第二章知识表示方法

合集下载

人工智能第二章知识表示方法

人工智能第二章知识表示方法

框架的构建与实现
80%
确定框架的结构
根据实际需求和领域知识,确定 框架的槽和属性,以及它们之间 的关系。
100%
填充框架的实例
根据实际数据和信息,为框架的 各个槽和属性填充具体的实例值 。
80%
实现框架的推理
通过逻辑推理和规则匹配,实现 基于框架的知识推理和应用。
框架表示法的应用场景
自然语言处理
模块化
面向对象的知识表示方法可以将 知识划分为独立的模块,方便管 理和维护。
面向对象表示法的优缺点
• 可扩展性:面向对象的知识表示方法可以通过继承和多态实现知识的扩展和复用。
面向对象表示法的优缺点
复杂性
面向对象的知识表示方法需要建立复 杂的类和对象关系,可能导致知识表 示的复杂性增加。
冗余性
面向对象的知识表示方法可能导致知 识表示的冗余,尤其是在处理不相关 或弱相关的事实时。
人工智能第二章知识表示方法

CONTENCT

• 知识表示方法概述 • 逻辑表示法 • 语义网络表示法 • 框架表示法 • 面向对象的知识表示法
01
知识表示方法概述
知识表示的定义
知识表示是人工智能领域中用于描述和表示知识的符号系统。它 是一种将知识编码成计算机可理解的形式,以便进行推理、学习 、解释和利用的过程。
知识表示方法通常包括概念、关系、规则、框架等元素,用于描 述现实世界中的实体、事件和状态。
知识表示的重要性
知识表示是人工智能的核心问题之一,它决定了知 识的可理解性、可利用性和可扩展性。
良好的知识表示方法能够提高知识的精度、可靠性 和一致性,有助于提高人工智能系统的智能水平和 应用效果。
知识表示方法的发展对于推动人工智能技术的进步 和应用领域的拓展具有重要意义。

第二章 知识表示方法

第二章  知识表示方法

第二章知识表示方法教学内容智能系统问题求解所采用的几种主要的知识表示方法(状态空间法.问题归约法.谓词逻辑法.语义网络法)以及基于不同表示法的问题求解方法。

教学重点1. 状态空间表示法中问题的状态描述.改变状态的操作和问题目标状态的搜索;2. 问题规约的一般步骤.规约的与或图表示;3. 谓词逻辑的语法和语义.量词的辖域.谓词公式的置换与合一;4. 语义网络的构成.语义基元的选择.语义网络的推理等。

教学难点状态描述与状态空间图示.问题归约机制.置换与合一。

教学方法课堂教学为主,同时结合《离散数学》等已学的内容实时提问.收集学生学习情况,充分利用网络课程中的多媒体素材来表示抽象概念。

教学要求1. 重点掌握用状态空间法.问题归约法.谓词逻辑法.语义网络法来描述问题.解决问题;2. 掌握这些表示方法之间的差别;并对其它表示方法有一般了解2.1 状态空间法教学内容本节讨论基于解答空间的问题表示和求解方法,即状态空间法,它以状态和操作符为基础来表示和求解问题。

教学重点问题的状态描述,操作符。

教学难点选择一个好的状态描述与状态空间表示方案。

教学方法以课堂教学为主;充分利用网络课程中的多媒体素材来阐述抽象概念。

教学要求重点掌握对某个问题的状态空间描述,学会组织状态空间图.用搜索图来求解问题。

2.1.1 问题状态描述1.基本概念状态(state)它是为描述某类不同事物间的差别而引入的一组最少变量q0,q1,…,qn的有序集合,其矢量形式如下:Q=[q0,q1,…,qn]' (2.1)式中每个元素qi(i=0,1,…,n)为集合的分量,称为状态变量。

给定每个分量的一组值就得到一个具体的状态,如Qk=[q0k,q1k,…,qnk]' (2.2)操作符(operator)称使问题从一种状态变化到另一种状态的手段为操作符或算符。

