非金属材料
非金属材料介绍

非金属材料介绍非金属材料指具有非金属性质(导电性导热性差)的材料。
自19世纪以来,随着生产和科学技术的进步,尤其是无机化学和有机化学工业的发展,人类以天然的矿物、植物、石油等为原料,制造和合成了许多新型非金属材料,如水泥、人造石墨、特种陶瓷、合成橡胶、合成树脂(塑料)、合成纤维等。
下面小编为大家介绍下非金属材料。
一、非金属材料特点耐压强度高、硬度大、耐高温、抗腐蚀。
此外,水泥在胶凝性能上,玻璃在光学性能上,陶瓷在耐蚀、介电性能上,耐火材料在防热隔热性能上都有其优异的特性,为金属材料和高分子材料所不及。
但与金属材料相比,它抗断强度低、缺少延展性,属于脆性材料。
与高分子材料相比,密度较大,制造工艺较复杂。
[2]特种无机非金属材料的特点是:①各具特色,例如:高温氧化物等的高温抗氧化特性;氧化铝、氧化铍陶瓷的高频绝缘特性;铁氧体的磁学性质;光导纤维的光传输性质;金刚石、立方氮化硼的TodayHot}超硬性质;导体材料的导电性质;快硬早强水泥的快凝、快硬性质等。
②各种物理效应和微观现象,例如:光敏材料的光-电、热敏材料的热-电、压电材料的力-电、气敏材料的气体-电、湿敏材料的湿度-电等材料对物理和化学参数间的功能转换特性。
③不同性质的材料经复合而构成复合材料,例如:金属陶瓷、高温无机涂层,以及用无机纤维、晶须等增强的材料。
二、非金属材料分类①属于无机材料的有耐火材料、陶瓷、磨料、碳和石墨材料、石棉等;②属于有机材料的有木材、皮革、胶粘剂和高分子合成材料──合成橡胶、合成树脂、合成纤维等;③以非金属纤维增强树脂基所构成的复合材料。
三、非金属材料用途高强度结构材料非金属材料的密度较钢、铁、铜、铅等金属材料小得多,有些比铝、镁、钛等还轻。
按比强度(强度/比重)计算,有的纤维树脂复合材料的常温比强度超过高强度钢和高强度铝。
这些材料被用来制造手轮、手柄、支架、罩壳、仪表板等一般轻质结构件,也可用来制造飞机机翼和叶片、整体船艇、汽车车身和传动轴、高速纺织综框、高压容器等高强度结构件,这样可以减轻自重、增加运载能力或提高运行速度、节约能源。
非金属材料标准手册

非金属材料标准手册非金属材料是一类广泛应用于工业生产和日常生活中的材料,其种类繁多,性能各异。
本手册旨在对非金属材料的标准进行系统整理和介绍,帮助读者更好地了解非金属材料的相关知识和应用。
一、塑料材料。
塑料是一种常见的非金属材料,具有轻质、耐腐蚀、绝缘等特点。
在工业生产中,塑料被广泛应用于注塑成型、挤出成型、吹塑成型等工艺中。
常见的塑料材料有聚乙烯、聚丙烯、聚氯乙烯等,它们在不同的温度、压力下具有不同的性能表现,因此需要按照相关的标准进行选择和应用。
二、橡胶材料。
橡胶是一种具有弹性的非金属材料,常见的有天然橡胶、合成橡胶等。
橡胶材料具有良好的密封性能和耐磨损性能,被广泛应用于汽车制造、机械设备等领域。
标准手册中对橡胶材料的硬度、拉伸强度、耐热性等性能进行了详细的规定,以便用户选择合适的材料。
三、陶瓷材料。
