2019年浙江省八年级下学期期末考试数学试卷(含答案)

合集下载

2018-2019学年浙教版八年级下册期末数学试卷 含答案

2018-2019学年浙教版八年级下册期末数学试卷 含答案

2018-2019学年八年级(下)期末数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.(3分)下面调查中,适合采用普查的是()A.调查你所在的班级同学的身高情况B.调查全国中学生心理健康现状C.调查我市食品合格情况D.调查中央电视台《少儿节目》收视率3.(3分)若分式有意义,则x的取值范围是()A.x≠1B.x=1C.x>1D.x<14.(3分)下列成语所描述的事件为必然事件的是()A.水中捞月B.守株待兔C.拔苗助长D.翁中捉鳖5.(3分)下列式子中,属于最简二次根式的是()A.B.C.D.6.(3分)反比例函数的图象经过点(1,﹣2),则此函数的解析式是()A.y=2x B.C.D.7.(3分)顺次联结对角线相等的四边形各边中点所得到的四边形是()A.平行四边形B.矩形C.正方形D.菱形8.(3分)某校图书管理员清理课外书籍时,将其中甲、乙、丙三类书籍的有关数据制成如图不完整的统计图,已知乙类书有90本,则丙类书的本数是()A.80B.144C.200D.909.(3分)如果a2﹣6ab+9b2=0(a、b均不为0),那的值是()A.﹣B.C.﹣D.10.(3分)若,则()A.b>3B.b<3C.b≥3D.b≤311.(3分)如图,直线y=x与双曲线y=交于M、N两点,点P在x轴上,连接MP,NP,若MP⊥NP,且△MNP的面积为10,则k的值是()A.6B.8C.10D.1212.(3分)在菱形ABCD中,∠C=∠EDF=60°,AB=1,现将∠EDF绕点D任意旋转,分别交边AB、BC于点E、F(不与菱形的顶点重合),连接EF,则△BEF的周长最小值是()A.1+B.1+C.2D.二、填空题(本大题共8小题,每小题3分,共24分,不需写出解答过程,请把答案直接写在答题卡相应位置上)13.(3分)为了解我县11000名九年级毕业生的体育成绩,从中抽取了100名考生的体育成绩进行统计,在这个问题中,样本容量是.14.(3分)一只不透明的袋子中有1个红球、1个黑球和2个白球,这些球除颜色不同外其它都相同,搅匀后从中任意摸出1个球,摸出白球可能性摸出红球可能性(填“等于”或“小于”或“大于”).15.(3分)在▱ABCD中,若∠B=50°,则∠C=°.16.(3分)方程=的解是 .17.(3分)某电子商城推出分期付款购买电脑的活动,一台电脑的售价为1.2万元,前期付款0.4万元,后期每个月分期付一定的数额,则每个月的付款额 y (万元)与付款月数x 之间的函数表达式是 .18.(3分)已知+|2﹣b |=0,则+= .19.(3分)已知点A (1,y 1),B (2,y 2),都在反比例函数y =的图象上,则y 1,y 2的大小关系是 .20.(3分)在四边形ABCD 中,∠ADC =∠ABC =90°,AD =CD ,DE ⊥AB ,垂足为E 点,已知四边形ABCD 的面积是16,且AE =1,则AD = .三、解答题(本大题共8小题,共90分解答时应写出必要的文字说明、证明过程或演算步骤)21.(12分)计算(1)+﹣(2)×(﹣)22.(12分)计算(1)﹣(2)1﹣÷23.(10分)学校准备购买一批课外读物.学校就“我最喜爱的课外读物”从“文学”“艺术”“科普”和“其他”四个类别进行了抽样调查(每位同学只选一类),根据调查结果绘制的两幅不完整的统计图如下:请你根据统计图提供的信息,解答下列问题:(1)条形统计图中,m=,n=;(2)求扇形统计图中,艺术类读物所在扇形的圆心角的度数.24.(10分)如图所示,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.(1)试判断四边形OCED的形状,并说明理由;(2)若AB=3,BC=4,求四边形OCED的周长.25.(10分)为了美化城市,某县园林局计划在路旁栽树1200棵,由于志愿者的参加,实际每天栽树的棵数是原计划的倍,结果提前2天完成了任务,求原计划每天栽树多少棵?26.(12分)仿照下列过程:﹣===﹣1;﹣===;(1)运用上述的方法可知:=,=;(2)拓展延伸:计算:++…+.27.(12分)已知四边形ABCD为矩形,AB=8cm,BC=10cm,点P在边AD上以每秒2cm的速度由点A向点D运动,同时点Q在边CD上以每秒acm的速度由点C向点D 运动(如图1),设运动时间为t秒(t>0),当P、Q中有一点运动到点D时,两点同时停止运动.(1)若a=1,则t为何值时,△DPQ为等腰直角三角形?(2)在运动过程中,若存在某一时刻t,使BQ能垂直平分CP,求此时a,t的值.(3)若G为BC中点,M、N、E、F分别为线段PD、DQ、PG、GQ中点(如图2).①记四边形MNFE的面积为S(cm2),请直接写出S(cm2)与时间t(s)的函数关系式;②在运动过程中,若存在某一时刻t,使得四边形MNFE恰好为正方形,试求出此时a、t的值.28.(12分)如图,正方形OABC边长为4,点A、C分别在x轴和y轴上,点B在第一象限,M为BC中点,反比例函数y=过点M,交BA于点N,D为线段AC上一动点,(点D与A、C两点不垂合),过D作x轴垂线交反比例函数y=函数于点E,连接BE、DE.(1)直接写出k值及N点坐标:k=,N(,).(2)AD=4时,求四边形ABED是菱形.(3)小明说:“当D在线段AC上运动时(D点与A,C两点不重合)△DEB始终为等腰三角形”,你认为他说的正确吗?如果正确,请说说理由,如果不正确,请举一个反例.2018-2019学年八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,不是中心对称的图形,故本选项不符合题意;B、不是轴对称图形,也不是中心对称的图形,故本选项不符合题意;C、不是轴对称图形,是中心对称的图形,故本选项不符合题意;D、是轴对称图形,也是中心对称的图形,故本选项符合题意.故选:D.【点评】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.(3分)下面调查中,适合采用普查的是()A.调查你所在的班级同学的身高情况B.调查全国中学生心理健康现状C.调查我市食品合格情况D.调查中央电视台《少儿节目》收视率【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、调查你所在的班级同学的身高情况适合普查,故A符合题意;B、调查全国中学生心理健康现状调查范围广适合抽样调查,故B不符合题意;C、调查我市食品合格情况无法普查,故C不符合题意;D、调查中央电视台《少儿节目》收视率调查范围广适合抽样调查,故D不符合题意;故选:A.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.(3分)若分式有意义,则x的取值范围是()A.x≠1B.x=1C.x>1D.x<1【分析】根据分式有意义,分母不等于0列不等式求解即可.【解答】解:由题意得,x﹣1≠0,解得x≠1.故选:A.【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.4.(3分)下列成语所描述的事件为必然事件的是()A.水中捞月B.守株待兔C.拔苗助长D.翁中捉鳖【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:A、水中捞月是不可能事件;B、守株待兔是随机事件;C、拔苗助长是不可能事件;D、瓮中捉鳖是必然事件;故选:D.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.(3分)下列式子中,属于最简二次根式的是()A.B.C.D.【分析】根据最简二次根式的定义选择答案即可.【解答】解:∵=,=,=2,∴属于最简二次根式的是.故选:C.【点评】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.6.(3分)反比例函数的图象经过点(1,﹣2),则此函数的解析式是()A.y=2x B.C.D.【分析】把(1,﹣2)代入函数y=中可先求出k的值,那么就可求出函数解析式.【解答】解:由题意知,k=1×(﹣2)=﹣2.则反比例函数的解析式为:y=﹣.故选:B.【点评】本题考查了待定系数法求解反比例函数解析式,此为近几年中考的热点问题,同学们要熟练掌握.7.(3分)顺次联结对角线相等的四边形各边中点所得到的四边形是()A.平行四边形B.矩形C.正方形D.菱形【分析】因为四边形的两条对角线相等,根据三角形的中位线定理,可得所得的四边形的四边相等,则所得的四边形是菱形.【解答】解:如图,AC=BD,E、F、G、H分别是线段AB、BC、CD、AD的中点,则EH、FG分别是△ABD、△BCD的中位线,EF、HG分别是△ACD、△ABC的中位线,根据三角形的中位线的性质知,EH=FG=BD,EF=HG=AC,∵AC=BD,∴EH=FG=FG=EF,∴四边形EFGH是菱形.故选:D.【点评】本题考查了三角形的中位线定理,难度中等,需要掌握三角形的中位线平行于第三边,并且等于第三边的一半,另外要知道四边相等的四边形是菱形.8.(3分)某校图书管理员清理课外书籍时,将其中甲、乙、丙三类书籍的有关数据制成如图不完整的统计图,已知乙类书有90本,则丙类书的本数是()A.80B.144C.200D.90【分析】根据乙类书籍有90本,占总数的45%即可求得总书籍数,丙类所占的比例是1﹣15%﹣45%,所占的比例乘以总数即可求得丙类书的本数.【解答】解:总数是:90÷45%=200(本),丙类书的本数是:200×(1﹣15%﹣45%)=200×40%=80(本)故选:A.【点评】本题考查了扇形统计图,从扇形图上可以清楚地看出各部分数量和总数量之间的关系,正确求得总书籍数是关键.9.(3分)如果a2﹣6ab+9b2=0(a、b均不为0),那的值是()A.﹣B.C.﹣D.【分析】由a2﹣6ab+9b2=0,即(a﹣3b)2=0得a=3b,代入计算可得.【解答】解:∵a2﹣6ab+9b2=0,即(a﹣3b)2=0,∴a﹣3b=0,即a=3b,则原式===,故选:B.【点评】本题主要考查分式的值,解题的关键是掌握完全平方公式及其非负性和分式的约分.10.(3分)若,则( ) A .b >3 B .b <3 C .b ≥3 D .b ≤3【分析】根据二次根式的性质得出b ﹣3≥0,求出即可.【解答】解:∵=b ﹣3,∴b ﹣3≥0,解得:b ≥3,故选:C .【点评】本题考查了对二次根式的性质的应用,注意:当a ≥0时,=a ,当a <0时,=﹣a .11.(3分)如图,直线y =x 与双曲线y =交于M 、N 两点,点P 在x 轴上,连接MP ,NP ,若MP ⊥NP ,且△MNP 的面积为10,则k 的值是( )A .6B .8C .10D .12【分析】设M (x , x ),P (a ,0),根据反比例函数的对称性可得N (﹣x ,﹣x ),且x >0,a >0.由OM =ON 可得S △OMP =S △ONP =S △MNP =5.根据直角三角形斜边上的中线等于斜边的一半得出OM =OP ,即x 2+(x )2=a 2,化简得出a =x .由S △OMP =5,得出•a •x =5,将a =x 代入整理得出x 2=.再把M 点坐标代入y =,即可求出k 的值.【解答】解:如图,设M (x , x ),P (a ,0),则N (﹣x ,﹣x ),且x >0,a >0.∵△MNP 中,MP ⊥NP ,OM =ON ,∴S △OMP =S △ONP =S △MNP =×10=5. ∵OM =OP ,∴x 2+(x )2=a 2, ∴a =x . ∵S △OMP =5,∴•a •x =5,∴•x •x =5,∴x 2=.∵双曲线y =过M 点,∴k =x •x =x 2=×=6. 故选:A .【点评】本题考查了反比例函数的性质,直角三角形的性质,反比例函数图象上点的坐标特征,三角形的面积等知识.设M (x , x ),P (a ,0),根据条件列出关于x 、a 的两个方程是解题的关键.12.(3分)在菱形ABCD 中,∠C =∠EDF =60°,AB =1,现将∠EDF 绕点D 任意旋转,分别交边AB 、BC 于点E 、F (不与菱形的顶点重合),连接EF ,则△BEF 的周长最小值是( )A .1+B .1+C .2D .【分析】连接BD ,如图,利用菱形的性质可判断△ABD 和△CBD 都是等腰直角三角形,则BD =AD ,∠ADB =∠DBC =∠A =60°,再证明∠ADE =∠BDF ,则可判断△ADE ≌△BDF ,所以AE =BF ,DE =DF ,接着判断△DEF 为等边三角形得到EF =DE ,利用等线段代换得到△BEF 的周长=AB +DE =1+DE ,利用垂线段最短得到DE ⊥AB 时,DE的长最小,最小值为AB=,从而得到△BEF的周长最小值.【解答】解:连接BD,如图,∵在菱形ABCD中,∠C=60°,∴△ABD和△CBD都是等腰直角三角形,∴BD=AD,∠ADB=∠DBC=∠A=60°,∵∠EDF=60°,∴∠ADE=∠BDF,在△ADE和△BDF中,∴△ADE≌△BDF,∴AE=BF,DE=DF,∴△DEF为等边三角形,∴EF=DE,∴△BEF的周长=BE+BF+EF=BE+AE+DE=AB+DE=1+DE,当DE的值最小时,△BEF的周长,而DE⊥AB时,DE的长最小,最小值为AB=,∴△BEF的周长最小值是1+.故选:B.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了菱形的性质和等边三角形的判定与性质.二、填空题(本大题共8小题,每小题3分,共24分,不需写出解答过程,请把答案直接写在答题卡相应位置上)13.(3分)为了解我县11000名九年级毕业生的体育成绩,从中抽取了100名考生的体育成绩进行统计,在这个问题中,样本容量是100.【分析】依据样本容量的定义进行判断,一个样本包括的个体数量叫做样本容量.