九年级数学上册检测试题

合集下载

九年级上册数学测试题(含答案)

九年级上册数学测试题(含答案)

九年级上册数学测试题(考试时间: 120 分钟分数: 120 )一、选择题(本大题共10 小题,共 30 分)1.某钢铁厂一月份生产钢铁 560 吨,从二月份起 ,由于改进操作技术 ,使得第一季度共生产钢铁1850 吨,问二、三月份平均每月的增长率是多少?若设二、三月份平均每月的增长率为 x,则可得方程A. B.C. D.2.若一元二次方程的常数项是 0,则 m 等于 ( )A. B. 3 C. D. 93.如图 ,AB 是的一条弦 ,于点 C,交于点 D,连接若,,则的半径为 ()A. 5B.C. 3D.4.若抛物线与 x 轴有交点 ,则 m 的取值X围是( )A. B. C. D.5.如图 ,A,B,C 是上三个点 ,,则下列说法中正确的是()A. B. 四边形 OABC 内接于C. D.6.中,于 C,AE 过点 O,连接 EC,若,,则 EC长度为( )A. B. 8 C. D.7.下列判断中正确的是 ( )A.长度相等的弧是等弧B.平分弦的直线也必平分弦所对的两条弧C.弦的垂直平分线必平分弦所对的两条弧D.平分一条弧的直线必平分这条弧所对的弦8. 如图 ,已知与坐标轴交于点A,O,B,点C在上,且,若点 B 的坐标为,则弧 OA 的长为 ( )A.B.C.D.9.将含有角的直角三角板 OAB 如图放置在平面直角坐标中 ,OB 在 x 轴上 ,若,将三角板绕原点 O 顺时针旋转,则点 A 的对应点的坐标为( )A.B.C.D.10.如图 ,在中 ,,,以点 C 为圆心 ,CB 的长为半径画弧 ,与 AB 边交于点 D,将绕点 D旋转后点 B 与点 A 恰好重合 ,则图中阴影部分的面积为 ()A. B.C. D.二、填空题(本大题共8 小题,共 24分)11.m 是方程的一个根 ,则代数式的值是______.12.已知,,是二次函数上的点 ,则, , 从小到大用“”排列是 ______.13.如图 ,在中 ,直径,弦于 E,若,则______.14.如图是一座抛物形拱桥 ,当水面的宽为 12m时,拱顶离水面 4m,当水面下降3m 时 ,水面的宽为 ______15.如图 ,正的边长为 4,将正绕点 B顺时针旋转得到,若点 D 为直线上的一动点 ,则的最小值是 ______.16.如图 ,在平面内将绕着直角顶点 C 逆时针旋转,得到,若,,则阴影部分的面积为 ______.17.如图,A、B、C、D 均在上 ,E 为 BC 延长线上的一点 ,若,则______.18.如图 ,内接于,于点 D,若的半径,则 AC 的长为 ______.三、解答题(本大题共7 小题,共66分)19. 已知关于 x 的一元二次方程有实数根.求 m 的取值X围;( 3+3=6分)若方程有一个根为,求 m 的值及另一个根.20. 如图 ,E 与 F 分别在正方形 ABCD 边 BC 与 CD 上,.以A 为旋转中心 ,将按顺时针方向旋转 ,画出旋转后得到的图形.( 4+4=8分)已知,,求 EF 的长.21. 平面上有 3 个点的坐标:,,.在 A,B,C 三个点中任取一个点 ,这个点既在直线上又在抛物线上的概率是多少?从A,B,C 三个点中任取两个点 ,求两点都落在抛物线上的概率.( 4+4=8分)22. 如图 ,抛物线与x轴交于A、B两点点A在点B的左侧,点 A 的坐标为,与 y 轴交于点,作直线动点P在x轴上运动,过点 P 作轴,交抛物线于点M,交直线BC于点N,设点P的横坐标为m.( 4+4+4=12)Ⅰ求抛物线的解析式和直线 BC 的解析式;Ⅱ当点 P 在线段 OB 上运动时 ,求线段 MN 的最大值;Ⅲ当以 C、O、M、N 为顶点的四边形是平行四边形时,直接写出 m 的值.23. 如图,内接于,,CD 是的直径 ,点 P 是 CD 延长线上的一点 ,且.( 5+5=10分)求证: PA 是的切线;若,,求的半径.24. 如图 ,AB 是的直径,四边形ABCD内接于,延长 AD,BC 交于点 E,且.求证:;若,,求的长.25. 如图 ,A、B、C 是圆 O 上三点 ,,点 D 是圆上一动点且,过点 D 作 BC 的平行线 DE,过点 A 作 AB 的垂线 AE,两线交于点 E.(1)求证: AB 是圆 O 的直径。

人教版2023-2024学年九年级上册期中数学质量检测试题(含解析)

人教版2023-2024学年九年级上册期中数学质量检测试题(含解析)

人教版2023-2024学年九年级上册期中数学质量检测试题一.选择题(共12小题,满分36分,每小题3分)1.已知关于x的方程(m+1)x2+2x﹣3=0是一元二次方程,则m的取值范围是()A.m>﹣1B.m≠0C.m≤﹣1D.m≠﹣12.在平面直角坐标系中,点A(3,﹣4)与点B关于原点对称,则点B的位置()A.第一象限B.第二象限C.第三象限D.第四象限3.若n(n≠0)是关于x的方程x2+mx+n=0的根,则m+n的值为()A.0B.1C.﹣1D.﹣24.在下列方程中,满足两个实数根的和等于2的方程是()A.x2﹣2x+4=0B.x2+2x﹣4=0C.x2+2x+4=0D.x2﹣2x﹣4=0 5.一元二次方程x2+2020=0的根的情况是()A.有两个相等的实根B.有两个不等的实根C.只有一个实根D.无实数根6.如图,要为一幅长为29cm,宽为22cm的照片配一个相框,要求相框的四条边宽度相等,且相框所占面积为照片面积的四分之一,相框边的宽度为xcm,则可列方程为()A.(29﹣2x)(22﹣2x)=×29×22B.(29﹣2x)(22﹣2x)=×29×22C.(29﹣x)(22﹣x)=×29×22D.(29﹣x)(22﹣x)=×29×227.二次函数y=x2+3x﹣2的图象是()A.B.C.D.8.二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=﹣1,则下列四个结论错误的是()A.a﹣b+c<0B.2a+b=0C.4a﹣2b+c=0D.am2+b(m+1)≥a9.已知抛物线y=a(x﹣h)2+k与x轴有两个交点A(﹣1,0),B(3,0),抛物线y=a (x﹣h﹣m)2+k与x轴的一个交点是(4,0),则m的值是()A.5B.﹣1C.5或1D.﹣5或﹣1 10.某地要建造一个圆形喷水池,在水池中央垂直于地面安装一个柱子OA,O恰为水面中心,安置在柱子顶端A落下.在过OA的任一平面上,建立平面直角坐标系(如图),水流喷出的高度y(m)与水平距离x(m)之间的关系式是y=﹣x2+2x+3,则下列结论错误的是()A.柱子OA的高度为3mB.喷出的水流距柱子1m处达到最大高度C.喷出的水流距水平面的最大高度是3mD.水池的半径至少要3m才能使喷出的水流不至于落在池外11.汽车在行驶中,由于惯性作用,刹车后还要向前滑行一段距离才能停住,我们称这段距离为“刹车距离”.刹车距离是分析事故的一个重要因素,某车的刹车距离s(m)与车速x(km/h)之间有下列关系:s=0.01x+0.01x2,在一个限速40km/h的弯道上的刹车距离不能超过()A.15.8m B.16.4m C.14.8m D.17.4m12.如图,将△ABD绕顶点B顺时针旋转40°得到△CBE,且点C刚好落在线段AD上,若∠CBD=32°,则∠E的度数是()A.32°B.34°C.36°D.38°二.填空题(共6小题,满分24分,每小题4分)13.已知方程(a﹣3)x|a|﹣1+3x+3a=0是关于x的一元二次方程,则a=.14.设m,n是方程x2﹣x﹣2=0的两根,则m2+n+mn=.15.要将函数y=ax2+bx+c的图象向右平移3个单位长度.再向上平移2个单位长度得到的二次函数为y=2x2﹣4x+3,那么a+b+c=.16.若函数y=x2﹣4x+b的图象与坐标轴只有两个交点,则b的值是.17.如图,在喷水池的中心A处竖直安装一根水管AB,水管的顶端安有一个喷水头,使喷出的抛物线形水柱在与池中心A的水平距离为1m处达到最高点C,高度为3m,水柱落地点D离池中心A处3m,以水平方向为x轴,建立平面直角坐标系,若选取点A为坐标原点时的抛物线的表达式为y=﹣(x﹣1)2+3(0≤x≤3),则选取点D为坐标原点时的抛物线表达式为,其中自变量的取值范围是,水管AB的长为m.18.如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE.若∠CAE=63°,∠E=71°,且AD⊥BC,则∠BAC的度数为.三.解答题(共8小题,满分90分)19.解下列方程:(1)(2x+1)2=9;(2)x2﹣2x﹣1=0;(3)(x﹣3)2=4(3﹣x).20.已知关于x的一元二次方程mx2+nx﹣2=0.(1)当n=m﹣2时,证明方程有两个实数根;(2)若方程有两个不相等的实数根,写出一组满足条件的m,n的值,并求出此时方程的根.21.二次函数f(x)=ax2+bx+c的自变量x的取值与函数y的值列表如下:(1)根据表中的信息求二次函数的解析式,并用配方法求出顶点的坐标;(2)请你写出两种平移的方法,使平移后二次函数图象的顶点落在直线y=x上,并写出平移后二次函数的解析式.22.如图,抛物线与直线交于点A(﹣4,﹣1)和点B(﹣2,3),抛物线顶点为A,直线与y轴交于点C.(1)求抛物线和直线的解析式;(2)若y轴上存在点P使△PAB的面积为9,求点P的坐标.23.在乐善中学组织的体育测试中,小壮掷出的实心球的高度y(m)与水平距离x(m)之间的关系式是y=﹣(x﹣3)2+,求小壮此次实心球推出的水平距离.24.如图,在一个边长为32cm的正方形的四个角上分别剪掉2个小正方形和2个小长方形(阴影部分即剪掉的部分),剩余的部分可以折成一个有盖的长方体盒子(纸板的厚度忽略不计),且折成的长方体盒子的表面积是864cm2,求剪去小正方形的边长.25.利用对称性可设计出美丽的图案,在边长为1的方格中,有如图所示的四边形(顶点都在格点上)(1)先作该四边形关于直线l成轴对称图形.(2)再作出你所作图形连同原四边形绕O点按顺时针方向旋转90°后的图形.(3)完成上述设计后,求整个图案的面积.26.如图,已知二次函数的图象过点O(0,0),A(8,4),与x轴交于另一点B,且对称轴是直线x=3.(1)求该二次函数的解析式;(2)若M是OB上的一点,作MN∥AB交OA于N,当△ANM面积最大时,求M的坐标.参考答案与试题解析一.选择题(共12小题,满分36分,每小题3分)1.解:由题意得:m+1≠0,解得:m≠﹣1,故选:D.2.解:点A的坐标是(3,﹣4),若点A与点B关于原点对称,则点B的坐标为(﹣3,4),位于第二象限.故选:B.3.解:把x=n代入方程x2+mx+n=0得n2+mn+n=0,∵n≠0,∴n+m+1=0,即m+n=﹣1.故选:C.4.解:A、Δ=b2﹣4ac=(﹣2)2﹣4×1×4=﹣12<0,方程没有实数根,所以A选项不符合题意;B、x1+x2=﹣2,所以B选项不符合题意;C、Δ=b2﹣4ac=4﹣4×4<0,方程没有实数根,所以C选项不符合题意;D、x1+x2=2,所以D故选:D.5.解:∵a=1,b=0,c=2020,∴Δ=b2﹣4ac=02﹣4×1×2020=﹣8080<0,∴一元二次方程x2+2020=0的根的情况是无实数根.故选:D.6.解:设相框边的宽度为xcm,则可列方程为:(29﹣2x)(22﹣2x)=×29×22.故选:B.7.解:∵y=x2+3x﹣2=(x+)2﹣,∴抛物线的开口向上,顶点坐标为(﹣,﹣),对称轴为直线x=﹣故选:B.8.解:由抛物线可得当x=﹣1时,y<0,故a﹣b+c<0,故结论A正确;抛物线可得对称轴为x=﹣=﹣1,故2a﹣b=0,故结论B错误.由抛物线经过原点,对称轴为直线x=﹣1可知,当x=﹣2时,y=0,故4a﹣2b+c=0,故结论C正确;当x=﹣1时,该函数取得最小值,则am2+bm+c≥a﹣b+c,即am2+b(m+1)≥a,故结论D正确;故选:B.9.解:∵抛物线y=a(x﹣h)2+k的对称轴为直线x=h,抛物线y=a(x﹣h﹣m)2+k的对称轴为直线x=h+m,∴当点A(﹣1,0)平移后的对应点为(4,0),则m=4﹣(﹣1)=5;当点B(3,0)平移后的对应点为(4,0),则m=4﹣3=1,即m的值为5或1.故选:C.10.解:∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴当x=0时,y=3,即OA=3m,故A选项正确,当x=1时,y取得最大值,此时y=4,故B选项正确,C选项错误,当y=0时,x=3或x=﹣1D选项正确,故选:C.11.解:将x=40代入s=0.01x+0.01x2得,s=0.01×40+0.01×402=16.4,即刹车距离不能超过16.4m.故选:B.12.解:∵将△ABD绕点B顺时针旋转40°得到△CBE,∴CB=AB,∠ABC=40°,∠D=∠E,∴∠A=∠ACB=(180°﹣40°)=70°,∵∠CBD=32°,∴∠ABD=∠ABC+∠CBD=40°+32°=72°,∴∠D=∠E=180°﹣∠A﹣∠ABD=180°﹣70°﹣72°=38°.故选:D.二.填空题(共6小题,满分24分,每小题4分)13.解:∵(a﹣3)x|a|﹣1+3x+3a=0是关于x的一元二次方程,∴a﹣3≠0且|a|﹣1=2,解得a=﹣3,故答案为:﹣3.14.解:∵m是方程x2﹣x﹣2=0的根,∴m2﹣m﹣2=0,∴m2=m+2,∴m2+n+mn=m+2+n+mn=m+n+mn+2,∵m,n是方程x2﹣x﹣2=0的两根,∴m+n=1,mn=﹣2,∴m2+n+mn=1﹣2+2=1.故答案为:1.15.解:y=2x2﹣4x+3=2(x﹣1)2+1,把抛物线y=2(x﹣1)2+1向左平移3个单位长度,向下平移2个单位长度得到抛物线的解析式为y=2(x﹣1+3)2+1﹣2=2x2+8x+7,所以a=2,b=8,c=7,所以,a+b+c=17,故答案为17.16.解:令y=0,则x2﹣4x+b=0,当函数y=x2﹣4x+b的图象与坐标轴只有两个交点时有两种情况:①Δ=0,且函数图象不过原点∴△=(﹣4)2﹣4b=0解得:b=4;②Δ>0,且函数y=x2﹣4x+b的图象过原点,∴b=0故答案为:0或4.17.解:以池中心A为原点,竖直安装的水管为y轴,与水管垂直的为x轴建立直角坐标系.抛物线的解析式为,当选取点D为坐标原点时,相当于将原图象向左平移3个单位,故平移后的抛物线表达式为:(﹣3≤x≤0);令x=﹣3,则y=﹣+3=2.25.故水管AB的长为2.25m.故答案为:y=﹣(x+2)2+3,﹣3≤x≤0,2.25.18.解:由旋转性质得:∠C=∠E=71°,∠BAD=∠CAE=63°,∵AD⊥BC,∴∠CAD=90°﹣∠C=90°﹣71°=19°,∴∠BAC=∠BAD+∠CAD=63°+19°=82°,故答案为:82°.三.解答题(共8小题,满分90分)19.解:(1)(2x+1)2=9,开方得:2x+1=±3,解得:x1=1,x2=﹣2;(2)x2﹣2x﹣1=0,x2﹣2x=1,x2﹣2x+1=1+1,(x﹣1)2=2,开方得:x﹣1=,x1=1+,x2=1﹣;(3)(x﹣3)2=4(3﹣x),(x﹣3)2+4(x﹣3)=0,(x﹣3)(x﹣3+4)=0,x﹣3=0,x﹣3+4=0x1=3,x2=﹣1.20.(1)证明:当n=m﹣2时,Δ=n2﹣4×m×(﹣2)=(m﹣2)2﹣4×m×(﹣2)=m2﹣4m+4+8m=m2+4m+4=(m+2)2≥0,∴当n=m﹣2时,方程有两个实数根.(2)解:∵方程有两个不相等的实数根,∴Δ=n2﹣4×m×(﹣2)=n2+8m>0,∴符合题意.当m=n=1时,原方程为x2+x﹣2=0,即(x﹣1)(x+2)=0,解得:x1=1,x2=﹣2.21.解:(1)把(﹣1,0),(0,3),(3,0)分别代入y=ax2+bx+c(a≠0)中,得.解得.则该二次函数的解析式为:y=﹣x2+2x+3,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点的坐标为(1,4);(2)∵二次函数f(x)=ax2+bx+c的顶点坐标(1,4);∴二次函数图象向右平移3个单位后抛物线的顶点为(4,4)或向下平移3个单位后抛物线的顶点为(1,1)落在直线y =x 上,则此时抛物线的解析式为:y =﹣(x ﹣4)2+4或y =﹣(x ﹣1)2+1.22.解:(1)由抛物线的顶点A (﹣4,﹣1)设二次函数为y =a (x +4)2﹣1,将B (﹣2,3)代入得,3=a (﹣2+4)2﹣1,解得a =1,∴二次函数为y =(x +4)2﹣1(或y =x 2+8x +15),设一次函数的解析式为y =kx +b ,将A (﹣4,﹣1)和B (﹣2,3)代入得,解得,∴一次函数的解析式为y =2x +7;(2)由直线y =2x +7可知C (0,7),设P (0,n ),∴PC =|n ﹣7|,∴S △PAB =S △PAC ﹣S △BPC =(4﹣2)•|n ﹣7|=9,∴|n ﹣7|=9,∴n =﹣2或16,∴P (0,﹣2)或P (0,16).23.解:令y =0,则﹣(x ﹣3)2+=0,解得:x 1=8,x 2=﹣2(舍去),故小壮此次实心球推出的水平距离为:8米.24.解:设剪去小正方形的边长为xcm ,则折成的长方体盒子的底面的长为(32﹣2x )cm ,宽为=(16﹣x )(cm ),由题意得:2x (16﹣x )+2(16﹣x )(32﹣2x )+2x (32﹣2x )=864,整理得:x 2+16x ﹣80=0,解得:x =4或x =﹣20(不符合题意,舍去),答:剪去小正方形的边长为4cm.25.解:(1)图形如图所示;(2)图形如图所示;(3)整个图案的面积=4××2×5=20.26.解:(1)∵抛物线过原点,对称轴是直线x=3,∴B点坐标为(6,0),设抛物线解析式为y=ax(x﹣6),把A(8,4)代入得a•8×2=4,解得a=,∴抛物线解析式为y=x(x﹣6),即y=x2﹣x;(2)设M(t,0),易得直线OA的解析式为y=x,设直线AB的解析式为y=kx+b,把B(6,0),A(8,4)代入得,解得,∴直线AB的解析式为y=2x﹣12,∵MN∥AB,∴设直线MN的解析式为y=2x+n,把M(t,0)代入得2t+n=0,解得n=﹣2t,∴直线MN的解析式为y=2x﹣2t,解方程组得,则N (t ,t ),∴S △AMN =S △AOM ﹣S △NOM=•4•t ﹣•t •t=﹣t 2+2t=﹣(t ﹣3)2+3,当t =3时,S △AMN 有最大值3,此时M 点坐标为(3,0).。

