , − + , }
当我们要分k类时,首先找 使上式达到最小,即
(2)最长距离法: , = max{ | ∈ , ∈ },表示类 与类 最邻近的两个样本距
离。
定义
(3)类平均法: , =
σ∈ σ∈
,表示类 与类 任两个样品距离的平均。
(4)重心法: , = ഥpഥ ,表示两个重心ഥ
(1)把样品粗略分成K个初始类。
(2)进行修改,逐个分派样品到其最近均值类中(通常用标准化数据或非标准化数据计算欧氏距
离)。重新计算接受新样品的类和失去样品的类的形心(均值)。
(3)重复第2步,直到各类无元素进出。
注意:
样品的最终聚类在某种程度上依赖于最初的划分或种子点的选择。
为了检验聚类的稳定性,可用一个新的初始分类重新检验整个聚类算法。如果最终分类与原来
✓有序样品的聚类:n个样品按某种原因(时间、地层深度等)排成次序,必须是
次序相邻的样品才能聚成一类。
✓分解法:首先所有的样品均在一类,然后用某种最优准则将它分为两类,再试
图用同种准则将这两类各自分裂为两类,从中选一个使目标函数较好者,这样
由两类变成三类,如此下去,一直分裂到每类只有一个样品为止(或采用其他停
1. 可能的分类数目
′
对于有序样品,n个样品分成k类的一切可能的分法有: , =
−
−
2. 最优分割法(又称Fisher算法)
(1)定义类的直径
设某一类 是{ , +1 , … , }( > ),均值为ഥ
,ഥ
=
σ= 。
−+
(2)定义目标函数
= ≤≤ { − , − + , }
当我们要分k类时,首先找 使上式达到最小,即
(2)最长距离法: , = max{ | ∈ , ∈ },表示类 与类 最邻近的两个样本距
离。
定义
(3)类平均法: , =
σ∈ σ∈
,表示类 与类 任两个样品距离的平均。
(4)重心法: , = ഥpഥ ,表示两个重心ഥ
多元统计课件第5章 聚类分析
G7 G7 G3 G4 G8 0 3 5 7 0 2 4 0 2 0 G3 G4 G8
表5.2
合并, (3)在D(1)中最小值是 34=D48=2,由于 4与G3合并, ) ,由于G )中最小值是D 又与G 合并,因此G 合并成一个新类G 又与 8合并,因此 3、G4、G8合并成一个新类 9,其与其 它类的距离D ) 见表5.3 它类的距离 (2) ,见表
1 2 1 2 2 D = Dkp + Dkq + βD pq 2 2
2 kr
(−1/4 ≤ β ≤ 0) − /
(5.15)
如果采用最短距离法, 设Dkq>Dkp,如果采用最短距离法,则Dkr = Dkp,如果采用 最长距离法, 如图5.2所示 所示, 最长距离法,则Dkr = Dkq。如图 所示,(5.15)式就是取它 式就是取它 最长距离与最短距离)的中间一点作为计算D 的根据。 们(最长距离与最短距离)的中间一点作为计算 kr的根据。
它的重心是 X r =
D =
2 kr
np nr
D +
2 kp
nq nr
D −
2 kq
n p nq n
2 r
2 D pq
(5.18) )
) 式表示的类 G k 与新类 G r 这里我们应该注意, 这里我们应该注意, 实际上 5.18) ( 的距离为: 的距离为:
2 Dkr = ( X k − X r )′( X k − X r )
Dkr =
X i ∈Gk , X j ∈Gr
max
dij
d ij , max d ij }
= max{
X i ∈Gk , X j ∈G pj
max
xi ∈Gk , x j ∈Gq
表5.2
合并, (3)在D(1)中最小值是 34=D48=2,由于 4与G3合并, ) ,由于G )中最小值是D 又与G 合并,因此G 合并成一个新类G 又与 8合并,因此 3、G4、G8合并成一个新类 9,其与其 它类的距离D ) 见表5.3 它类的距离 (2) ,见表
1 2 1 2 2 D = Dkp + Dkq + βD pq 2 2
2 kr
(−1/4 ≤ β ≤ 0) − /
(5.15)
如果采用最短距离法, 设Dkq>Dkp,如果采用最短距离法,则Dkr = Dkp,如果采用 最长距离法, 如图5.2所示 所示, 最长距离法,则Dkr = Dkq。如图 所示,(5.15)式就是取它 式就是取它 最长距离与最短距离)的中间一点作为计算D 的根据。 们(最长距离与最短距离)的中间一点作为计算 kr的根据。