状态空间(state space)它是表示一个问题全部可能状态及其关系的图,它包含所有可能的问题初始状态集合S、操作符集合F以及目标状态集合G。

第2章 知识表示方法

第2章 知识表示方法

图2.1 猴子和香蕉问题
状态空间表示: 用四元组(W,x,Y,z) 其中: W-猴子的水平位置; x-当猴子在箱子顶上时取x=1; 否则取x=0; Y-箱子的水平位置; z-当猴子摘到香蕉时取z=1; 否则取z=0。
操作符 :
(1) goto(U)猴子走到水平位置U,或者用产生式规则表示为
goto (U ) (W ,0, Y , Z ) (U ,0, Y , z)
从问题的初始状态集S出发,经过一系列的 算符运算,到达目标状态。由初始状态到目标 状态所用的算符的序列就构成了问题的一个解。 由上可知,对一个问题的状态描述,必须确 定3件事: (1) 该状态描述方式,特别是初始状态描述; (2) 操作符集合及其对状态描述的作用; (3) 目标状态描述的特性。
2、状态空间表示详释
第2章 知识表示方法
传统的人工智能主要运用知识进行问题求解,从实用的观点 看,人工智能是一门知识工程学:以知识为对象,研究知识的表 示方法,知识的运用和知识获取。 知识作为机器智能的一部分,就必须能够让机器知道什么是 知识,那就涉及到了知识的表示问题,这个问题就象人记录某一 事实有不同的方法一样,知识表示的方法很多,有图示法和公式 法,结构化方法,陈述式表示和过程式表示等。 图示法:状态空间法、问题归约法等。 公式法:谓词逻辑法等。 陈述式表示:语义网络表示法、框架表示法、剧本表示法等。 过程式表示:过程表示。
2
目标状态
问题的解答就是某个合适的棋子走步序列。 三数码的任何一种摆法即为一个状态。所有的 摆法构成状态集,共有4!个状态,即24个状态。 状态之间的变化可通过算符来实现。 算符: (1)定义为棋子走动:3个数码×4种方向=12种 (2)定义为空格移动:4种,即F=[f1, f2, f3, f4]T,

第2章 知识表示方法

第2章 知识表示方法

梵塔问题归约图
(111) (333)
(111) (122)
(122) (322)
(322) (333)
(111) (113)
(113) (123)
(123) (122) (322) (321) (321) (331)
(331) (333)
2.3 谓词逻辑法
好的开始是成功的一半, 好的表示方法是成功的一半
第二章 知识表示方法
2.1 2.2 2.3 2.4 2.5 2.6 状态空间法 问题归约法 谓词逻辑法 语义网络法 其他方法 小结
2.1 状态空间法(State Space Representation)
问题求解技术主要是两个方面: –问题的表示 –求解的方法 状态空间法
2.6 小结(Summary)
• 本章所讨论的知识表示问题是人工智能研究的核心问 题之一。 • 知识表示方法很多,本章介绍了其中的7种,有图示法 和公式法,陈述式表示和过程式表示等。
2.6 小结(Summary)
• 知识表示方法间的关系
方法
状态空间法 归约法 谓词逻辑法 语义网络法
初始问题
状态 结点 合适公式 结点
– 状态(state) – 算Biblioteka (operator) – 状态空间方法

2.1.1 问题状态描述
定义 – 状态:描述某类不同事物间的差别而引入的一 组最少变量q0,q1,…,qn的有序集合。 – 算符:使问题从一种状态变化为另一种状态的 手段称为操作符或算符。 – 问题的状态空间:是一个表示该问题全部可能 状态及其关系的图,它包含三种说明的集合, 即三元状态(S,F,G)。
2.1.3 状态空间表示举例

第2章 知识表示方法

第2章 知识表示方法

CISIC
6
状态空间表示概念详释
Original State

Middle State

Goal State
状态空间法:从某个初始状态开始,每次加一个 操作符,递增地建立起操作符的实验序列,直至 达到目标状态止。 例如下棋、迷宫及各种游戏。
CISIC
7
3 Puzzle Problem(3数码难问题)
CISIC
34
示例—分子结构识别问题 (DENDRAL系统)
把分子式重写为原子数较少的分子式和原子间结 合关系的混合结构,例如:
H
C5H12
C2H5
C
H
C2H5
CISIC
35
将混合结构的识别再分解为子识别问题,直至不出现分 子式为至,每个子问题只是单一分子式或原子间结合关系 的表示。 H
C2H5 H C
V=c,climbbox (c,1,c,0) grasp
(c,1,c,1) 目标状态
goto(U)
(U,0,V,0)
goto(U)
初始状态变换为目标状态的操作序列为: {goto(b), pushbox(c), climbbox, grasp} 猴子和香蕉问题的状态空间图
CISIC
17
猴子和香蕉问题自动演示:
climbbox :猴子爬上箱顶
(W,0,W,z)
climbbox
(W,1,W,z)
应用算符climbbox的先决条件是什么?
CISIC
15
初始状态 (a,0,b,0)
goto(U)
pushbox(V) U=b
goto(U) (U,0,b,0)
U=b,climbbox (b,1,b,0) U=V