【解答】解:为了解我县11000名九年级毕业生的体育成绩,从中抽取了100名考生的体育成绩进行统计,在这个问题中样本容量是100,故答案为:100.【点评】本题主要考查了样本容量的定义,一个样本包括的个体数量叫做样本容量,样本容量只是个数字,没有单位.14.(3分)一只不透明的袋子中有1个红球、1个黑球和2个白球,这些球除颜色不同外其它都相同,搅匀后从中任意摸出1个球,摸出白球可能性大于摸出红球可能性(填“等于”或“小于”或“大于”).【分析】分别求出摸出两种颜色球的概率,再比较摸出两个颜色球的可能性大小即可.【解答】解:∵袋子中有1个红球、1个黑球和2个白球共4个小球,其中摸出1个球,摸出白球有2种可能、摸出红球有1种可能,∴摸出白球的概率为=、摸出红球的概率为,∴摸出白球可能性大于摸出红球可能性,故答案为:大于.【点评】本题主要考查了可能性的大小,只需求出各自所占的比例大小即可,求比例时,应注意记清各自的数目,难度适中.15.(3分)在▱ABCD中,若∠B=50°,则∠C=130°.【分析】根据平行四边形的邻角互补即可得出∠C的度数.【解答】解:∵在▱ABCD中∠B=50°,∴∠C=180°﹣∠A=180°﹣50°=130°.故答案为130°.【点评】本题考查平行四边形的性质,比较简单,解答本题的关键是掌握平行四边形的对角相等,邻角互补的性质.16.(3分)方程=的解是x=﹣.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到未知数的值,代入检验即可【解答】解:方程两边都乘以x(x+1),得:30(x+1)=20x,解得:x=﹣,检验:当x=﹣时,x(x+1)=﹣≠0,所以分式方程的解为x=﹣,故答案为:x=﹣.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.17.(3分)某电子商城推出分期付款购买电脑的活动,一台电脑的售价为1.2万元,前期付款0.4万元,后期每个月分期付一定的数额,则每个月的付款额y(万元)与付款月数x之间的函数表达式是y=.【分析】根据题意可得电脑的售价=0.4+后期付款金额,根据等量关系列出等式,再整理即可.【解答】解:由题意得:yx+0.4=1.2,xy=0.8,y==,故答案为:y=.【点评】此题主要考查了函数关系式,关键是正确理解题意,找出题目中的等量关系.18.(3分)已知+|2﹣b|=0,则+=.【分析】先由非负数性质得出a、b的值,再代入算式,利用二次根式混合运算顺序和运算法则计算可得.【解答】解:∵+|2﹣b|=0,∴a﹣3=0且2﹣b=0,即a=3、b=2,则原式=+=+=,故答案为:【点评】本题主要考查二次根式的化简求值,解题的关键是掌握非负数的性质与二次根式混合运算顺序和运算法则.19.(3分)已知点A (1,y 1),B (2,y 2),都在反比例函数y =的图象上,则y 1,y 2的大小关系是 y 1<y 2 .【分析】先根据反比例函数的解析式判断出函数图象所在的象限及其增减性,再根据各点横坐标的值判断出各点所在的象限.进而可得出结论.【解答】解:∵反比例函数y =(k 为常数)中,﹣k 2﹣1<0,∴函数图象的两个分式分别位于二、四象限,且在每一象限内y 随x 的增大而增大. ∵点A (1,y 1),B (2,y 2), ∴点A 、B 都在第四象限, 又1<2, ∴y 1<y 2. 故答案为:y 1<y 2.【点评】本题主要考查反比例函数图象上点的坐标特征.注意:反比例函数的增减性只指在同一象限内.20.(3分)在四边形ABCD 中,∠ADC =∠ABC =90°,AD =CD ,DE ⊥AB ,垂足为E点,已知四边形ABCD 的面积是16,且AE =1,则AD =.【分析】作辅助线,构建全等三角形,证明∴△ADE ≌△CDF ,可得S 正方形BEDF =S 四边形ABCD=16,则DE =4,利用勾股定理得AD 的长.【解答】解:过D 作DF ⊥BC 于F , ∵DE ⊥AB ,∴∠AED =∠BED =90°, ∵∠B =∠F =90°, ∴四边形BEDF 是矩形, ∴∠EDF =90°,∴∠FDC +∠EDC =∠EDC +∠ADE =90°, ∴∠ADE =∠CDF , 在△ADE 和△CDF 中,∵,∴△ADE ≌△CDF ,∴DE =DF ,S △ADE =S △CDF , ∴矩形BEDF 是正方形, ∴S 正方形BEDF =S 四边形ABCD =16, ∴DE =4,由勾股定理得:AD ===,故答案为:.【点评】本题考查了三角形全等的性质和判定、矩形和正方形的判定、勾股定理等知识,正确作辅助线,构建并证明△ADE ≌△CDF 是关键.三、解答题(本大题共8小题,共90分解答时应写出必要的文字说明、证明过程或演算步骤)21.(12分)计算(1)+﹣(2)×(﹣)【分析】(1)先化简二次根式,再合并同类二次根式即可得;(2)先化简二次根式,再合并括号内的同类二次根式,最后计算乘法即可得.【解答】解:(1)原式=2+3﹣=4;(2)原式=×(3﹣)=×2=2.【点评】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.22.(12分)计算(1)﹣(2)1﹣÷【分析】根据分式的运算法则即可求出答案.【解答】解:(1)原式==1;(2)原式=1•=1﹣=【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.23.(10分)学校准备购买一批课外读物.学校就“我最喜爱的课外读物”从“文学”“艺术”“科普”和“其他”四个类别进行了抽样调查(每位同学只选一类),根据调查结果绘制的两幅不完整的统计图如下:请你根据统计图提供的信息,解答下列问题:(1)条形统计图中,m=40,n=60;(2)求扇形统计图中,艺术类读物所在扇形的圆心角的度数.【分析】(1)根据文学类的人数和所占的百分比求出总人数,再乘以科普所占的百分比求出n的值,再用总人数减去文学、科普、和其他的人数,即可求出m的值;(2)用360°乘以艺术类读物所占的百分比即可得出答案.【解答】解:(1)本次调查中,一共调查了:70÷35%=200人,科普类人数为:n=200×30%=60人,则m=200﹣70﹣30﹣60=40人,故答案为:40,60;(2)艺术类读物所在扇形的圆心角是:×360°=72°.【点评】此题主要考查了条形图表和扇形统计图综合应用,将条形图与扇形图结合得出正确信息求出调查的总人数是解题的关键.24.(10分)如图所示,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.(1)试判断四边形OCED的形状,并说明理由;(2)若AB=3,BC=4,求四边形OCED的周长.【分析】(1)根据DE∥AC,CE∥BD.得出四边形OCED是平行四边形,根据矩形的性质求得OC=OD,即可判定四边形OCED是菱形.(2)利用勾股定理求得AC的长,从而得出该菱形的边长,即可得出答案.【解答】解:(1)四边形OCED是菱形.∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,在矩形ABCD中,OC=OD,∴四边形OCED是菱形.(2)∵四边形ABCD是矩形,∴AC===5,∴CO=OD=,∴四边形OCED的周长=4×=10.【点评】此题考查了菱形的判定与性质以及矩形的性质.此题难度不大,注意证得四边形CODE是菱形是解此题的关键.25.(10分)为了美化城市,某县园林局计划在路旁栽树1200棵,由于志愿者的参加,实际每天栽树的棵数是原计划的倍,结果提前2天完成了任务,求原计划每天栽树多少棵?【分析】设原计划每天种树x棵,则实际每天栽树的棵数为x,根据题意可得,实际比计划少用2天,据此列方程求解.【解答】解:设原计划每天种树x棵,则实际每天栽树的棵数为(1+20%),由题意得,﹣=2,解得:x=100,经检验,x=100是原分式方程的解,且符合题意.答:原计划每天种树100棵.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.26.(12分)仿照下列过程:﹣===﹣1;﹣===;(1)运用上述的方法可知:=﹣2,=+;(2)拓展延伸:计算:++…+.【分析】(1)将两式的分子、分母分别乘以﹣2、﹣计算可得;(2)由=﹣将原式展开后,两两相互抵消即可得.【解答】解:(1)===﹣2,===+,故答案为:﹣2、+.(2)原式=﹣1+﹣+﹣+…+﹣=﹣1.【点评】本题主要考查分母有理化,解题的关键是掌握分母有理化和根据计算得出规律=﹣.27.(12分)已知四边形ABCD 为矩形,AB =8cm ,BC =10cm ,点P 在边AD 上以每秒2cm 的速度由点A 向点D 运动,同时点Q 在边CD 上以每秒acm 的速度由点C 向点D 运动(如图1),设运动时间为t 秒(t >0),当P 、Q 中有一点运动到点D 时,两点同时停止运动.(1)若a =1,则t 为何值时,△DPQ 为等腰直角三角形?(2)在运动过程中,若存在某一时刻t ,使BQ 能垂直平分CP ,求此时a ,t 的值. (3)若G 为BC 中点,M 、N 、E 、F 分别为线段PD 、DQ 、PG 、GQ 中点(如图2). ①记四边形MNFE 的面积为S (cm 2),请直接写出S (cm 2)与时间t (s )的函数关系式;②在运动过程中,若存在某一时刻t ,使得四边形MNFE 恰好为正方形,试求出此时a 、t 的值.【分析】(1)先表示出DP ,DQ ,用等腰直角三角形建立方程即可得出结论; (2)先判断出BP =BC =10,PQ =CQ ,建立方程求解即可得出结论;(3)①利用三角形中位线判断出S △DMN =S △DPQ ,S △GEF =S △GPQ ,进而得出S △DMN +S △GEF =S 四边形DPGQ ,S △PMN +S △QNF =S 四边形DPGQ 即可得出结论;②先判断出PQ ⊥DG ,PQ =DG ,进而判断出△PDQ ≌△DCG 即可得出结论. 【解答】解:(1)当a =1时,∵四边形ABCD 是矩形, ∴AD =BC =10,CD =AB =8, 由运动知,AP =2t ,CQ =t , ∴DP =10﹣2t ,DQ =8﹣t , ∵△DPQ 为等腰直角三角形, ∴DP =DQ , ∴10﹣2t =8﹣t ,∴t =2秒;(2)如图,连接BP ,PQ ,BQ ,∵BQ 能垂直平分CP ,∴BP =BC =10,PQ =CQ ,在Rt △ABP 中,BP =,∴=10, ∴t =﹣3(舍)或t =3秒,∴CQ =3a ,AP =6,∴DP =4,DQ =8﹣3a ,∴PQ =3a ,在Rt △PDQ 中,16+(8﹣3a )2=9a 2,∴a =;(3)如图2,连接PQ ,DG ,∵点M ,N 是DP ,DQ 的中点,∴MN ∥PQ ,MN =PQ ,∴,∴S △DMN =S △DPQ同理:S △GEF =S △GPQ ,∴S △DMN +S △GEF =(S △DPQ +S △GPQ )=S 四边形DPGQ ,同理:S △PMN +S △QNF =S 四边形DPGQ ,∴S =S 四边形EFNM =S 四边形DPGQ ﹣S 四边形DPGQ =S 四边形DPGQ ,∵S 四边形DPGQ =S 矩形ABCD ﹣S △CQG ﹣S 梯形ABGP =﹣(4+a )t +60;∴S=S=﹣(2+a)t+30;四边形DPGQ②∵点M,N是DP,DQ的中点,∴MN∥PQ,MN=PQ,同理:EF∥PQ,EF=PQ,∴EF=MN,∴四边形EFNM是平行四边形,∵四边形EFNM是正方形,∴PQ=DG,PQ⊥DG,∴∠DHQ=90°,∴∠CDG+∠DQP=90°,∵∠CDG+∠CGD=90°,∴∠DQP=∠CGD,∵∠DCG=∠PDQ=90°,∴△PDQ≌△DCG,∴DP=CD=8,DQ=CG=5,∴10﹣2t=8,8﹣at=5,∴t=1,a=3.即:t=1,a=3时,四边形EFNM是正方形.【点评】此题是四边形综合题,主要考查了矩形的性质,三角形中位线定理,相似三角形的判定和性质,全等三角形的判定和性质,用方程的思想解决问题是解本题的关键.28.(12分)如图,正方形OABC边长为4,点A、C分别在x轴和y轴上,点B在第一象限,M为BC中点,反比例函数y=过点M,交BA于点N,D为线段AC上一动点,(点D与A、C两点不垂合),过D作x轴垂线交反比例函数y=函数于点E,连接BE、DE.(1)直接写出k值及N点坐标:k=4,N(4,1).(2)AD=4时,求四边形ABED是菱形.(3)小明说:“当D在线段AC上运动时(D点与A,C两点不重合)△DEB始终为等腰三角形”,你认为他说的正确吗?如果正确,请说说理由,如果不正确,请举一个反例.【分析】(1)先求出A,B,C的坐标,进而求出M的坐标,求出k,即可得出结论;(2)先求出点D坐标,进而求出点E坐标,即可得出结论;(3)先求出直线AC解析式,设出点D坐标,表示出E坐标,即可判断出BE=DE,即可得出结论.【解答】解:(1)∵正方形的边长为4,∴BC=OA=AB=4,∴A(4,0),C(0,4),B(4,4),∵M是BC的中点,∴M(2,4),∵反比例函数y=过点M,∴k=2×4=8,∴反比例函数解析式为y=,当x=4时,y=1,∴N(4,2),故答案为:8,4,2;(2)如图,延长ED交OA于F,∴DF⊥OA,在Rt△ADF中,DF=AF=2,∴OF=4﹣2,∴E(4﹣2,4+2),∴DE=4+2﹣2=4,∴DE=AD,∵AB∥DE,∴四边形ABED是平行四边形,∵AB=AD,∴▱ABED是菱形;(3)小明的说法正确,理由:∵A(4,0),C(0,4),∴直线AC的解析式为y=﹣x+4,设D(m,﹣m+4),∴E(m,),∵B(4,4),∴BE2=(m﹣4)2+(﹣4)2=m2﹣8m+﹣+32,DE2=(+m﹣4)2=m2﹣8m+﹣+32,∴BE=DE,∴当D在线段AC上运动时(D点与A,C两点不重合)△DEB始终为等腰三角形”,小明说的正确.【点评】此题是反比例函数综合题,主要考查了待定系数法,正方形的性质,平行四边形的判定和性质,菱形的判定,两点间的距离公式,求出点M坐标是解本题的关键.。