它的重心是 X r =
D =
2 kr
np nr
D +
2 kp
nq nr
D −
2 kq
n p nq n
2 r
2 D pq
(5.18) )
) 式表示的类 G k 与新类 G r 这里我们应该注意, 这里我们应该注意, 实际上 5.18) ( 的距离为: 的距离为:
2 Dkr = ( X k − X r )′( X k − X r )
Dkr =
X i ∈Gk , X j ∈Gr
max
dij
d ij , max d ij }
= max{
X i ∈Gk , X j ∈G pj
max
xi ∈Gk , x j ∈Gq
多元统计分析聚类分析PPT课件
(1)间隔尺度。指标度量时用数量来表示,其数值由 测量或计数、统计得到,如长度、重量、收入、支 出等。一般来说,计数得到的数量是离散数量,测 量得到的数量是连续数量。在间隔尺度中如果存在 绝对零点,又称比例尺度。
(2)顺序尺度。指标度量时没有明确的数量表示,只
有次序关系,或虽用数量表示,但相邻两数值之间的差距 并不相等,它只表示一个有序状态序列。如评价酒的味道, 分成好、中、次三等,三等有次序关系,但没有数量表示。
cij cosij
x x n
k1
ki
kj
x x n
k1
k2ik n1
2 kj
d2 ij
1Ci2j
五、距离和相似系数选择的原则
一般说来,同一批数据采用不同的亲疏测度指标,会得 到不同的分类结果。
产生不同结果的原因,主要是由于不同的亲疏测度指标 所衡量的亲疏程度的实际意义不同,也就是说,不同的亲 疏测度指标代表了不同意义上的亲疏程度。因此我们在进 行聚类分析时,应注意亲疏测度指标的选择。
4.对数变换 对数变换是将各个原始数据取对数,将原始数据的对数 值作为变换后的新值。即:
x* ij
logxi(j)
三、样品间亲疏程度的测度
研究样品或变量的亲疏程度的数量指标有
两种,一种叫相似系数,性质越接近的变量
或样品,它们的相似系数越接近于1或一l,而 彼此无关的变量或样品它们的相似系数则越接 近于0,相似的为一类,不相似的为不同类;
通常,选择亲疏测度指标时,应注意遵循的基本原则主 要有:
(1)所选择的亲疏测度指标在实际应用中应有 明确的意义。如在经济变量分析中,常用相 关系数表示经济变量之间的亲疏程度。
(2)亲疏测度指标的选择要综合考虑已对样本观测数据实施 了的变换方法和将要采用的聚类分析方法。 如在标准化变换之下,夹角余弦实际上就是相关系数; 又如若在进行聚类分析之前已经对变量的相关性作了处理, 则通常就可采用欧氏距离,而不必选用斜交空间距离。此 外,所选择的亲疏测度指标,还须和所选用的聚类分析方 法一致。 如聚类方法若选用离差平方和法,则距离只能选用欧氏距 离。
(2)顺序尺度。指标度量时没有明确的数量表示,只
有次序关系,或虽用数量表示,但相邻两数值之间的差距 并不相等,它只表示一个有序状态序列。如评价酒的味道, 分成好、中、次三等,三等有次序关系,但没有数量表示。
cij cosij
x x n
k1
ki
kj
x x n
k1
k2ik n1
2 kj
d2 ij
1Ci2j
五、距离和相似系数选择的原则
一般说来,同一批数据采用不同的亲疏测度指标,会得 到不同的分类结果。
产生不同结果的原因,主要是由于不同的亲疏测度指标 所衡量的亲疏程度的实际意义不同,也就是说,不同的亲 疏测度指标代表了不同意义上的亲疏程度。因此我们在进 行聚类分析时,应注意亲疏测度指标的选择。
4.对数变换 对数变换是将各个原始数据取对数,将原始数据的对数 值作为变换后的新值。即:
x* ij
logxi(j)
三、样品间亲疏程度的测度
研究样品或变量的亲疏程度的数量指标有
两种,一种叫相似系数,性质越接近的变量
或样品,它们的相似系数越接近于1或一l,而 彼此无关的变量或样品它们的相似系数则越接 近于0,相似的为一类,不相似的为不同类;
通常,选择亲疏测度指标时,应注意遵循的基本原则主 要有:
(1)所选择的亲疏测度指标在实际应用中应有 明确的意义。如在经济变量分析中,常用相 关系数表示经济变量之间的亲疏程度。