第02章知识表示方法

第02章知识表示方法

1. 状态空间法(11)
作业:用状态空间搜索法求解农夫、狼、 羊、菜问题。
A farmer with his goat, wolf and cabbage come to a river that they wish to cross. There is a boat, but it only has room for two, and the farmer is the only one that can row. If the goat and cabbage get in the boat at the same time, the cabbage gets eaten. Similarly, if the wolf and goat are together without the farmer, the goat is eaten. Devise a series of crossings of the river so that all concerned make it across safely.
概 述
知识的特性
1、相对正确性 2、不确定性 3、可表示性 4、可利用性
概 述
知识的分类
1、知识的作用范围:常识知识和领域知识 2、知识的作用及表示: 事实知识:有关领域内的概念、事实、 客观事物的属性、状态及其关系的描述。 规则知识:事物的行动、动作相联系的 因果关系知识。 3、知识的确定性:确定和不确定 4、思维和认识方法:逻辑和形象
2)综合数据库 又称为事实数据库,用于存放输入的事 实、中间的运行结果和最后结果的工作区。 当规则库中的某条产生式前提与综合数据 库的某些已知事实匹配时,该产生式就被 激活,推理出结论放入综合数据库中,作 为后面推理的已知事实。显然综合数据库 是动态变化的。

第2章 知识表示方法

第2章 知识表示方法
人工智能与专家系统(第二版)中国水利水电出版社
例2.2 设个体域D={1,2},给出公式 R=( x )(P(x )→Q(f(x )量B指派D中的一个元素为 B=1,对函数f (x)指派到D的映射为: f (1)=2,f (2)=1 设对谓词指派的真值为: P(1)=F,P(2)=T,Q(1,1)=T,Q(2,1)=F 由于已对个体常量B指派B=1,所以Q(1,2)与 Q(2,2)不可能出现,故没有给它们指派真值。
人工智能与专家系统(第二版)中国水利水电出版社
可见:谓词公式的真值是针对某一 个解释而言的,它可能在某一个解释下 的真值为T,在另一个解释下的真值为F。
人工智能与专家系统(第二版)中国水利水电出版社
5 谓词公式的永真性、可满足性、不可满 足性 定义2.2: 如果谓词公式P对个体域D上 的任何一个解释都取得真值T,则称公式P 在域D上是永真的。如果P在每个非空个体 域上均永真,则称P是永真的。 可见:为了判定某个公式永真,必须 对每个个体域上的每一个解释逐一判定公 式的真值。
人工智能与专家系统(第二版)中国水利水电出版社
(5)双重否定律 ﹁ ﹁ P P (6)吸收律 P∨(P∧Q) P P∧(P∨Q) P (7)补余律 P ∨ ﹁ P T P ∧ ﹁ P F
人工智能与专家系统(第二版)中国水利水电出版社
(8)连词化归律 P→Q ﹁P∨Q (9)量词转换律 ﹁( x)P ( x ) (﹁P) ﹁( x)P ( x ) (﹁P) (10) 量词分配律 ( x )(P∧Q) ( x )P∧( x ) Q ( x )(P∨Q) ( x )P∨( x )Q
人工智能与专家系统(第二版)中国水利水电出版社
例2.3 用谓词公式表示下列知识: • 王林是计算机系的学生,但他不喜欢 编程序。 • 人人爱劳动。

人工智能_第2章 知识表示方法

人工智能_第2章  知识表示方法

14
标准槽名
6) Infer槽:指出两个框架所描述的事物间的逻辑推理关系, 用它可以表示相应的产生式规则。 【例】设有下面知识:如果咳嗽,发烧且流涕,则八成是患 了感冒,需服用感冒清,一日三次,每次2-3粒。并要多喝开 水。对该知识 ,可用如下两个框架表示: 框架名:<诊断规则> 框架名:<结论> 病名:感冒 症状1:咳嗽 治疗方法:服用感冒清,一日三 症状2:发烧 次,每次2-3粒 症状3:流涕 注意事项 :多喝开水 Infer: <结论> 愈后:良好 可信度:0.8 7) Possible-Reason槽:与Infer槽作用相反,用来把某个结论 与可能的原因联系起来。 15
12
标准槽名
2) AKO槽:用于具体的指出事物间的类属关系。其直观含义 是“是一种”,下层框架可以继承其上层框架所描述的属性及值。 对上面的例子,可将棋手框架中的ISA改为AKO。 3)Subclass槽:用于指出子类与类之间的类属关系。 上例中,由于“棋手”是“运动员的一个子类,故可将ISA该为 Subclass。 4) Instance槽:用来建立AKO槽的逆关系。 用它作为某框架的槽时,可用来指出它的下层框架是哪些。 【例】框架名:<运动员> Instance:<棋手>,<足球运动员>,<排球运动员> 姓名:单位(姓,名) 年龄:单位(岁) 性别:范围(男,女) 缺省:男
18
剧本表示-例
【例】餐厅剧本 (1) 开场条件: (a)顾客饿了,需要进餐。(b)顾客有足够的钱。 (2) 角色:顾客,服务员,厨师,老板。 (3) 道具:食品,桌子,菜单,钱。 (4) 场景: 场景1 进入餐厅 (a) 顾客走入餐厅。(b) 寻找桌子。 (c) 在桌子旁坐下。 场景2 点菜 (a) 服务员给顾客菜单。(b) 顾客点菜。 (c) 顾客把菜单还给服务员。(d) 顾客等待服务员送菜。 场景3 等待 (a) 服务员把顾客所点的菜告诉厨师。(b) 厨师做菜。