人教版九年级数学上册试卷 期中检测题

人教版九年级数学上册试卷 期中检测题

期中检测题(时间:100分钟满分:120分)一、选择题(每小题3分,共30分)1.(2020·黔东南州)已知关于x的一元二次方程x2+5x-m=0的一个根是2,则另一个根是( A )A.-7 B.7 C.3 D.-32.(2020·怀化)已知一元二次方程x2-kx+4=0有两个相等的实数根,则k的值为( C ) A.k=4 B.k=-4 C.k=±4 D.k=±23.(宜宾中考)一元二次方程x2-2x+b=0的两根分别为x1和x2,则x1+x2为( C ) A.-2 B.b C.2 D.-b4.(襄阳中考)已知二次函数y=x2-x+14m-1的图象与x轴有交点,则m的取值范围是( A )A.m≤5 B.m≥2 C.m<5 D.m>25.(2020·衢州)某厂家2020年1~5月份的口罩产量统计如图所示.设从2月份到4月份,该厂家口罩产量的平均月增长率为x,根据题意可得方程( B )A.180(1-x)2=461B.180(1+x)2=461C.368(1-x)2=442D.368(1+x)2=4426.(百色中考)抛物线y=x2+6x+7可由抛物线y=x2如何平移得到的( A )A.先向左平移3个单位,再向下平移2个单位B.先向左平移6个单位,再向上平移7个单位C.先向上平移2个单位,再向左平移3个单位D.先回右平移3个单位,再向上平移2个单位7.(2020·株洲)二次函数y=ax2+bx+c,若ab<0,a-b2>0,点A(x1,y1),B(x2,y2)在该二次函数的图象上,其中x1<x2,x1+x2=0,则( B )A.y1=-y2B.y1>y2C.y1<y2D.y1,y2的大小无法确定8.(达州中考)某公司今年4月的营业额为2500万元,按计划第二季度的总营业额要达到9100万元,设该公司5,6两月的营业额的月平均增长率为x.根据题意列方程,则下列方程正确的是( D )A.2500(1+x)2=9100 B.2500(1+x%)2=9100C.2500(1+x)+2500(1+x)2=9100 D.2500+2500(1+x)+2500(1+x)2=9100 9.(湖州中考)已知a,b是非零实数,|a|>|b|,在同一平面直角坐标系中,二次函数y1=ax2+bx与一次函数y2=ax+b的大致图象不可能是( D )10.(2020·宜宾 )函数y =ax 2+bx +c (a ≠0)的图象与x 轴交于点(2,0),顶点坐标为(-1,n ),其中n >0.以下结论正确的是( C )①abc >0;②函数y =ax 2+bx +c (a ≠0)在x =1和x =-2处的函数值相等;③函数y =kx +1的图象与y =ax 2+bx +c (a ≠0)的函数图象总有两个不同交点;④函数y =ax 2+bx +c (a ≠0)在-3≤x ≤3内既有最大值又有最小值.A .①③B .①②③C .①④D .②③④解析:根据待定系数法,方程根与系数的关系等知识和数形结合能力仔细分析即可解. 依照题意,画出图形如图,∵函数y =ax 2+bx +c (a ≠0)的图象与x 轴交于点(2,0),顶点坐标为(-1,n ),其中n>0.∴a <0,c >0,对称轴为直线x =-b 2a=-1,∴b =2a <0,∴abc >0,故①正确;∵对称轴为直线x =-1,∴x =1与x =-3的函数值是相等的,故②错误;∵顶点为(-1,n ),∴抛物线解析式为y =a (x +1)2+n =ax 2+2ax +a +n ,联立方程组可得:⎩⎪⎨⎪⎧y =kx +1,y =ax 2+2ax +a +n ,可得ax 2+(2a -k )x +a +n -1=0,∴Δ=(2a -k )2-4a (a +n -1)=k 2-4ak +4a -4an ,∵无法判断Δ是否大于0,∴无法判断函数y =kx +1的图象与y =ax 2+bx +c (a ≠0)的函数图象的交点个数,故③错误;当-3≤x ≤3时,当x =-1时,y 有最大值为n ,当x =3时,y 有最小值为16a +n ,故④正确,故选:C二、填空题(每小题3分,共15分)11.(2020·吉林 )一元二次方程x 2+3x -1=0根的判别式的值为__13__.12.(2020·淮安)二次函数y =-x 2-2x +3的图象的顶点坐标为__(-1,4)__.13.(2020·毕节)关于x 的一元二次方程(k +2)x 2+6x +k 2+k -2=0有一个根是0,则k 的值是__1__.14.(襄阳中考)如图,若被击打的小球飞行高度h (单位:m)与飞行时间t (单位:s)之间具有的关系为h =20t -5t 2,则小球从飞出到落地所用的时间为__4__s.第14题图第15题图15.(2020·益阳)某公司新产品上市30天全部售完,图①表示产品的市场日销售量与上市时间之间的关系,图②表示单件产品的销售利润与上市时间之间的关系,则最大日销售利润是__1800__元.三、解答题(共75分)16.(8分)用适当的方法解方程:(1)x2-2x-3=0; (2)(2x-1)2=x(3x+2)-7.解:x1=3,x2=-1 解:x1=2,x2=417.(9分)如图,已知抛物线y1=-2x2+2与直线y2=2x+2交于A,B两点.(1)求A,B两点的坐标;(2)若y1>y2,请直接写出x的取值范围.解:(1)A(-1,0),B(0,2)(2)-1<x<018.(9分)(衡阳中考)关于x的一元二次方程x2-3x+k=0有实数根.(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程(m-1)x2+x+m-3=0与方程x2-3x+k=0有一个相同的根,求此时m的值.解:(1)根据题意得Δ=(-3)2-4k≥0,解得k≤94(2)k的最大整数为2,方程x2-3x+k=0变形为x2-3x+2=0,解得x1=1,x2=2,∵一元二次方程(m-1)x2+x+m-3=0与方程x2-3x+k=0有一个相同的根,∴当x=1时,m-1+1+m-3=0,解得m=3 2;当x=2时,4(m-1)+2+m-3=0,解得m=1,而m-1≠0,∴m的值为3 219.(9分)如图,已知抛物线y =ax 2+bx +c 与x 轴交于点A (1,0),B (3,0),且过点C (0,-3).(1)求抛物线的解析式和顶点坐标;(2)请你写出一种平移的方法,使平移后抛物线的顶点落在直线y =-x 上,并写出平移后抛物线的解析式.解:(1)抛物线解析式为y =-x 2+4x -3,即y =-(x -2)2+1,∴顶点坐标为(2,1) (2)先向左平移2个单位,再向下平移1个单位,得到的抛物线的解析式为y =-x 2,平移后抛物线的顶点为(0,0)落在直线y =-x 上20.(9分)(贺州中考)2016年,某贫困户的家庭年人均纯收入为2500元,通过政府产业扶持,发展了养殖业后,到2018年,家庭年人均纯收入达到了3600元.(1)求该贫困户2016年到2018年家庭年人均纯收入的年平均增长率;(2)若年平均增长率保持不变,2019年该贫困户的家庭年人均纯收入是否能达到4200元?解:(1)设该贫困户2016年到2018年家庭年人均纯收入的年平均增长率为x ,依题意,得2500(1+x )2=3600,解得x 1=0.2=20%,x 2=-2.2(舍去).答:该贫困户2016年到2018年家庭年人均纯收入的年平均增长率为20% (2)3600×(1+20%)=4320(元),4320>4200.答:2019年该贫困户的家庭年人均纯收入能达到4200元21.(10分)(2020·陕西)如图,抛物线y =x 2+bx +c 经过点(3,12)和(-2,-3),与两坐标轴的交点分别为A ,B ,C ,它的对称轴为直线l .(1)求该抛物线的解析式;(2)P 是该抛物线上的点,过点P 作l 的垂线,垂足为D ,E 是l 上的点.要使以P ,D ,E 为顶点的三角形与△AOC 全等,求满足条件的点P ,点E 的坐标.解:(1)将点(3,12)和(-2,-3)代入抛物线解析式得⎩⎪⎨⎪⎧12=9+3b +c ,-3=4-2b +c , 解得⎩⎪⎨⎪⎧b =2,c =-3, 故抛物线的解析式为y =x 2+2x -3 (2)抛物线的对称轴为直线x =-1,令y =0,则x =-3或1,令x =0,则y =-3,故点A ,B 的坐标分别为(-3,0),(1,0),点C (0,-3),故OA =OC =3,∵∠PDE =∠AOC =90°,∴当PD =DE =3时,以P ,D ,E 为顶点的三角形与△AOC 全等,设点P (m ,n ),当点P 在抛物线对称轴右侧时,m -(-1)=3,解得m =2,故n =22+2×2-3=5,故点P (2,5),故点E (-1,2)或(-1,8);当点P 在抛物线对称轴的左侧时,由抛物线的对称性可得,点P (-4,5),此时点E 坐标同上,综上,点P 的坐标为(2,5)或(-4,5);点E 的坐标为(-1,2)或(-1,8)22.(10分)(2020·随州)2020年新冠肺炎疫情期间,部分药店趁机将口罩涨价,经调查发现某药店某月(按30天计)前5天的某型号口罩销售价格p (元/只)和销量q (只)与第x 天的关系如下表:1元/只,该药店从第6天起将该型号口罩的价格调整为1元/只.据统计,该药店从第6天起销量q (只)与第x 天的关系为q =-2x 2+80x -200 (6≤x ≤30,且x 为整数),已知该型号口罩的进货价格为0.5元/只.(1)直接写出该药店该月前5天的销售价格p 与x 和销量q 与x 之间的函数解析式;(2)求该药店该月销售该型号口罩获得的利润W (元)与x 的函数解析式,并判断第几天的利润最大;(3)物价部门为了进一步加强市场整顿,对此药店在这个月销售该型号口罩的过程中获得的正常利润之外的非法所得部分处以m 倍的罚款,若罚款金额不低于2000元,则m 的取值范围为__m ≥85__. 解:(1)根据表格数据可知:前5天的某型号口罩销售价格p (元/只)和销量q (只)与第x 天的关系为p =x +1,1≤x ≤5且x 为整数;q =5x +65,1≤x ≤5且x 为整数 (2)当1≤x ≤5且x 为整数时,W =(x +1-0.5)(5x +65)=5x 2+1352 x +652;当6≤x ≤30且x 为整数时,W =(1-0.5)(-2x 2+80x -200)=-x 2+40x -100.即有W =⎩⎪⎨⎪⎧5x 2+1352x +652,1≤x ≤5且x 为整数,-x 2+40x -100,6≤x ≤30且x 为整数,当1≤x ≤5且x 为整数时,售价,销量均随x 的增大而增大,故当x =5时,W 有最大值为495元;当6≤x ≤30且x 为整数时,W =-x 2+40x -100=-(x -20)2+300,故当x =20时,W 有最大值为300元;由495>300,可知:第5天的利润最大为495元 (3)根据题意可知:获得的正常利润之外的非法所得部分为:(2-1)×70+(3-1)×75+(4-1)×80+(5-1)×85+(6-1)×90=1250(元),∴1250m ≥2000,解得m ≥85 .则m 的取值范围为m ≥85 .故答案为:m ≥8523.(11分)(辽阳中考)如图,在平面直角坐标系中,Rt △ABC 的边BC 在x 轴上,∠ABC =90°,以A 为顶点的抛物线y =-x 2+bx +c 经过点C (3,0),交y 轴于点E (0,3),动点P 在对称轴上.(1)求抛物线解析式;(2)若点P 从A 点出发,沿A →B 方向以1个单位/秒的速度匀速运动到点B 停止,设运动时间为t 秒,过点P 作PD ⊥AB 交AC 于点D ,过点D 平行于y 轴的直线l 交抛物线于点Q ,连接AQ ,CQ ,当t 为何值时,△ACQ 的面积最大?最大值是多少?(3)若点M 是平面内的任意一点,在x 轴上方是否存在点P ,使得以点P ,M ,E ,C 为顶点的四边形是菱形,若存在,请直接写出符合条件的M 点坐标;若不存在,请说明理由.解:(1)将点C ,E 的坐标代入二次函数表达式得:⎩⎪⎨⎪⎧-9+3b +c =0,c =3, 解得⎩⎪⎨⎪⎧b =2,c =3, 故抛物线的解析式为:y =-x 2+2x +3 (2)∵y =-x 2+2x +3=-(x -1)2+4,∴A (1,4),将点A ,C 的坐标代入一次函数解析式,可得直线AC 的解析式为:y =-2x +6,点P (1,4-t ),则点D (t +22 ,4-t ),点Q (t +22 ,4-t 24 ),S △ACQ =12 DQ ·BC =-14 t 2+t =-14(t -2)2+1,∵-14<0,故S △ACQ 有最大值,当t =2时,其最大值为1 (3)设点P (1,m ),点M (x ,y ),①当EC 是菱形一条边时,当点M 在点P 右方时,点E 向右平移3个单位、向下平移3个单位得到C ,则点P 向右平移3个单位、向下平移3个单位得到M ,则1+3=x ,m -3=y ,∴x =4,y =m -3即为M (4,m -3),而MP =EP 得:1+(m -3)2=(4-1)2+(m -3-m )2,解得:m =3+17 ,∴y =m -3=17 ,故点M (4,17 );当点M 在点P 左方时,同理可得:点M (-2,3+14 );②当EC 是菱形一对角线时,则EC 中点即为PM 中点,则x +1=3,y +m =3,而PE =PC ,即1+(m -3)2=4+(m -0)2,解得:m =1,故x =2,y =3-m =3-1=2,故点M (2,2);综上,点M (4,17 )或(-2,3+14 )或M (2,2)。