浙江省名校2019-2020学年八年级第二学期期末经典数学试题含解析

浙江省名校2019-2020学年八年级第二学期期末经典数学试题含解析

浙江省名校2019-2020学年八年级第二学期期末经典数学试题一、选择题(每题只有一个答案正确)1.如图,将半径为4cm 的圆折叠后,圆弧恰好经过圆心,则折痕的长为( )A .43cmB .23cmC .3cmD .2cm2.若关于x 的一元二次方程2(1)410k x x -++=有两个实数根,则k 的取值范围是( ) A .5k < B .5k <,且1k ≠ C .5k ≤,且1k ≠ D .5k >3.直角三角形中,两直角边分别是12和5,则斜边上的中线长是( )A .13B .9C .8.5D .6.54.如图,P 是矩形ABCD 的边AD 上一个动点,PE⊥AC 于E ,PF⊥BD 于F ,当P 从A 向D 运动(P 与A ,D 不重合),则PE+PF 的值( )A .增大B .减小C .不变D .先增大再减小5.已知点()5,3M m m -+在第一象限,则下列关系式正确的是( )A .35m <<B .35m -<<C .53m -<<D .53m -<<-6.已知1(3A -,1)y 、1(2B -,2)y 、3(1,)C y 是一次函数3y x b =-+的图象上三点,则1y ,2y ,3y 的大小关系是( )A .123y y y <<B .213y y y <<C .312y y y <<D .321y y y <<7.已知点()1,A m -和点()1,B n 在函数13y x k =+的图像上,则下列结论中正确的() A .m n > B .m n < C .0k > D .k 0<8.下列计算中,运算错误的是( )A 623=B 3515C 7310D .32=39. “已知:正比例函数 1(k 0)y kx =>与反比例函数 2m y (m 0)x =>图象相交于 ,A B 两点, 其横坐标分别是 1 和﹣1,求不等式 m kx x>的解集.”对于这道题,某同学是这样解答的:“由图象可知:当1x >或10x -<< 时,12y y >,所以不等式m kx x>的解集是1x >或10x -<<”.他这种解决问题的思路体现的数学思想方法是( )A .数形结合B .转化C .类比D .分类讨论10.某校举行课间操比赛,甲、乙两个班各选出20名学生参加比赛,两个班参赛学生的平均身高都为1.65m ,其方差分别是S 甲2=3.8,S 乙2=3.4,则参赛学生身高比较整齐的班级是( )A .甲班B .乙班C .同样整齐D .无法确定二、填空题11.一次函数y=kx +2(k ≠0)的图象与x 轴交于点A (n ,0),当n >0时,k 的取值范围是_____. 12.如图所示,△ABC 为等边三角形,D 为AB 的中点,高AH=10 cm ,P 为AH 上一动点,则PD+PB 的最小值为_______cm .13.计算:12323⋅的结果是________. 14.如图,直线y ax b =+(a >0)与x 轴交于点(-1,0),关于x 的不等式ax b +>0的解集是_____________.1524x -x 的取值范围是_____.16.两个相似三角形最长边分别为10cm 和25cm ,它们的周长之差为60cm ,则这两个三角形的周长分别是。

浙江省丽水市2019学年第二学期期末模拟浙教版八年级数学试卷(含答案)【含答案及解析】

浙江省丽水市2019学年第二学期期末模拟浙教版八年级数学试卷(含答案)【含答案及解析】

浙江省丽水市 2019 学年第二学期期末模拟浙教版八年级数学试卷(含答案)【含答案及解析】姓名_________ 班级 __________ 分数________、单选题1.下列计算正确的是()A. B.C. D.2.八年级某班 50 位同学中, 1 月份出生的频率是 0.20 ,那么这个班 1月份生日的同学有()A. 10 位B. 11 位C. 12 位D. 13 位、选择题3.在式子,,,中, x 可以取 2 和 3 的是()A. B . C . D .三、单选题4.下列计算正确的是()A. ()2=±6B. =- 7C.四、选择题5.下列各数中,可以用来说明命题“任何偶数× = 3 D. ÷ = 34 的倍数”是假命题的反例是()都是A.5 B . 2 C .4 D五、单选题6. “ I am a good student. ”这句话中,字母” a “出现的频率(是 ) A. 2 B.C.D.7. 用配方法解方程 时,此方程可变形为 ( ) A. B. C.D.8. 某超市一月份的营业额为 200 万元,三月份的营业额为 288 万元,如果每月比上月增长 的百分数相同,则平均每月的增长( ) A. 10% B. 15% C. 20% D. 25%9. 用两个全等的直角三角形拼下列图形:①矩形;②菱形;③正方形;④平行四边形;⑤ 等腰三角形;⑥等腰梯形.其中一定能拼成的图形是( ). A. ①②③ B. ①④⑤ C. ①②⑤ D. ②⑤⑥六、选择题( 如图) ,然后沿着图中的虚线剪下,得到①、②两部分,将①展 七、填空题11.= ___ , = __________ , = ___________ .12. 菱形的两条对角线分别是 6cm ,8cm ,则菱形的边长为 ____________ ,面积为 . 13. 若一个多边形的内角和为 1080 °,则这个多边形的边数是 . 14. 平行四边形两邻角的平分线相交所成的角为 ____ .15. 如图,在平行四边形 ABCD 中,∠A 的平分线交 BC 于点 E .若 AB=10cm ,10. 将一张矩形纸片对折开后得到的平面图A .三角形 BD .梯形AD=14cm,则 BE= ___ ,EC= .16.如图,已知□ OABC,在平面直角坐标系中,A(5,0),C(1,3),直线y=kx-2 与 BC、 OA分别交于 M,N,且将□ OABC的面积分成相等的两部分,则 k 的值是_______________________________________________________17.如图,点 A、B 分别在双曲线和上,四边形 ABCO为平行四边形,则□ABCO的面积为_____18.已知关于 x 的方程 x2+kx+3=0 的一个根为 x=3,则方程的另一个根为.19.在△ ABC中,已知两边 a=3, b=4,第三边为 c.若关于 x 的方程有两个相等的实数根,则该三角形的面积是_____20.如图:在平面直角坐标系中, O为坐标原点,四边形 OABC是矩形,点 A、C 的坐标分别为 A(10,0)、 C(0,4),点 D是 OA的中点,点 P在 BC边上运动,当△ ODP是腰长八、解答题21. 计算:(1), (2)22.为了解学生的身高情况,抽测了某校 17 岁的 50 名男生的身高,将数据分成 7 组,列出了相应的频数分布表(部分未列出)如下:某校 50名 17岁男生身高的频数分布表23.分组( m)频数(名)频率 1.565 ~1.59520.041.595 ~1.6251.6254 ~1.65560.121.655 ~ 1.685110.221.685 ~1.7150.341.715 ~1.74561.745 ~1.77540.08 合计 501td24.开太百货大楼服装柜在销售中发现:“COCOTREE”牌童装平均每天可2售0出件,每件盈利 40 元. 为了迎接“五·一”劳动节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存 . 经市场调查发现:如果每件童装降价 1 元,那么平均每天就可多售出 2 件. 要想平均每天销售这种童装盈利 1050元,那么每件童装应降价多少元?25.已知:如图,在正方形 ABCD中, AE⊥ BF,垂足为P,AE与CD交于点E,?BF?与 AD交 y=3x+2 与反比例函数图象的公共点,将一次函数 y=3x+2 的图象向下平移 4 个单位得到的解析式为 y=k?x+b(1)求 y=k?x+b 和的解析式 .(2)若为双曲线上三点,且,请直接写出大小关系;(3)画出图象,观察图象直接写出不等式 k?x+b> 的解集参考答案及解析第1 题【答案】第2 题【答案】第 4 题【答案】第 5 题【答案】第 6 题【答案】第 7 题【答案】第8 题【答案】第9 题【答案】第 10 题【答案】第 13 题【答案】第 11 题【答案】第 12题【答案】第 15 题【答案】第 16 题【答案】第 17 题【答案】第 18 题【答案】第 19 题【答案】6⅛2√5【解析】两个相等的实数根,.,.Δ=(c-4) 2-4χl×i =0,解得:C二5或3匚当C=5时,,.'a≡3□b≡4C/. a W=c a G.*.ZACB=90βC λδABCWmD-T Z呛AB=BC=3,过B作BD丄ACTDn则AC⅛D 02匚T由勾股定理得:BD=√32-22=√5,「.△ABC的面积是+ x4x√5 =2AΛ J故答秦为;6或2石・点睛:本题考查了一元二次方程根的判别式,勾股定理为股走理的逆定:理,二角形面积,竽腹二角形性质的应用,关⅛t是求出三角形ABe的高,题目比较好,用了分类讨论思想.当S3时,如图,第 20 题【答案】第 21 题【答案】第 22 题【答案】第 23 题【答案】第 24 题【答案】第 25 题【答案】(1).v = 3χ-2 , y--~:⑵ >∖<0 CΛ'5:⑶作图见解析,TVjr〈0或丫)亍.【解析】试题分析:C i)将M坐标代入一次函数解析式中求出日的值,再把M坐标代入反比例函数确定出双曲线解析式,将一次函数團象向下平移4 个車位咸是3K+2体卩可确定出直线解析氏3二2〉根据三点横坐标的正负,得到A?与Aj位于第一象限,对应函数值大于O匚州位于第三象限,函数值小干0,曰在第一象限为减函数,即可得到大小关系式;□ 3>由两函数交点坐标,利用團象即可得出所求不等式的解集.试题解析:(1)TM(1, d在直线± = 3x÷2,.∖Z7 =5∙∙.M(L5)TM(1.5 W⅛⅛tlι,∖"∙k =Xy=S5k∙y=-X∙.∙ y = 3λ-+2l⅛下平移4、呛位得到F =⅛Λ+6y = k,x十 6 的解析 A 'hy = 3x - 2(2)由图象得:当J^Γ<0 <x2 < X3h Vθ"'3 V 旳・y = 3x-2(3)由{得5v≈ —■X。

浙教版2018-2019学年八年级数学下册期末检测题(含答案)

浙教版2018-2019学年八年级数学下册期末检测题(含答案)