第2章知识表示方法

第2章知识表示方法
x,都有P(x)为真
命题( ∀ x)P(x)为假,当且仅当至少存在一个xi
∈D,使得P(xi)为假
∃ :存在量词,意思是“至少有一个”、“存在有”
命题∈D( ∃,x使)P得(x)P为(x真i)为,真当且仅当至少存在一个xi
命题( ∃x)P(x)为假,当且仅当对论域中的所有
x,都有P(x)为假
18:08
18:08
27页
2.4.1 框架的构成
<框架名>
<槽名1>
<侧面11>
<值111>…<值11k1>
一般 结构
<侧面1n1> <值1n11>…<值1n1kn1>
<槽名2>
<侧面12>
<值121>…<值1211>
<侧面1n2> <值1n21>…<值1n21n2>

18:08
28页
2.4.1 框架的构成 表示对象间关系的常用槽名
缺省:教学 姓名: 性别:(男,女) 学历:(中专,大学)
•含有5个槽,槽名分别为:“类属”、“工作”、“性别”、“学历”和 “类别”。槽名后面是其槽值。 •槽值“<知识分子>”又是一个框架名。 •“范围”、“缺省”是槽“工作”的两个不同的侧面,其后是侧面值
18:08
30页
练习一下
例 描述“学生”的框架 框架名:<学生>
z P和Q都可以是一个或一组数学表达式或自然语言
z可表示精确的、不精确的,而谓词公式只能精确的
18:08
17页
2.3.2 产生式表示知识方法
确定性和不确定性规则知识的产生式表示
确定性规则知识: 前面产生式的基本形式表示即可
不确定性规则知识 用如下形式表示 P→Q (可信度)
或者 IF P THEN Q (可信度)

人工智能第二章知识表示方法

人工智能第二章知识表示方法

人工智能第二章知识表示方法答:状态空间法:基于解答空间的问题表示和求解方法,它是以状态和算符为基础来表示和求解问题的。

一般用状态空间法来表示下述方法:从某个初始状态开始,每次加一个操作符,递增的建立起操作符的试验序列,直到达到目标状态为止。

问题规约法:已知问题的描述,通过一系列变换把此问题最终变成一个子问题集合:这些子问题的解可以直接得到,从而解决了初始问题。

问题规约的实质:从目标(要解决的问题)出发逆向推理,建立子问题以及子问题的子问题,直至最后把出示问题规约为一个平凡的本原问题集合。

谓词逻辑法:采用谓词合式公式和一阶谓词算法。

要解决的问题变为一个有待证明的问题,然后采用消解定理和消解反演莱证明一个新语句是从已知的正确语句导出的,从而证明这个新语句也是正确的。

语义网络法:是一种结构化表示方法,它由节点和弧线或链组成。

节点用于表示物体、概念和状态,弧线用于表示节点间的关系。

语义网络的解答是一个经过推理和匹配而得到的具有明确结果的新的语义网络。

语义网络可用于表示多元关系,扩展后可以表示更复杂的问题2-2利用图2.3,用状态空间法规划一个最短的旅行路程:此旅程从城市A开始,访问其他城市不多于一次,并返回A。

选择一个状态表示,表示出所求得的状态空间的节点及弧线,标出适当的代价,并指明图中从起始节点到目标节点的最佳路径。

710910D图2.32-3试用四元数列结构表示四圆盘梵塔问题,并画出求解该问题的与或图。

用四元数列(nA,nB,nC,nD)来表示状态,其中nA表示A盘落在第nA号柱子上,nB表示B盘落在第nB号柱子上,nC表示C盘落在第nC号柱子上,nD表示D盘落在第nD号柱子上。