(2)亲疏测度指标的选择要综合考虑已对样本观测数据实施 了的变换方法和将要采用的聚类分析方法。 如在标准化变换之下,夹角余弦实际上就是相关系数; 又如若在进行聚类分析之前已经对变量的相关性作了处理, 则通常就可采用欧氏距离,而不必选用斜交空间距离。此 外,所选择的亲疏测度指标,还须和所选用的聚类分析方 法一致。 如聚类方法若选用离差平方和法,则距离只能选用欧氏距 离。
同济医学院《医学多元统计》课件聚类分析与判别分析.ppt
系统聚类(systematic clucstering)法的
基本思想是:先将n个样品各自看成一类。然 后选择相似程度最大(距离系数dik最小或相关 系数rik最大)的样品对归为一类;再选择相似
程度次大的样品对归为一类。依次类推,直到 所有的没有归入其他类的样品对都归类完为止。 在进行归类过程中:
① 若两样品在已经形成的类中没有出现过,则成立一 个新类;
9
7.45 9.65 5.55 10.41 7.33 7.70 15.68 7.19 0
10
7.78 6.99 4.49 9.76 6.40 7.55 14.38 3.42 4.08 0
聚类结果树图:
0213
5
6
8 10
9
4
7
5
10 15
2.逐步聚类法
3.有序样品的聚类:最优分割法
判别分析
绝对距离(Manhattan distance)---- dik
Minkowski距离----
dm
q
ik q X ij X kj
j 1
m
( X ij X kj )2 j 1
m
X ij X kj j 1
马氏距离(Mahalanobis distance)-- dik X S 1 X X (xi1 xk1, xi2 xk2 ,......, xim xkm )
相关系数多用于指标之间的聚类:
n
Xl Xil / n i1
n
X j Xij / n i1
n
( X il X l )(X ij X j )
rlj
i 1 n
n
( X il X l )2 ( X ij X j )2
基本思想是:先将n个样品各自看成一类。然 后选择相似程度最大(距离系数dik最小或相关 系数rik最大)的样品对归为一类;再选择相似
程度次大的样品对归为一类。依次类推,直到 所有的没有归入其他类的样品对都归类完为止。 在进行归类过程中:
① 若两样品在已经形成的类中没有出现过,则成立一 个新类;
9
7.45 9.65 5.55 10.41 7.33 7.70 15.68 7.19 0
10
7.78 6.99 4.49 9.76 6.40 7.55 14.38 3.42 4.08 0
聚类结果树图:
0213
5
6
8 10
9
4
7
5
10 15
2.逐步聚类法
3.有序样品的聚类:最优分割法
判别分析
绝对距离(Manhattan distance)---- dik
Minkowski距离----
dm
q
ik q X ij X kj
j 1
m
( X ij X kj )2 j 1
m
X ij X kj j 1
马氏距离(Mahalanobis distance)-- dik X S 1 X X (xi1 xk1, xi2 xk2 ,......, xim xkm )
相关系数多用于指标之间的聚类:
n
Xl Xil / n i1
n
X j Xij / n i1
n
( X il X l )(X ij X j )
rlj
i 1 n
n
( X il X l )2 ( X ij X j )2
多元统计分析聚类分析,判别分析,对应分析 ppt课件
总计 .135 .934 .999 .045
第三部分是对列联表行与列个状态有关信息 的概括(概述行点只截取了部分数据)。其 中,质量部分分别指列联表中行与列的边缘 概率。维中的得分是各维度的分值,指行列 各状态在二维图中的坐标值。如语文坐标为 (-0.00,-0.143)。惯量是每一行(列)与 其重心的加权距离的平方,可以看出 I=J=0.01,即行剖面的总惯量等与列剖面的 总惯量。贡献部分是指行(列)的每一状态 对每一维度(公共因子)特征值的贡献及每 一维度对行(列)各个状态的特征值等贡献。 如第一维度中,外语对应的数值最大,为 0.975,说明外语这一状态对第一维度的贡 献最大。
多元统计分析聚类分析,判别分析,对应分析
操作步骤