浙教版2018-2019学年八年级数学下册期末检测题考生须知:1.全卷共三大题,24小题,满分为100分。

2.考试时间为90分钟,本次考试采用闭卷形式,不允许使用计算器。

3.全卷答案必须做在答题卷的相应位置上,做在试题卷上无效。

4.请用钢笔或黑色墨迹签字笔将学校、姓名、准考证号、座位号分别填在答题卷的相应位置上。

一、选择题(本题有10小题,每小题3分,共30分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.若二次根式3x -在实数范围内有意义,则x 的取值范围是( )A .3x >B .3x ≥C .3x <D .3x ≠2.一元二次方程2231x x -=的二次项系数a 、一次项系数b 和常数c 分别是( )A .2,3,1a b c ===-B .2,1,3a b c ===-C .2,3,1a b c ==-=-D .2,3,1a b c ==-=3.下列图形,既是轴对称图形又是中心对称图形的是( )A .平行四边形B .正五边形C .等边三角形D .矩形 4.五边形的内角和是( )A .360°B .540°C .720°D .900°5.甲、乙、丙三人进行射击测试,每人10次射击成绩的平均数都为8.8环,方差分别为20.016s =甲,20.025s =乙,20.012s =丙,则三人中成绩最稳定的选手是 ( )A .甲B .乙C .丙D .不能确定 6.在平行四边形ABCD 中,已知∠A :∠B =1:2,则∠B 的度数是( ) A .45°B .90°C .120°D .135°7.用反证法证明某一命题的结论“b a <”时,应假设( ) A .b a >B .b a ≥C .b a =D .b a ≤ 8.用配方法解方程244=0x x +-,配方变形结果正确的是( )A .2(2)8x +=-B . 2(2)8x -=-C .2(2)8x -=D . 2(2)8x +=9.关于x 的一元二次方程ax 2-2x +1=0有实数根,则整数a 的最大值是( )A .1B .1-C .2D .2-10.如图,在矩形ABCD 中,AB =6,BC =8,M 是AD 上任意一点,且ME ⊥AC 于E , MF ⊥BD 于F ,则ME +MF 为 ( ) A .245 B .125 C .65D .不能确定 二、填空题(本题有6小题,每小题3分,共18分)11.计算:2(5)= .F EDA BCM (第10题)(第16题)(第12题)12.如图,A 、B 两点分别位于山脚的两端,小明想测量A 、B 两点间的距离,于是想了个主意:先在地上取一个可以直接达到A 、B 两点的点C ,找到AC 、BC 的中点D 、E ,并且测出DE 的长为 15m ,则A 、B 两点间的距离为 _m .13.点()1,A m ,()3,B n 是双曲线3y x=上的点,则m n (填“>”,“<”,“=”).14.m 是方程2650x x --=的一个根,则代数式2116m m +-的值是 .15.如图,已知矩形ABCD 的边长AB =4,BC =6,对角线AC的垂直平分线分别交AC 、AD 、BC 于O 、E 、F ,连结AF 、CE ,则AEBF= . 16.如图,已知直线y ax =与双曲线(0)ky k x=>交于A 、B 两点,点B 的坐标为()2,1B --,C 为双曲线(0)ky k x=>上一点,且在第一象限内. (1)k = ;(2)若三角形AOC 的面积为32,则点C 的坐标为 . 三、解答题(本题有8小题,共52分) 17.计算(本题6分,每小题3分)(1)()234--; (2)61226⨯÷.18.解方程(本题6分,每小题3分) (1)240x x +=;(2)2670x x -+=.FEODABC(第15题)(第19题)19.(本题6分)如图,A 、B 、C 为一个平行四边形的三个顶点,且A 、B 、C 三点的坐标分别为(56),、(34),、(63),. (1)请直接写出这个平行四边形第四个顶点的坐标; (2)求出△ABC 的周长.20.(本题6分) 某企业车间有技术工人20人,车间为了合理制定产品的每月生产定额,作了这20人某月加工零件个数的条形统计图.(1)写出这20人该月加工零件数的众数和中位数; (2)计算这20人该月加工零件数的平均数;(3)假如车间负责人把每位工人的月加工零件数定为260件,你认为这个定额是否合理,请你作出判断并说明理由150 210 240 300 420 500 加工零件数(个)人数8 7 6 5 4 3 2 1 021.(本题6分)某一蓄水池中有水若干吨,若单一个出水口,排水速度v (m 3/h )与排完水池中的水所用的时间t (h )之 间的对应值关系如下表:(1)在如图的直角坐标系中,用描点法画出相应函数的图象;(2)写出t 与v 之间的函数关系式;(3)若5 h 内排完水池中的水,那么每小时的排水量至少应该是多少?22.(本题6分)如图,在平行四边形 A BCD 中,点E 、F 分别在CD 、BC 延长线上,AE //BD ,EF BF ⊥. (1)求证:四边形 A BDE 是平行四边形; (2)若60ABC ∠=︒,6CF = ,求AB 的长. (第21题)FEDABC(第22题)排水速度v(m 3/h )1 2 3 4 6 8 12 所用的时间 t (h ) 1264321.5123.(本题8分)某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每辆汽车的进价与销售量有如下关系:若当月仅售出1辆汽车,则该辆汽车的进价为35万元,每多售出1辆,所有售出的汽车的进价均降低0.1万元/辆,月底厂家根据销售量还会返利给销售公司,销售量在8辆以内(含8辆),每辆返利0.6万元;销售量在8辆以上,每辆返利1.2万元.(1)若该公司当月售出3辆汽车,则每辆汽车的进价为万元;(2)如果汽车的售价为36万元/辆,该公司计划当月盈利10万元,那么需要售出多少辆汽车?(盈利=销售利润+返利)24.(本题8分)如图1,边长为a 的正方形发生形变后成为边长为a 的菱形,如果这个菱形的一组对边之间的距离为h ,我们把a 与h 的比值叫做这个菱形的“形变度”.(1)当形变后的菱形有一个内角是30°时,这个菱形的“形变度”为 ;(2)如图2,菱形ABCD 的“形变度”为3,点E 、F 、G 、H 分别是菱形ABCD 各边的中点,求四边形EFGH 形变前与形变后的面积之比;(3)如图3,正方形ABCD 由16个边长为1的小正方形组成,形变后成为菱形A B C D '''',AEF ∆(E,F 是小正方形的顶点)同时形变为A E F '''∆,设这个菱形的“形变度”为k ,判断A E F '''∆的面积S 与k 是否为反比例函数关系,并说明理由;当65A CB D ''=''时,求k 的值.GFE HD BCA(第24题 图2)形变E'EF'D'FDA BB'CC'A'(第24题 图3)a aaah 形变(第24题 图1)参考答案和评分细则一、选择题(本题有10小题,每小题3分,共30分)题号1 2 3 4 5 6 7 8 9 10 答案 BCDBCCBDAA评分标准选对一题给3分,不选,多选,错选均不给分二、填空题(本题有6小题,每小题3分,共18分)11. 5 12. 30 13. > 14. 615. 135 16. (1)2; (2)(1,2) , (4, 12)三、解答题 (本题有8小题,共52分)每题要求写出必要的求解步骤 17.(本题6分)解:(1)原式=321-=. ……3分 (2)原式=24642÷==. ……3分18.(本题6分)解:(1)将原方程的左边分解因式,得(+4)0x x =, 则0x =,或40x +=, ∴01=x ,24x =-. ……3分(2)移项,得267x x -=-.方程两边同加上9,得2692x x -+=,即2(3)2x -=.则32x -=,或32x -=-,∴123+232x x ==-,. ……3分19.(本题6分)解:(1)D 点的坐标为(2,7),或(4,1)或(8,5)……3分(2)因为22AB =,10BC AC ==,所以三角形ABC 的周长为:22+210 ……3分 20.(本题6分)解:(1)众数是240个,中位数是240个. ……2分(2)平均数是:()150321052407300342050020250⨯+⨯+⨯+⨯++÷=(个) ……2分(3)不合理.因为少数人拉高了平均数,故250不能反映大多数人的生产情况,应该定240更加合理. ……2分21.(本题6分)解:(1)函数图象如图所示. ……2分 (2)根据图象的形状,选择反比例函数模型进行尝试.设(0)kv k t=≠,选(1,12)的坐标代入,得k =12,∴12v t=. 12(第19题)DDD∴所求的函数解析式是12v t=(t >0). ……2分 (3)由题意得:当0< t ≤5时,0<v ≤2.4.即每小时的排水量至少应该是2.4m 3. ……2分 22.(本题6分)(1)证明:如图,在□ABCD 中, AB ∥DC , ∵点E 在CD 的延长线上,∴AB ∥DE , 又∵AE ∥BD ,∴四边形ABDE 是平行四边形. ……3分 (2)解: 在□ABCD 中, AB =DC , 在□ABDE 中,AB =ED . ∴EC =2AB ∵AB ∥DC ,∠ABC =60︒. ∴∠ECF =∠ABC =60︒. ∵6CF =,∴EC =2CF=26. ∴AB =6. ……3分 23.(本题8分)解:(1)34.8; ……2分 (2)设需要售出x 部汽车,由题意可知,每部汽车的销售利润为:36﹣[35﹣0.1(x ﹣1)]=(0.1x +0.9)(万元), ……2分 当0≤x ≤8,根据题意,得x •(0.1x +0.9)+0.6x =10,整理,得x 2+15x ﹣100=0, 解这个方程,得x 1=﹣20(不合题意,舍去),x 2=5, 当x >8时,根据题意,得x •(0.1x +0.9)+1.2x =10,整理,得x 2+21x ﹣100=0, 解这个方程,得x 1=﹣25(不合题意,舍去),x 2=4, 因为4<8,所以x 2=4舍去.答:需要售出5部汽车. ……4分24.(本题8分)解:(1)2k =; ……2分 (2)设四边形ABCD 的边长为a ,因为点E 、F 、G 、H 分别是菱形ABCD 各边的中点,所以四边形EFGH形变前的面积为221a ,用三角形中位线性质易证四边形EFGH 形变后为矩形,且AC EF BD HE 21,21==,所以ah S AC BD S ABCD EFGH 21212121==⋅=菱形矩形,所以四边形EFGH 形变前与形变后的面积之比为3a h=; ……2分(3)S 是k 的反比例函数.理由:如图,过D '作D G A B '''⊥,垂足为G ,则,k GD D A =''' 因为4=''=''=''=''D A D C C B B A , 所以k G D 4=',kk S S D C B A 4164141=⋅==∴''''菱形, oE'F'GD'B'C'A'GFEHD B CA当65A C B D ''=''时,162152A CB D ''='',65A O D O '∴=' 222 5, 6, (5)(6)4D O t A O t t t ''==∴+=设则,21661t ∴=又k S D C B A 16=''''菱形,12A C B D ''''∴∙=k 16,2116161012602t t t k k∴∙∙==,即 得到,6160k = ……2分。

2018-2019学年浙教版数学八年级下册期末测试卷及答案

2018-2019学年浙教版数学八年级下册期末测试卷及答案