湘教版九年级数学上册第2章《一元二次方程》检测题及答案

湘教版九年级数学上册第2章《一元二次方程》检测题及答案

第2章检测题时间:120分钟 满分:120分一、选择题(本大题共10个小题,每小题3分,共30分)1.将一元二次方程2x 2=1-3x 化成一般形式后,一次项系数和常数项分别为( C )A .-3x ,1B .3x ,-1C .3,-1D .2,-12.用配方法解关于x 的一元二次方程x 2-2x -3=0,配方后的方程可以是( A )A .(x -1)2=4B .(x +1)2=4C .(x -1)2=16D .(x +1)2=163.(云南)一元二次方程x 2-x -2=0的解是( D )A .x 1=1,x 2=2B .x 1=1,x 2=-2C .x 1=-1,x 2=-2D .x 1=-1,x 2=24.已知关于x 的方程x 2-kx -6=0的一个根为x =3,则实数k 的值为( A )A .1B .-1C .2D .-25.某工厂今年元月份的产值是50万元,3月份的产值达到了72万元.若求2、3月份的产值平均增长率,设这两个月月平均增长率为x ,依题意可列方程( B )A .72(x +1)2=50B .50(x +1)2=72C .50(x -1)2=72D .72(x -1)2=506.若关于x 的一元二次方程(k -1)x 2+2x -2=0有两个不相等实数根,则k 的取值范围是( C )A .k >12B .k ≥12C .k >12且k ≠1D .k ≥12且k ≠1 7.在Rt △ABC 中,其中两边的长恰好是方程x 2-14x +48=0的两个根,则这个直角三角形的斜边长是( D )A .10B .48C .36D .10或88.一边靠6 m 长的墙,其他三边用长为13 m 的篱笆围成的长方形鸡栅栏的面积为20 m 2,则这个长方形鸡栅栏的长和宽分别为( B )A .长8 m ,宽2.5 mB .长5 m ,宽4 mC .长10 m ,宽2 mD .长8 m ,宽2.5 m 或长5 m ,宽4 m9.(仙桃)已知m ,n 是方程x 2-x -1=0的两实数根,则1m +1n的值为( A ) A .-1 B .-12 C.12D .1 10.已知a ,b ,c 是△ABC 三条边的长,那么方程cx 2+(a +b )x +c 4=0的根的情况是( B )A .有两个相等的实数根B .有两个不相等的实数根C .没有实数根D .无法确定二、填空题(本大题共8个小题,每小题3分,共24分)11.一元二次方程x 2=16的解是__x =±4__.12.孔明同学在解一元二次方程x 2-3x +c =0时,正确解得x 1=1,x 2=2,则c 的值为__2__.13.若代数式x 2-8x +12的值是21,则x 的值是__9或-1__.14.已知关于x 的一元二次方程x 2+bx +b -1=0有两个相等的实数根,则b 的值是__2__.15.(宿迁)一块矩形菜地的面积是120 m 2,如果它的长减少2 m ,那么菜地就变成正方形,则原菜地的长是__12__m.16.要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),若计划安排21场比赛,则应邀请__7__个球队参加比赛.17.若关于x 的一元二次方程x 2+(k +3)x +k =0的一个根是-2,则另一个根是__1__.18.已知关于x 的一元二次方程x 2+(2k +1)x +k 2-2=0的两根为x 1和x 2,且(x 1-2)(x 1-x 2)=0,则k 的值是__-2或-94__. 点拨:若x 1-2=0,则x 1=2,代入方程解得k =-2;若x 2-x 2=0,则Δ=0,解得k =-94三、解答题(66分)19.(8分)用适当的方法解下列方程:(1)2x 2+7x -4=0;解:x 1=12,x 2=-4(2)(x -3)2+2x (x -3)=0.解:x 1=1,x 2=320.(7分)已知关于x 的方程2x 2-kx +1=0的一个解与方程2x +11-x=4的解相同,求k 的值.解:2x +11-x =4得x =12,经检验x =12是原方程的解,x =12是2x 2-k 为何值,方程x 2+(m -2)x +m 2-3=0总有两个不相等的实数根. 证明:Δ=(m -2)2-4(m 2-3)=(m -3)2+7>0,∴方程x 2+(m -2)x +m 2-3=0总有两个不相等的实数根22.(10分)(南充)已知关于x的一元二次方程x2-22的最大整数值;(2)在(1)的条件下,方程的实数根是x1,x2,求代数式x12+x22-x1x2的值.解:(1)根据题意知Δ=(-22)2-4m>0,解得m<2,∴m的最大整数值为1(2)m =1时,方程为x2-22x+1=0,∴x1+x2=22,x1x2=1,∴x12+x22-x1x2=(x1+x2)2-3x1x2=8-3=523.(10分)电动自行车已成为市民日常出行的首选工具.据某市某品牌电动自行车经销商1至3月份统计,该品牌电动自行车1月份销售150辆,3月份销售216辆.(1)求该品牌电动自行车销售量的月均增长率;(2)若该品牌电动自行车的进价为2300元,售价为2800元,则该经销商1至3月共盈利多少元?解:(1)设月增长率为x,则150(1+x)2=216,解得x1=20%或x2=-220%(舍去),即:月增长率为20%(2)二月份销售150×(1+20%)=180(辆),(2800-2300)×(150+180+216)=273000(元),该经销商1至3月共盈利273000元24.(12分)用长为32米的篱笆围一个矩形养鸡场,设围成的矩形一边长为x米.(1)当x为何值时,围成的养鸡场面积为60平方米?(2)能否围成面积为70平方米的养鸡场?如果能,请求出其边长;如果不能,请说明理由.解:(1)根据题意知x(16-x)=60,解得x1=6,x2=10,当x=6或10时,面积为60平方米(2)假设能,则有x(16-x)=70,整理得x2-16x+70=0,Δ=-24<0,∴方程没有实数根,即不能围成面积为70平方米的养鸡场25.(12分)(株洲)已知关于x的一元二次方程(a+c)x2+2bx+(a-c)=0,其中a,b,c 分别为△ABC三边的长.(1)如果x=-1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由.解:(1)根据题意有a+c-2b+a-c=0,即a=b,∴△ABC为等腰三角形(2)根据题意有Δ=(2b)2-4(a+c)(a-c)=4b2-4a2+4c2=0,∴b2+c2=a2,∴△ABC为直角三角形。

苏科版数学九年级上册《期末检测题》含答案

苏科版数学九年级上册《期末检测题》含答案
(1)用含t的代数式表示出NC与NF;
(2)在点M的运动过程中,能否使得四边形MNEF为正方形?如果能,求出相应的t值,如果不能,说明理由;
(3)求y与t的函数关系式及相应t的取值范围.
28.如图,在平面直角坐标系xOy中,抛物线 ( )与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l: 与y轴负半轴交于点C,与抛物线的另一个交点为D,且CD=4AC
A. B. C. D.
[答案]B
[解析]
[分析]
根据已知两根确定出所求方程即可.
[详解]以2和4为根的一元二次方程是x2﹣6x+8=0,
故选B.
[点睛]此题考查了根与系数的关系,弄清根与系数的关系是解本题的关键.
6.⊙O的半径为5,圆心O到直线l的距离为6,则直线l与⊙O的位置关系是()
A. 相交B. 相切C. 相离D. 无法确定
A. 1:3B. 2:5C. 3:5D. 4:9
10.如图,在△ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,点P,Q分别是边BC和半圆上的动点,连接PQ,则PQ长的最大值与最小值的和是()
A. 9B. 10C. D.
二、填空题(本大题共8小题,每小题2分,本大题共16分.不需要写出解答过程,只需把答案直接填写在相应的横线上)
A 3πcmB. 4πcmC. 5πcmD. 6πcm
[答案]D
[解析]
解:∵扇形纸片半径为5cm,用它围成一个圆锥的侧面,该圆锥的高是4cm,∴圆锥的底面半径为: =3(cm),∴该圆锥的底面周长是:2π×3=6π(cm).故选D.
9.如图,在平行四边形ABCD中,点E是边AD的中点,EC交对角线BD于点F,则S△CDF:S四边形ABFE等于()

九年级数学上册第一章检测题(含答案)

九年级数学上册第一章检测题(含答案)

第一章检测题(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.(内江中考)下列命题中,真命题是( C )A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形2.(西宁中考)如图,点O是矩形ABCD的对角线AC的中点,OM∥AB交AD于点M,若OM=3,BC=10,则OB的长为( D )A.5 B.4 C.342D.343.在四边形ABCD中,AC、BD交于点O,在下列各组条件中,不能判定四边形ABCD为矩形的是( C) A.AB=CD,AD=BC,AC=BD B.AO=CO,BO=DO,∠A=90°C.∠A=∠C,∠B+∠C=180°,AC⊥BD D.∠A=∠B=90°,AC=BD,第2题图) ,第4题图) ,第5题图),第6题图)4.如图,两张对边平行且宽度相等的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中,不一定成立的是( D )A.∠ABC=∠ADC,∠BAD=∠BCD B.AB=BCC.AB=CD,AD=BC D.∠DAB+∠BCD=180°5.(衡阳中考)如图所示,在平面直角坐标系中,菱形MNPO的顶点P的坐标是(3,4),则顶点M、N 的坐标分别是( A )A.M(5,0),N(8,4) B.M(4,0),N(8,4) C.M(5,0),N(7,4) D.M(4,0),N(7,4) 6.(陕西中考)如图,在正方形ABCD中,连接BD,点O是BD的中点,若M、N是边AD上的两点,连接MO、NO,并分别延长交边BC于点M′、N′,则图中的全等三角形共有( C )A.2对B.3对C.4对D.5对7.(广东中考)如图,正方形ABCD的面积为1,则以相邻两边中点连接EF为边的正方形EFGH的周长为( B )A. 2 B.2 2 C.2+1 D.22+18.(葫芦岛中考)如图,将矩形纸片ABCD沿直线EF折叠,使点C落在AD边的中点C′处,点B落在点B′处,其中AB=9,BC=6,则FC′的长为( D )A.103B.4 C.4.5 D.5,第7题图) ,第8题图) ,第9题图) ,第10题图)9.(广州中考)将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变,当∠B=90°时,如图1,测得AC=2,当∠B=60°时,如图2,AC=( A )A. 2 B.2 C. 6 D.2 210.(宜宾中考)如图,点P是矩形ABCD的边AD上的一动点,矩形的两条边AB、BC的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是( A )A.4.8 B.5 C.6 D.7.2二、填空题(每小题3分,共18分)11.(成都中考)如图,在矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为__33__.12.(青岛中考)如图,在四边形ABCD中,∠ABC=∠ADC=90°,E为对角线AC的中点,连接BE,ED,BD.若∠BAD=58°,则∠EBD的度数为__32__度.,第11题图) ,第12题图) ,第14题图) ,第16题图)13.(兰州中考)在平行四边形ABCD中,对角线AC与BD相交于点O,要使四边形ABCD是正方形,还需添加一组条件.下面给出了四组条件:①AB⊥AD,且AB=AD;②AB=BD,且AB⊥BD;③OB=OC,且OB ⊥OC;④AB=AD,且AC=BD.其中正确的序号是__①③④__.14.(江西中考)如图,矩形ABCD中,点E、F分别是AB、CD的中点,连接DE和BF,分别取DE、BF 的中点M、N,连接AM,CN,MN,若AB=22,BC=23,则图中阴影部分的面积为__26__.15.(哈尔滨中考)在矩形ABCD中,AD=5,AB=4,点E,F在直线AD上,且四边形BCFE为菱形.若线段EF的中点为点M,则线段AM的长为__5.5或0.5__.16.已知,如图,∠MON=45°,OA1=1,作正方形A1B1C1A2,周长记作C1;再作第二个正方形A2B2C2A3,周长记作C2;继续作第三个正方形A3B3C3A4,周长记作C3;点A1、A2、A3、A4…在射线ON上,点B1、B2、B3、B4…在射线OM上,…依此类推,则第n个正方形的周长C n=__2n+1__.三、解答题(共72分)17.(6分)已知:如图,矩形ABCD中,AC与BD交于O点,若点E是AO的中点,点F是OD的中点.求证:BE=CF.证明:易证△OBE≌△OCF(SAS),∴BE=CF18.(7分)如图,菱形ABCD中,E是对角线AC上一点.(1)求证:△ABE≌△ADE;(2)若AB=AE,∠BAE=36°,求∠CDE的度数.(1)证明:易证△ABE≌△ADE(SAS);(2)解:∵AB =AE ,∠BAE =36°,∴∠AEB =∠ABE =180°-∠BAE2=72°,∵△ABE ≌△ADE ,∴∠AED =∠AEB =72°, ∵四边形ABCD 是菱形,∴AB ∥CD , ∴∠DCA =∠BAE =36°,∴∠CDE =∠AED -∠DCA =72°-36°=36°19.(7分)(贺州中考)如图,在四边形ABCD 中,AB =AD ,BD 平分∠ABC ,AC ⊥BD ,垂足为点O. (1)求证:四边形ABCD 是菱形;(2)若CD =3,BD =25,求四边形ABCD 的面积.(1)证明:易证△AOD ≌△COB(ASA ),∴AO =OC ,∵AC ⊥BD ,∴四边形ABCD 是菱形(2)解:∵四边形ABCD 是菱形,∴OD =12BD =5,∴OC =CD 2-OD 2=2,∴AC =2OC =4,∴S菱形ABCD=12AC ·BD =4 5 20.(7分)(上海中考)已知:如图,四边形ABCD 中,AD ∥BC ,AD =CD ,E 是对角线BD 上一点,且EA =EC.(1)求证:四边形ABCD 是菱形;(2)如果BE =BC ,且∠CBE ∶∠BCE =2∶3,求证:四边形ABCD 是正方形.证明:(1)在△ADE 与△CDE 中,⎩⎪⎨⎪⎧AD =CD DE =DE EA =EC,∴△ADE ≌△CDE ,∴∠ADE =∠CDE ,∵AD ∥BC ,∴∠ADE=∠CBD ,∴∠CDE =∠CBD ,∴BC =CD ,∵AD =CD ,∴BC =AD ,∴四边形ABCD 为平行四边形,∵AD =CD ,∴四边形ABCD 是菱形(2)∵BE =BC ,∴∠BCE =∠BEC ,∵∠CBE ∶∠BCE =2∶3,∴∠CBE =180×22+3+3=45°,∵四边形ABCD 是菱形,∴∠ABE =45°,∴∠ABC =90°,∴四边形ABCD 是正方形21.(7分)(遵义中考)如图,矩形ABCD 中,延长AB 至E ,延长CD 至F ,BE =DF ,连接EF ,与BC 、AD 分别相交于P 、Q 两点.(1)求证:CP =AQ ;(2)若BP =1,PQ =22,∠AEF =45°,求矩形ABCD 的面积.(1)证明:易证△CFP≌△AEQ(ASA),∴CP=AQ(2)解:∵AD∥BC,∴∠PBE=∠A=90°,∵∠AEF=45°,∴△BEP、△AEQ是等腰直角三角形,∴BE=BP=1,AQ=AE,∴PE=2BP=2,∴EQ=PE+PQ=2+22=32,∴AQ=AE=3,∴AB=AE-BE=2,∵CP=AQ,AD=BC,∴DQ=BP=1,∴AD=AQ+DQ=3+1=4,∴矩形ABCD的面积=AB·AD=2×4=822.(8分)如图,菱形ABCD的对角线AC,BD相交于点O,分别延长OA,OC到点E,F,使AE=CF,依次连接B,F,D,E各点.(1)求证:△BAE≌△BCF;(2)若∠ABC=40°,求当∠EBA为多少度时,四边形BFDE是正方形.(1)证明:易证△BAE≌△BCF(SAS)(2)解:若∠ABC=40°,则当∠EBA=25°时,四边形BFDE是正方形.理由如下:∵四边形ABCD是菱∠ABC=20°,∵AE=CF,∴OE=OF,∴四边形BFDE是平行四形,∴AC⊥BD,OA=OC,OB=OD,∠ABO=12边形,又∵AC⊥BD,∴四边形BFDE是菱形,∵∠EBA=25°,∴∠OBE=25°+20°=45°,∴△OBE是等腰直角三角形,∴OB=OE,∴BD=EF,∴菱形BFDE是正方形23.(8分)(云南中考)如图,△ABC是以BC为底的等腰三角形,AD是边BC上的高,点E、F分别是AB、AC的中点.(1)求证:四边形AEDF是菱形;(2)如果四边形AEDF的周长为12,两条对角线的和等于7,求四边形AEDF的面积S.解:(1)∵AD⊥BC,点E、F分别是AB、AC的中点,∴Rt△ABD中,DE=1AB=AE,Rt△ACD中,DF=21AC=AF,又∵AB=AC,点E、F分别是AB、AC的中点,∴AE=AF,∴AE=AF=DE=DF,∴四边形AEDF 2是菱形(2)如图,∵菱形AEDF的周长为12,∴AE=3,设EF=x,AD=y,则x+y=7,∴x2+2xy+y2=49①,∵AD ⊥EF 于O ,∴Rt △AOE 中,AO 2+EO 2=AE 2,∴(12y)2+(12x)2=32,即x 2+y 2=36②,把②代入①,可得2xy =13,∴xy =132,∴菱形AEDF 的面积S =12xy =13424.(10分)(开江县期末)如图,已知正方形ABCD ,点E 是BC 上一点,以AE 为边作正方形AEFG. (1)求证:△ADG ≌△ABE ; (2)求证:∠FCN =45°;(3)请问在AB 边上是否存在一点Q ,使得四边形DQEF 是平行四边形?若存在,请证明;若不存在,请说明理由.证明:(1)∵四边形ABCD 和四边形AEFG 是正方形, ∴DA =BA ,EA =GA ,∴∠BAD =∠EAG =90°, ∴∠DAG =∠BAE ,∴△ADG ≌△ABE(2)过F 作BN 的垂线,设垂足为H ,∵∠BAE +∠AEB =90°,∠FEH +∠AEB =90°,∴∠BAE =∠HEF ,∵AE =EF ,∴△ABE ≌△EHF ,∴AB =EH ,BE =FH ,∴AB =BC =EH ,∴BE +EC =EC +CH ,∴CH =BE =FH ,∴∠FCN =45°(3)在AB 上取AQ =BE ,连接QD ,∵AB =AD ,∴△DAQ ≌△ABE , ∵△ABE ≌△EHF ,∴△DAQ ≌△ABE ≌△ADG ,∴∠GAD =∠ADQ ,∴AG 、QD 平行且相等,又∵AG 、EF 平行且相等,∴QD 、EF 平行且相等,∴四边形DQEF 是平行四边形.∴在AB 边上存在一点Q ,使得四边形DQEF 是平行四边形25.(12分)(1)如图1,正方形ABCD 中,点P 为线段BC 上一个动点,若线段MN 垂直AP 于点E ,交线段AB 于M ,交线段CD 于N ,证明:AP =MN ;(2)如图2,正方形ABCD 中,点P 为线段BC 上一动点,若线段MN 垂直平分线段AP ,分别交AB 、AP 、BD 、DC 于点M 、E 、F 、N.求证:EF =ME +FN ;(3)若正方形ABCD 的边长为2,求线段EF 的最大值与最小值.(1)证明:过B 点作BH ∥MN 交CD 于H ,∵BM ∥NH ,BH ∥MN ,∴四边形MBHN 为平行四边形.∴BH =MN.∵MN ⊥AP ,∴∠BAP +∠ABH =90°.又∵∠ABH +∠CBH =90°,∴∠BAP =∠CBH.在△ABP 与△BCH 中,⎩⎪⎨⎪⎧∠BAP =∠CBHAB =BC∠ABP =∠BCH∴△ABP ≌△BCH.∴AP =BH.∴AP =MN (2)连接FA ,FP ,FC.∵正方形ABCD 是轴对称图形,F 为对角线BD 上一点,∴FA =FC.又∵FE 垂直平分AP ,∴FA =FP.∴FP =FC.∴∠FPC =∠FCP.∵∠FAB =∠FCP ,∴∠FAB =∠FPC.又∵∠FPC +∠FPB =180°,∴∠FAB +∠FPB =180°.∴∠ABC +∠AFP =180°.∴∠AFP =90°.∴FE =12AP.又∵AP =MN ,∴ME +EF+FN =AP.∴EF =ME +FN(3)由(2)有EF =12MN ,∵AC ,BD 是正方形的对角线,∴BD =2 2.当点P 和点B 重合时,EF 最小=12MN=12AB =1.当点P 和点C 重合时,EF 最大=12MN =12BD = 2。