陶瓷是一种耐高温、绝缘、耐磨损的非金属材料,常见的有氧化铝陶瓷、氮化硅陶瓷等。
陶瓷材料在电子、化工、航空航天等领域有着重要的应用价值。
标准手册中对陶瓷材料的成分、烧结工艺、力学性能等方面进行了详细的规定,以确保其在不同工况下的稳定性和可靠性。
四、复合材料。
复合材料是由两种或两种以上的材料组合而成的新材料,具有优异的综合性能。
常见的复合材料有玻璃钢、碳纤维复合材料等,它们具有轻质、高强度、耐腐蚀等特点,在航空航天、汽车制造等领域有着广泛的应用。
标准手册中对复合材料的成分比例、工艺要求、性能测试等方面进行了详细的规定,以确保其在不同领域的可靠应用。
五、纤维材料。
纤维材料是一种具有高强度、轻质、耐磨损的非金属材料,常见的有玻璃纤维、碳纤维等。
纤维材料在建筑、航空航天、体育器材等领域有着重要的应用价值。
标准手册中对纤维材料的拉伸强度、断裂伸长率、热稳定性等方面进行了详细的规定,以确保其在不同工况下的稳定性和可靠性。
六、综合应用。
非金属材料在现代工业生产和日常生活中有着广泛的应用,其种类繁多,性能各异。
通过本手册的学习,读者可以更好地了解非金属材料的相关知识和应用,选择合适的材料,提高生产效率,降低生产成本,推动工业的可持续发展。
非金属材料

常用工程材料
❖ 非金属材料
1.1 高分子材料 1.2 陶瓷材料 1.3 复合材料
机械工业中使用的非金属材料可分为三大类:高分子材料(如 塑料、胶粘剂、合成橡胶、合成纤维等)、陶瓷(如日用陶瓷、金 属陶瓷等)、复合材料等。
常用工程材料
1.1 高分子材料
1. 工程塑料 密度小 强度、 硬度低 工程塑料
常用工程材料
1.3 复合材料
2. 复合材料的分类(按增强相的性质和形态)
(3)颗粒复合材料
颗粒复合材料是一种或多种颗粒均匀分布在基体材料内而 制成的
颗粒起增强作用
常用工程材料
1.3 复合材料
2. 复合材料的分类(按增强相的性质和形态)
(3)颗粒复合材料
常用的颗粒复合材料有两类:
•一类是颗粒与树脂复合 •另一类是陶瓷粒与金属复合
常用工程材料
1.3 复合材料
2. 复合材料的分类(按增强相的性质和形态)
(1)纤维增强复合材料
玻璃纤维增强复合材料是以玻璃纤维及制品为增强剂,以树脂 为粘结剂而制成的,俗称玻璃钢
碳纤维增强复合材料是以碳纤维或其织物为增强剂,以树脂、 金属、陶瓷等粘结剂而制成的
常用工程材料
1.3 复合材料
2. 复合材料的分类(按增强相的性质和形态)
机械制造基础
常用工程材料 1.2 陶瓷材料
常用工程材料
1.3 复合材料
复合材料是由两种或两种以上物理、化学性质不同的物质,经人工 合成的多相固体材料
复合材料既保持了各组成材料的最佳性能特点,又具有组合后新的 特性
常用工程材料
1.3 复合材料
1. 复合材料的性能特点
(1)比强度和比模量高 (2)抗疲劳性能好 (3)减震性 除了上述几种特性外,复合材料还具有较高的耐热性和断裂安全性, 良好的自润滑和耐磨性等。但复合材料伸长率小,抗冲击性差,横向强 度较低,成本较高