(1)打开SPSS文件,在表格下方有两个选项,分别是数据试图和变量视 图,点击变量视图选项,在前三行分别输入“学号”、“科目”、“成 绩”,其中学号与科目的值项需要做如下设置:在弹出的值标签对话框 里,在值这一项里输入“1”,标签输入“1”,再点击“添加”按钮, 依次添加到40为止,在科目的值标签对话框内,在值这一项中输入“1”, 标签输入“语文”,点击“添加”按钮,再依次添加“2”对应标签为 “数学”,“3”对应标签为“外语”,“4”对应标签为“体育”,综 上分别完成对1号至40号学号以及4项科目进行数字的赋值。 然后点击数据视图进行数据输入,数据输入按照成绩单输入,如:第一 行第一列输入“1”,第二列输入“1”,第三列输入“82”,第二行第 一列输入“2”,第二列输入“1”,第三列输入“81”,以此类推,共
2 -.143 -.427 .065 -.013
概述列点a
惯量 .002 .003 .005 .000 .010
点对维惯量
1
《多元统计分析》第三章聚类分析
图像处理
聚类分析可用于图像分割、目 标检测等任务,提高图像处理 的效率和准确性。
社交网络
通过聚类分析,可以发现社交 网络中的社区结构,揭示用户 之间的关联和互动模式。
聚类分析的常用方法
K-均值聚类
一种迭代算法,通过最小化每个簇内对象与簇质 心的距离之和来实现聚类。需要预先指定簇的数 量K。
DBSCAN
感谢聆听
聚类结果的优化方法
层次聚类法
通过不断合并或分裂簇来优化聚类结果,可以灵活处理不同形状 和大小的簇,但计算复杂度较高。
基于密度的聚类法
通过寻找被低密度区域分隔的高密度区域来形成簇,可以发现任意 形状的簇,但对参数敏感。
基于网格的聚类法
将数据空间划分为网格单元,然后在网格单元上进行聚类,处理速 度较快,但聚类精度受网格粒度影响。
一种基于密度的聚类方法,通过寻找被低密度区 域分隔的高密度区域来实现聚类。可以识别任意 形状的簇,且对噪声数据具有较强的鲁棒性。
层次聚类
通过计算对象之间的距离,逐步将数据集构建成 一个层次结构的聚类树。可以分为凝聚法和分裂 法两种。
谱聚类
利用图论中的谱理论进行聚类分析,将数据集中 的对象表示为图中的节点,节点之间的相似度表 示为边的权重。通过求解图的拉普拉斯矩阵的特 征向量来实现聚类。
药物发现
通过对化合物库进行聚类分析,研究人员可以发现具有相 似化学结构和生物活性的化合物,从而加速新药的发现和 开发过程。
生物信息学
在基因表达谱、蛋白质互作网络等生物信息学研究中,聚 类分析可以帮助研究人员发现基因或蛋白质之间的功能模 块和调控网络。
在社交网络中的应用案例
社区发现
聚类分析可用于识别社交网络中的社区结构,即具有相似兴趣、行为或属性的用户群体。 这有助于社交网络运营商为用户提供更加个性化的推荐和服务。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
●累计百分比(Cumulative Percent):
各百分比逐级累加起来的结果。最终取值为百分之百。
4
三、统计图
包括: 条形图(柱形图):bar
适用于定性数据,用宽度相同的条形高度来表示数据 的多少。
直方图:histograms
适用于分组定量数据的描述,用矩形的宽度和高度表 示频数分布。可以附加正态分布曲线。
13
问题2:您择业中考虑的主要因素有(限选三项)
1经济收入 3发展前途 5个人爱好 7劳动强度 9社会地位
2 专业对口 4地理区位 6风险大小 8社会福利 10其他
14
显然,答案不只一个。
高考填报志愿、居民储蓄
多选项问题
回答方式: 第一类,选择的答案有一定的先后顺序。
第二类,选择的答案没有先后顺序。
第4章 SPSS基本统计分析
基本内容:
●频数分析 ●计算基本描述统计量 ●多选项分析
1
第1节 频数分析
基本内容: 频数分配表
统计图
一、频数分析的目的和基本思路
基本统计分析往往从频数分析开始。通过频数 分析能够了解变量取值的状况、对数据的分布 特征是非常有用的。
(年龄特征、职业特点、性别特征等)
一个多选项问题 关键环节
多个SPSS变量的分析
17
分解的方法有两种:二分法和分类法
多选项二分法
将多选项问题中的每个答案设为一个SPSS变量,每个 变量只有0或1两个取值,分别表示不选择或选择该答 案。
将多选项问题分解成七个问题:
(1)是使晚年生活有保障吗?