2018-2019学年八年级(下)期末数学试卷一、选择题(本大题共10小题,每题3分,共30分)1.如果反比例函数y=的图象经过点(﹣1,﹣2),则k的值是()A.2B.﹣2C.﹣3D.32.方程x2+4x=2的正根为()A.2﹣B.2+C.﹣2﹣D.﹣2+3.某校八(5)为筹备班级端午节纪念爱国诗人屈原联谊会,班长对全班学生爱吃哪几种水果作了民意调查,最终买哪些水果,下面的调查数据中您认为最值得关注的是()A.中位数B.平均数C.众数D.加权平均数4.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A.180°B.220°C.240°D.300°5.若不等式k<<k+1成立,则整数k的值为()A.6B.7C.8D.96.如图,O是坐标原点,菱形OABC的顶点A的坐标为(﹣3,4),顶点C在x轴的负半轴上,函数y=(x<0)的图象经过顶点B,则k的值为()A.﹣12B.﹣27C.﹣32D.﹣367.如图,▱ABCD与▱DCFE的周长相等,且∠BAD=60°,∠F=110°,则∠DAE的度数为()A.20°B.25°C.30°D.35°8.下表为某校八年级72位女生在规定时间内的立定投篮数统计,若投篮投进个数的中位数为a,众数为b,则a+b的值为()A.20B.21C.22D.239.如图,在平面直角坐标系xOy中,菱形ABCD的顶点A的坐标为(2,0),点B的坐标为(0,1),点C在第一象限,对角线BD与x轴平行.直线y=x+3与x轴、y轴分别交于点E,F.将菱形ABCD沿x轴向左平移m个单位,当点D落在△EOF的内部时(不包括三角形的边),m的值可能是()A.4B.5C.6D.710.如图,每个立方体的6个面上分别写有1到6这个自然数,并且任意两个相对面上所写两个数字之和为7,把这样的7个立方体一个挨着一个地连接起来,紧挨着的两个面上的数字之和为8,则图中“﹡”所在面上的数字是()A.4B.3C.2D.1二、填空题(本大题共6小题,每题3分,共18分)11.2﹣的绝对值是.12.请写一个图象在第二、四象限的反比例函数解析式:.13.已知2x2+3x+1的值是10,则代数式4x2+6x+1的值是.14.如图,若将四根木条钉成的矩形木框变形为平行四边形ABCD的形状,并使其面积为矩形面积的一半,则这个平行四边形相邻两内角度数的比值等于.15.过反比例函数y=(k>0)图象上一动点M作MN⊥x轴交x轴于点N,Q是直线MN上一点,且MQ=2MN,过点Q作QR∥x轴交该反比例函数图象于点R.已知S△QRM=8,那么k的值为.16.如图,过正方形ABCD的顶点C作CF⊥CE,交AD于点F,交AB的延长线于点E,交BC于点G.如果S正方形ABCD=144,S△CEF=84.5,那么S△CEG=.三、解答题(本大题共52分17.计算:(1)﹣﹣(2)(3﹣)﹣18.用适当的方法解下列方程:(1)(x﹣3)2﹣2(x﹣3)=0(2)3x2﹣6x﹣9=0.19.(5分)如图,△ABC中,点D,E分别是边BC,AC的中点,连接DE,AD,点F在BA的延长线上,且AF=AB,连接EF,判断四边形ADEF的形状,并加以证明.20.(5分)已知关于x的一元二次方程x2+2(k﹣1)x+k2﹣1=0有两个不相等的实数根.(1)求实数k的取值范围;(2)若方程的一个根是0,求出它的另一个根及k的值.21.若一次函数y=2x﹣1和反比例函数y=的图象都经过点(1,1).(1)求反比例函数的解析式;(2)已知点A在第三象限,且同时在两个函数的图象上,求点A的坐标.22.某校八年级两个班,各选派10名学生参加学校举行的“美丽绍兴乡土风情知识”大赛预赛各参赛选手的成绩如下:八(1)班:88,91,92,93,93,93,94,98,98,100;八(2)班:89,93,93,93,95,96,96,98,98,99.通过整理,得到数据分析表如下:(1)求表中m、n的值;(2)依据数据分析表,有同学说:“最高分在(1)班,(1)班的成绩比(2)班好”,但也有同学说(2)班的成绩更好请您写出两条支持八(2)班成绩好的理由.23.如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点,点M是AB 边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD、AN.(1)求证:四边形AMDN是平行四边形;(2)在点M移动过程中:①当四边形AMDN成矩形时,求此时AM的长;②当四边形AMDN成菱形时,求此时AM的长.24.已知点P的坐标为(m,0),点Q在x轴上(不与P重合),以PQ为边,∠PQM=60°作菱形PQMN,使点M落在反比例函数y=﹣的图象上.(1)如图所示,若点P的坐标为(1,0),求出图中点M的坐标;(2)当P(1,0)时,在(1)图中已经画出一个符合条件的菱形PQMN,请您在原图上画出另一个符合条件的菱形PQ1M1N1,并求点M1的坐标;(3)随着m的取值不同,这样的菱形还可以画出三个和四个,当符合上述条件的菱形刚好能画出三个时,请直接写出点M的坐标.2018-2019学年八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每题3分,共30分)1.【解答】解:根据题意,得﹣2=,即2=k﹣1,解得,k=3.故选:D.2.【解答】解:∵x2+4x=2,∴(x+2)2=6,∴x1=﹣2+,x2=﹣2﹣;∴方程x2+4x=2的正根为﹣2+.故选:D.3.【解答】解:平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.既然是为筹备班级端午节纪念爱国诗人屈原联谊会做准备,那么买的水果肯定是大多数人爱吃的才行,故最值得关注的是众数.故选:C.4.【解答】解:∵等边三角形的顶角为60°,∴两底角和=180°﹣60°=120°;∴∠α+∠β=360°﹣120°=240°;故选:C.5.【解答】解:∵9<<10,∴k=9,k+1=10,故选:D.6.【解答】解:∵A(﹣3,4),∴OA==5,∵四边形OABC是菱形,∴AO=CB=OC=AB=5,则点B的横坐标为﹣3﹣5=﹣8,故B的坐标为:(﹣8,4),将点B的坐标代入y=得,4=,解得:k=﹣32.故选:C.7.【解答】解:∵▱ABCD与▱DCFE的周长相等,且CD=CD,∴AD=DE,∵∠DAE=∠DEA,∵∠BAD=60°,∠F=110°,∴∠ADC=120°,∠CDE═∠F=110°,∴∠ADE=360°﹣120°﹣110°=130°,∴∠DAE==25°,故选:B.8.【解答】解:第36 与37人投中的个数均为9,故中位数a=9,11出现了13次,次数最多,故众数b=11,所以a+b=9+11=20.故选:A.9.【解答】解:根据题意,可知:点D的坐标为(4,1).当y=1时,有x+3=1,解得:x=﹣2,∴4﹣(﹣2)=6,∴4<m<6.故选:B.10.【解答】解:由题意可知:正方体的六个面上分别写着1、2、3、4、5、6六个数,并且它们任意两个相对的面上所写的两个数的和都等于7,故第一个正方体的后面为3,∵紧挨着的两个面上的两个数之和都等于8,则与它相接的第二个正方体的前面为5,对面为2,依此类推,与它相接的第三个正方体的前面为6,对面为1,∴第三个正方体的左面为5,右面为2;或左面为2,右面为5.(1)当第三个正方体的左面为5,右面为2时,第四个正方体的左面为6,右面为1,第五个正方体的左面为7(不合题意舍去);(2)当第三个正方体的左面为2,右面为5时,第四个正方体的左面为3,右面为4,第五个正方体的左面为4,右面为3.∴第五个正方体的下面为5,上面为2;或下面为2,上面为5.①当第五个正方体的下面为5,上面为2时,第六个正方体的下面为6,上面为1,第七个正方体的下面为7(不合题意舍去);②当第五个正方体的下面为2,上面为5时,第六个正方体的下面为3,上面为4,第七个正方体的下面为4,上面为3.则“※”所在面上的数是3.故选:B.二、填空题(本大题共6小题,每题3分,共18分)11.【解答】解:2﹣的绝对值是|2﹣|=﹣2.故本题的答案﹣2.12.【解答】解:∵图象在第二、四象限,∴y=﹣,故答案为:y=﹣.13.【解答】解:由题意,得2x2+3x+1=10∴2x2+3x=9∵4x2+6x+1=2(2x2+3x)+1=2×9+1=19∴代数式4x2+6x+1的值是:19故答案为:1914.【解答】解:作AE⊥BC于E,如图所示:则∠AEB=90°,根据题意得:平行四边形的面积=BC•AE=BC•AB,∴AE=AB,∴sin B==,∴∠ABC=30°,∴∠BCD=150°,∴平行四边形相邻两内角度数的比值1:5,故答案为1:5.15.【解答】解:有两种情形:①当点Q在第一象限时,如图1中.设M(,m),则R(,3m),由题意:×2m×(﹣)=8,解得k=12.②如图2中,当点Q在第三象限时,设M(,m),则R(﹣,﹣m),由题意:••2m=8,∴k=4,故答案为4或12,16.【解答】解:如图,在正方形ABCD中,DC=BC,∠D=∠ABC=∠DCB=90°,∴∠CBE=180°﹣∠ABC=90°,∠1+∠2=∠DCB=90°,∵CF⊥CE,∴∠ECF=90°,∴∠3+∠2=90°,∴∠1=∠3,在△CDF和△CBE中,,∴△CDF≌△CBE,∴CE=CF,∴△CEF是等腰直角三角形,∵S△CEF=84.5,∴=84.5,CE=13,∵S正方形ABCD=144,∴CD=AD=12,由勾股定理得:DF=BE=5,∴AF=12﹣5=7,∵BG∥AF,∴△EBG∽△EAF,∴,∴,∴BG=,∴CG=12﹣=,∴S△CEG===.故答案为:.三、解答题(本大题共52分17.【解答】解:(1)原式=﹣﹣=;(2)原式=3﹣2﹣3=﹣2.18.【解答】解:(1)(x﹣3)(x﹣3﹣2)=0,x﹣3=0或x﹣3﹣2=0,所以x1=3,x2=5;(2)x2﹣2x﹣3=0,△=(﹣2)2﹣4×1×(﹣3)=20,x==±所以x1=+,x2=﹣.19.【解答】答:四边形ADEF是平行四边形.证明:∵点D,E分别是边BC,AC的中点,∴DE∥BF,DE=AB,∵AF=AB,∴DE=AF,∴四边形ADEF是平行四边形.20.【解答】解:(1)∵关于x的一元二次方程x2+2(k﹣1)x+k2﹣1=0有两个不相等的实数根,∴b2﹣4ac=[2(k﹣1)]2﹣4(k2﹣1)>0,解得:k<1;(2)∵方程的一个根是0,∴代入方程得:k2﹣1=0,解得:k=±1,∵k<1,∴k=﹣1,∴原方程为:x2+2(﹣1﹣1)x=0,解得:x1=0,x2=4.21.【解答】解:(1)∵反比例函数y=的图象经过点(1,1)∴k=2xy=2×1×1=2∴反比例函数解析式:y=(2)∵点A在第三象限,且同时在两个函数的图象上∴解得:(舍去)∴点A坐标(﹣,﹣2)22.【解答】解:(1)八(1)班的平均分m=×(88+91+92+93+93+93+94+98+98+100)=94;八(2)班的中位数n==95.5;(2)八(2)班的平均分高于八(1)班;八(2)班的成绩集中在中上游,故支持八(2)班成绩好.23.【解答】解:(1)∵四边形ABCD是菱形∴AB=CD=AD=2,AB∥CD∴∠NDA=∠DAM∵点E是AD边的中点∴AE=DE,且∠NDA=∠DAM,∠NED=∠AEM ∴△AEM≌△DNE∴DN=AM又∵NC∥AB∴四边形AMDN是平行四边形(2)①若四边形AMDN成矩形时,则DM⊥AB在Rt△ADM中,DM⊥AB,∠DAB=60°,AD=2∴AM=1∴当AM=1时,四边形AMDN成矩形.②若四边形AMDN成菱形则DM=AM∵DM=AM,∠DAB=60°∴△ADM为等边三角形∴AM=AD=2∴当AM=2时,四边形AMDN成菱形24.【解答】解:(1)如图,∵四边形PQMN是菱形,∴PN∥QM,MN∥PQ,∴∠OPN=∠PQM=60°,∵P(1,0),∴OP=1,PN=PQ=MN=2OP=2,OM=OP=∴M(2,﹣).(2)如下图中,∵四边形PQ1M1N1是菱形,∴Q1P=Q1M1,∵∠PQ1M1=60°,∴△PQ1M1是等边三角形,∴∠Q1PM1=60°,∴直线PM1的解析式为y=﹣x+,由解得或,∴M1(﹣1,2).(3)如下图,当过点P与x轴的夹角为60°的直线与反比例函数的交点的个数只有3个时,满足条件的菱形只有3个.设直线PM1的解析式为y=x+b,由,消去y得到:x2+bx+2=0,由题意:△=0,∴b=±2,当b=﹣2时,可得y=x﹣2,由:,解得,∴M1(,﹣),由解得或,∴M2(+2,﹣2),M2(﹣2,+2),当b=2时,同法可得满足条件的点M的坐标为(﹣,)或(﹣﹣2,2﹣)或(﹣+2,﹣2﹣).。