人教版九年级上册数学期末检测试卷(含答案)

人教版九年级上册数学期末检测试卷(含答案)

人教版九年级上册数学期末检测试卷一、选择题(每题3分,共24分) 1. 已知⊙O 的半径为6cm ,点O 到直线l 的距离为7cm ,则直线l 与O 的位置关系是( ) A. 相交 B. 相离 C. 相切 D. 无法确定2. 线段2cm ,8cm 的比例中项为 cm 。

( ) A. 4 B. 4.5 C. ±4 D. ±83. 如图,已知直线a //b//c ,直线m 、n 与a 、b 、c 分别交于点A 、C 、E 、B 、D 、F 、AC=3,CE=6,BD=2,DF= ( ) A. 4 B.4.5 C. 3 D. 3.54. 张华同学的身高为1.6米,某一时刻他在阳光下的影长为2米,与他邻近的一棵树的影长为6米,则这棵树的高为 米. ( ) A. 3.2 B. 4.8 C.5.2 D. 5.6第3题图 第8题图5. 把抛物线y =2x ²向左平移2个单位,则平移后抛物线对应的函数表达式是 ( ) A. y=2x ²+2 B. y=2(x-2)² C. y=2x ²+2 D. y=2(x+2)²6. 在△ABC 中,若|21sinA -|+(cosB 22-)²=0,则∠C 的度数是 ( ) A. 45° B. 75° C. 105° D. 120°7. 如下图,小正方形的边长均为1,则下图中的三角形(阴影部分)与△ABC 相似的为( )8. 如图,矩形ABCD 的四个顶点分别在直线l3,l4,l2,l1上。

若直线l1∥l2∥l3∥l4且间距相等,AB =5,BC =3,则tan α的值为 ( ) A. 103 B. 53C. 126D. 25二、填空题(每题3分,共24分)9. 二次函数y=(x-1)²+2的顶点坐标为 。

10. 已知扇形的圆心角为120°,半径为2厘米,则这个扇形的弧长为 厘米。

九年级数学上册第四章检测题(含答案)

九年级数学上册第四章检测题(含答案)

第四章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.如果mn =ab ,那么下列比例式中错误的是( C ) A .a m =n b B .a n =m b C .m a =n b D .m a =b n2.(贺州中考)如图,在△ABC 中,点D 、E 分别为AB 、AC 的中点,则△ADE 与四边形BCED 的面积比为( C )A .1∶1B .1∶2C .1∶3D .1∶43.如图,在△ABC 中,∠ACB =90°,CD ⊥AB ,DE ⊥BC ,那么与△ABC 相似的三角形的个数有( D )A .1个B .2个C .3个D .4个,第2题图) ,第3题图) ,第6题图)4.在中华经典美文阅读中,刘明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20 cm ,则它的宽约为( A )A .12.36 cmB .13.6 cmC .32.36 cmD .7.64 cm5.(通辽中考)某人要在报纸上刊登广告,一块10cm ×5cm 的矩形版面要付广告费180元,他要把该版面的边长都扩大为原来的3倍,在每平方厘米版面广告费相同的情况下,他应付广告费( C )A .540元B .1080元C .1620元D .1800元6.(永州中考)如图,在△ABC 中,点D 是AB 边上的一点,若∠ACD =∠B ,AD =1,AC =2,△ADC 的面积为1,则△BCD 的面积为( C )A .1B .2C .3D .47.(眉山中考)“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学《九章算术》中的“井深几何”问题,它的题意可以由图获得,则井深为( B )A .1.25尺B .57.5尺C .6.25尺D .56.5尺,第7题图) ,第8题图) ,第9题图),第10题图)8.如图所示,在矩形ABCD 中,F 是DC 上一点,AE 平分∠BAF 交BC 于点E ,且DE ⊥AF ,垂足为点M ,BE =3,AE =26,则MD 的长是( C )A .15B .1510C .1D .1515点拨:设DM =a ,证△AEM ≌△AEB ,△ADM ≌△DEC ,可得(a +3)2=a 2+(15)29.如图,在△ABC 中,A 、B 两个顶点在x 轴的上方,点C 的坐标是(-1,0).以点C 为位似中心,在x 轴的下方作△ABC 的位似图形△A ′B ′C ,并把△ABC 的边长放大到原来的2倍.设点B 的对应点B ′的横坐标是a ,则点B 的横坐标是( D )A .-12aB .-12(a +1)C .-12(a -1)D .-12(a +3)10.如图,在矩形ABCD 中,DE 平分∠ADC 交BC 于点E ,点F 是CD 边上一点(不与点D 重合).点P 为DE 上一动点,PE <PD ,将∠DPF 绕点P 逆时针旋转90°后,角的两边交射线DA 于H ,G 两点,有下列结论:①DH =DE ;②DP =DG ;③DG +DF =2DP ;④DP ·DE =DH ·DC ,其中一定正确的是( D )A .①②B .②③C .①④D .③④ 二、填空题(每小题3分,共18分)11.若x ∶y =1∶2,则x -y x +y=__-13__.12.若△ABC ∽△A ′B ′C ′,且AB ∶A ′B ′=3∶4,△ABC 的周长为12 cm ,则△A ′B ′C ′的周长为__16_cm __.13.(锦州中考)如图,E 为▱ABCD 的边AB 延长线上的一点,且BE ∶AB =2∶3,连接DE 交BC 于点F ,则CF ∶AD =__3∶5__.,第13题图) ,第14题图) ,第15题图) ,第16题图)14.(阿坝州中考)如图,在平面直角坐标系中,已知A(1,0),D(3,0),△ABC 与△DEF 位似,原点O 是位似中心.若AB =1.5,则DE =__4.5__.15.如图,小明同学用自制的直角三角形纸板DEF 测量树的高度AB ,他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一直线上,已知纸板的两条直角边DE =50 cm ,EF =25 cm ,测得边DF 离地面的高度AC =1.6 m ,CD =10 m ,则树高AB =__6.6__m .16.如图,在△ABC 中,分别以AC ,BC 为边作等边△ACD 和等边△BCE.设△ACD ,△BCE ,△ABC 的面积分别是S 1,S 2,S 3,现有如下结论:①S 1∶S 2=AC 2∶BC 2;②连接AE ,BD ,则△BCD ≌△ECA ;③若AC ⊥BC ,则S 1·S 2=34S 32.其中结论正确的序号是__①②③__.三、解答题(共72分)17.(6分)如图,在△ABC 中,点D 是边AB 的四等分点,DE ∥AC ,DF ∥BC ,AC =8,BC =12,求四边形DECF 的周长.解:∵DE ∥AC ,DF ∥BC ,∴四边形DFCE 是平行四边形,∴DE =FC ,DF =EC ,∵DF ∥BC ,∴△ADF ∽△ABC ,∴DF BC =AF AC =AD AB =14,∵AC =8,BC =12,∴AF =2,DF =3,∴FC =AC -AF =8-2=6,∴DE =FC =6,DF =EC =3,∴四边形DECF 的周长是DF +CF +CE +DE =3+6+3+6=18.答:四边形DECF 的周长是1818.(6分)(凉山州中考)如图,在边长为1的正方形网格中建立平面直角坐标系,已知△ABC 三个顶点分别为A(-1,2)、B(2,1)、C(4,5).(1)画出△ABC 关于x 轴对称的△A 1B 1C 1;(2)以原点O 为位似中心,在x 轴的上方画出△A 2B 2C 2,使△A 2B 2C 2与△ABC 位似,且相似比为2,并求出△A 2B 2C 2的面积.解:(1)如图所示,△A 1B 1C 1就是所求三角形 (2)如图所示,△A 2B 2C 2就是所求三角形.分别过点A 2、C 2作y 轴的平行线,过点B 2作x 轴的平行线,交点分别为E 、F ,∵A(-1,2),B(2,1),C(4,5),△A 2B 2C 2与△ABC 位似,且相似比为2,∴A 2(-2,4),B 2(4,2),C 2(8,10),∴S △A 2B 2C 2=8×10-12×6×2-12×4×8-12×6×10=2819.(6分)九年级(1)班课外活动小组利用标杆测量学校旗杆的高度,如图所示,已知标杆高度CD =3 m ,标杆与旗杆的水平距离BD =15 m ,人的眼睛与地面的高度EF =1.6 m ,人与标杆CD 的水平距离DF =2 m ,则旗杆AB 的高度.解:∵CD ⊥FB ,∴AB ⊥FB ,∴CD ∥AB ,∴△CGE ∽△AHE ,∴CG AH =EG EH ,即:CD -EF AH =FDFD +BD,∴3-1.6AH =22+15,∴AH =11.9,∴AB =AH +HB =AH +EF =11.9+1.6=13.5(m )20.(7分)如图,在梯形ABCD 中,DC ∥AB ,AD =BC ,E 是DC 延长线上的点,连接AE ,交BC 于点F.(1)求证:△ABF ∽△ECF ;(2)如果AD =5 cm ,AB =8 cm ,CF =2 cm ,求CE 的长.(1)证明:∵DC ∥AB ,∴∠B =∠ECF ,∠BAF =∠E ,∴△ABF ∽△ECF (2)解:∵AD =BC ,AD =5 cm ,AB =8 cm ,CF =2 cm ,∴BF =3 cm . ∵由(1)知,△ABF ∽△ECF ,∴BA CE =BF CF ,即8CE =32.∴CE =163(cm )21.(8分)如图,四边形ABCD 是矩形,E 是BD 上的一点,∠BAE =∠BCE ,∠AED =∠CED ,点G 是BC 、AE 延长线的交点,AG 与CD 相交于点F.(1)求证:四边形ABCD 是正方形;(2)当AE =2EF 时,判断FG 与EF 有何数量关系?并证明你的结论.(1)证明: 易证△ABE ≌△CBE ,∴AB =BC ,∴四边形ABCD 是正方形 (2)解:当AE =2EF 时,FG =3EF.证明如下:∵四边形ABCD 是正方形,∴AB ∥CD ,AD ∥BC ,∴△ABE ∽△FDE ,△ADE ∽△GBE. ∵AE =2EF ,∴BE ∶DE =AE ∶EF =2.∴BG ∶AD =BE ∶DE =2,即BG =2AD. ∵BC =AD ,∴CG =AD.易证△ADF ∽△GCF ,∴FG =AF ,即FG =AF =AE +EF =3EF22.(8分)(泰安中考)如图,在四边形ABCD 中,AB =AC =AD ,AC 平分∠BAD ,点P 是AC 延长线上一点,且PD ⊥AD.(1)证明:∠BDC =∠PDC ;(2)若AC 与BD 相交于点E ,AB =1,CE ∶CP =2∶3,求AE 的长.(1)证明:∵AB =AD ,AC 平分∠BAD ,∴AC ⊥BD ,∴∠ACD +∠BDC =90°,∵AC =AD ,∴∠ACD =∠ADC ,∴∠ADC +∠BDC =90°,∵PD ⊥AD ,∴∠ADC +∠PDC =90°,∴∠BDC =∠PDC(2)解:过点C 作CM ⊥PD 于点M ,∵∠BDC =∠PDC ,∴CE =CM ,∵∠CMP =∠ADP =90°,∠P =∠P ,∴△CPM ∽△APD ,∴CM AD =PC PA ,设CM =CE =x ,∵CE ∶CP =2∶3,∴PC =32x ,∵AB=AD =AC =1,∴x 1=32x 32x +1,解得x =13,故AE =1-13=2323.(9分)晚饭后,小聪和小军在社区广场散步,小聪问小军:“你有多高?”小军一时语塞.小聪思考片刻,提议用广场照明灯下的影长及地砖长来测量小军的身高.于是,两人在灯下沿直线NQ 移动,如图,当小聪正好站在广场的A 点(距N 点5块地砖长)时,其影长AD 恰好为1块地砖长;当小军正好站在广场的B 点(距N 点9块地砖长)时,其影长BF 恰好为2块地砖长.已知广场地面由边长为0.8米的正方形地砖铺成,小聪的身高AC 为1.6米,MN ⊥NQ ,AC ⊥NQ ,BE ⊥NQ.请你根据以上信息,求出小军身高BE 的长.(结果精确到0.01米)解:由题意得:∠CAD =∠MND =90°,∠CDA =∠MDN ,∴△CAD ∽△MND ,∴CA MN =AD ND,∴1.6MN =1×0.8(5+1)×0.8,∴MN =9.6,又∵∠EBF =∠MNF =90°,∠EFB =∠MFN ,∴△EFB ∽△MFN ,∴EB MN =BF NF ,∴EB9.6=2×0.8(2+9)×0.8,∴EB ≈1.75,∴小军身高约为1.75米24.(10分)如图(1)是一种广场三联漫步机,其侧面示意图如图(2)所示,其中AB =AC =120 cm ,BC =80 cm ,AD =30 cm ,∠DAC =90°.(1)求点A 到地面的距离;(2)求点D 到地面的高度是多少?解:(1)过A 作AF ⊥BC ,垂足为F ,过点D 作DH ⊥AF ,垂足为H.∵AF ⊥BC ,垂足为F ,∴BF =FC =12BC =40 cm .根据勾股定理,得AF =AB 2-BF 2=1202-402=802(cm )(2)∵∠DHA =∠DAC =∠AFC =90°,∴∠DAH +∠FAC =90°,∠C +∠FAC =90°,∴∠DAH=∠C ,∴△DAH ∽△ACF ,∴AH FC =AD AC ,∴AH 40=30120,∴AH =10 cm ,∴HF =(10+802)cm .答:D到地面的高度为(10+802)cm25.(12分)从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图1,在△ABC 中,CD 为角平分线,∠A =40°,∠B =60°,求证:CD 为△ABC 的完美分割线;(2)在△ABC 中,∠A =48°,CD 是△ABC 的完美分割线,且△ACD 为等腰三角形,求∠ACB 的度数.(3)如图2,在△ABC 中,AC =2,BC =2,CD 是△ABC 的完美分割线,且△ACD 是以CD 为底边的等腰三角形,求完美分割线CD 的长.解:(1)如图1中,∵∠A =40°,∠B =60°,∴∠ACB =80°,∴△ABC 不是等腰三角形,∵CD 平分∠ACB ,∴∠ACD =∠BCD =12∠ACB =40°,∴∠ACD =∠A =40°,∴△ACD 为等腰三角形,∵∠DCB =∠A =40°,∠CBD =∠ABC ,∴△BCD ∽△BAC ,∴CD 是△ABC 的完美分割线(2)①当AD =CD 时,如图3,∠ACD =∠A =48°,∵△BDC ∽△BCA ,∴∠BCD =∠A =48°,∴∠ACB =∠ACD +∠BCD =96°②当AD =AC 时,如图4中,∠ACD =∠ADC =180°-48°2=66°,∵△BDC ∽△BCA ,∴∠BCD =∠A =48°,∴∠ACB =∠ACD +∠BCD =114°;③当AC =CD 时,如图5中,∠ADC =∠A =48°,∵△BDC ∽△BCA ,∴∠BCD =∠A =48°,∵∠ADC >∠BCD ,矛盾,舍弃.∴∠ACB =96°或114°(3)由已知AC =AD =2,∵△BCD ∽△BAC ,∴BC BA =BD BC ,设BD =x ,∴(2)2=x(x +2),∵x>0,∴x =3-1,∵△BCD ∽△BAC ,∴CD AC =BDBC=3-12,∴CD = 3-1 2×2=6-2。