常用的非金属材料介绍

常用的非金属材料介绍常用非金属材料可分为陶瓷、磨料、碳和石墨、石棉等无机材料及塑料、橡胶、胶粘剂等有机材料两大类。
1、塑料塑料的强度及刚度远低于金属材料,只适于制造承受载荷不大、对刚度要求不高的零件,如壳体、支架、手柄、手轮、防护挡板、仪表盖或框、覆盖板等,可以选用聚苯乙烯、酸性聚乙烯、聚碳酸酯、聚苯醚、有机玻璃等。
传动零件一般承受载荷不大,低速时可用低压聚乙烯、聚乙烯、聚氯乙烯,大的齿轮、齿条、凸轮、蜗轮、带轮等也可用塑料制造。
要求稍高一些的框架类零件且工作条件相对苛刻一些时,可选择的塑料有尼龙、MC尼龙、聚甲醛、聚碳酸酯、聚氯醚(氯化聚醚)、夹布酚醛等。
受力较小的滑动轴承、轴套、导轨和某些密封圈,以及对材料的力学性能要求不高,但要求有良好的自润滑性能、低的摩擦系数和一定的耐油性及耐热性的,可以选用低压聚乙烯、尼龙1010、MC尼龙、聚氯醚、聚甲醛、聚四氟乙烯等。
在载荷不大的情况下,与无机耐蚀材料相比,塑料具有一定的优越性,因此塑料的应用比重日益增大。
由于不同的塑料品种,有的耐酸、有的耐碱、有的耐溶剂,因此要针对腐蚀条件选择塑料品种。
一般腐蚀条件可选用聚烯烃类塑料,若同时还要求有较高的力学性能时,可选聚气醚;既要求耐强酸、强氧化酸,又要求耐强碱时,采用氟塑料(如聚四氟乙烯)。
要求耐蚀的容器或其他零件,可采用塑料衬里结构、加强复合结构和涂层结构。
塑料因其优异的绝缘性能,也常用来制造电器零件。
普通电器元件要求绝缘、耐弧、耐燃及具有一定的强度和耐热性,可选用聚烯烃塑料、酚醛塑料、胺烃和环氧塑料等。
高压绝缘件选用交联聚乙烯、聚碳酸酯、氟塑料和环氧塑料。
高频绝缘件选用聚烯烃、氟塑料、聚酰亚胺、有机硅、聚丙醚、聚苯乙烯和聚丙烯等。
2、合成橡胶合成橡胶按用途分为通用橡胶和特种橡胶。
通用橡胶用来生产轮胎、传送带、传动带、胶管、胶辊、密封装置、减振装置等。
特种橡胶用来制造在特殊条件(如高温、低温,需要耐碱、耐酸、耐油及防辐射等)下使用的橡胶产品。
12 第八章 非金属材料简介

图8-1 线型非晶态高聚物的温度-形变曲线
图8-2线型晶态高聚物的温度-形变曲线
4/25
(2)线型晶态高聚物和体型高聚物的力 学状态 晶态高聚物的热-机曲线如图8-2所示 (图中Tm为熔点),这种高聚物分为一般 分子量和很大分子量两种情况。一般分 子量的高聚物在低温时,链段不能活动, 变形小,因此在Tm以下与非晶态高聚物 的玻璃态相似,高于Tm则进入粘流态。 分子量很大的晶态高聚物存在高弹态 (Tm-Tf)。由于高分子材料只是部分结晶, 非晶区柔性好,晶区刚性好,因而在非 晶区的Tg与晶区的Tm温度区间,处于韧 性状态,即皮革态。 体型高聚物的力学状态与交联点的密度 有关,密度小,链段仍可运动,具有高 弹态,如轻度硫化的橡胶。交联点密度 大,则链段不能运动,此时Tg = Tf,高 聚物变得硬而脆,如酚醛塑料。
8/25
(3)常用工程塑料 工程塑料是指力学性能和热性能均较好,可在承受机械应力 和较为苛刻的化学及物理环境下使用,并可作为工程结构件的 塑料。 常用塑料的性能见表8-2