(2)是一种安全的投资保值方式吗?
(3)是抱着试试看的态度购买吗?
注意:问题本身的特点,采取不同的策略。
15Βιβλιοθήκη 一般步骤: 多选项问题分解 多选项频数分析
16
1、多选项问题的分解
为什么要对多选项问题进行分解呢? 不同于单选项问题的一般处理方法,必须设置多个 SPSS变量。
基本思路:
将问卷中的一道多选项问题分解成若干个问题,对应 设置若干个SPSS变量,分别存放描述这些问题的几个 可能被选择的答案。
29
多选项交叉分组下的频数分析的基本操作:
1.【分析】——【多重响应】——【交叉表】; 2.选择列联表的行变量并定义取值范围,或选择
多选项变量集为行变量; 3.选择列联表的列变量并定义取值范围,或选择
多选项变量集为列变量; 4.选择列联表的控制变量并定义取值范围,或选
区别:
直方图适用于定量数据,而条形图适用于定性数据; 条形图中,条形的宽度相同,仅以条形高低反映频数的 差别;直方图中,矩形的高度和宽度有所不同。
5
6
饼图(扇形图):piechart 适用于研究事物内在结构组成 散点图:scatter plot 用于对两个定量变量之间的关系进行探索性分
(4)是亲戚朋友推荐吗?
(5)是单位统一组织购买吗?
(6)是保险公司的宣传吗?
(7)是其他吗?
18
19
多选项分类法
首先估计多选项问题最多可能出现的答案个数,然后, 为每个答案设置一个SPSS变量,变量取值为多选项问 题中的可选答案。
20
实际应用中需要考虑两个方面:
是否便于分析; 是否丢失信息。
本节基本内容:
●多选项分析的目的和思路 ●多选项分析的应用举例
12
一、多选项分析的目的和思路
问题1:在对保险市场的一项调查中,设计了这样一道问题: 按照您自己的实际情况,依次选择您购买商业养老保险
的原因,最多不超过3项: (1)使晚年生活有保障; (2)一种安全的投资保值方式; (3)抱着试试看的态度购买; (4)亲戚朋友推荐; (5)单位统一组织购买; (6)保险公司的宣传; (7)其他。
两个任务:
编制频数分配表 绘制统计图
3
二、频数分配表
基本内容: ●频数(Frequency):变量值落在某个区间(或某个类别)中
的次数。
●百分比(Percent):各频数占总样本量的百分比。 ●有效百分比(Valid Percent):
各频数占总有效样本量的百分比。 这里:有效样本量=总样本-缺失样本量 如果所分析的数据在频数分析变量上有缺失值,那么有效百分比更 能准确的反映变量的取值分布情况。
二、多选项分析的基本操作
多选项分析:【多重响应】功能 两步: 第一步,定义多选项变量集:即将多选项问题
分解并设置多个变量后,应指定这些变量为一 个集合。
【分析】 【多重响应】 【定义变量集】
第二步,多选项频数分析
【分析】 【多重响应】 【频数】
24
25
26
三、应用举例:
案例1:为研究影响老年人购买养老保险 的因素,进行问卷调查。现要求根据所 获得的调查数据,分析老年人购买养老 保险的原因。
方法选择的原则:
对于所选答案具有一定顺序的多选项问题,一般采用 分类法分解,对于所选答案没有顺序的问题,一般采 用二分法分解。
21
2、多选项问题作普通频数分析的困难
普通频数分析得到的结果:
表1 V1频数分析结果
、
表2 V2频数分析结果
22
表3 V3频数分析结果 想要获得的理想结果:
23
9
五、频数分配表应用举例
例1利用住房状况问卷调查数据,分析被调查者家庭中户 主的从业状况和目前所住房屋的产权情况。
例2. 利用住房状况问卷调查数据,对人均住房面积进行频 数分析。
10