人教版九年级数学上册单元清 检测内容:期末检测

人教版九年级数学上册单元清 检测内容:期末检测

检测内容:期末检测得分________ 卷后分________ 评价________一、选择题(每小题3分,共30分)1.(枣庄中考)下列图形,可以看作中心对称图形的是( B )2.如图,有一些写有号码的卡片,它们的背面都相同,现将它们背面朝上,从中任意摸出一张,摸到1号卡片的概率是( A )A .12B .13C .23D .16第2题图第5题图3.(哈尔滨中考)将抛物线y =x 2向上平移3个单位长度,再向右平移5个单位长度,所得到的拋物线为( D )A .y =(x +3)2+5B .y =(x -3)2+5C .y =(x +5)2+3D .y =(x -5)2+3 4.(河南中考)定义运算:m ☆n =mn 2-mn -1.例如:4☆2=4×22-4×2-1=7.则方程1☆x =0的根的情况为( A )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .只有一个实数根5.(河北中考)有一题目:“已知:点O 为△ABC 的外心,∠BOC =130°,求∠A .”嘉嘉的解答为:画△ABC 以及它的外接圆O ,连接OB ,OC .如图,由∠BOC =2∠A =130°,得∠A =65°.而淇淇说:“嘉嘉考虑的不周全,∠A 还应有另一个不同的值.”下列判断正确的是( A )A .淇淇说的对,且∠A 的另一个值是115°B .淇淇说的不对,∠A 就得65°C .嘉嘉求的结果不对,∠A 应得50°D .两人都不对,∠A 应有3个不同值6.(广元中考)如图,AB ,AC 分别是⊙O 的直径和弦,OD ⊥AC 于点D ,连接BD ,BC ,且AB =10,AC =8,则BD 的长为( C )A .2 5B .4C .213D .4.8第6题图第8题图第9题图第10题图7.(玉林中考)若一元二次方程x2-x-2=0的两根为x1,x2,则(1+x1)+x2(1-x1)的值是( A )A.4 B.2 C.1 D.-28.如图,在△ABC中,AB=1,AC=2,现将△ABC绕点C顺时针旋转90°得到△A′B′C,连接AB′,并有AB′=3,则∠A′的度数为( D )A.65°B.95°C.130°D.135°9.(宁波中考)如图所示,矩形纸片ABCD中,AD=6 cm,把它分割成正方形纸片ABFE 和矩形纸片EFCD后,分别裁出扇形ABF和半径最大的圆,恰好能作为一个圆锥的侧面和底面,则AB的长为( B )A.3.5 cm B.4 cm C.4.5 cm D.5 cm10.(原创题)如图,在△ABC中,AC=BC=6,∠BCA=90°,点G是AB的中点,∠MCN=45°,将∠MCN绕点C旋转,射线CN,CM始终交边AB于D,E两点,过点D作CD的垂线交CM于点F,连接GF,AF.有下列结论:①∠ADC=∠BCE;②在∠MCN旋转的过程中,CD的最小值是32;③AE2+BD2=DE2;④△CDF是等腰直角三角形.其中正确的说法有( D )A.1个B.2个C.3个D.4个二、填空题(每小题3分,共24分)11.点P(-2,5)关于原点对称的点的坐标是__(2,-5)__.根据频率的稳定性,估计这名运动员射击一次时“射中9环以上”的概率是__0.8__(结果保留小数点后一位).13.关于x的一元二次方程x2-2x-m=0有两个不相等的实数根,则m的最小整数值是__0__.14.(烟台中考)如图,已知点A(2,0),B(0,4),C(2,4),D(6,6),连接AB,CD,将线段AB绕着某一点旋转一定角度,使其与线段CD重合(点A与点C重合,点B与点D重合),则这个旋转中心的坐标为__(4,2)__.第14题图第16题图第17题图第18题图15.已知二次函数y =-x 2-2x +3的图象上有两点A (-7,y 1),B (-8,y 2),则y 1__>__y 2.(填“>”“<”或“=”)16.有一块宽为120 m 的长方形土地,建筑商把它分成甲、乙、丙三部分,甲和乙均为正方形,现计划甲建住宅区,乙建商场,丙开辟成面积为3 200 m 2的公园.若设这块长方形土地的长为x m ,那么根据题意列出的方程是__x 2-360x +3_200=0___.17.如图,在Rt △AOB 中,OB =23 ,∠A =30°,⊙O 的半径为1,点P 是AB 边上的动点,过点P 作⊙O 的一条切线PQ (其中点Q 为切点),则线段PQ 长度的最小值为__.18.(赤峰中考)二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列结论:①b >0;②a -b +c =0;③一元二次方程ax 2+bx +c +1=0(a ≠0)有两个不相等的实数根;④当x <-1或x >3时,y >0.上述结论中正确的是__②③④__.(填上所有正确结论的序号)三、解答题(共66分) 19.(6分)解方程:(1)53 x +23 =x 2; (2)2(x -3)2=x 2-9. 解:x 1=2,x 2=-13 解:x 1=3,x 2=920.(8分)如图,在下列正方形网格图中,等腰三角形ABC 与等腰三角形A 1B 1C 1的顶点均在格点上,且△ABC 与△A 1B 1C 1关于某点中心对称,已知A ,C 1,C 三点的坐标分别是(0,4),(0,3),(0,2).(1)求对称中心的坐标;(2)画出△ABC 绕点B 按顺时针旋转90°后的△A 2BC 2,并写出点A 的对应点A 2的坐标.解:(1)∵C 1,C 是对称点,∴对称中心是(0,52)(2)如图所示,△A 2BC 2即为所求;点A 2的坐标为(-1,1)21.(8分)(宜昌中考)宜昌景色宜人,其中三峡大坝、清江画廊、三峡人家景点的景色更是美不胜收.某民营单位为兼顾生产和业余生活,决定在下设的A ,B ,C 三部门利用转盘游戏确定参观的景点.两转盘各部分圆心角大小以及选派部门、旅游景点等信息如图.(1)若规定老同志相对偏多的部门选中的可能性大,试判断这个部门是哪个部门?请说明理由;(2)设选中C 部门游三峡大坝的概率为P 1,选中B 部门游清江画廊或者三峡人家的概率为P 2,请判断P 1,P 2大小关系,并说明理由.解:(1)C 部门,理由:∵P A =90360 =14 ,P B =90360 =14 ,P C =180360 =12 ,∴是C 部门的可能性大(2)用列表法表示所有可能出现的结果如下:共有12种可能出现的结果,其中“C 部门游三峡大坝”的有2种,“B 部门游清江画廊或者三峡人家”的也有2种,∴P 1=212 =16 ,P 2=212 =16,因此,P 1=P 222.(8分)(金昌中考)如图,⊙O 是△ABC 的外接圆,其切线AE 与直径BD 的延长线相交于点E ,且AE =AB .(1)求∠ACB 的度数;(2)若DE =2,求⊙O 的半径. 解:(1)连接OA ,∵AE 是⊙O 的切线,∴∠OAE =90°,∵AB =AE ,∴∠ABE =∠AEB ,∵OA =OB ,∴∠ABO =∠OAB ,∵∠OAB +∠ABE +∠E +∠OAE =180°,∴∠OAB =∠ABE =∠E =30°,∴∠AOB =∠OAE +∠E =120°,∴∠ACB =12∠AOB =60°(2)设⊙O 的半径为r ,则OA =OD =r ,OE =r +2,∵∠OAE =90°,∠E =30°,∴2OA =OE ,即2r =r +2,∴r =2,故⊙O 的半径为223.(10分)(丹东中考)某服装超市购进单价为30元的童装若干件,物价部门规定其销售单价不低于每件30元,不高于每件60元.销售一段时间后发现:当销售单价为60元时,平均每月销售量为80件,而当销售单价每降低10元时,平均每月能多售出20件.同时,在销售过程中,每月还要支付其他费用450元.设销售单价为x 元,平均月销售量为y 件.(1)求出y 与x 之间的函数关系式,并写出自变量x 的取值范围; (2)当销售单价为多少元时,销售这种童装每月可获利1 800元?(3)当销售单价为多少元时,销售这种童装每月获得利润最大?最大利润是多少?解:(1)由题意得y =80+20×60-x10 ,∴函数关系式为y =-2x +200 (30≤x ≤60)(2)由题意得(x -30)(-2x +200)-450=1 800,解得x 1=55,x 2=75(不符合题意,舍去), 答:当销售单价为55元时,销售这种童装每月可获利1 800元(3)设每月获得的利润为w 元,由题意得w =(x -30)(-2x +200)-450=-2(x -65)2+2 000,∵-2<0,∴当x ≤65时,w 随x 的增大而增大,∵30≤x ≤60,∴当x =60时,w 最大=-2×(60-65)2+2 000=1 950.答:当销售单价为60元时,销售这种童装每月获得利润最大,最大利润是1 950元 24.(12分)【问题发现】如图①所示,四边形ABCD 为正方形,BD 为其对角线,在BC 边上取点P ,作PQ ∥BD ,则此时PC ,QC 的数量关系为__相等__,△PCQ 的形状为__等腰直角三角形__,说出你的理由;【拓展延伸】如图②所示,将△PCQ 绕点C 顺时针旋转,旋转角为α(0°<α<30°),请问此时线段BP ,DQ 的位置关系与数量关系是什么?说出你的理由;【类比探究】当旋转角为45°时,①PQ 与BC 的关系是__平行__;②若PC =2 ,BC =3,连接BQ ,则△BDQ 的面积为__92__.解:【问题发现】相等 等腰直角三角形理由:∵四边形ABCD 为正方形,BD 为对角线,∴∠CBD =∠CDB =45°,∠C =90°.∵PQ ∥BD ,∴∠CPQ =∠CBD =45°,∠CQP =∠CDB =45°.∴CP =CQ .∴△PCQ 为等腰直角三角形【拓展延伸】位置关系是垂直,数量关系是相等.理由如下:如图②所示,延长BP 交DQ 于点F ,交DC 于点E .在△BCP 与△DCQ 中,⎩⎪⎨⎪⎧CB =CD ∠BCP =∠DCQ ,CP =CQ∴△BCP ≌△DCQ (SAS).∴BP =DQ ,∠CBP=∠CDQ .∵∠CBP +∠BEC =90°,∴∠CDQ +∠DEF =90°.∴∠DFE =90°,即BP ⊥DQ【类比探究】①平行 ②92【解析】①如图③所示,延长BC ,作QN ⊥BC ,垂足为N ;作PH ⊥BC ,垂足为H .∵△PCQ 为等腰直角三角形,∴∠CPQ =45°.∵∠BCP =45°,∴PQ ∥BC .②在Rt △PHC 中,∠α=45°,PC =2 ,∴PH =HC =22=1.∵四边形MCNQ 为矩形,且∠NCQ =45°,∴四边形MCNQ 是边长为1的正方形.∵S △BCD =3×32 =92 ,S 梯形DCNQ =(1+3)×12 =2,S △BNQ=4×12 =2.∴S △BDQ =S △BCD +S 梯形DCNQ -S △BQN =9225.(14分)(锦州中考)在平面直角坐标系中,抛物线y =-13 x 2+bx +c 交x 轴于A (-3,0),B (4,0)两点,交y 轴于点C .(1)求抛物线的解析式;(2)如图,直线y =34 x +94 与抛物线交于A ,D 两点,与直线BC 交于点E .若M (m ,0)是线段AB 上的动点,过点M 作x 轴的垂线,交抛物线于点F ,交直线AD 于点G ,交直线BC于点H .①当点F 在直线AD 上方的抛物线上,且S △EFG =59S △OEG 时,求m 的值;②在平面内是否存在点P ,使四边形EFHP 为正方形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.解:(1)y =-13 x 2+13x +4(2)①如图①,由B (4,0),C (0,4)可得BC 的解析式为y =-x +4,令-x +4=34 x +94 ,解得x =1,∴E (1,3),∵M (m ,0),且MH ⊥x 轴,∴G (m ,34 m +94 ),F (m ,-13 m 2+13 m+4),∵S △EFG =59 S △OEG ,∴12 FG ×|x E -x F |=59 ×12 ON |x E -x G |,即[(-13 m 2+13 m +4)-(34m +94 )]|1-m |=59 ×94 |1-m |,解得m 1=34 ,m 2=-2,m 3=1(舍去);②存在,点P 的坐标为(1,7+132 )或(1,7-132)。

九年级数学上学期期末检测试题(含答案)

九年级数学上学期期末检测试题(含答案)

九年级数学上学期期末检测试题(含答案)注意事项:本试题共8页,满分为150分,考试时间为120分钟.答卷前,请考生务必将自己的姓名、座号和准考证号填写在答题卡上,并将考点、姓名、准考证号和座号填写在试题规定的位置.考试结束后,仅交回答题卡....... 第Ⅰ卷(选择题 共40分)一、选择题(本大题共10小题,每小题4分,共40分.) 1.sin30︒的值为( ) A.1223 D.12.如图中几何体的左视图为( )A. B.C. D.3.如果25a b =,那么下列比例式中正确的是( ) A.25a b = B.25a b= C.52a b = D.25a b = 4.下列的各点中,在反比例函数1y x=图象上的点是( ) A.()2,4B.()1,5C.1,22⎛⎫⎪⎝⎭D.11,23⎛⎫⎪⎝⎭5.关于x 的一元二次方程2210kx x ++=有两个相等的实数根,则k 的值为( )A.2-B.1-C.0D.16.若点()11,y -,()21,y ,()32,y 在反比例函数ky x=(0k <)的图象上,则下列结论中正确的是( ) A.123y y y >> B.132y y y >>C.312y y y >>D.321y y y >>7.如图,在64⨯网格正方形中,每个小正方形的边长为1,顶点为格点,若ABC △的顶点均是格点,则sin ABC ∠的值是( )510 25D.458.一次函数y cx a =-(0c ≠)和二次函数2y ax x c =++(0a ≠)在同一平面直角坐标系中的图象可能是( )A. B.C. D.9.如图,在矩形ABCD 中,连接BD ,分别以B 、D 为圆心,大于12BD 的长为半径画弧,两弧交于P 、Q 两点,作直线PQ ,分别与AD 、BC 交于点M 、N ,连接BM 、DN .若3AB =,6BC =,则四边形MBND 的周长为( )A.15B.9C.154D.9410.如图,已知开口向上的抛物线2y ax bx c =++与x 轴交于点()1,0-,对称轴为直线1x =.下列结论:①0abc >;②20a b +=;③若关于x 的方程210ax bx c +++=一定有两个不相等的实数根;④13a >.其中正确的个数有( )A.1个B.2个C.3个D.4个二、填空题(本大题共6小题,每小题4分,共24分.)11.如图,四边形ABCD ∽四边形A B C D '''',若55B ∠=︒,80C ∠=︒,110A ∠'=︒,则D ∠=______°.12.在一个不透明的袋子里装有若干个红球和6个黄球,这些球除颜色外都相同.小明通过多次试验发现,摸出红球的频率稳定在0.25左右,则估计袋子中红球的个数是______个. 13.如图,若点A 在反比例函数ky x=(0k ≠)的图象上,AM x ⊥轴于点M ,AMO △的面积为8,k =______.14.将抛物线()2213y x =-+向右移3单位,上移2单位所得到的新抛物线解析式为______. 15.定义一种运算:()sin sin cos cos sin αβαβαβ+=+,()sin sin cos cos sin αβαβαβ-=-. 例如:当60α=︒,45β=︒时,()321262sin 604522224-︒=⨯-⨯︒=, 则sin75︒的值为______.16.如图,在正方形ABCD 中,点M 、N 为边BC 和CD 上的动点(不含端点),45MAN ∠=︒, 下列四个结论:①当2MN MC =时,则22.5BAM ︒∠=;②90AMN MNC ︒∠+∠=;③MNC △的周长不变;④若2DN =,3BM =,则ABM △的面积为15.其中正确结论的序号是______.三、解答题(本大题共10小题,共86分) 17.(6分)计算:()0π12sin60123︒---. 18(6分)2670x x +-=.19.(6分)如图,在菱形ABCD 中,CE AB ⊥于点E ,CF AD ⊥于点F ,求证:AE AF =.20.(8分)如图,12∠=∠,B D ∠=∠,9AE =,12AD =,20AB =.求AC 的长度.21.(8分)某校为落实“双减”工作,增强课后服务的吸引力,充分用好课后服务时间,为学有余力的学生拓展学习空间,成立了5个活动小组(每位学生只能参加一个活动小组):A .音乐;B .体育;C .美术;D .阅读;E .人工智能.为了解学生对以上活动的参与情况,随机抽取部分学生进行了调查统计,并根据统计结果,绘制了如图所示的两幅不完整的统计图.根据图中信息,解答下列问题:(1)①此次调查一共随机抽取了______名学生; ②补全条形统计图(要求在条形图上方注明人数); ③扇形统计图中圆心角a =______度;(2)若该校有2800名学生,估计该校参加D 组(阅读)的学生人数;(3)学校计划从E 组(人工智能)的甲、乙、丙、丁四位学生中随机抽取两人参加市青少年机器人竞赛,请用树状图法或列表法求出恰好抽中甲、乙两人的概率.22.(8分)为进一步加强疫情防控工作,长清区某学校决定安装红外线体温检测仪,对进入测温区域的人员进行快速测温(如图1),其红外线探测点O 可以在垂直于地面的支杆OP 上下调节(如图2),已知探测最大角(OBC ∠)为61°,探测最小角(OAC ∠)为37°.若该校要求测温区域的宽度AB 为1.4米,请你帮助学校确定该设备的安装高度OC .(参考数据:sin610.87≈︒,cos610.48︒≈,tan61 1.8≈︒,sin370.6≈︒,cos370.8≈︒tan370.75︒︒≈)23.(10分)某商店准备进一批季节性小家电,单价40元,经市场预测,销售定价为52元时,可售出180个.现在采取提高商品定价减少销售量的办法增加利润,定价每增加1元,销售量净减少10个. (1)商店若将准备获利2000元,则定价应增加多少元?(2)若商店要获得最大利润,则定价应增加多少元?最大利润是多少? 24.(10分)如图,一次函数1y x =-的图象与反比例函数ky x=(0x >)的图象交于点()3,B a ,与x 轴交于点A .点C 在反比例函数ky x=(0x >)的图象上的一点,CD x ⊥轴,垂足为D ,CD 与AB 交于点E ,OA AD =.(1)求a ,k 的值;(2)若点P 为x 轴上的一点,求当PB PC +最小时,点P 的坐标;(3)F 是平面内一点,是否存在点F 使得以A 、B 、C 、F 为顶点的四边形是平行四边形?若存在,请直接写出所有符合条件的点F 的坐标;若不存在,请说明理由. 25.(12分)【发现问题】(1)如图1,已知CAB △和CDE △均为等边三角形,D 在AC 上,E 在CB 上,易得线段AD 和BE 的数量关系是______.(2)将图1中的CDE △绕点C 旋转到图2的位置,直线AD 和直线BE 交于点F . ①判断线段AD 和BE 的数量关系,并证明你的结论; ②图2中AFB ∠的度数是______. 【探究拓展】(3)如图3,若CAB △和CDE △均为等腰直角三角形,90ABC DEC ︒∠=∠=,AB BC =,DE EC =,直线AD 和直线BE 交于点F ,分别写出AFB ∠的度数,线段AD 、BE 间的数量关系,并说明理由.26.(12分)综合与探究:如图,抛物线23y ax bx =+-(0a ≠)与x 轴交于点()3,0A -和点()1,0B ,与y 轴交于点C .(1)求此抛物线的函数表达式;(2)若点D 是第三象限抛物线上一动点,连接AD ,CD ,AC ,求ACD △面积的最大值,并求出此时点D 的坐标;(3)若点E 在抛物线的对称轴上,线段EB 绕点E 逆时针旋转90°后,点B 的对应点B '恰好也落在此抛物线上,请直接写出点E 的坐标.参考答案一、选择题(本大题共10小题,每小题4分,共40分) 题号 1 2 3 4 5 6 7 8 9 10 答案ADCCDBABAD11. 115 12. 2 13.16- 14.()2245y x =-+ 15.426+ 16.①③. 三.解答题(本大题共10小题,共86分)17.(6分)计算:()03π12sin601231223332--︒+-=-= 18.(6分)2670x x +-=.公式法:算出64=△,11x ∴=,27x =-因式分解法:()()170x x -+=,11x ∴=,27x =- 配方法:()2316x +=,11x ∴=,27x =- 19.(6分) 证明:菱形ABCD ,AB AD BC CD ∴===,B D ∠=∠CE AB ⊥,CF AD ⊥.90BEC DFC ∴∠=∠=︒()BCE DCF AAS ∴△≌△(或者连接AC ,证()ACE ACF AAS △≌△) AE AF ∴=.20.(8分) 证明:12∠=∠,12BAE BAE ∴∠+∠=∠+∠,DAE BAC ∴∠=∠B D ∠=∠,DAE BAC ∴△∽△ AD AE AB AC ∴=,12920AC∴=,15AC ∴= 21.(8分)根据图中信息,解答下列问题: (1)①400;②60,60;③54 (2)1402800980400⨯=(人) 答:参加D 组(阅读)的学生人数为280人 (3)列表或画树状图正确共有12中等可能的结果,其中恰好抽到A ,C 两人同时参赛的有两种P ∴(恰好抽中甲、乙两人)21126== 22.(8分)方法1:解:在Rt OBC △中,8tan tan 6 1.1O B OBC CC∠==︒=, ∴设BC x =,则 1.8OC x =在Rt OAC △中,1tan ta 5n 37.80.71.4OC C AC O xA x=+==∠︒=, 1x ∴=.经检验,1x =是原方程的解1.8 1.8OC x ∴==方法2:解:在Rt OAC △中,7tan tan 330.547O C A C A O C ∠=︒===∴设3OC x =,则4AC x =在Rt OBC △中,3 1.81tan .t 4n 614a O C C x BC OB x ==-∠=︒=0.6x ∴=经检验,0.6x =是原方程的解3 1.8OC x ∴==23.(10分)(1)解:设定价应增加x 元()()5240180102000x x -+-=解得18x =,22x =-采取提高商品定价减少销售量的办法增加利润22x ∴=-不合题意舍去,8x ∴=答:定价应增加8元.(1)设定价增加x 元时获利y 元()()215240108016010026y x x x x -+=-+-=+当3x =时,y 有最大值,为2250元.答:若商店要获得最大利润,则定价应增加3元,最大利润是2250元. 24.(10分)(1)求出2a =,6k =;(2)求出()2,3C ,画图找到P 点,求出点P 的坐标1305⎛⎫⎪⎝⎭,; (3)()14,5F ,()22,1F -,()30,1F 25.(12分)【发现问题】 (1)AD BE =(2)①AD BE =,证明过程 ②60度 (3)写出45AFB ∠=度,2AD BE =证明过程26.(12分)(1)解出1a =,2b =,∴抛物线的函数表达式223y x x =+- (2)求出点()0,3C -,AC 直线关系式3y x =--设点()2,23D m m m +-,过点D 作x 轴的垂线,交AC 于点F , 则点(),3F m m --,()()223233DE m m m m m ∴=---+-=--23922m m S --∴=当32m =-时,S 有最大值为827,此时315,24D ⎛⎫-- ⎪⎝⎭,(3)()11,3E -,()21,2E --。