PS管 PE波纹管
PP方向盘
ABS阀门 聚四氟 乙烯管
聚四氟乙 烯零件
密 封 件
电器配件9/25源自• 1)一般结构用塑料 一般结构用塑料包括聚乙烯、聚氯乙烯、聚苯乙烯、聚丙烯和ABS塑料等。 聚乙烯(PE)的合成方法有低压、中压、高压三种。高压聚乙烯质地柔软, 适于制造薄膜。低压聚乙烯质地坚硬,适于做结构件,如化工管道、电缆绝 缘层、小负荷齿轮、轴承等。 聚氯乙烯(PVC)成本低,但有一定毒性。根据增塑剂的用量不同分为硬质和 软质两种。硬质聚氯乙烯主要用于工业管道系统及化工结构件等,软质聚氯 乙烯主要用于薄膜、电缆包覆等。 聚苯乙烯(PS)电绝缘性优良,但脆性大,主要用于日用、装潢、包装及工 业制品,如仪器仪表外壳、接线盒、开关按钮、玩具、包装及管道的保温层、 耐油的机械零件等。 聚丙烯(PP)具有优良的综合性能,可用来制造各种机械零件,如法兰、齿 轮、接头、把手,各种化工管道、容器,以及医疗器械、家用电器部件等。 ABS塑料是由丙烯腈(A)-丁二烯(B)-苯乙烯(S)三种单体共聚而成,兼具三 组分的性能,是具有“坚韧、质硬、刚性”的材料,在机械、电气、纺织、 汽车、飞机、轮船等制造工业及化学工业中被广泛应用。
非金属材料

非金属材料非金属材料是指在常温下不具有金属性质的材料,主要包括陶瓷材料、高分子材料和复合材料等。
陶瓷材料是一种以无机非金属材料为主要成分的材料,具有很高的硬度和耐热性。
陶瓷材料可以分为结晶体陶瓷和非晶体陶瓷两大类。
结晶体陶瓷由结晶颗粒组成,如氧化铝陶瓷、氧化锆陶瓷等,具有较高的强度和抗磨性能,广泛应用于机械零件、刀具等领域。
非晶体陶瓷由非晶体或微晶体组成,如玻璃、陶瓷线圈等,具有较好的透明性和绝缘性能,常用于电子器件的封装和绝缘材料。
高分子材料是由长链状分子组成的一类大分子材料,具有较高的延展性和可塑性。
根据聚合方式不同,高分子材料可以分为线性聚合物(如聚乙烯、聚丙烯等)、交联聚合物(如橡胶)和网状聚合物(如树脂)等。
高分子材料具有较好的绝缘性、耐腐蚀性和吸震性能,广泛应用于塑料制品、橡胶制品、纤维材料等领域。
复合材料是由两种或多种不同材料组成的材料,通过各材料的优势互补,具有独特的综合性能。
常见的复合材料包括纤维增强复合材料、层合板和粉末冶金复合材料等。
纤维增强复合材料由纤维增强体和基体组成,如碳纤维增强复合材料、玻璃纤维增强复合材料等,具有较高的强度和刚度,常用于航空航天、汽车工业等领域。
层合板由多层薄板材料组成,具有较好的强度和稳定性,广泛应用于建筑、器械制造等领域。
粉末冶金复合材料由金属和非金属粉末组成,具有较高的耐高温和耐磨性能,常用于摩擦材料、刀具等领域。
非金属材料具有较好的绝缘性、耐腐蚀性和吸震性能,在电子器件、化工管道、建筑材料等领域有着广泛的应用前景。
然而,由于非金属材料的强度和韧性较差,易受热膨胀、收缩和化学侵蚀等因素影响,在一些特殊环境下需要采取合适的防护措施,以确保其使用寿命和安全性。