初始状态为1111,目标状态为3333如图所示,按从上往下的顺序,依次处理每一个叶结点,搬动圆盘,问题得解。

2-4把下列句子变换成子句形式:(1)某y(On(某,y)→Above(某,y))(2)某yz(Above(某,y)∧Above(y,z)→Above(某,z))(1)(ANY某)(ANYy){On(某,y)Above(某,y)}(ANY某)(ANYy){~On(某,y)ORAbove(某,y)}~On(某,y)ORAbove(某,y)最后子句为~On(某,y)ORAbove(某,y)(2)(ANY某)(ANYy)(ANYz){Above(某,y)ANDAbove(y,z)Above(某,z)}(命题联结词之优先级如下:否定→合取→析取→蕴涵→等价)(ANY某)(ANYy)(ANYz){~[Above(某,y)ANDAbove(y,z)]ORAbove(某,z)}~[Above (某,y)ANDAbove(y,z)]ORAbove(某,z)最后子句为~[Above(某,y),Above(y,z)]ORAbove(某,z)2-5用谓词演算公式表示下列英文句子(多用而不是省用不同谓词和项。

第二章知识表示方法

第二章知识表示方法
第二章 知识表示方法
2.1 状态空间法 2.2 问题归约法 2.3 谓词逻辑法 2.4 语义网络法 2.5 其他方法 2.6 小结
知识表示的基本概念
什么是知识?(专家看法)
Feigenbaum 认 为 知 识 是 经 过 削 减 、 塑 造 、 解 释 和 转换的信息。简单地说,知识是经过加工的信息。
9
2.1 状态空间法
2. 状态空间表示概念详释
Original State
Middle State
Goal State
例如下棋、迷宫及 puzzle problem)
23 1
23 1
2 13
2.1 状态空间法
2 13
2
11
3
1
初始棋局
12
3
目标棋局
2.1.2 状态图示法 图论术语
算符:使问题从一种状态变化为另一种状态的手段称为 操作符或算符。
算符可分为走步、过程、规则、数学算子、运算符号、
逻辑符号等。
8
状态空间:是一个表示该问题全部可能状态及 其关系的图. 由三部分构成:问题的所有可能初始状态构成 的集合S;算符集合F;目标状态集合G。
问题的解 状态空间的问题求解就是从问题的初始状态集 S出发,经过一系列的算符运算,到达目标状 态。 由初始状态到目标状态所用算符的序列就构成 了问题的一个解。
14
香蕉挂在天花板下方,但猴子的高度不足以碰到它。那么这只猴子怎样才能摘到 香蕉呢?上图表示出猴子、香蕉和箱子在房间内的相对位置。
解题过程
2.1 状态空间法
用一个四元表列(W,x,Y,z)来表示这个问题状态.
W-猴子的水平位置 x-当猴子在箱子顶上时取x=1;否则取x=0 Y-箱子的水平位置 z-当猴子摘到香蕉时取z=1;否则取z=0

人工智能第2章知识表示方法

人工智能第2章知识表示方法
框架表示法
知识的框架表示法1975年由M.Minsky提出,最早用作视觉 感知、自然语言对话等问题的知识表示;目前已作为一种 通用数据结构来表示知识对象(实体)。 框架理论认为,人们对现实世界中各种事物的认识都是以 一种类似于框架的结构存储在记忆中的,当面临一种新事 物时,就从记忆中找出一个合适的框架并根据实际情况对 其细节加以修改、补充,从而形成对当前事物的认识。 【例】对教室的知识:在记忆中建立关于教室的框架,指 出相应事物的名称(教室),以及事物各有关方面的属性 (如有四面墙、有课桌、有黑板,……)。通过对该框架 的查找,很容易得到教室的各有关特征。 当实际接触了教室后,经观察得到了教室的大小、门窗的 个数、桌凳的数量、颜色等细节,把它们填入到教室框架 中,就得到了教室框架的一个具体事例,称为事例框架。
侧面名11:侧面值111…侧面值11p
侧面名12:侧面值121…侧面值12p
… 槽名2:槽值2
侧面名21:侧面值211…侧面值21p
… 槽名n:槽值n
侧面名n1:侧面值n11…侧面值n1p

侧面名nm:侧面值nm1…侧面值nmp
3
框架表示法-例
【例】一个人可以用其职业、身高和体重等项描述,用这些 项目组成框架的槽。 当描述一个具体的人时,再用这些项目的具体值填入到相应 的槽中。 下面是描述John的框架。 框架名:<PERSON-1>
(以此类推)
8
框架网络-例
师生员工框架为: 框架名:<师生员工> 姓名: 单位(姓,名) 年龄: 单位(岁) 性别: 范围(男,女) 缺省:男
健康状况: 范围(健康,一般,差) 缺省:一般
住址: <住址框架> 教职工框架为: 框架名:<教职工>