人教版数学九年级上册质量监测试题及答案

人教版数学九年级上册质量监测试题及答案

人教版数学九年级上册质量监测试题(考试时间120分钟 满分120分)一、选择题(本题共10小题,每小题3分,共30分)1.下面的图形中,既是轴对称图形又是中心对称图形的是( )。

2.关于x 的一元二次方程x 2-3x +m =0有两个不相等的实数根,则实数m 的取值范围为( )。

A .m ≥94B .m <94C .m =94D .m <-943.如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是( )。

A .B .C .D .4.抛物线y =x 2+4x +4的对称轴是( )。

A .直线x =4B .直线x =-4C .直线x =2D .直线x =-25、如图,A,B,C 是⊙O 上三个点,∠AOB=2∠BOC,则下列说法中正确的是( )。

A. ∠OBA=∠OCAB. 四边形OABC内接于⊙OC.. AB=2BCD. ∠OBA+∠BOC=90°6.如图,在长为100 m,宽为80 m的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644m2,则道路的宽应为多少米?设道路的宽为xm,则可列方程为()。

A.100×80-100x-80x=7644B.(100-x)(80-x)+x2=7644C.(100-x)(80-x)=7644D.100x+80x-x2=76447.在同一坐标系中,一次函数y=﹣mx+n2与二次函数y=x2+m的图象可能是()。

A.B.C.D.8.如图,将⊙O沿弦AB折叠,圆弧恰好经过圆心O,点P是优弧上一点,则∠APB的度数为()。

A.45° B.30° C.75° D.60°9.在同一直角坐标系中,函数y=mx+m和函数y=mx2+2x+2(m是常数,且m≠0)的图象可能是()。

10.已知二次函数y =ax 2+bx +c +2的图象如图所示,顶点为(-1,0),下列结论:①abc <0;②b 2-4ac =0;③a >2;④4a -2b +c >0.其中正确结论的个数是( )。

九年级上册数学测试题及答案

九年级上册数学测试题及答案

一、选择题(在下列各题的四个备选答案中,只有一个是符合题意的,请将正确答案前的字母写在答题纸上;本题共32分,每小题4分)1. 已知⊙O的直径为3cm,点P到圆心O的距离OP=2cm,则点PA. 在⊙O外B. 在⊙O上C. 在⊙OD. 不能确定2. 已知△ABC中,∠C=90°,AC=6,BC=8,则cosB的值是A.0.6 B.0.75 C.0.8 D.343.如图,△ABC中,点 M、N分别在两边AB、AC上,MN∥BC,则下列比例式中,不正确的是A .B .C. D.4. 下列图形中,既是中心对称图形又是轴对称图形的是A. B. C. D.5. 已知⊙O1、⊙O2的半径分别是1cm、4cm,O1O2=10cm,则⊙O1和⊙O2的位置关系是A.外离B.外切 C.切 D.相交6. 某二次函数y=ax2+bx+c 的图象如图所示,则下列结论正确的是A. a>0, b>0, c>0B. a>0, b>0, c<0C. a>0, b<0, c>0D. a>0, b<0, c<07.下列命题中,正确的是A.平面上三个点确定一个圆B.等弧所对的圆周角相等C.平分弦的直径垂直于这条弦D.与某圆一条半径垂直的直线是该圆的切线8. 把抛物线y=-x2+4x-3先向左平移3个单位,再向下平移2个单位,则变换后的抛物线解析式是A.y=-(x+3)2-2 B.y=-(x+1)2-1C.y=-x2+x-5 D.前三个答案都不正确二、填空题(本题共16分, 每小题4分)9.已知两个相似三角形面积的比是2∶1,则它们周长的比 _____ .ACNMByxO10.在反比例函数y =x1k 中,当x >0时,y 随 x 的增大而增大,则k 的取值围是_________.11. 水平相当的甲乙两人进行羽毛球比赛,规定三局两胜,则甲队战胜乙队的概率是_________;甲队以2∶0战胜乙队的概率是________. 12.已知⊙O 的直径AB 为6cm ,弦CD 与AB 相交,夹角为30°,交点M 恰好为AB 的一个三等分点,则CD 的长为 _________ cm .三、解答题(本题共30分, 每小题5分)13. 计算:cos 245°-2tan45°+tan30°-3sin60°.14. 已知正方形MNPQ 接于△ABC(如图所示),若△ABC 的面积为9cm 2,BC =6cm ,求该正方形的边长.15. 某商场准备改善原有自动楼梯的安全性能,把倾斜角由原来的30°减至25°(如图所示),已知原楼梯坡面AB 的长为12米,调整后的楼梯所占地面CD 有多长?(结果精确到0.1米;参考数据:sin25°≈0.42,cos25°≈0.91,tan25°≈0.47)16.已知:△ABC 中,∠A 是锐角,b 、c 分别是∠B、∠C 的对边. 求证:△ABC 的面积S △ABC =21bcsinA .A MQBNPC17. 如图,△ABC 接于⊙O,弦AC 交直径BD 于点E ,AG⊥BD 于点G ,延长AG 交BC 于点F . 求证:AB 2=BF·B C .18. 已知二次函数 y =ax 2-x +25的图象经过点(-3, 1). (1)求 a 的值;(2)判断此函数的图象与x 轴是否相交?如果相交,请求出交点坐标;四、解答题(本题共20分, 每小题5分)19. 如图,在由小正方形组成的12×10的网格中,点O 、M 和四边形ABCD 的顶点都在格点上. (1)画出与四边形ABCD 关于直线CD 对称的图形;(2)平移四边形ABCD ,使其顶点B 与点M 重合,画出平移后的图形; (3)把四边形ABCD 绕点O 逆时针旋转90°,画出旋转后的图形.20. 口袋里有 5枚除颜色外都相同的棋子,其中 3枚是红色的,其余为黑色.ABC· D E F G OA BD C OM · ·· · · ·(1)从口袋中随机摸出一枚棋子,摸到黑色棋子的概率是_______ ;(2)从口袋中一次摸出两枚棋子,求颜色不同的概率.(需写出“列表”或画“树状图”的过程)21. 已知函数y 1=-31x 2和反比例函数y 2的图象有一个交点是 A (a ,-1).(1)求函数y 2的解析式;(2)在同一直角坐标系中,画出函数y 1和y 2的图象草图;(3)借助图象回答:当自变量x 在什么围取值时,对于x 的同一个值,都有y 1<y 2 ?22. 工厂有一批长3dm 、宽2dm 的矩形铁片,为了利用这批材料,在每一块上裁下一个最大的圆铁片⊙O 1之后(如图所示),再在剩余铁片上裁下一个充分大的圆铁片⊙O 2. (1)求⊙O 1、⊙O 2的半径r 1、r 2的长;(2)能否在剩余的铁片上再裁出一个与⊙O 2 同样大小的圆铁片?为什么?ABCD五、解答题(本题共22分, 第23、24题各7分,第25题8分)23.如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 分别交AC 、BC 于点M 、N ,在AC 的延长线上取点P ,使∠CBP =21∠A. (1)判断直线BP 与⊙O 的位置关系,并证明你的结论; (2)若⊙O 的半径为1,tan∠CBP=0.5,求BC 和BP 的长.24. 已知:如图,正方形纸片ABCD 的边长是4,点M 、N 分别在两边AB 和CD 上(其中点N不与点C 重合),沿直线MN 折叠该纸片,点B 恰好落在AD 边上点E 处.(1)设AE =x ,四边形AMND 的面积为 S ,求 S 关于x 的函数解析式,并指明该函数的定义域;(2)当AM 为何值时,四边形AMND 的面积最大?最大值是多少?ABPCNM O· EC M NAD·25. 在直角坐标系xOy 中,已知某二次函数的图象经过A(-4,0)、B(0,-3),与x轴的正半轴相交于点C,若△AOB∽△BOC(相似比不为1).(1)求这个二次函数的解析式;(2)求△ABC的外接圆半径r;(3)在线段AC上是否存在点M(m,0),使得以线段BM为直径的圆与线段AB交于N点,且以点O、A、N为顶点的三角形是等腰三角形?若存在,求出m的值;若不存在,请说明理由.一、ACCB DABB二、 9. 2:1 10. k< -1 11. 21, 4112. 35 三、13. 原式= 2)22(-2+33-3×23 =21-2 +33-23 ……………………………………4分= -3+33……………………………………………………5分 14. 作AE ⊥BC 于E ,交MQ 于F.由题意,21BC ×AE=9cm 2, BC=6cm. ∴1分 设MQ= xcm ,∵MQ ∥BC ,∴△AMQ ∽△2分∴AEAF BC MQ =……………………3分 又∵EF=MN=MQ ,∴AF=3-x. ∴3x-36x =. ……………………………………4分 解得 x=2.答:正方形的边长是2cm. …………………………5分 15. 由题意,在Rt △ABC 中,AC=21AB=6(米), …………………1分又∵在Rt △ACD 中,∠D=25°,CDAC =tan ∠D, ……………………………3分∴CD=︒tan256≈47.06≈12.8(米).答:调整后的楼梯所占地面CD 长约为12.8米. ……………………5分 16. 证明:作CD ⊥AB 于D ,则S △ABC =21AB ×2分 ∵ 不论点D 落在射线AB 的什么位置, 在Rt △ACD 中,都有4分 又∵AC=b ,AB=c , ∴ S △ABC =21AB ×ACsinA=21bcsinA. (5)AB N E P CAD BC HE G OF分17. 证明:延长AF ,交⊙O 于H.∵直径BD ⊥AH ,∴AB⌒ = BH ⌒ . ……………………2分 ∴∠C=∠BAF. ………………………3分在△ABF 和△CBA 中,∵∠BAF =∠C ,∠ABF=∠CBA ,∴△ABF ∽△CBA. …………………………………………4分 ∴ABBF CB AB,即AB 2=BF ×BC. …………………………………………5分 证明2:连结AD , ∵BD 是直径,∴∠BAG+∠DAG=90°. ……………………1分 ∵AG⊥BD,∴∠DAG+∠D=90°. ∴∠BAF =∠BAG =∠D. ……………………2分 又∵∠C =∠D , ∴∠BAF=∠C. ………………………3分 …… 18. ⑴把点(-3,1)代入,得 9a+3+25=1, ∴a= -21. ⑵ 相交 ……………………………………………2分 由 -21x 2-x+25=0, ……………………………3分 得 x= - 1±6.∴ 交点坐标是(- 1±6,0). ……………………………4分 ⑶ 酌情给分 ……………………………………………5分19. 给第⑴小题分配1分,第⑵、⑶小题各分配2分.20. ⑴ 0.4 ……………………………………………2分 ⑵ 0.6 ……………………………………………4分 列表(或画树状图)正确 ……………………………………5分 21. ⑴把点A (a ,- 1)代入y 1= -2x 31,得 –1= -a 31,∴ a=3. ……………………………………………1分 设y 2=x k,把点A (3,- 1)代入,得 k=–3, AD BC E G O F∴ y 2=–x3. ……………………………………2分⑵画图; ……………………………………3分⑶由图象知:当x<0, 或x>3时,y 1<y 2. ……………………………………5分22. ⑴如图,矩形ABCD 中,AB= 2r 1=2dm ,即r 1=1dm. ………………………………1分BC=3dm ,⊙O 2应与⊙O 1及BC 、CD 都相切.连结O 1 O 2,过O 1作直线O 1E ∥AB ,过O 2作直线O 2E ∥BC ,则O 1E ⊥O 2E. 在Rt △O 1 O 2E 中,O 1 O 2=r 1+ r 2,O 1E= r 1– r 2,O 2E=BC –(r 1+ r 2).由 O 1 O 22= O 1E 2+ O 2E 2, 即(1+ r 2)2 = (1– r 2)2+(2– r 2)2. 解得,r 2= 4±23. 又∵r 2<2, ∴r 1=1dm , r 2=(4–23)dm. ………………3分⑵不能. …………………………………………4分∵r 2=(4–23)> 4–2×1.75=21(dm), 即r 2>21dm.,又∵CD=2dm , ∴CD<4 r 2,故不能再裁出所要求的圆铁片. …………………………………5分23. ⑴相切. …………………………………………1分证明:连结AN ,∵AB 是直径,∴∠ANB=90°.∵AB=AC ,∴∠BAN=21∠A=∠CBP. 又∵∠BAN+∠ABN=180°-∠ANB= 90°, ∴∠CBP+∠ABN=90°,即AB⊥BP.∵AB 是⊙O 的直径,∴直线BP 与⊙O 相切. …………………………………………3分⑵∵在Rt △ABN 中,AB=2,tan ∠BAN= tan ∠CBP=0.5,A DB CO 1E O 2可求得,BN=52,∴BC=54. …………………………………………4分作CD ⊥BP 于D ,则CD ∥AB ,ABCDAP CP =. 在Rt △BCD 中,易求得CD=54,BD=58. …………………………………5分 代入上式,得 2CP CP +=52.∴CP=34. …………………………………………6分 ∴DP=1516CD CP 22=-.∴BP=BD+DP=58+1516=38. …………………………………………7分24. ⑴依题意,点B 和E 关于MN 对称,则ME=MB=4-AM.再由AM 2+AE 2=ME 2=(4-AM)2,得AM=2-2x 81. ……………………1分 作MF ⊥DN 于F ,则MF=AB ,且∠BMF=90°. ∵MN ⊥BE ,∴∠ABE= 90°-∠BMN.又∵∠FMN =∠BMF -∠BMN=90°-∠BMN , ∴∠FMN=∠ABE. ∴Rt △FMN ≌Rt △ABE. ∴FN=AE=x ,DN=DF+FN=AM+x=2-2x 81+x. ………………………2分 ∴S=21(AM+DN)×AD=(2-2x 81+2x )×4= -2x 21……………………………3分其中,0≤x <………………………………4分⑵∵S= -2x 21+2x+8= -21(x-2)2+10,∴当x=2时,S 最大=10; …………………………………………5分 此时,AM=2-81×22=1.5 ………………………………………6分 答:当AM=1.5时,四边形AMND 的面积最大,为10.⑶不能,0<AM ≤2. …………………………………………7分25. ⑴∵△AOB ∽△BOC (相似比不为1),..∴OAOBOBOC=. 又∵OA=4, OB=3,∴OC=32×41=49. ∴点C(49, 0). …………………1分设图象经过A、B、C三点的函数解析式是y=ax2+bx+c,则c= -3,且⎪⎩⎪⎨⎧=++=+-0.cb49a1681,0c4b16a2分即⎩⎨⎧=+=-16.12b27a,34b16a解得,a=31, b=127.∴这个函数的解析式是y =31x2+1273分⑵∵△AOB∽△BOC(相似比不为1),∴∠BAO=∠CBO.又∵∠ABO+ ∠BAO =90°,∴∠ABC=∠ABO+∠CBO=∠ABO+∠BAO=90°. ………………4分∴AC是△ABC外接圆的直径.∴ r =21AC=21×[49-(-4)]=825. ………………5分⑶∵点N在以BM为直径的圆上,∴∠MNB=90°. ……………………6分①.当AN=ON时,点N在OA的中垂线上,∴点N1是AB的中点,M1是AC的中点.∴AM1= r =825,点M1(-87, 0),即m1= -87. ………………7分②.当AN=OA时,Rt△AM2N2≌Rt△ABO,∴AM2=AB=5,点M2(1, 0),即m2=1.③. 当ON=OA时,点N显然不能在线段AB上.综上,符合题意的点M(m,0)存在,有两解:m= -87,或1. ……………………8分。