常见非金属材料汇总

常见⾮⾦属材料汇总⾮⾦属材料与⾦属材料都是⼯业发展的重要材料。
随着材料技术的发展,⾮⾦属材料在⼯业发展中的重要性也越来越⼤。
⾮⾦属材料⼀般具有以下特点:密度⼩质量轻、耐压强度⾼、硬度⼤、耐⾼温、抗腐蚀。
可以⼤概分为有机材料、⽆机材料及复合材料三种:1.有机材料:⽊材、⽪⾰、胶粘剂和⾼分⼦合成材料——合成橡胶、合成树脂、合成纤维等;2.⽆机材料:耐⽕材料、陶瓷、磨料、碳和⽯墨材料、⽯棉等;3.以⾮⾦属纤维增强树脂基所构成的复合材料。
在机械⼯程中,⾮⾦属材料的应⽤也是越来越⼴,下⾯把在⼯作中较为常见的⾮⾦属材料做了汇总,以⽅便⽐较选⽤:⼀、普通⼯程塑料1.聚氯⼄烯【牌号】PVC【俗称】PVC【代号】PVC【英⽂名】Polyvinyl Chloride【颜⾊】透明/灰⾊/⽩⾊/蓝⾊【密度】1.380【特性】1.聚氯⼄烯的最⼤特点是阻燃,因此被⼴泛⽤于防⽕应⽤。
但是聚氯⼄烯在燃烧过程中会释放出氯化氢和其他有毒⽓体,例如⼆恶英。
2.聚氯⼄烯有较好的电⽓绝缘性能,可作低频绝缘材料,其化学稳定性也好。
由于聚氯⼄烯的热稳定性较差,长时间加热会导致分解,放出HCL⽓体,使聚氯⼄烯变⾊,所以其应⽤范围较窄,使⽤温度⼀般在-15~55℃之间。
3.聚氯⼄烯是世界上产量最⼤的塑料品种之⼀.聚氯⼄烯树脂为⽩⾊或浅黄⾊粉末.根据不同的⽤途可以加进不同的添加剂,使聚氯⼄烯塑件呈现不同的物理性能和⼒学性能.在聚氯⼄烯树脂中加⼈适量的增塑剂,就可制成多种硬质、软质和透明制品.纯聚氯⼄烯的密度为1.4g/cm3,加进了增塑剂和填料等的聚氯⼄烯塑件的密度⼀般在1.15 ~ 2.00g/cm3范围内.硬聚氯⼄烯不含或含有少量的增塑剂,有较好的抗拉、抗弯、抗压和抗冲击性能,可单独⽤作结构材料.软聚氯⼄烯含有较多的增塑剂,它的柔软性、断裂伸长率、耐冷性增加,但脆性、硬度、拉伸强度会降低。
【应⽤】由于聚氯⼄烯的化学稳定性⾼,所以可⽤于防腐管道、管件、输油管离⼼泵、⿎风机等.聚氯⼄烯的硬板⼴泛⽤于化学产业上制作各种贮槽的衬⾥,建筑物的⽡楞板、门窗结构、墙壁装饰物等建筑⽤材.由于电⽓尽缘性能优良⽽在电⽓、电⼦产业中,⽤于制造插座、插头、开关、电缆.在⽇常⽣活中,⽤于制造凉鞋、⾬⾐、玩具、⼈造⾰等。
非金属材料

塑料的分类2
通用塑料
应用范围广,生产量大,价廉 聚氯乙烯,聚苯乙烯,聚烯烃,酚醛塑料和氨基塑料。
工程塑料
综合工程性能(机械性能,耐热耐寒性能,耐蚀性和绝 缘性等)良好。 如:聚甲醛,聚酰胺,聚碳酸酯,ABS等。
特殊塑料
可在较高温度下工作(100~200℃)耐蚀,不燃等。 如:聚四氟乙烯,聚三氟氯乙烯,有机硅树脂,环氧树 脂。
塑料制品1
塑料制品2
橡胶
橡胶:
在使用温度范围内,处于高弹性的高分子材料。 可用作弹性材料、密封材料和防震材料等。
橡胶的组成