2019-2020学年浙江省丽水市八年级(下)期末数学试卷 (解析版)

2019-2020学年浙江省丽水市八年级(下)期末数学试卷  (解析版)

2019-2020学年浙江省丽水市八年级(下)期末数学试卷一、选择题(本题有10小题,每小题3分,共30分请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.(3分)()2化简结果正确的是()A.﹣3B.3C.±3D.92.(3分)下列几个图形是国际通用的交通标志,其中不是中心对称图形的是()A.B.C.D.3.(3分)下列各点中,在反比例函数y=图象上的点是()A.(﹣1,4)B.(1,4)C.(﹣2,2)D.(2,﹣2)4.(3分)用反证法证明“a<1”,应先假设()A.a≥1B.a>1C.a=1D.a≠15.(3分)甲、乙、丙、丁四个小组参加体育测试,他们成绩的平均分均为26分,方差分别为:S甲2=2.5,S乙2=15.7,S丙2=9,S丁2=11.2,则这四个小组体育测试成绩最稳定的是()A.甲组B.乙组C.丙组D.丁组6.(3分)如图,已知AD∥BC,下列条件不能判定四边形ABCD是平行四边形的是()A.AB∥DC B.AD=BC C.AB=DC D.∠B+∠C=180°7.(3分)一元二次方程x2﹣6x﹣1=0配方后可变形为()A.(x﹣3)2=8B.(x﹣3)2=10C.(x+3)2=8D.(x+3)2=10 8.(3分)在平面直角坐标系中,点A(1,2)在双曲线y=上,点A关于x轴的对称点B在双曲线y=上,则k1+k2的值是()A.2B.1C.0D.﹣19.(3分)如图,在矩形ABCD中,E,F分别是BC,AE的中点,若CD=2,AD=4,则DF的长是()A.2B.3C.2D.10.(3分)若关于x的方程4x2﹣5x﹣(m+5)=0的解中,仅有一个正数解,则m的取值范围是()A.m>﹣5B.m≥﹣5C.m>﹣D.m≥﹣二、填空题(本题有6小题,每小题3分,共18分)11.(3分)二次根式中字母x的取值范围是.12.(3分)某多边形的内角和与外角和相等,这个多边形的边数是.13.(3分)如图,在正三角形ABC中,D,E分别是AB,AC的中点.若AB的长为6cm,则DE的长是cm.14.(3分)若正方形AOBC的边OA,OB在坐标轴上,顶点C在第一象限且在反比例函数y=的图象上,则点C的坐标是.15.(3分)从一块腰长为4cm的等腰直角三角形纸片上裁出一块长方形纸片,要求长方形的四个顶点都在三角形的边上,若裁出的长方形纸片的面积为4cm2,则长方形纸片的周长是cm.16.(3分)如图,正方形ABCD的边长为2,M是BC的中点,N是AM上的动点,过点N 作EF⊥AM分别交AB,CD于点E,F.(1)AM的长为;(2)EM+AF的最小值为.三、解答题(本题有8小题,共52分)17.(6分)计算:(1)×;(2)2﹣+5.18.(6分)解方程:(1)x2﹣16=0;(2)4x2+1=﹣4x.19.(6分)某校八年级组织了一次篮球投篮比赛,每班选取的参赛人数相同,成绩分A,B,C,D四个等级,其中相应等级的得分依次记为10分,9分,8分,7分,学校将801班和802班的成绩整理并绘制成如下统计图:请你根据以上提供的信息解答下列问题:(1)分别求出801班和802班学生投篮得分的中位数;(2)求801班学生投篮得分的平均数.20.(6分)已知反比例函数y=(k≠0),当x=﹣3时,y=4.(1)求y关于x的函数表达式;(2)当y≤且y≠0时,求自变量x的取值范围.21.(6分)如图,在▱ABCD中,CM平分∠BCD交AD于点M.(1)若CD=2,求DM的长;(2)若M是AD的中点,连结BM,求证:BM平分∠ABC.22.(6分)如图1,有一张长40cm,宽20cm的长方形硬纸片,裁去角上2个小正方形和2个小长方形(图中阴影部分)之后,恰好折成如图2的有盖纸盒.(1)若纸盒的高是3cm,求纸盒底面长方形的长和宽;(2)若纸盒的底面积是150cm2,求纸盒的高.23.(8分)如图,已知反比例函数y=(k≠0)的图象与正比例函数的图象交于A,B两点,且点A在第二象限,点A的横坐标为﹣1.过点A作AD⊥x轴,垂足为点D,△ADB 的面积为2.(1)求反比例函数的表达式;(2)若点P是这个反比例函数图象上的点,且△ADP的面积是△ADB面积的2倍,求点P的坐标.24.(8分)如图,在菱形ABCD中,∠A=60°,AB=4,E是AD边上的动点,作∠BEF =60°交CD于点F,在AB上取点G使AG=AE,连结EG.(1)求∠EGB的度数;(2)求证:EF=BE;(3)若P是EF的中点,当AE为何值时,△EGP是等腰三角形.2019-2020学年浙江省丽水市八年级(下)期末数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.(3分)()2化简结果正确的是()A.﹣3B.3C.±3D.9【分析】原式利用二次根式的化简公式化简,计算即可得到结果.【解答】解:原式=3,故选:B.2.(3分)下列几个图形是国际通用的交通标志,其中不是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念求解.【解答】解:A、是中心对称图形.故错误;B、是中心对称图形.故错误;C、是中心对称图形.故错误;D、不是中心对称图形.故正确.故选:D.3.(3分)下列各点中,在反比例函数y=图象上的点是()A.(﹣1,4)B.(1,4)C.(﹣2,2)D.(2,﹣2)【分析】根据反比例函数解析式可得xy=4,然后对各选项分析判断即可得解.【解答】解:∵y=,∴xy=4,A、∵﹣1×4=﹣4≠4,∴点(﹣1,4)不在反比例函数y=图象上,故本选项不合题意;B、∵1×4=4=4,∴点(1,4)在反比例函数y=图象上,故本选项符合题意;∴点(﹣2,2)不在反比例函数y=图象上,故本选项不合题意;D、∵﹣2×2=﹣4≠4,∴点(2,﹣2)不在反比例函数y=图象上,故本选项不合题意.故选:B.4.(3分)用反证法证明“a<1”,应先假设()A.a≥1B.a>1C.a=1D.a≠1【分析】反证法的步骤中,第一步是假设结论不成立,反面成立,可据此进行判断.【解答】解:反证法证明“a<1”,应先假设a≥1,故选:A.5.(3分)甲、乙、丙、丁四个小组参加体育测试,他们成绩的平均分均为26分,方差分别为:S甲2=2.5,S乙2=15.7,S丙2=9,S丁2=11.2,则这四个小组体育测试成绩最稳定的是()A.甲组B.乙组C.丙组D.丁组【分析】根据方差的意义求解可得.【解答】解:∵S甲2=2.5,S乙2=15.7,S丙2=9,S丁2=11.2,∴S甲2<S丙2<S丁2<S乙2,∴这四个小组体育测试成绩最稳定的是甲组,故选:A.6.(3分)如图,已知AD∥BC,下列条件不能判定四边形ABCD是平行四边形的是()A.AB∥DC B.AD=BC C.AB=DC D.∠B+∠C=180°【分析】根据平行四边形的判定方法分别对各个选项进行推理判断,即可得出结论.【解答】解:A、∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形;故此选项不合题意;B、∵AD∥BC,AD=BC,∴变形ABCD是平行四边形;故此选项不合题意;∴四边形ABCD可能是等腰梯形,不一定是平行四边形;故此选项符合题意;D、∵∠B+∠C=180°,∴AB∥CD,∵AD∥BC,∴四边形ABCD是平行四边形;故此选项不合题意;故选:C.7.(3分)一元二次方程x2﹣6x﹣1=0配方后可变形为()A.(x﹣3)2=8B.(x﹣3)2=10C.(x+3)2=8D.(x+3)2=10【分析】根据配方法即可求出答案.【解答】解:∵x2﹣6x﹣1=0,∴x2﹣6x=1,∴(x﹣3)2=10,故选:B.8.(3分)在平面直角坐标系中,点A(1,2)在双曲线y=上,点A关于x轴的对称点B在双曲线y=上,则k1+k2的值是()A.2B.1C.0D.﹣1【分析】由点A(1,2)在双曲线y=上,可得k1=2,由点A与点B关于x轴的对称,可得到点B的坐标,进而表示出k2,然后得出答案.【解答】解:∵点A(1,2)在双曲线y=上,∴k1=1×2=2;又∵点A与点B关于x轴的对称,∴B(1,﹣2)∵点B在双曲线y=上,∴k2=1×(﹣2)=﹣2;∴k1+k2=2﹣2=0;故选:C.9.(3分)如图,在矩形ABCD中,E,F分别是BC,AE的中点,若CD=2,AD=4,则DF的长是()A.2B.3C.2D.【分析】结合矩形的性质,勾股定理,利用SAS证明△DAF≌△AEB,进而可求解.【解答】解:∵四边形ABCD为矩形,CD=2,AD=4,AD∥BC,∴∠B=90°,BC=AD=4,AB=CD=,∠DAF=∠AEB,∵E为BC的中点,∴BE=2,∴AE=,∴AD=AE,∵F点为AE的中点,∴AF=2,∴AF=BE,∴△DAF≌△AEB(SAS),∴DF=AB=.故选:A.10.(3分)若关于x的方程4x2﹣5x﹣(m+5)=0的解中,仅有一个正数解,则m的取值范围是()A.m>﹣5B.m≥﹣5C.m>﹣D.m≥﹣【分析】根据根的判别式和根与系数的关系即可求解.【解答】解:∵关于x的方程4x2﹣5x﹣(m+5)=0的解中,仅有一个正数解,∴,解得m≥﹣5.故选:B.二、填空题(本题有6小题,每小题3分,共18分)11.(3分)二次根式中字母x的取值范围是x≥1.【分析】二次根式有意义的条件就是被开方数是非负数,即可求解.【解答】解:根据题意得:x﹣1≥0,解得x≥1.故答案为:x≥1.12.(3分)某多边形的内角和与外角和相等,这个多边形的边数是四.【分析】根据多边形的内角和公式与外角和定理列式进行计算即可求解.【解答】解:设这个多边形是n边形,则(n﹣2)•180°=360°,解得n=4.故答案为:四.13.(3分)如图,在正三角形ABC中,D,E分别是AB,AC的中点.若AB的长为6cm,则DE的长是3cm.【分析】根据等边三角形的性质求出BC,根据三角形中位线定理计算即可.【解答】解:∵△ABC为等边三角形,∴BC=AB=6,∵D,E分别是AB,AC的中点,∴DE是△ABC的中位线,∴DE=BC=3,故答案为:3.14.(3分)若正方形AOBC的边OA,OB在坐标轴上,顶点C在第一象限且在反比例函数y=的图象上,则点C的坐标是(1,1).【分析】设C点坐标为(x,y),依题意画出草图,知x=y,然后解方程x2=1后即可确定C点坐标.【解答】解:如图,设C点坐标为(x,y),∵AOBC是正方形∴OB=OA,即x=y∵C在第一象限且在反比例函数y=的图象上,∴x2=1,∴x=1(x=﹣1舍去),∴点C的坐标是(1,1).故答案为:(1,1).15.(3分)从一块腰长为4cm的等腰直角三角形纸片上裁出一块长方形纸片,要求长方形的四个顶点都在三角形的边上,若裁出的长方形纸片的面积为4cm2,则长方形纸片的周长是6cm.【分析】如图,AB=AC=4cm,∠BAC=90°,四边形EFGH是矩形,作AD⊥BC于D,交EH于K.设AK=EK=HK=a,EF=GH=b,构建方程组求出a,b即可解决问题.【解答】解:如图,AB=AC=4cm,∠BAC=90°,四边形EFGH是矩形,作AD⊥BC 于D,交EH于K.设AK=EK=HK=a,EF=GH=b,AD=DC=a+b,AC=4,则有,解得,∴裁出的长方形的周长为4a+2b=6cm,故答案为6.16.(3分)如图,正方形ABCD的边长为2,M是BC的中点,N是AM上的动点,过点N 作EF⊥AM分别交AB,CD于点E,F.(1)AM的长为;(2)EM+AF的最小值为.【分析】(1)根据正方形的性质求得AB与BM,再由勾股定理求得AM;(2)过F作FG⊥AB于G,证明△ABM≌△FGE得AM=EF,再将EF沿EM方向平移至MH,连接FH,当A、F、H三点共线时,EM+AF=FH+AF=AH的值最小,由勾股定理求出此时的AH的值便可.【解答】解:(1)∵正方形ABCD的边长为2,∴AB=BC=2,∠ABC=90°,∵M是BC的中点,∴BM=,∴,故答案为:;(2)过F作FG⊥AB于G,则FG=BC=AB,∠ABM=∠FGE=90°,∵EF⊥AM,∴∠BAM+∠AEN=∠AEN+∠GFE=90°,∴∠BAM=∠GFE,∴△ABM≌△FGE(SAS),∴AM=EF,将EF沿EM方向平移至MH,连接FH,则EF=MH,∠AMH=90°,EM=FH,当A、F、H三点共线时,EM+AF=FH+AF=AH的值最小,此时EM+AF=AH=,∴EM+AF的最小值为,故答案为:.三、解答题(本题有8小题,共52分)17.(6分)计算:(1)×;(2)2﹣+5.【分析】(1)根据二次根式的乘法可以解答本题;(2)根据二次根式的加减法可以解答本题.【解答】解:(1)×==4;(2)2﹣+5=4﹣+=4.18.(6分)解方程:(1)x2﹣16=0;(2)4x2+1=﹣4x.【分析】(1)移项后两边开方,即可求出答案;(2)移项后关键完全平方公式进行变形,再开方,即可求出答案.【解答】解:(1)x2﹣16=0,x2=16,x=±4,即x1=4,x2=﹣4;(2)4x2+1=﹣4x,4x2+4x+1=0,(2x+1)2=0,2x+1=0,即x1=x2=﹣.19.(6分)某校八年级组织了一次篮球投篮比赛,每班选取的参赛人数相同,成绩分A,B,C,D四个等级,其中相应等级的得分依次记为10分,9分,8分,7分,学校将801班和802班的成绩整理并绘制成如下统计图:请你根据以上提供的信息解答下列问题:(1)分别求出801班和802班学生投篮得分的中位数;(2)求801班学生投篮得分的平均数.【分析】(1)根据中位数分别求出801班和802班的中位数即可;(2)根据平均数的定义即可得到结论.【解答】解:(1)801的学生成绩从小到大排列后,处在中间位置的两个数均在B等,9分,因此中位数是9分;802班的学生成绩从小到大排列后,处在中间位置的两个数均在C等,8分,因此中位数是8分,(2)801班学生投篮得分的平均数=×(10×6+9×12+8×2+7×5)=8.76(分).20.(6分)已知反比例函数y=(k≠0),当x=﹣3时,y=4.(1)求y关于x的函数表达式;(2)当y≤且y≠0时,求自变量x的取值范围.【分析】(1)把x=﹣3,y=4代入y=(k≠0)中求出k可得函数解析式;(2)利用当0<y≤时,当y<0时,分别得出答案.【解答】解:(1)∵反比例函数y=(k≠0)中,当x=﹣3时,y=4,∴4=,k=﹣12,∴y关于x的函数表达式为:y=﹣;(2)当0<y≤时,﹣≤,解得:x≤﹣9,当y<0时,x>0,∴自变量x的取值范围是x≤﹣9或x>0.21.(6分)如图,在▱ABCD中,CM平分∠BCD交AD于点M.(1)若CD=2,求DM的长;(2)若M是AD的中点,连结BM,求证:BM平分∠ABC.【分析】(1)依据平行四边形的性质以及角平分线的定义,即可得到DM=DC;(2)延长BA,CM,交于点E,依据△CDM≌△EAM,即可得到EM=CM,再根据BE =BC,即可得出BM平分∠ABC.【解答】解:(1)∵四边形ABCD是平行四边形,∴AD∥BC,∴∠BCM=∠DMC,∵CM平分∠BCD,∴∠BCM=∠DCM,∴∠DMC=∠DCM,∴DM=DC=2;(2)如图,延长BA,CM,交于点E,则∠AME=∠DMC,∵BE∥CD,∴∠D=∠EAM,∠E=∠DCM,∵M是AD的中点,∴DM=AM,∴△CDM≌△EAM(ASA),∴EM=CM,∵CM平分∠BCD,∴∠BCM=∠DCM,∴∠E=BCM,∴BE=BC,∴BM平分∠ABC.22.(6分)如图1,有一张长40cm,宽20cm的长方形硬纸片,裁去角上2个小正方形和2个小长方形(图中阴影部分)之后,恰好折成如图2的有盖纸盒.(1)若纸盒的高是3cm,求纸盒底面长方形的长和宽;(2)若纸盒的底面积是150cm2,求纸盒的高.【分析】(1)根据纸盒底面长方形的长=(长方形硬纸片的长﹣2×纸盒的高)÷2,可求出纸盒底面长方形的长;根据纸盒底面长方形的宽=长方形硬纸片的宽﹣2×纸盒的高,可求出纸盒底面长方形的宽;(2)设当纸盒的高为xcm时,纸盒的底面积是150cm2,根据长方形的面积公式结合纸盒的底面积是150cm2,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【解答】解:(1)纸盒底面长方形的长为(40﹣2×3)÷2=17(cm),纸盒底面长方形的宽为20﹣2×3=14(cm).答:纸盒底面长方形的长为17cm,宽为14cm.(2)设当纸盒的高为xcm时,纸盒的底面积是150cm2,依题意,得:×(20﹣2x)=150,化简,得:x2﹣30x+125=0,解得:x1=5,x2=25.当x=5时,20﹣2x=10>0,符合题意;当x=25时,20﹣2x=﹣30<0,不符合题意,舍去.答:若纸盒的底面积是150cm2,纸盒的高为5cm.23.(8分)如图,已知反比例函数y=(k≠0)的图象与正比例函数的图象交于A,B两点,且点A在第二象限,点A的横坐标为﹣1.过点A作AD⊥x轴,垂足为点D,△ADB 的面积为2.(1)求反比例函数的表达式;(2)若点P是这个反比例函数图象上的点,且△ADP的面积是△ADB面积的2倍,求点P的坐标.【分析】(1)根据反比例函数和正比例函数的性质得点A与点B关于原点对称,则OA =OB,所以S△ADO=S△ADB=1,再根据反比例函数的比例系数的几何意义得到k=﹣2,则反比例函数解析式为y=﹣;(2)利用反比例函数解析式确定A点坐标为(﹣1,2),设P点坐标为(x,y),根据三角形面积公式得到×2×|x+1|=4,解得x=3或x=﹣5,然后利用反比例函数解析式计算出自变量为3和﹣5的函数值,从而得到P点坐标.【解答】解:(1)∵反比例函数y=(k≠0)的图象与正比例函数的图象交于A,B两点,∴点A与点B关于原点对称,∴OA=OB,∴S△ADO=S△ADB=×2=1,∴|k|=1,而k<0,∴k=﹣2,∴反比例函数解析式为y=﹣;(2)把x=﹣1代入y=﹣得y=2,∴A点坐标为(﹣1,2),设正比例函数解析式为y=ax,把A(﹣1,2)代入得x=﹣2,∴正比例函数解析式为y=﹣2x;设P点坐标为(x,y),∵A点坐标为(﹣1,2),∴AD=2,∵△ADP的面积是△ADB面积的2倍,即△ADP的面积为4,∴×2×|x+1|=4,解得x=3或x=﹣5,当x=3时,y=﹣=﹣,此时P点坐标为(3,﹣);当x=﹣5时,y=﹣=,此时P点坐标为(﹣5,),综上所述,点P坐标为(3,﹣)、(﹣5,).24.(8分)如图,在菱形ABCD中,∠A=60°,AB=4,E是AD边上的动点,作∠BEF =60°交CD于点F,在AB上取点G使AG=AE,连结EG.(1)求∠EGB的度数;(2)求证:EF=BE;(3)若P是EF的中点,当AE为何值时,△EGP是等腰三角形.【分析】(1)由题意可证△AGE是等边三角形,可得∠AGE=60°,可求解;(2)根据菱形的性质,等边三角形的性质,利用ASA证明△DFE≌△GEB可证明结论;(3)可分三种情况:当EG=EP时;当EG=GP时;当EP=GP时分别进行计算即可求解.【解答】(1)解:∵∠A=60°,AG=AE,∴△AGE是等边三角形,∴∠AGE=60°,∴∠EGB=120°;(2)证明:由(1)知,∠EGB=120°,∵四边形ABCD为菱形,∴AB∥CD,AB=AD,∴∠A+∠D=180°,∵∠A=60°,∴∠D=120°,∴∠DEF+∠DFE=60°,∴∠D=∠EGB,∵△AGE是等边三角形,∴AE=AG,∠AEG=60°,∴DE=GB,∵∠BEF=60°,∴∠DEF+∠GEB=60°,∴∠DFE=∠GEB,∴△DFE≌△GEB(ASA),∴EF=BE;(3)解:∵△DFE≌△GEB,∴DF=GE,当EG=EP时,DF=EP,∴只有当DE=FP时,DF=EP=FP,此时E,F为AD,CD的中点,∴AE=AD=AB=2;当EG=GP时,∵在运动过程中,E到达D之前,E永远在F点下方,∴从同一点引出的GE<GP,∴E再P点下方不存在;当EP=GP时,点P在EG的中垂线上,即P点AC上,而运动期间P不可能位于线段AC上,∴P在AC上不存在,综上,AE=2,即当AE为2值时,△EGP是等腰三角形.。