数学九年级上册期末检测卷 (5)

数学九年级上册期末检测卷 (5)

学年度上学期期末考试九年级数学试题注意事项:1.本试卷共4页,共三道大题25道小题,满分120分,考试时间120分钟.2.考生在答题前,先将学校、班级、考号和姓名等信息填写在试卷和答题卡指定的位置.一、选择题(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项的字母填涂在答题卡中相应的格子内.1.若关于x 的方程x 2+x +a =0有一个根为-1,则a 的值为( )A .0B .-2C .-1D .12.点A (2,-3)关于原点对称的点的坐标是( )A .(2,3)B .(-2,3)C .(-2,-3)D .(-3,2)3. 下列y 关于x 的函数中,一定是反比例函数的是( )A .y =x 2B .y =21xC .yx =2D .3x y 4.如图,四边形ABCD 内接于⊙O ,若∠BOD =136°,则它的一个外角∠DCE 等于( )A .32°B .44°C .48°D .68°5.甲、乙两人赛跑,开始起跑时都迈出右腿的概率是( )A .41B .31C .21D .16.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p (kPa )是气体体积V (m3)的反比例函数,其函数图象如图所示.当气球内的气压大于128KPa 时,气球将爆炸,为了安全起见,气体的体积应( )A.不大于96m 3B.不小于96m 3C.不大于0.75m 3D.不小于0.75m 37.数学课上,老师让学生尺规作图画⊙O 的切线PM .小明的作法如图所示,并且他提供以下作图依据:①圆的切线垂直于过切点的半径;②直径所对的圆周角是直角;③经过半径的外端,并且垂直于半径的直线是圆的切线;④90°的圆周角所对的弦是直径。

你认为其中正确的依据是( )A .①②B .②③C .③④D .①③第7题 第6题 第4题8.关于抛物线y =x 2-2x +1,下列说法错误的是( )A .开口向上B .与x 轴有两个重合的交点C .对称轴是直线x =1D .当x >1时,y 随x 的增大而减小9.如图,正方形AEFH 和正三角形ABC 都内接于⊙O ,BC 与EF ,FH 分别相交于点M ,N ,若BC=3,则MN 的值是( ) A .23 B .1 C .21 D .33 10.已知抛物线y =ax 2+bx +c +2的图象如图所示,则下列结论:①abc >0;②0=+-c b a ;③ac b 42->0;④c b 2-=4。

九年级数学上册测试题(含答案)

九年级数学上册测试题(含答案)

九年级数学上册测试卷满分100分 用时90分钟 家长签名:班级: 姓名: 座号: 评分:一、选择题( 10×3′=30′)1.一个等腰三角形的顶角是40°,则它的底角是( )A .40°B .50°C .60°D .70°2.下列命题中,不正确...的是( ) A .对角线相等的平行四边形是矩形. B .有一个角为60°的等腰三角形是等边三角形.C .直角三角形斜边上的高等于斜边的一半.D .正方形的两条对角线相等且互相垂直平分.3.下列函数中,属于反比例函数的是( )A .2x y =B .12y x =C .23y x =+D .223y x =+4.方程 x (x +3)= 0的根是( )A .x =0B .x =-3C .x 1=0,x 2 =3D .x 1=0,x 2 =-35.如图所示,圆柱体的主视图是( )6. 下列四个几何体中,主视图、左视图与俯视图是全等图形的几何体是( )A .球B .圆柱C .三棱柱D .圆锥7.如图,一飞镖游戏板,其中每个小正方形的大小相等,则随意投掷一个飞镖,击中黑色区域的概率是( )A .38B .12C .14D .138.如图,菱形ABCD 的对角线交于点O ,AC = 8cm ,BD = 6cm ,则菱形的高为( )A .485 cmB .245cm C .125 cm D.105cm A B CD9.若反比例函数1y x=-的图象经过点A (2,m ),则m 的值是( ) A .-2 B .2 C . 12- D . 1210.函数xk y =的图象经过(1,-1),则函数2y kx =+的图象是( )二、填空题( 6×4′=24′)11.在一个有10万人的城市,随机调查了2000人,其中有250人看中央电视台的早间新闻——朝闻天下.在该城市随便问一个人,他看中央电视台朝闻天下的概率大约是 .12.如果43=y x ,那么=-yy x 13.若反比例函数x k y =的图象经过点(-3, 4),则k= ,则此函数在每一个象限内y 随x 的增大而 .14.在△ABC 中,D 、E 、F 分别是AB 、BC 、AC 的中点,若△ABC 的周长为30 cm ,则△DFE 的周长为 cm .15.随机掷一枚均匀的硬币两次,至少有一次正面朝上的概率是 。

人教版九年级数学上册单元清 检测内容:期中检测

人教版九年级数学上册单元清 检测内容:期中检测

检测内容:期中检测得分________ 卷后分________ 评价________一、选择题(每小题3分,共30分)1.(大连中考)下列所述图形中,既是轴对称图形又是中心对称图形的是( C )A .等腰三角形B .等边三角形C .菱形D .平行四边形2.二次函数y =12(x -4)2+5的图象的开口方向、对称轴、顶点坐标分别是( A ) A .向上,直线x =4,(4,5) B .向上,直线x =-4,(-4,5)C .向上,直线x =4,(4,-5)D .向下,直线x =-4,(-4,5)3.用配方法解下列方程时,配方有错误的是( D )A .x 2-6x +4=0化为(x -3)2=5B .2m 2+m -1=0化为(m +14 )2=916C .3y 2-4y -2=0化为(y -23 )2=109D .2t 2-3t -2=0化为(t -32 )2=25164.(金昌中考)已知x =1是一元二次方程(m -2)x 2+4x -m 2=0的一个根,则m 的值为( B )A .-1或2B .-1C .2D .05.(雅安中考)如果关于x 的一元二次方程kx 2-3x +1=0有两个实数根,那么k 的取值范围是( C )A .k ≥94B .k ≥-94 且k ≠0C .k ≤94 且k ≠0D .k ≤946.如图,在△ABC 中,∠ACB =90°,∠B =50°,将此三角形绕点C 沿顺时针方向旋转后得到△A ′B ′C ,若点B ′恰好落在线段AB 上,AC ,A ′B ′相交于点O ,则∠COA ′的度数是( B )A .50°B .60°C .70°D .80°第6题图 第8题图 第10题图7.某烟花厂为G20杭州峰会举行焰火表演特别设计制作一种新型礼炮,这种礼炮的升空高度h (m)与飞行时间t (s)的关系式是h =-52t 2+20t +1,若这种礼炮点火升空到最高点处引爆,则从点火升空到引爆需要的时间为( B )A .3 sB .4 sC .5 sD .6 s8.如图,将平行四边形ABCD 绕点D 逆时针旋转150°,得到平行四边形DEFG ,这时点C ,E ,G 恰好在同一直线上,延长AD 交CG 于点H .若AD =2,∠A =75°,则HG 的长是( D )A .3B .23C .3+3D .3+239. (菏泽中考)如图,正方形ABCD 的边长为2 cm ,动点P ,Q 同时从点A 出发,在正方形的边上,分别按A →D →C ,A →B →C 的方向都以1 cm/s 的速度运动,到达点C 运动终止,连接PQ ,设运动时间为x (s),△APQ 的面积为y (cm 2),则下列图象中能大致表示y 与x 的函数关系的是( A )10.(鸡西中考)如图是二次函数y =ax 2+bx +c (a ≠0)图象的一部分,对称轴为x =12,且经过点(2,0).下列说法:①abc <0;②-2b +c =0;③4a +2b +c <0;④若(-52 ,y 1),(52,y 2)是抛物线上的两点,则y 1<y 2;⑤14 b >m (am +b )(其中m ≠12).其中说法正确的是( A ) A .①②④⑤ B .①②④ C .①④⑤ D .③④⑤二、填空题(每小题3分,共24分)11.(广安中考)在平面直角坐标系中,点A (a ,2)与点B (6,b )关于原点对称,则ab =__12__.12.若函数y =mx 2+2x +1的图象与x 轴只有一个公共点,则常数m 的值是__1或0__.13.(凉山中考)当0≤x ≤3时,直线y =a 与抛物线y =(x -1)2-3有交点,则a 的取值范围是__-3≤a ≤1__.14.(常德中考)如图,已知△ABC 是等腰三角形,AB =AC ,∠BAC =45°,点D 在AC 边上,将△ABD 绕点A 逆时针旋转45°得到△ACD ′,且点D ′,D ,B 三点在同一条直线上,则∠ABD 的度数是__22.5°__.第14题图 第16题图 第17题图第18题图15. (泰安中考)若二次函数y =x 2+bx -5的对称轴为直线x =2,则关于x 的方程x 2+bx -5=2x -13的解为__x 1=2,x 2=4__.16.如图是一座拱桥,当水面宽AB 为12 m 时,桥洞顶部离水面4 m .已知桥洞的拱形是抛物线,以水平方向为x 轴,建立平面直角坐标系,若选取点A 为坐标原点时的抛物线解析式是y =-19 (x -6)2+4,则选取点B 为坐标原点时的抛物线解析式是__y =-19 (x +6)2+4__.17.如图,矩形ABCD 是由三个矩形拼接成的,如果AB =8 cm ,阴影部分的面积是24 cm 2,另外两个小矩形全等,那么小矩形的长为__6__cm.18.如图,正方形ABCD 和正方形CEFG 的边长分别为a 和b ,正方形CEFG 绕点C 旋转,给出下列结论:①BE =DG ;②BE ⊥DG ;③DE 2+BG 2=2a 2+2b 2.其中正确的结论是__①②③__.(填序号)三、解答题(共66分)19.(6分)解方程:(1)x 2-2x -4=0; (2)2(x -3)=3x (x -3).解:x 1=1+5 ,x 2=1-5 解:x 1=3,x 2=2320.(8分)在平面直角坐标系中,△ABC 的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)①若△ABC 和△A 1B 1C 1关于原点O 成中心对称,画出△A 1B 1C 1;②将△ABC 绕着点A 顺时针旋转90°,画出旋转后得到的△AB 2C 2;(2)在x 轴上找一点P ,使PB 1+PC 1最小,求此时PB 1+PC 1的值.题图 答图 解:(1)①如图,△A 1B 1C 1为所求作②如图,△AB 2C 2为所求作(2)如图,作点C 1关于x 轴的对称点C ′,连接B 1C ′交x 轴于点P ,连接PC 1,则PC 1=PC ′,PB 1+PC 1=PB 1+PC ′=B 1C ′=12+52 =26 ,所以PB 1+PC 1的最小值为2621.(8分)已知关于x 的一元二次方程x 2+(2m +1)x +m 2-2=0.(1)若该方程有两个实数根,求m 的最小整数值;(2)若方程的两个实数根为x 1,x 2,且(x 1-x 2)2+m 2=21,求m 的值.解:(1)根据题意,得Δ=(2m +1)2-4(m 2-2)≥0,解得m ≥-94,所以m 的最小整数值为-2 (2)根据题意,得x 1+x 2=-(2m +1),x 1x 2=m 2-2,∵(x 1-x 2)2+m 2=21,∴(x 1+x 2)2-4x 1x 2+m 2=21,∴(2m +1)2-4(m 2-2)+m 2=21,整理,得m 2+4m -12=0,解得m 1=2,m 2=-6,∵m ≥-94,∴m 的值为222.(8分)把抛物线C 1:y =x 2+2x +3先向右平移4个单位长度,再向下平移5个单位长度得到抛物线C 2.(1)求抛物线C 2的函数关系式;(2)若点A (m ,y 1),B (n ,y 2)都在抛物线C 2上,且m <n <0,比较y 1,y 2的大小,并说明理由.解:(1)∵y =x 2+2x +3=(x +1)2+2,∴把抛物线C 1:y =x 2+2x +3先向右平移4个单位长度,再向下平移5个单位长度得到抛物线C 2:y =(x +1-4)2+2-5,即y =(x -3)2-3(2)∵抛物线C 2的函数关系式为y =(x -3)2-3,∴对称轴为x =3,∴当x <3时,y 随x 的增大而减小,∵点A (m ,y 1),B (n ,y 2)都在抛物线C 2上,且m <n <0<3,∴y 1>y 223.(10分)某商场销售一种成本为每件30元的商品,销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似看作一次函数y=-10x+600,商场销售该商品每月获得利润为w(元).(1)直接写出w与x之间的函数关系式;(2)如果商场销售该商品每月想要获得2 000元的利润,那么每月成本至少为多少元?(3)若销售单价不低于40元且不高于55元,请直接写出每月销售新产品的利润w的取值范围.解:(1)w=-10x2+900x-18 000(2)由题意得,-10x2+900x-18 000=2 000,解得x1=40,x2=50.当x=40时,成本为30×(-10×40+600)=6 000(元).当x=50时,成本为30×(-10×50+600)=3 000(元).∴每月想要获得2 000元的利润,每月成本至少3 000元(3)∵w=-10x2+900x-18 000=-10(x-45)2+2 250,∴当x=45时,w取得最大值2 250,∵销售单价不低于40元且不高于55元,且55离对称轴x=45远,∴当x=55时,w 取得最小值,最小值为1 250,∴每月销售新产品的利润w的取值范围为1 250≤w≤2 25024.(12分)如图,点O是等边△ABC内一点,∠AOB=100°,∠BOC=α.将△BOC绕点C按顺时针方向旋转60°得△ADC,则△ADC≌△BOC,连接OD.(1)求证:△COD是等边三角形;(2)当α=120°时,试判断AD与OC的位置关系,并说明理由;(3)探究:当α为多少度时,△AOD是等腰三角形?解:(1)证明:∵△ADC≌△BOC,∴CO=CD,∵将△BOC绕点C按顺时针方向旋转60°得△ADC,∴∠DCO=60°,∴△COD是等边三角形(2)AD∥OC,理由:∵△COD是等边三角形,∴∠CDO=∠DOC=60°,∵α=120°,△COB≌△CDA,∴∠ADC=∠COB=120°,∴∠ADO=120°-60°=60°,∴∠ADO =∠DOC=60°,∴AD∥OC(3)∠AOD=360°-∠AOB-∠BOC-∠COD=360°-100°-α-60°=200°-α,∠ADO=∠ADC-∠CDO=α-60°,∠OAD=180°-∠AOD-∠ADO=180°-(α-60°)-(200°-α)=40°,若∠ADO=∠AOD,即α-60°=200°-α,解得α=130°;若∠ADO =∠OAD,则α-60°=40°,解得α=100°;若∠OAD=∠AOD,即40°=200°-α,解得α=160°.即当α为130°或100°或160°时,△AOD是等腰三角形25.(14分)(阜新中考)如图,二次函数y=x2+bx+c的图象交x轴于点A(-3,0),B(1,0),交y轴于点C.点P(m,0)是x轴上的一动点,PM⊥x轴,交直线AC于点M,交抛物线于点N.(1)求这个二次函数的解析式;(2)①若点P仅在线段AO上运动,如图,求线段MN的最大值;②若点P在x轴上运动,则在y轴上是否存在点Q,使以M,N,C,Q为顶点的四边形为菱形.若存在,请直接写出所有满足条件的点Q的坐标;若不存在,请说明理由.解:(1)y=x2+2x-3(2)①由A(-3,0),C(0,-3)得直线AC的解析式为y=-x-3,∵点P(m,0)是x轴上的一动点,且PM⊥x轴,∴M(m,-m-3),N(m,m2+2m-3),∴MN=(-m-3)-(m2+2m-3)=-m2-3m=-(m+32)2+94.∵a=-1<0,∴当m=-32时,MN有最大值94②Ⅰ如图①中,当点M在线段AC上,MN=MC,四边形MNQC是菱形时.∵MN=-m2-3m,MC=-2m,∴-m2-3m=-2m,解得m1=-3+2或m2=0(舍弃).∴MN=32-2,∴CQ=MN=32-2,∴OQ=32+1,∴Q(0,-32-1).Ⅱ如图②中,当MC是菱形的对角线时,四边形MNCQ是正方形,此时CN=MN=CQ=2,可得Q(0,-1).Ⅲ如图③中,当点M在CA延长线上时,MN=CM,四边形MNQC是菱形时,则有,m2+3m =-2m,解得m1=-3-2或m2=0(舍弃),∴MN=CQ=32+2,∴OQ=CQ-OC =32-1,∴Q(0,32-1);Ⅳ当点P在y轴的右侧时,显然MN>CM,此时满足条件的菱形不存在.综上所述,满足条件的点Q的坐标为(0,-32-1)或(0,-1)或(0,32-1)。