橡胶组成:生胶+配合剂+增强材料 生胶: 天然生胶:橡树、杜仲树上流出的乳胶,经凝固干燥压片成生胶 合成生胶:用化学方法人工合成的高聚物。单体源于石油、天然气、煤。 如丁二烯、苯乙烯、顺丁-聚丁二烯等。 配合剂 硫化剂:由线性分子结构立体分子结构。 硫磺、含硫化合物、过氧化苯甲酰等。 硫化促进剂:缩短硫化时间。 活化剂:助促进剂,ZnO、MgO,减少促进剂用量。 填充剂:提高强度,降低成本,如碳黑、 ZnO、MgO 增塑剂:提高橡胶的塑性,如石腊、凡士林、硬脂酸。 防老化剂:石腊等易氧化物质,形成稳定的氧化膜。 增强材料:提高强度、硬度、耐磨性、刚性 如:纤维织物,金属丝,纺织物、钢线、细布帆布等。
次重大飞跃。
陶瓷的分类
普通陶瓷(传统陶瓷) 其原料的来源 特种陶瓷(先进陶瓷) 普通陶瓷是以天然硅酸盐矿物为原料(粘土、长石、石 英),经过原料加工、成型、烧结而成,因此又叫硅酸盐 陶瓷。 特种陶瓷是采用纯度较高的人工合成化合物(如Al2O3、 ZrO2、SiC、Si3N4、BN),经配料、成型、烧结而制得。
橡胶的性能
极好的弹性:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
非金属材料
1 非金属材料常用种类
2 常用非金属材料的特性和应用
2.1 橡胶
橡胶分为天然橡胶和合成橡胶;从性能上分为普通橡胶、耐酸碱橡胶、耐油橡胶、耐热橡胶。
主要特性及应用:具有高弹性,有良好的耐磨性、绝缘性和阻尼性;用作动静态密封件,减震、防震件,传动件及各种耐磨件等。
天然橡胶可塑性和工艺加工性能好;但不耐老化,且耐热性、耐酸性、耐油性差。
合成橡胶加工性能差,其种类不同,性能也有区别。
其中丁腈橡胶有优异的耐油性,广泛用于耐油橡胶制品;氯丁橡胶耐老化性极好,耐热性、耐燃性好;用途极为广泛。
比如现场中使用的油封、O形橡胶密封圈所用橡胶需耐油性好的耐油橡胶;
2.2 氟橡胶
应用范围为-40℃~230℃。
氟橡胶是含有氟原子的橡胶统称,耐高温,耐蚀性良好,耐各类酸、碱、盐、石油产品、烃类等,但耐溶剂性不及氟塑料。
在化工方面可用于耐高温和强腐蚀环境。
2.3 塑料
2.3.1 分类
常用塑料有聚乙烯(PE)、聚丙烯(PP)、聚氯乙烯(PVC)、有机玻璃、尼龙(PA)、聚四氟乙烯(F4)、酚醛塑料(PF)等。
2.2.2 特性及应用
2.4 聚四氟乙烯(F4)
2.4.1 特点
1.聚四氟乙烯素称“塑料王”,具有高度的化学稳定性,对强酸、强碱、强氧化剂、有机溶剂军耐腐蚀,只有对熔融状态的碱金属及高温下的氟元素才不耐蚀;
2.有异常好的润滑性;
3.可在260℃长期连续使用,也可在-250℃的低温下满意的使用;4优异的电绝缘性;耐大气老化性能非常好;6.突出的表面不粘性,几乎所有粘性物质都不能附在它的表面上;7.其缺点:强度低,刚性差,冷流形大,必须用冷压烧结法成型,工艺较麻烦。
2.4.2 用途
1.作耐腐蚀化工设备及其衬里与零件;
2.作减摩自润滑零件,如轴承、活塞环、密封圈等;
3.作电绝缘材料与零件。
2.5 石墨及碳
作为结构材料的石墨和碳是由焦炭高温烧制而成。
在1400℃煅烧的制品为碳,在2000~2400℃以上煅烧制品具有晶体结构称为“石墨”。