作业: 利用2013年中国各地区生产总值数据, 分别对所属地区和地区生产总值进行频 数分析。
11
第三节 多选项分析
27
多选项频数分析结果:
28
案例2:为研究影响老年人购买养老保险的因 素,进行问卷调查。现要求根据所获得的调查 数据,分析不同工作单位性质人员购买养老保 险的原因。
分析:本例由于涉及工作单位性质和购买养老 保险原因两个方面,因此应采用多选项交叉分 组下的频数分析方法进行研究,即生成列联表。 其中设列联表的列变量为购买原因,行变量为 工作单位性质。
析。反映两变量之间的大致关系,如果绘出的 点大致分布在一条直线周围,称两者之间存在 线性关系;如果绘出的点大致分布在一条曲线 周围,则称为存在非线性关系。
7
四 基本操作
(1)选择菜单【分析】-【描述统计】-【频 率】
8
(2)选择若干变量到【变量】框中。比如, 选择“从业状况”。
(3)点击【图表】选择绘制统计图形。在 【图表类型】框中选择条形图、直方图或者扇 形图。
各百分比逐级累加起来的结果。最终取值为百分之百。
4
三、统计图
包括: 条形图(柱形图):bar
适用于定性数据,用宽度相同的条形高度来表示数据 的多少。
直方图:histograms
适用于分组定量数据的描述,用矩形的宽度和高度表 示频数分布。可以附加正态分布曲线。
13
问题2:您择业中考虑的主要因素有(限选三项)
1经济收入 3发展前途 5个人爱好 7劳动强度 9社会地位
2 专业对口 4地理区位 6风险大小 8社会福利 10其他
14
显然,答案不只一个。
高考填报志愿、居民储蓄
多选项问题
回答方式: 第一类,选择的答案有一定的先后顺序。
第二类,选择的答案没有先后顺序。
第4章 SPSS基本统计分析
基本内容:
●频数分析 ●计算基本描述统计量 ●多选项分析
1
第1节 频数分析
基本内容: 频数分配表
统计图
一、频数分析的目的和基本思路
基本统计分析往往从频数分析开始。通过频数 分析能够了解变量取值的状况、对数据的分布 特征是非常有用的。
(年龄特征、职业特点、性别特征等)
一个多选项问题 关键环节
多个SPSS变量的分析
17
分解的方法有两种:二分法和分类法
多选项二分法
将多选项问题中的每个答案设为一个SPSS变量,每个 变量只有0或1两个取值,分别表示不选择或选择该答 案。
将多选项问题分解成七个问题:
(1)是使晚年生活有保障吗?
(2)是一种安全的投资保值方式吗?
(3)是抱着试试看的态度购买吗?
注意:问题本身的特点,采取不同的策略。
15Βιβλιοθήκη 一般步骤: 多选项问题分解 多选项频数分析
16
1、多选项问题的分解
为什么要对多选项问题进行分解呢? 不同于单选项问题的一般处理方法,必须设置多个 SPSS变量。
基本思路:
将问卷中的一道多选项问题分解成若干个问题,对应 设置若干个SPSS变量,分别存放描述这些问题的几个 可能被选择的答案。
29
多选项交叉分组下的频数分析的基本操作:
1.【分析】——【多重响应】——【交叉表】; 2.选择列联表的行变量并定义取值范围,或选择
多选项变量集为行变量; 3.选择列联表的列变量并定义取值范围,或选择
多选项变量集为列变量; 4.选择列联表的控制变量并定义取值范围,或选
区别:
直方图适用于定量数据,而条形图适用于定性数据; 条形图中,条形的宽度相同,仅以条形高低反映频数的 差别;直方图中,矩形的高度和宽度有所不同。
5
6
饼图(扇形图):piechart 适用于研究事物内在结构组成 散点图:scatter plot 用于对两个定量变量之间的关系进行探索性分
(4)是亲戚朋友推荐吗?