浙教版九年级数学上册期末综合检测试卷(含答案)

浙教版九年级数学上册期末综合检测试卷(含答案)

浙教版九年级数学上册期末综合检测试卷一、单选题(共10题;共30分)1.要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为,和,另一个三角形的最短边长为2.5 cm,则它的最长边为()A. 3cmB. 4cmC. 4.5cmD. 5cm2.如图,点D在△ABC的边AC上,要判定△ADB与△ABC相似,添加一个条件,不正确的是()A. ∠ABD=∠CB. ∠ADB=∠ABCC.D.3.抛物线y=3x2,y=-3x2,y= x2+3共有的性质是()A. 开口向上B. 对称轴是y轴C. 都有最高点D. y随x值的增大而增大4.已知二次函数y=kx2-7x-7的图象与x轴有两个交点,则k的取值范围为()A. k>-B. k>- 且k≠0C. k≥-D. k≥- 且k≠05.小刚身高1.7m,测得他站立在阳光下的影子长为0.85m,紧接着他把手臂竖直举起,测得影子长为1.1m,那么小刚举起的手臂超出头顶()A. 0.5mB. 0.55mC. 0.6mD. 2.2m6.如图,在△ABC中,点D、E、F分别在边AB、AC、BC上,且DE∥BC,EF∥AB,若AD=2BD,则的值为()A. B. C. D.7.平面直角坐标系中,O为坐标原点,点A的坐标为(,1),将OA绕原点按逆时针方向旋转30°得OB,则点B的坐标为( )A. (1,)B. ( -1,)C. (0,2)D. (2,0)8.如图,A、B、C是⊙O上的点,若∠AOB=70°,则∠ACB的度数为()A. 70°B. 50°C. 40°D. 35°9.两个相似三角形的相似比为2:3,它们的面积之差为25cm2,则较大三角形的面积是()A. 75cm2B. 65cm2C. 50cm2D. 45cm210.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,下面四个结论:①CF=2AF;②tan∠CAD=;③DF=DC;④△AEF∽△CAB;⑤ S四边形CDEF=S△ABF ,其中正确的结论有()A. 2个B. 3个C. 4个D. 5个二、填空题(共10题;共30分)11.如图,锐角三角形ABC的边AB和AC上的高线CE和BF相交于点D.请写出图中的一对相似三角形,如________.12. 如图24-1-4-5,OB、OC是⊙O的半径,A是⊙O上一点,若已知∠B=20°,∠C=30°,则∠A=________.13.如图,△AOB三个顶点的坐标分别为A(8,0),O(0,0),B(8,﹣6),点M为OB的中点.以点O为位似中心,把△AOB缩小为原来的,得到△A′O′B′,点M′为O′B′的中点,则MM′的长为________.14.已知二次函数y=ax2+bx+c的部分图像如图所示,则关于x的方程ax2+bx+c=0的两个根的和等于________.15.如图,点G是△ABC的重心,连结AG并延长交BC于点D,过点G作EF∥AB交BC于E,交AC于F.若AB=12,那么EF=________.16.某种商品每件的进价为30元,在某段时间内若以每件x元出售,可卖出(100﹣x)件,则将每件的销售价定为________ 元时,可获得最大利润.17.如图,抛物线y=ax2+bx+c(a,b,c是常数,a≠0)与x轴交于A,B两点,顶点P(m,n).给出下列结论:①2a+c<0;②若(﹣,y1),(﹣,y2),(,y3)在抛物线上,则y1>y2>y3;③关于x的方程ax2+bx+k=0有实数解,则k>c﹣n;④当n=﹣时,△ABP为等腰直角三角形.其中正确结论是________(填写序号).18.如果2+ 是方程的一个根,那么c的值是________.19.如图,在直角坐标系中,点A在y轴上,△OAB是等腰直角三角形,斜边OA=2,将△OAB绕点O逆时针旋转90°得△′′,则点′的坐标为________20.如图,△ABC中,已知∠C=90°,∠B=55°,点D在边BC上,BD=2CD.把△ABC绕着点D逆时针旋转m (0<m<180)度后,如果点B恰好落在初始Rt△ABC的边上,那么m=________ .三、解答题(共8题;共60分)21.如图,已知△ABC三个顶点的坐标分别是A(-2,3),B(-3,-1),C(-1,1)(1)画出△ABC绕点O逆时针旋转90°后的△A1B1C1,并写出点A1的坐标;(2)画出△ABC绕点O逆时针旋转180°后的△A2B2C2,并写出点A2的坐标;(3)直接回答:∠AOB与∠A2OB2有什么关系?22.已知:如图所示,AD=BC。

九年级(上)数学质量检测卷及答案

九年级(上)数学质量检测卷及答案

九年级(上)数学质量检测卷说明:1.本试题卷分第Ⅰ卷和第Ⅱ卷两部分.满分120分,考试时间120分钟.请同学们按规定用笔将所有试题 的答案写在第Ⅱ卷上. 2. 不能使用计算器。

第Ⅰ卷一、选择题:(本题共10小题,每小题3分,共30分.) 1.如果反比例函数xky =(k ≠0)的图象经过点(-2,1),那么k 的值为()A. -21 B. 21C. 2D. -2 2. 抛物线()212y x =-+的对称轴为( ). A .直线1x = B .直线1x =- C .直线2x = D .直线2x =-3. 如图,AB 为⊙O 的直径,点C 在⊙O 上,若∠C=15°,则∠BOC =( ). A .60° B .45° C .30° D .4. 如图,在8×4的矩形网格中,每格小正方形的边长都 是1,若△ABC 的三个顶点在图中相应的格点上,则 tan ∠ACB 的值为( ).A .1B .13 C .12 D .5.将一枚硬币抛掷两次,则这枚硬币两次正面都向上的概率为( )A .12B .13C .14D .16 6. 如图,在⊙O 中,CD 是直径,AB 是弦,CD AB ⊥于M ,8=AB , 5=OC ,则MD 的长为( ) A. 4 B. 2 C. 1 D. 27. 如图,小正方形的边长为1,则下列图中的三角形(阴影部分)与△ABC 相似的是( )8. 下列所给二次函数的解析式中,其图象不与x 轴相交的是( )第4题图 D第6题图 ▲▲▲ ▲ ▲ ▲ ▲▲ C B A B D CA. 542+=x yB. 2x y -=C. x x y 52--=D. 3)1(22-+=x y 9.已知:ABC △中,︒=∠90C ,52cos =B ,15=AB ,则AC 的长是( ) A . 213B .293C .6D . 3210.定义[,,a b c ]为函数2y ax bx c =++的特征数,下面给出特征数为 [2m ,1 – m ,–1– m]的函数的一些结论: ① 当m = – 3时,函数图象的顶点坐标是(31,38); ②当m < 0时,函数在x >41时,y 随x 的增大而减小; ③ 当m ≠ 0时,函数图象经(1,0)点. 其中正确的结论有( ) A .①②③ B . ①② C .②③ D .①③二、填空题 (本题有6小题,每小题4分,共24分) 11.已知两个相似三角形的周长比是1:3,则它们的 面积比是 .12.如图,在△ABC 中,点D 、E 分别在AC 、BC 边上,DE ∥AB ,若 AD:DC=1:2,BE=2,则BC= .13. 李红同学为了在新年晚会上表演节目,她利用半径为40cm 的扇形纸片制作一个圆锥形纸帽 (如图,接缝处不重叠),如果圆锥底面半径 为10cm ,那么这个圆锥的侧面积是______2cm 14.如图,⊙O 是△ABC 的外接圆,CD 是直径,∠B =40°,则∠ACD 的度数是 .15. 如图,已知∠AOB=45°,A 1是OA 上的一点,OA 1=1,过A 1作OA 的垂线交OB 于点B 1,过点B 1作OB 的垂线交OA 于点A 2;过A 2作OA 的垂线交OB 于点B 2……如此继续,依次记△A 1B 1A 2,△A 2B 2A 3,A 3B 3A 4……的面积为S 1,S 2,S 3……,则S n = 16.如图,在直角坐标系中,抛物线y=x 2-x -2过 A 、B 、C 三点,在对称轴上存在点P ,以第13题图第12题图▲ ▲ ▲ ▲ ▲ ▲ODABC 第14题图▲P 、A 、C 为顶点三角形为直角三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级上学期 数学检测题 选择题:
1、已知函数2
5(1)m y m x -=+是反比例函数,且图像在第二、四象限内,则m 的值是( )
A .2
B .2-
C .2±
D .12
- 2、已知反比例函数y =x
2
,则下列点中在这个反比例函数图象的上的是( )
(A )(-2,1) (B )(1,-2) (C )(-2,-2) (D )(1,2)
3、 已知点(-1,1y ),(2,2y ),(3,3y )在反比例函数x k y 1
2--=的
图像上. 下列结论中正确的是( )
A .321y y y >>
B .231y y y >>
C .213y y y >>
D . 132y y y >>
4、函数y ax a =-与a y x
=(a ≠0)在同一直角坐标系中的图象可能是
( )
5、反比例函数x
y 6=图象上有三个点)(11y x ,,)(22y x ,,)(33y x ,,其中
3210x x x <<<,则1y ,2y ,3y 的大小关系是( )
A .321y y y <<
B .312y y y <<
C .213y y y <<
D .123y y y << 6、函数y 1=x (x ≥0),y 2=4
x
(x>0)的图象如图所示,下
列结论:
①两函数图象的交点坐标为A (2,2); ②当x >2时,y 2>y 1;
③直线x =1分别与两函数图象相交于B 、C 两点,则线段BC 的长为3;
④当x 逐渐增大时,y 1的值随x 的增大而增大,y 2的值随x 的增大减少.
其中正确的是( ) A .只有①② B .只有①③ C .只有②④ D .只有①③④
7、若正比例函数y =2kx 与反比例函数y =k
x
(k ≠0)的图象交于点
A (m ,1),则k 的值是( ). A
B
.2
或-2 C
.2
D
8、如图,直线2y x =+与双曲线k
y x
=相交于点A ,点A 的纵坐标为3,k 的值为( ).
(A )1 (B )2 (C )3 (D )4
y
y 1y 2=
4x
x
第6题图
(第8题)
9、函数1k
y x
-=的图象与直线y x =没有交点,那么k 的取值范围是
( )
A .1k >
B .1k <
C .1k >-
D .
10、函数y =x +1
x
中自变量x 的取值范围是( )
A .x ≥-1
B .x >-1
C .x ≥-1且x ≠0
D .x >-1且x ≠0
11、反比例函数x
k y 3
-=
的图像,当0>x 时,y 随x 的增大而增大,则k 的数值范围是( )
(A )2<k (B )3≤k
(C )3>k (D ).3≥k
12、如图,已知双曲线(0)k y k x
=<经过直角三角形OAB 斜边OA 的中点D ,且与直角边AB 相交于点C .若点A 的坐标为(6-,4),则△AOC 的面积为( ) A .12 B .9 C .6 D .4
13、一次函数y=kx+b 与反比例函数y=k x
在同一直角坐标系中的大致图像2所示,则下列判断正确的是( )
A. k >0, b >0
B. k >0, b <0
C. k <0, b >0
D. k <0, b <0
14、如图2,反比例函数1
1k y x
=
和正比例函数
22y k x =的图像都经过点(1,2)A -,若12y y >,则x 的取值范围是()
A. 10x -<<
B. 11x -<<
C. 1x <-或01x <<
D. 10x -<<或1x > 15、一个直角三角形的两直角边长分别为y x ,,其面积为2,则y 与x 之间的关系用图象表示大致为( )
二、填空题:
16、如图11,若正方形OABC 的顶点B 和正方形ADEF 的顶点E 都在函数 1y x
=(0x >)的图象上,则点E 的坐标是
( , ).
17、写出具有“图象的两个分支分别位于第二、四象限内”的反
比例函数__ __(写出一个即可).
18、如图,A 、B 是双曲线 y = k
x
(k >0) 上的点, A 、B 两点
的横坐标
分别是a 、2a ,线段AB 的延长线交x 轴于点C ,若S △
AOC
=6.则
k= .
19、若1122()()A x y B x y ,,,是双曲线3
y x
=上的两点,
A B C
且120x x >>,则12_______y y {填“>”、“=”、“<”}. 20、有一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,气体的密度也会随之改变,密度ρ(单位:kg/m 3
)是体积V (单位:m 3
)的反比例函数,它的图象如图所示,当V =2m 3时,气体的密度是_______kg/m 3.
21 若点(4,m )在反比例函数8y x
=(x ≠0)的图象上,则m 的值
是 . 【答案】2
22、如图,直线y
=3
x b -
+与y 轴交于点A ,与双曲线y =k x
在第一象限交于点B ,C 两点,且AB ⋅AC =4,则k = .
23、若一次函数y=2x+l 的图象与反比例函数图象的一个交点横坐标为l ,则反比例函数关系式为 24、在反比例函数10
y x
=
()0x >的图象上,有一系列点1A 、2A 、3A …、n A 、1n A +,若1A 的横坐标为2,且以后每点的横坐标与它
前一个点的横坐标的差都为2. 现分别过点1A 、2A 、
3A …、n A 、1n A +作x 轴与y 轴的垂线段,构成若干个
矩形如图8所示,将图中阴影部分的面积从左到右依次记为1S 、2S 、3S 、n S ,则
1S =________________,1S +2S +3S +…+n S =_________________.(用n
的代数式表示
)
3)
3
25、已知反比例函数x
y 2
=,当-4≤x ≤-1时,y 的最大值是___________.
三:解答题:
26、已知反比例函数y =8m x
-(m 为常数)的图象经过点A (-1,6).
(1)求m 的值;
(2)如图9,过点A 作直线AC 与函数y =8m x
-的图象交于点B ,
与x 轴交于点C ,且AB =2BC ,求点C 的坐标.
27、已知:如图,在平面直角坐标系xOy 中,直线AB 与x 轴
交于点(2,0)A -,与反比例函数在第一象限内的图象交于点(2,)B n ,连结BO ,若S 4AOB ∆=.
(1)求该反比例函数的解析式和直线AB 的解析式; (2)若直线AB 与y 轴的交点为C ,求△OCB
28如图,已知一次函数2-=x y 与反比例函数x
y 3
=的图象
交于A 、B 两点.
(1)求A 、B 两点的坐标;
(2)观察图象,可知一次函数值小于反比例函数值的x 的取值范围是 .
27题图
29、保护生态环境,建设绿色社会已经从理念变为人们的行动.某化
工厂2009年1 月的利润为200万元.设2009年1 月为第1个月,第x个月的利润为y万元.由于排污超标,该厂决定从2009年 1 月底起适当限产,并投入资金进行治污改造,导致月利润明显下降,从1月到5月,y与x成反比例.到5月底,治污改造工程顺利完工,从这时起,该厂每月的利润比前一个月增加20万元(如图).
⑴分别求该化工厂治污期间及治污改造工程完工后y与x之间对应的函数关系式.
⑵治污改造工程完工后经过几个月,该厂月利润才能达到2009年1月的水平?
⑶当月利润少于100万元时为该厂资金紧张期,问该厂资金紧张期共有几个月?。

相关文档
最新文档