浙教版2019-2020学年度第二学期八年级期末考试数学试卷

浙教版2019-2020学年度第二学期八年级期末考试数学试卷

浙教版2019-2020学年度第二学期八年级期末考试数学试卷 满分:120分,考试时间:100分钟 题号一 二 三 总分 得分评卷人得分 一、单选题(共30分)1.(本题3分)下列四幅图案,在设计中用到了中心对称的图形是( ) A . B . C . D . 2.(本题3分)下列二次根式中,不是最简二次根式的是( )A 5B 10C 15D 20 3.(本题3分)已知关于x 的方程x 2+x ﹣a=0的一个根为2,则另一个根是( ) A .﹣3 B .﹣2 C .3 D .64.(本题3分)()21a -=1a -,则a 的取值范围是( ). A .a>1 B .a≥1 C .a<1D .a≤1 5.(本题3分)已知1x ,2x 是一元二次方程21402x mx m -+-=的两个实数根且12110x x +=,则m 的值为( ). A .0或1 B .0 C .1 D .1- 6.(本题3分)某班15名同学为灾区捐款,他们捐款数额统计如下:捐款数额(元) 510 20 50 100 人数(名)2 4 53 1下列说法正确的是( ).A .众数是100B .平均数是20C .中位数是20D .极差是20 7.(本题3分)如图,ABCD Y 的周长为36 cm ,对角线,AC BD 相交于点,12O AC =cm .若点E 是AB 的中点,则AOE △的周长为( )A.10 cm B.15 cm C.20 cm D.30 cm 8.(本题3分)如图,已知在平面直角坐标系中,四边形ABCD是菱形,其中点B坐标是(4,1),点D坐标是(0,1),点A在x轴上,则菱形ABCD的周长是()A.8 B.25C.45D.129.(本题3分)如图,在矩形纸片ABCD中,AB=3,点E在边BC上,将△ABE沿直线AE 折叠,点B恰好落在对角线AC上的点F处,若∠EAC=∠ECA,则AC的长是()A.33B.6 C.4 D.510.(本题3分)如图,A,B是反比例函数y=4x在第一象限内的图象上的两点,且A,B两点的横坐标分别是2和4,则△OAB的面积是()A.4 B.3 C.2 D.1评卷人得分二、填空题(共32分)11.(本题4分)若代数式1x x -有意义,则x 的取值范围是_________. 12.(本题4分)一组数据:1,2,3,4,5,a 的众数是3,则这组数据的方差是____________. 13.(本题4分)计算20-15的结果是_________.14.(本题4分)用反证法证明:“三角形三内角中至少有一个角不大于60°”时,第一步应假设___________________________________________15.(本题4分)如图,在菱形ABCD 中, 45,BAD DE ∠=︒是AB 边上的高,1,BE =则菱形的面积为__________ .16.(本题4分)一个三角形的两边长分别为3和6,第三边长是方程x 2-10x+21=0的根,则三角形的周长为______________.17.(本题4分)如图所示,在正方形ABCD 中,以AB 为边向正方形外作等边三角形ABE ,连接CE 、BD 交于点G ,连接AG ,那么∠AGD 的底数是_____度.18.(本题4分)如图,在平面直角坐标系xOy 中,点B 在y 轴上,AB=AO ,反比例函数y=的图象经过点A ,若△ABO 的面积为2,则k 的值为 .评卷人得分 三、解答题(共58分)19.(本题8分)化简①()16215362-⨯- ②(2+3 )(23- )+ 21220.(本题8分)解方程:(1)x 2-8x +6=0 (2)(x -1)2 - 3(x -1)=021.(本题8分)某演出队要购买一批演出服,商店给出如下条件:如果一次性购买不超过10件,每件80元;如果一次性购买多于10件,每增加1件,每件服装降低2元,但每件服装不得低于50元,演出队一次性购买这种演出服花费1200元,请问此演出队购买了多少件这种演出服?22.(本题8分)如图,在平行四边形AFCE 中,,D B 分别是,EC AF 的中点.求证:BC AD =.23.(本题8分)如图,△EBF 为等腰直角三角形,点B 为直角顶点, 四边形ABCD 是正方形.⑴ 求证:△ABE ≌△CBF ;⑵ CF 与AE 有什么特殊的位置关系?请证明你的结论.24.(本题9分)如图,在菱形ABCD 中,2AB =,60DAB ∠=︒,F 为AC 上一动点,E 为AB 中点.(1)求菱形ABCD 的面积;(2)求EF BF +的最小值.25.(本题9分)某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y (℃)与时间x(h)之间的函数关系,其中线段AB、BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求这天的温度y与时间x(0≤x≤24)的函数关系式;(2)求恒温系统设定的恒定温度;(3)若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?参考答案1.解:A .旋转180°,不能与原图形能够完全重合不是中心对称图形;故此选项错误; B .旋转180°,不能与原图形能够完全重合不是中心对称图形;故此选项错误; C .旋转180°,不能与原图形能够完全重合不是中心对称图形;故此选项错误; D .旋转180°,能与原图形能够完全重合是中心对称图形;故此选项正确;选D .2.是最简二次根式,故此选项不合题意;是最简二次根式,故此选项不合题意;==. 故选:D.3.【解析】试题解析:设方程的另一个根为t ,根据题意得2+t=﹣1,解得t=﹣3,即方程的另一个根是﹣3.故选A .4=1a -,∴a-1≥0∴a≥1.故选B .5.∵1x ,2x 是一元二次方程21402x mx m -+-=的两个实数根, ∴12x x m += ,12142x x m =- , ∵121212110142x x m x x x x m ++===- ∴m=0.故选B.6.∵捐款20元的人数是5人,最多,∴众数是20,平均数=115(5×2+10×4+20×5+50×3+100×1)=803元,按照从少到多的顺序,第8人捐款是20,所以,中位数是20,极差为100-5=95.故选C.7.解:∵▱ABCD的周长为36,∴2(AB+BC)=36,∴AB+BC=18.∵四边形ABCD是平行四边形,对角线AC,BD相交于点O,AC=12,∴OA=OC=12AC=6.又∵点E是AB的中点,∴OE是△ABC的中位线,AE=12 AB,∴OE=12 BC,∴△AOE的周长=OA+OE+AE=12AC+12(AB+BC)=6+9=15,即△AOE的周长为15.故选:B.8.解:设点A(a,0),∵四边形ABCD是菱形,∴AD=AB,且点B坐标是(4,1),点D坐标是(0,1), ∴(a﹣4)2+(1﹣0)2=(a﹣0)2+(0﹣1)2,∴a=2,∴点A(2,0),∴AO=2,∴AD∴菱形ABCD的周长=故选:C.9.∵将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,∴AF=AB,∠AFE=∠B=90°,∴EF⊥AC,∵∠EAC=∠ECA,∴AE=CE,∴AF=CF,∴AC=2AB=6,故选B.10.∵A,B是反比例函数y=4x在第一象限内的图象上的两点,且A,B两点的横坐标分别是2和4,∴当x=2时,y=2,即A(2,2),当x=4时,y=1,即B(4,1),如图,过A,B两点分别作AC⊥x轴于C,BD⊥x轴于D,则S△AOC=S△BOD=12×4=2,∵S四边形AODB=S△AOB+S△BOD=S△AOC+S梯形ABDC,∴S△AOB=S梯形ABDC,∵S梯形ABDC=12(BD+AC)•CD=12×(1+2)×2=3,∴S△AOB=3,故选B.11.解:由题意得,x﹣1≥0且x≠0,解得x≥1且x≠0,所以,x≥1.故答案为x≥1.12.由众数的定义得:3a=这组数据的平均数为1(123453)3 6⨯+++++=则这组数据的方差为2222221(13)(23)(33)(43)(53)(33)6⎡⎤⨯-+-+-+-+-+-⎣⎦ 1(410140)6=⨯+++++ 53= 故答案为:53.13=14.解:∵用反证法证明三角形中至少有一个角不大于60︒,∴第一步应假设结论不成立,即三角形三个内角都大于60︒.故答案为:三角形三个内角都大于60︒.15.解:设AB=x .∵四边形ABCD 是菱形,∴AD=AB=x .∵DE 是AB 边上的高,∴∠AED=90°.∵∠BAD=45°,∴∠BAD=∠ADE=45°,∴AE=ED=x ﹣1,由勾股定理得:AD 2=AE 2+DE 2,∴x 2=(x ﹣1)2+(x ﹣1)2,解得:x 1=2+,x 2=2-∵BE=1,∴AB>1,∴AB=x=22++,AE=DE=12++=+∴菱形的面积=AB·DE=(22)(12)432故答案为:432+.16.解:解方程x2-10x+21=0得x1=3、x2=7,∵3<第三边的边长<9,∴第三边的边长为7.∴这个三角形的周长是3+6+7=16.故答案为16.17.解:∵四边形ABCD是正方形,∴AB=BC=AD=CD,∠ABC=90°,∠ADG=∠CDG,∠ABD=45°,∵GD=GD,∴△ADG≌△CDG,∴∠AGD=∠CGD,∵∠CGD=∠EGB,∴∠AGD=∠EGB,∵△ABE是等边三角形,∴AB=BE,∠ABE=60°,∴BE=BC,∠EBC=150°,∴∠BEC=∠ECB=15°,∴∠BGE=180°﹣∠BEC﹣∠EBG=180°﹣15°﹣60°﹣45°=60°,∴∠AGD=60°故答案为60.18.解:如图,过点A作AD⊥y轴于点D,∵AB=AO,△ABO的面积为2,∴S△ADO=12|k|=1,又反比例函数的图象位于第一象限,k>0,则k=2.故答案为2.19.解:(1)原式63215332⨯⨯=326532=65-(2)原式3=31.20.(1)x2-8x+6=0x2-8x+16=10(x-4)2=10x-4=10∴x1104,x2104(2)(x -1)2 - 3(x -1)=0(x -1)(x -1-3)=0(x -1)(x-4)=0∴x-1=0或x-4=0解得x1=1,x2=4.21.解:设购买了x件这种服装.,∵12001080>⨯∴购买的演出服多于10件根据题意得出:()802101200x x ⎡⎤--=⎣⎦,解得:120x =,230x =,当20x =时,802(2010)60--=元50>元,符合题意;当30x =时,802(3010)40--=元50<元,不合题意,舍去; 故答案为:20x =.答:购买了20件这种服装.22.∵四边形AFCE 是平行四边形,//AB CD AF CE ∴=,,又∵D B ,分别是EC AF ,的中点,1122AB AF CD CE ∴==,, AB CD ∴=,∴四边形ABCD 是平行四边形,BC AD ∴=.23.解:(1)∵△EBF 为等腰直角三角形,∴BE=BF ,∠EBF=90°,则∠EBA+∠FBA=90°,∵四边形ABCD 为正方形,∴AB=BC ,∠ABC=90°,则∠ABF+∠CBF=90°,∴∠EBA=∠CBF ,又∵BE=BF ,AB=BC ,∴△ABE ≌△CBF (SAS );(2)延长CF ,交AE 于点G ,由(1)得:∠CFB=∠AEB ,∵∠CFB+∠BFG=180°,∴∠AEB+∠BFG=180°,∴∠EGF+∠EBF=180°,∵∠EBF=90°,∴∠EGF=90°,∴CF ⊥AE.24.(1)如答图,连接DB ,DE ,∵四边形ABCD 是菱形,∴AD AB =,又∵60DAB ∠=︒,∴ABD ∆是等边三角形,∵E 为AB 中点.∴DE AB ⊥,1AE =.在Rt ADE ∆中,223DE AD AE =-=.∴23S DE AB =⋅=菱形.(2)如答图,连接DF ,∵四边形ABCD 为菱形,∴点D 与点B 关于AC 对称.∴BF DF =.∴EF BF EF DF +=+.当点D 、E 、F 在一条线段上时,EF DF +取值最小. 即EF BF DE +=时,EF BF +取得最小值3.25.(1)设线段AB 解析式为y=k 1x+b (k≠0)∵线段AB 过点(0,10),(2,14)代入得110214b k b ⎧⎨+⎩== 解得1210k b ⎧⎨⎩== ∴AB 解析式为:y=2x+10(0≤x<5)∵B 在线段AB 上当x=5时,y=20∴B 坐标为(5,20)∴线段BC 的解析式为:y=20(5≤x<10)设双曲线CD 解析式为:y=2k x(k 2≠0) ∵C(10,20)∴k 2=200 ∴双曲线CD 解析式为:y=200x(10≤x≤24) ∴y 关于x 的函数解析式为:()210(05)20(510)2001024x x y x x x⎧⎪+≤<⎪=≤<⎨⎪⎪≤≤⎩(2)由(1)恒温系统设定恒温为20°C(3)把y=10代入y=200x中,解得,x=20 ∴20-10=10答:恒温系统最多关闭10小时,蔬菜才能避免受到伤害.。

2019-2020学年浙江省杭州市西湖区八年级(下)期末数学试卷-(解析版)

2019-2020学年浙江省杭州市西湖区八年级(下)期末数学试卷-(解析版)