(5)是单位统一组织购买吗?
(6)是保险公司的宣传吗?
(7)是其他吗?
18
19
多选项分类法
首先估计多选项问题最多可能出现的答案个数,然后, 为每个答案设置一个SPSS变量,变量取值为多选项问 题中的可选答案。
20
实际应用中需要考虑两个方面:
是否便于分析; 是否丢失信息。
本节基本内容:
●多选项分析的目的和思路 ●多选项分析的应用举例
12
一、多选项分析的目的和思路
问题1:在对保险市场的一项调查中,设计了这样一道问题: 按照您自己的实际情况,依次选择您购买商业养老保险
的原因,最多不超过3项: (1)使晚年生活有保障; (2)一种安全的投资保值方式; (3)抱着试试看的态度购买; (4)亲戚朋友推荐; (5)单位统一组织购买; (6)保险公司的宣传; (7)其他。
两个任务:
编制频数分配表 绘制统计图
3
二、频数分配表
基本内容: ●频数(Frequency):变量值落在某个区间(或某个类别)中
的次数。
●百分比(Percent):各频数占总样本量的百分比。 ●有效百分比(Valid Percent):
各频数占总有效样本量的百分比。 这里:有效样本量=总样本-缺失样本量 如果所分析的数据在频数分析变量上有缺失值,那么有效百分比更 能准确的反映变量的取值分布情况。
二、多选项分析的基本操作
多选项分析:【多重响应】功能 两步: 第一步,定义多选项变量集:即将多选项问题
分解并设置多个变量后,应指定这些变量为一 个集合。
【分析】 【多重响应】 【定义变量集】
第二步,多选项频数分析
【分析】 【多重响应】 【频数】
24
25
26
三、应用举例:
案例1:为研究影响老年人购买养老保险 的因素,进行问卷调查。现要求根据所 获得的调查数据,分析老年人购买养老 保险的原因。
方法选择的原则:
对于所选答案具有一定顺序的多选项问题,一般采用 分类法分解,对于所选答案没有顺序的问题,一般采 用二分法分解。
21
2、多选项问题作普通频数分析的困难
普通频数分析得到的结果:
表1 V1频数分析结果
、
表2 V2频数分析结果
22
表3 V3频数分析结果 想要获得的理想结果:
23
9
五、频数分配表应用举例
例1利用住房状况问卷调查数据,分析被调查者家庭中户 主的从业状况和目前所住房屋的产权情况。
例2. 利用住房状况问卷调查数据,对人均住房面积进行频 数分析。
10
作业: 利用2013年中国各地区生产总值数据, 分别对所属地区和地区生产总值进行频 数分析。
11
第三节 多选项分析
27
多选项频数分析结果:
28
案例2:为研究影响老年人购买养老保险的因 素,进行问卷调查。现要求根据所获得的调查 数据,分析不同工作单位性质人员购买养老保 险的原因。
分析:本例由于涉及工作单位性质和购买养老 保险原因两个方面,因此应采用多选项交叉分 组下的频数分析方法进行研究,即生成列联表。 其中设列联表的列变量为购买原因,行变量为 工作单位性质。
析。反映两变量之间的大致关系,如果绘出的 点大致分布在一条直线周围,称两者之间存在 线性关系;如果绘出的点大致分布在一条曲线 周围,则称为存在非线性关系。
7
四 基本操作
(1)选择菜单【分析】-【描述统计】-【频 率】
8
(2)选择若干变量到【变量】框中。比如, 选择“从业状况”。
(3)点击【图表】选择绘制统计图形。在 【图表类型】框中选择条形图、直方图或者扇 形图。