第2章知识表示方法

第2章知识表示方法

人工智能原理与应用
第二章 知识表示方法
2.3
产生式表示法
产生式表示格式固定,形式单一,规则(知识单位)间相互较
2.3.5 产生式表示的特点
为独立,没有直接关系使知识库的建立较为容易,处理较为简单的 问题是可取的。另外推理方式单纯,也没有复杂计算。特别是知识
库与推理机是分离的,这种结构给知识库的修改带来方便,无需修
(1)自然性
(2)适宜于精确性知识的表示,而不适宜于不确定性知识的表示 (3)易实现
(4)与一阶谓词逻辑表示法相对应的表示法。
人工智能原理与应用
第二章 知识表示方法
2.3
产生式表示法
1943年美国数学家Post首先建立了一个产生式系统,
是作为组合问题的形式化变换理论提出来的。 产生式是一种知识表达方法,具有和Turing 机一样 的表达能力,有的心理学家认为人对知识的存储就是产生 式形式。
逻辑为基础,是到目前为止能够表达人类思维活动规律的一种最精
确的形式语言。它与人类的自然语言比较接近,由可方便地存储到
计算机中去,并被计算机做精确处理。因此,它是一种最早应用于
人工智能中的表示方法。
人工智能原理与应用
第二章 知识表示方法
2.2 一阶谓词逻辑表示法
2.2.1 知识的谓词逻辑表示法
用一阶谓词逻辑公式可以表示事物的状态、属性、 概念等事实性知识,也可以表示事物间具有确定因果 关系的规则性知识。
人工智能原理与应用
第二章 知识表示方法
例2、Honil 塔问题表示 已知三个柱子1,2,3和三个盘子A,B,C(A比B小,B比C小)。初始状 态下,A,B,C依次放在1柱上。目标状态是A,B,C依次放在柱子3上。 条件是每次可移动一个盘子,盘子上方是空顶方可移动,而任何时候都 不允许大盘在小盘之上。

2第二讲 第二章 知识表示(状态空间法)