石墨接近金属性能,导热性和导电性比碳高的多。
石墨和碳对绝大多数腐蚀烷烃都有良好的耐蚀性,包括沸点的盐酸、稀盐酸、氢氟酸、磷酸、碱液和有机溶剂等,只有强氧化剂如硝酸、浓硫酸、溴和氟等能破坏它。
不透性石墨的品种因所含树脂不同,耐蚀性有差异,例如:酚醛树脂浸渍者耐酸,但不耐碱,其耐热温度可达到180℃。
石墨和碳只用于无压力、允许渗透的部件。
加工容易,但焊接困难,一般可用胶结,抗拉强度低,无延伸性,抗压强度高。
2.6 陶瓷
2.6.1 陶瓷材料的使用性能
1)高弹性模量、高硬度
2)低抗拉强度和较高抗压强度
3)塑性、韧性低,脆性大,是非常典型的脆性材料。
4)优良高温强度和低抗热震性
其熔点高于金属。
在高温下不仅保持高硬度,而且基本上保持其室温下的强度,同时抗氧化性能好,故广泛用作高温材料。
但是陶瓷承受温度急剧变化的能力(即抗热震性)差,当温度剧烈变化时容易破裂。
5)热膨胀系数小、热导率低、热容量小,可用作绝热材料。
6)化学稳定性好
具有很好的耐火性或不燃性。
并对酸、碱、盐等腐蚀性介质均有较强的抗蚀性。
2.6.2常用工程结构陶瓷材料
1)普通陶瓷
其质地坚硬,不氧化生锈,耐腐蚀,不导电,能耐一定高温,加工成型性
好,成本低。
但强度较低,耐高温性能不如其他陶瓷。
广泛应用于电气、化工、建筑、纺织等行业。
例如铺设地面和输水管道、耐酸容器、隔电绝缘器件等。
2)氧化铝陶瓷(亦称高铝陶瓷)
其强度高于普通陶瓷2~3倍,甚至5~6倍;硬度很高、耐磨性好;耐高温性能好,可在1600℃高温下长期使用;耐蚀性很强;良好的电绝缘性能。
但其缺点是韧性低、抗热震性差,不能承受温度的急剧变化。
主要用于制作切削刀具、模具、轴承(特别是在耐腐蚀条件下工作),熔化金属的坩埚、高温热电偶套管,以及化工用泵的密封滑环、机轴套、叶轮等。
3)碳化硅陶瓷
其最大特点是高温强度高,在1400℃时其抗弯强度保持在500~600MPa的较高水平;其次是导热性好且有很好的耐磨损、耐腐蚀、抗蠕变、热抗震性能。
主要用作浇注金属的浇道口、热电偶套管、燃气轮机叶片、各种泵密封圈等。
4)金属陶瓷
其实质是由金属和陶瓷组成的复合材料。
金属的抗热震性、韧性好,但易氧化和高温强度不高;而陶瓷的硬度高,耐热性好,耐蚀性强,但抗热震性低、脆性大。
通过一定的工艺结合起来制成金属陶瓷,则可兼有两者的优点。
(1)氧化物基金属陶瓷。
其应用最广,具有高耐热性、高硬度、高耐磨性。
与纯氧化铝相比,改善了韧性、抗热震性和抗氧化能力。
其主要用作工具材料,它与被加工金属材料的粘着倾向小,可提高加工精度和表面光洁程度,适用于高速切削;另外,模具、喷嘴、和机械密封环等也可用此类材料制作。
(2)碳化物基金属陶瓷(硬质合金)。
它是将某些难熔的碳化物粉末(如WC,TiC等)和粘合剂(如Co、Ni等)混合,加工成型,再经烧结而制成金属陶瓷。
其硬度很高,耐磨性优良。
适于作切削工具、金属成型工具、矿山工具、表面耐磨材料以及某些高刚度结构件等。
2008-09-05。