2第二讲  第二章 知识表示(状态空间法)
1
一、问题状态描述 2、算符:
使问题从一种状态变化为另一种状态的手段,操作 符可为走步、过程、规则、数学算子、运算符号 或逻辑符号等。
3、状态空间:
一个表示该问题全部可能状态及其关系的图,包含 三种说明的集合,即所有可能的问题初始状态集 合S、 操作符集合F以及目标状态集合G。可把状 态空间记为三元状态(S,F,G)。
2 3 1 8 4 7 6 5
2 3 4 1 8 7 65
2.2状态空间法
求解的方法:首先把适用的算符用于初始状态,
以产生新的状态;然后,再把另一些适用算符 用于这些新的状态;这样继续下去,直至产生 目标状态为止。
初始 状态 2 3 1 8 4 7 6 5 2 3 1 8 4 7 6 5 1 2 3 8 4 7 6 5 目标状态 2 8 3 1 4 7 6 5
1
状态空间表示概念详释
初始状态
操 作
中间状态
操 作
目标状态
对一个问题的状态描述,必须确定3件事: ①该状态描述方式,特别是初始状态描述; ②操作符集合及其对状态描述的作用; ③目标状态的描述。 例如:数码难题。
1
例1:三数码难题(3 puzzle problem)
2 3
1 3 2 1 初始棋局
2 3 1 8 4 7 6 5 2
图论的基本概念
如果从节点ni到节点n 4)路径:某个节点序列 (n j存在有一条路经,则称 1,n2,…,nk),当 j=2, nj 是从 ni时,如果对于每一个 可达到的节点。 3,… ,k nj-1都有一个后继节点 寻找从一种状态变换成另一种状态的某个算符 nj存在,那么就把这个节点序列叫做从节点 n1至节点 序列问题等价于寻求图的某一路径问题。 nk的长度为 k的路径。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1)规则集中的规则与数据库中的事实进行匹配,得匹配的规则集合。 (2)使用冲突解决算法,从匹配规则集合中选择一条规则作为启用规则。 (3)执行启用规则的后件。将该请用规则的后件送入数据库。 重复这个过程直至达到目标。
2018/11/3
2.3.4产生式系统推理方式
反向推理 从目标(作为假设)出发,反向使用规则,求得已知事实。 这种推理方式也称目标驱动方式或称自顶向下的方式。 推理过程 (1)规则库中的规则后件与目标事实进行匹配,得匹配的规 则集合。 (2)使用冲突解决算法,从匹配规则集合中选择一条规则作 为启用规则。 (3)将启用规则的前件作为子目标。 重复这个过程直至各子目标均为已知事实成功结束。
A
B
C
D
框架表示法的主要不足之处在于它不善于表达过 程性知识。因此它经常与产生式表示法结合起来 使用,以取得互补效果。
2018/11/3
返回
2.5 语义网络表示法
语义网络表 示法
目前,语义网络已经成为人工智能中应 用较多的一种知识表示方法,尤其是在 自然语言处理方面的应用。
2018/11/3
2.5.1语义网络概念及结构
分析
•框架名:“教师” •含有5个槽,槽名分别为:“类属”、“工作”、“性别”、 “学历”和“类别”。槽名后面是其槽值。 •槽值“<知识分子>”又是一个框架名。 •“范围”、“缺省”是槽“工作”的两个不同的侧面,其后是 侧面值。 2018/11/3
2.4.3框架系统的推理
求解问题的匹配推理步骤
(1)把待解决的问题用一个框架表示出来。
2018/11/3
2.1.1 知识
知识分类
事实性知识 过程性知识 行为性知识 实例性知识
类比性知识
元知识
2018/11/3
2.1.2 知识表示
知识表示的定义 可看成是一组事物的约定,以把人类知识表示成机器能处理 的数据结构。对知识进行表示的过程就是把知识编码成某种 数据结构的过程。 知识表示的分类
用谓词公式 表示知识的 一般步骤
1. 2. 定义谓词及个体, 根据所要表达的 确定每个谓词及 事物或概念,为 个体的确切含义。 每个谓词中的变 元赋以特定的值。
3. 根据所要表达的 知识的语义,用 适当的连接符将 各个谓词连接起 来形成谓词公式。
2018/11/3
2.2.2 谓词逻辑表示知识举例
例2.2.1
2018/11/3
2.1.1 知识
知识要素
事实 有关问题环境的一些事物的知识,常以“…是…”的形式出现 。 规则 有关问题中与事物的行动、动作相联系的因果关系知识,是 动态的,常以“如果…那么…”形式出现。 控制 有关问题的求解步骤、技巧性知识,告诉怎么做一件事。 元知识 有关知识的知识,是知识库中的高层知识。包括怎样使用规 则,解释规则、校验规则、解释程序结构等知识。
(2)与知识库中已有的框架进行匹配。找出一个或几个可匹配的预 选框架作为初步架设,在初步架设的引导下收集进一步的信息。
(3)使用一种评价方法对于选框架进行评价,以便决定是否接受它。 (4)若可接受,则与问题框架空槽相匹配的事实就是问题解。
2018/11/3
2.4.4 框架表示法的特点
继承性 结构化 自然性 推理灵 活多变
2.4.1 框架的构成
表示对象间关系的常用槽名:
用于指出部分和全体的关系。用 Part-of槽指出的联系所描述的下 层框架和上层框架之间不具有继 承性。 用于指出对象间抽象概念上的类属 关系,直观意义是“是一个”, “是一种”,“是一只”等。一般 用ISA槽指出的联系都具有继承性。
ISA槽
Part-of 槽
2018/11/3
2.5.2语义网络基本语义联系
位置 关系
位置关系是指不同事物在位置方面的关系。节点间的不具 备属性继承性。常用的位置关系有: Located-on:表示一物体在另一物体之上。 Located-at: 表示一物体在某一位置。 Located-under: 表示一物体在另一物体之下。 Located-inside: 表示一物体在另一物体之中。 Located-outside: 表示一物体在另一物体之外。 相近关系是指不同事物在形状、内容等方面相似和接近。 常用的相近关系有: Similar-to:表示一事物与另一事物相似。 Near-to: 表示一事物与另一事物接近。
2018/11/3
2.3.3产生式系统的组成
产生式系统通常由规则库、数据库和推理机这3个 基本部分组成。
推理机 数据库
产生式系统的基本结构
2018/11/3
规则库
2.3.3产生式系统的组成
规则库
用于描述某领域内知识的 产生式集合,是某领域知 识(规则)的存储器。
产生式系统
用来存放输入事实 、外部数据库输入 的事实以及中间结 果和最后结果。
2018/11/3
2.3.2 产生式表示知识方法
确定性和不确定性规则知识的产生式表示
确定性规则知识 可用前面介绍的产生式的基本形式表示即可。 不确定性规则知识 用如下形式表示 P→Q (可信度) 或者 IF P THEN Q (可信度) 其中,P是产生式的前提或条件,用于指出该产生式是否是 可用的条件;Q是一组结论或动作,用于指出该产生式的前提 条件P被满足时,应该得出的结论或应该执行的操作。
2018/11/3
2.3.1 产生式的基本形式
产生式通常用于表示具有因果关系的知识,其基本形式是 P→Q 或 IF P THEN Q 其中,P是产生式的前提或条件,用于指出该产生式是 否是可用的条件;Q是一组结论或动作,用于指出该产生 式的前提条件P被满足时,应该得出的结论或应该执行的操 作。P和Q都可以是一个或一组数学表达式或自然语言。
语义网络 一般由一些最基本的语义单元组成。这些最基本的语义单元 被称为语义基元,可用如下三元组来表示为 (节点1,弧,节点2)
R1 R3
A
R4
R2
A
R
B
A
A
R5
A
语义基元结构
2018/11/3
语义网络结构
2.5.2语义网络基本语义联系
类属 关系
类属关系是指具体有共同属性的不同事物间的分类关系、成员 关系或实例关系,它体现的是“具体与抽象”、“个体与集体” 的层次分类。 常用的类属关系有: AKO(A-Kind-of):表示一个事物是另一个事物的一种类型。 AMO(A-Member-of):表示一个事物是另一个事物的成员。 ISA(Is-a):表示一个事物是另一个事物的实例。 包含关系也称为聚类关系,是指具有组织或结构特征的 “部分与整体”之间的关系,它和类属关系的最主要的区 别就是包含关系一般不具备属性的继承性。 常用的包含关系的有: Part_of:表示一个事物是另一个事物的一部分,或说是部分 与整体的关系。用它连接的上下层节点的属性很可能是很 不相同的,即Part_of联系不具备属性的继承性。
2018/11/3
第一步
第二步
第三步Βιβλιοθήκη 2.2.3一阶谓词逻辑表示法特点
严密性
自然性 通用性 知识易表达 易于实现
效率低
灵活性差 组合爆炸
优点
2018/11/3
缺点
返回
2.3 产生式表示法
产生式知识 表示方法
又称为产生式规则表示法,它和图灵机 有相同的计算能力。目前产生式表示法 已成为人工智能中应用最多的一种知识 表示方法。
2.2 一阶谓词逻辑表示法
一阶谓词逻 辑表示法
一种重要的知识表示方法,它以数理逻辑 为基础,是到目前为止能够表达人类思维 和推理的一种最精确的形式语言。它的表 现方式和人类自然语言非常接近,它能够 被计算机作精确推理。
2018/11/3
2.2.1 知识的谓词逻辑表示法
用谓词公式既可表示事物的状态、属性和概念等事实性 的知识,也可表示事物间具有因果关系的规则性知识。
2018/11/3
包含 关系
2.5.2语义网络基本语义联系
属性 关系
属性关系是指事物和其属性之间的关系。 常用的属性的关系有: Have:表示一个结点具有另一个结点所描述性。 Can:表示一个结点能做另一个结点的事情。
时间 关系
时间关系是指不同事件在其发生时间方面的先后 关系,节点间的不具备属性继承性。 常用的时间关系有: Before:表示一个事件在一个事件之前发生。 After:表示一个事件在一个事件之后发生。
控制饱和问题
自然性 清晰性
可信度因子 模块化
产生表示法的特点
返回
2018/11/3
2.4 框架表示法
框架表示法
框架表示法是以框架理论为基础发展起来的一种结 构化的知识表示,它适用于表达多种类型的知识。 框架理论的基本观点是:人脑已存储有大量的典型 情景,当面临新的情景时,就从记忆中选择一个称 作框架的基本知识结构,其具体内容依新的情景而 改变,形成对新情景的认识又记忆于人脑中。
2018/11/3
2.4.1 框架的构成
一般 结构
<框架名> <槽名1> <侧面11> <值111>…<值11k1> <侧面1n1> <值1n11>…<值1n1kn1> <槽名2> <侧面12> <值121>…<值1211> <侧面1n2> <值1n21>…<值1n21n2> …
2018/11/3
2018/11/3
2.3.4产生式系统推理方式
双向推理
双向推理是一种既自顶向下、又自底向上的推理方 式,推理从两个方向同时进行,直至某个中间界面 上两方向结果相符便成功结束。这种双向推理较正 向或反向推理所形成的推理网络小,从而有更高的 推理效率。
2018/11/3
2.3.5产生表示法的特点
组合爆炸问题
用谓词逻辑表示下列知识: 武汉是一个美丽的城市,但她不是一个沿海城市。 如果马亮是男孩,张红是女孩,则马亮比张红长得高。
相关文档
最新文档