2019-2020学年浙江省杭州市西湖区八年级(下)期末数学试卷一.选择题(共10小题)1.下列运算正确的是()A.B.C.D.2.平行四边形、矩形、菱形、正方形共有的性质是()A.对角线互相平分B.对角线相等C.对角线互相垂直D.对角线互相垂直平分3.已知反比例函数的图象经过点(m,3m),则此反比例函数的图象在()A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限4.当一个多边形的边数增加时,它的内角和与外角和的变化情况分别是()A.增大,增大B.增大,不变C.不变,增大D.不变,不变5.若n(n≠0)是关于x的方程x2+mx+2n=0的根,则m+n的值为()A.1 B.2 C.﹣1 D.﹣26.为执行“两免一补“政策,某市2008年投入教育经费4900万元,预计2010年投入6400万元.设这两年投入教育经费的年平均增长率为x,那么下面列出的方程正确的是()A.4900x2=6400B.4900(1+x)2=6400C.4900(1+x%)2=6400D.4900(1+x)+4900(1+x)2=64007.下列命题中,是真命题的是()A.若a•b=0,则a=0或b=0 B.若a+b>0,则a>0且b>0C.若a﹣b=0,则a=0或b=0 D.若a﹣b>0,则a>0且b>08.已知反比例函数y=(k≠0)的图象经过点(﹣2,3),若x>﹣2,则()A.y>3 B.y<3 C.y>3或y<0 D.0<y<39.关于x的方程k2x2+(2k﹣1)x+1=0有实数根,则下列结论正确的是()A.当k=时,方程的两根互为相反数B.当k=0时,方程的根是x=﹣1C.若方程有实数根,则k≠0且k≤D.若方程有实数根,则k≤10.如图,正方形ABCD的边长为2,Q为CD边上(异于C,D)的一个动点,AQ交BD于点M.过M作MN⊥AQ交BC于点N,作NP⊥BD于点P,连接NQ,下面结论:①AM=MN;②MP =;③△CNQ的周长为3;④BD+2BP=2BM,其中一定成立的是()A.①②③④B.①②③C.①②④D.①④二.填空题(共6小题)11.若在实数范围内有意义,则a满足.12.在一次体检中,测得某小组5名同学的身高分别是159,160,155,160,161(单位:厘米),则这组数据的中位数是厘米.13.已如点A(1,﹣k+2)在反比例函数y=(k≠0)的图象上,则k=.14.方程(x﹣1)2=20202的根是.15.一张长方形的会议桌,长3米,宽2米,有一块台布的面积是桌面面积的倍,并且铺在桌面上时,各边垂下的长度相同,则台布各边垂下的长度是米.(结果保留根号)16.如图,在▱ABCD中,AC⊥AB,AC与BD相交于点O,在同一平面内将△ABC沿AC翻折,得到△AB′C,若四边形ABCD的面积为24cm2,则翻折后重叠部分(即S△ACE)的面积为cm2.三.解答题(共7小题)17.计算:(1);(2).18.解方程:(1)2x(x﹣1)=3(x﹣1);(2)x2+2x﹣5=0.19.已知一次函数y=(m﹣1)x+m﹣2与反比例函数数y=(k≠0).(1)若一次函数与反比例函数的图象都经过点A(m,﹣1),求m与k的值.(2)已知点B(x1,y1),C(x2,y2)在该一次函数图象上,设k=(x1﹣x2)(y1﹣y2),判断反比例函数y=的图象所在的象限,说明理由.20.为切实减轻中小学生课业负担、全面实施素质教育,某中学对本校学生课业负担情况进行调查.在本校随机抽取若干名学生进行问卷调查,发现被抽查的学生中,每天完成课外作业时间,最长不足120分钟,没有低于40分钟的,且完成课外作业时间低于60分钟(不包括60分钟)的学生数占被调查人数的10%.现将抽查结果绘制成了一个不完整的频数分布直方图,如图所示:(1)这次被抽查的学生有人;(2)请补全频数分布直方图;(3)若该校共有1200名学生,请估计该校大约有多少名学生每天完成课外作业时间在80分钟以上(包括80分钟).21.已知,如图1,四边形ABCD是一张菱形纸片,其中∠A=45°,把点A与点C分别折向点D,折痕分别为EG和FH,两条折痕的延长线交于点O.(1)请在图2中将图形补充完整.(2)求∠EOF的度数.(3)判断四边形DGOH也是菱形吗?请说明理由.22.有长为30m的篱笆,一面利用墙(墙的最大可用长度为10m),围成中间隔有一道篱笆(平行于AB)的矩形花圃,设花圃的一边AB为xm,面积为ym2.(1)用含有x的代数式表示y.(2)如果要围成面积为63m2的花圃,AB的长是多少?(3)能围成面积为72m2的花圃吗!如果能,请求出AB的长;如果不能,请说明理由.23.如图,在矩形ABCD中,已知AB=4,BC=2,E为AB的中点,设点P是∠DAB平分线上的一个动点(不与点A重合).(1)证明:PD=PE.(2)连接PC,求PC的最小值.(3)设点O是矩形ABCD的对称中心,是否存在点P,使∠DPO=90°若存在,请直接写出AP的长.2019-2020学年浙江省杭州市西湖区八年级(下)期末数学试卷参考答案与试题解析一.选择题(共10小题)1.下列运算正确的是()A.B.C.D.【分析】根据实数的算术平方根和平方运算法则计算,注意一个数的平方必是非负数.【解答】解:A、=2,故本选项错误;B、=5,故本选项错误;C、(﹣)2=7,故本选项正确;D、没有意义,故本选项错误.故选:C.2.平行四边形、矩形、菱形、正方形共有的性质是()A.对角线互相平分B.对角线相等C.对角线互相垂直D.对角线互相垂直平分【分析】根据平行四边形,矩形,菱形,正方形的对角线的性质对各选项分析判断后利用排除法求解.【解答】解:A、平行四边形、矩形、菱形、正方形的对角线都互相平分,故本选项正确;B、只有矩形,正方形的对角线相等,故本选项错误;C、只有菱形,正方形的对角线互相垂直,故本选项错误;D、只有菱形,正方形的对角线互相垂直平分,故本选项错误.故选:A.3.已知反比例函数的图象经过点(m,3m),则此反比例函数的图象在()A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限【分析】只需把所给点的横纵坐标相乘,判断出k的取值范围,再判断出函数所在的象限.【解答】解:将点(m,3m)代入反比例函数得,k=m•3m=3m2>0;故函数在第一、三象限,故选:B.4.当一个多边形的边数增加时,它的内角和与外角和的变化情况分别是()A.增大,增大B.增大,不变C.不变,增大D.不变,不变【分析】利用n边形的内角和公式(n﹣2)•180°(n≥3)且n为整数),多边形外角和为360°即可解决问题.【解答】解:根据n边形的内角和可以表示成(n﹣2)•180°,可以得到一个多边形的边数增加时,则内角和增大.多边形外角和为360°,保持不变.故选:B.5.若n(n≠0)是关于x的方程x2+mx+2n=0的根,则m+n的值为()A.1 B.2 C.﹣1 D.﹣2【分析】把x=n代入方程得出n2+mn+2n=0,方程两边都除以n得出m+n+2=0,求出即可.【解答】解:∵n(n≠0)是关于x的方程x2+mx+2n=0的根,代入得:n2+mn+2n=0,∵n≠0,∴方程两边都除以n得:n+m+2=0,∴m+n=﹣2.故选:D.6.为执行“两免一补“政策,某市2008年投入教育经费4900万元,预计2010年投入6400万元.设这两年投入教育经费的年平均增长率为x,那么下面列出的方程正确的是()A.4900x2=6400B.4900(1+x)2=6400C.4900(1+x%)2=6400D.4900(1+x)+4900(1+x)2=6400【分析】这两年投入教育经费的年平均增长率为x,根据某市2008年投入教育经费4900万元,预计2010年投入6400万元可列方程.【解答】解:这两年投入教育经费的年平均增长率为x,4900(1+x)2=6400.故选:B.7.下列命题中,是真命题的是()A.若a•b=0,则a=0或b=0 B.若a+b>0,则a>0且b>0C.若a﹣b=0,则a=0或b=0 D.若a﹣b>0,则a>0且b>0【分析】根据整式的乘法和不等式的性质判断即可.【解答】解:A、若a•b=0,则a=0或b=0,是真命题;B、若a+b>0,当a>0,b<0,|a|>|b|,也成立,原命题是假命题;C、若a﹣b=0,则a=b,原命题是假命题;D、若a﹣b>0,当a>0,b<0时,也成立,原命题是假命题;故选:A.8.已知反比例函数y=(k≠0)的图象经过点(﹣2,3),若x>﹣2,则()A.y>3 B.y<3 C.y>3或y<0 D.0<y<3【分析】先把(﹣2,3)代入y=中求出k得到反比例函数解析式为y=﹣,再分别计算出自变量x>﹣2,对应的反比例函数值,然后根据反比例函数的性质求解.【解答】解:把(﹣2,3)代入y=得k=﹣2×3=6,所以反比例函数解析式为y=﹣,∴x=﹣,当x>﹣2时,﹣>﹣2;∴当y>0时,﹣6>﹣2y,∴y>3,所以函数值y的取值范围为y>3或y<0.故选:C.9.关于x的方程k2x2+(2k﹣1)x+1=0有实数根,则下列结论正确的是()A.当k=时,方程的两根互为相反数B.当k=0时,方程的根是x=﹣1C.若方程有实数根,则k≠0且k≤D.若方程有实数根,则k≤【分析】因为已知没有明确此方程是否是一个一元二次方程,所以方程有两种情况,既可以是一元一次方程,也可以一元二次方程,所以分两种情况分别去求k的取值范围,然后结合选项判断选择什么.【解答】解:若k=0,则此方程为﹣x+1=0,所以方程有实数根为x=1,则B错误;若k≠0,则此方程是一元二次方程,由于方程有实数根,∴△=(2k﹣1)2﹣4k2=﹣4k+1≥0,∴k≤且k≠0;综上所述k的取值范围是k≤.故A错误,C错误,D正确.故选:D.10.如图,正方形ABCD的边长为2,Q为CD边上(异于C,D)的一个动点,AQ交BD于点M.过M作MN⊥AQ交BC于点N,作NP⊥BD于点P,连接NQ,下面结论:①AM=MN;②MP =;③△CNQ的周长为3;④BD+2BP=2BM,其中一定成立的是()A.①②③④B.①②③C.①②④D.①④【分析】①正确.只要证明△AME≌△NMF即可;②正确.只要证明△AOM≌△MPN即可;③错误.只要证明∠ADQ≌△ABH,由此推出△ANQ≌△ANH即可;④正确.只要证明△AME≌△NMF,四边形EMFB是正方形即可解决问题;【解答】解:连接AC交BD于O,作ME⊥AB于E,MF⊥BC于F,延长CB到H,使得BH=DQ.∵四边形ABCD是正方形,∴AC⊥BD,AC=AD=2,OA=OC=,∠DBA=∠DBC=45°,∴ME=MF,∵∠MEB=∠MFB=∠EBF=90°,∴四边形EMFB是矩形,∵ME=MF,∴四边形EMFB是正方形,∴∠EMF=∠AMN=90°,∴∠AME=∠NMF,∵∠AEM=∠MFN=90°,∴△AME≌△NMF(ASA),∴AM=MN,故①正确,∵∠OAM+∠AMO=90°,∠AMO+∠NMP=90°,∴∠AMO=∠MNP,∵∠AOM=∠NPM=90°,∴△AOM≌△MPN(AAS),∴PM=OA=,故②正确,∵DQ=BH,AD=AB,∠ADQ=∠ABH=90°,∴∠ADQ≌△ABH(SAS),∴AQ=AH,∠QAD=∠BAH,∴∠BAH+∠BAQ=∠DAQ+∠BAQ=90°,∵AM=MN,∠AMN=90°,∴∠MAN=45°,∴∠NAQ=∠NAH=45°,∴△ANQ≌△ANH(SAS),∴NQ=NH=BN+BH=BN+DQ,∴△CNQ的周长=CN+CQ+BN+DQ=4,故③错误,∵BD+2BP=2BO+2BP=2AO+2BP=2PM+2BP,∴BD+2BP=2BM,故④正确.故选:C.二.填空题(共6小题)11.若在实数范围内有意义,则a满足a≥﹣1 .【分析】根据二次根式有意义的条件得出a+1≥0,求出即可.【解答】解:∵在实数范围内有意义,∴a+1≥0,解得:a≥﹣1,故答案为:a≥﹣1.12.在一次体检中,测得某小组5名同学的身高分别是159,160,155,160,161(单位:厘米),则这组数据的中位数是160 厘米.【分析】先将题目中的数据按照从小到大排列,然后即可得到这组数据的中位数,本题得以解决.【解答】解:将题目中的数据按照从小到大排列是:155,159,160,160,161,故这组数据的中位数是160,故答案为:160.13.已如点A(1,﹣k+2)在反比例函数y=(k≠0)的图象上,则k= 1 .【分析】利用待定系数法即可解决问题.【解答】解:把A(1,﹣k+2)代入y=,得到k=﹣k+2,解得:k=1,故答案为:1.14.方程(x﹣1)2=20202的根是x1=2021,x2=﹣2019 .【分析】利用直接开平方法求解可得.【解答】解:∵(x﹣1)2=20202,∴x﹣1=2020或x﹣1=﹣2020,解得x1=2021,x2=﹣2019,故答案为:x1=2021,x2=﹣2019.15.一张长方形的会议桌,长3米,宽2米,有一块台布的面积是桌面面积的倍,并且铺在桌面上时,各边垂下的长度相同,则台布各边垂下的长度是米.(结果保留根号)【分析】设台布下垂长度为x米,则台布面积为(3+2x)(2+2x)m2,运用台布面积是桌面面积的倍可列出一元二次方程,求解即可得出答案.【解答】解:设各边垂下的长度为x米,根据题意得:(3+2x)(2+2x)=×2×3,化简得4x2+10x﹣3=0,解这个方程得:x=,因为x=不符合题意,舍去,答:台布各边垂下的长度是米.故答案为:.16.如图,在▱ABCD中,AC⊥AB,AC与BD相交于点O,在同一平面内将△ABC沿AC翻折,得到△AB′C,若四边形ABCD的面积为24cm2,则翻折后重叠部分(即S△ACE)的面积为 6 cm2.【分析】由折叠的性质可得∠BAC=∠B'AC=90°,AB=AB',S△ABC=S△AB'C=12cm2,可证点B,点A,点B'三点共线,通过证明四边形ACDB'是平行四边形,可得B'E=CE,即可求解.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,S△ABC=12cm2,∵在同一平面内将△ABC沿AC翻折,得到△AB′C,∴∠BAC=∠B'AC=90°,AB=AB',S△ABC=S△AB'C=12cm2,∴∠BAB'=180°,∴点B,点A,点B'三点共线,∵AB∥CD,AB'∥CD,∴四边形ACDB'是平行四边形,∴B'E=CE,∴S△ACE=S△AB'C=6cm2,故答案为:6.三.解答题(共7小题)17.计算:(1);(2).【分析】(1)根据二次根式的乘法法则计算.(2)运用多项式与多项式的乘法法则计算,注意不能漏乘项.【解答】解:(1)原式===12;(2)原式=6+4﹣3﹣4=.18.解方程:(1)2x(x﹣1)=3(x﹣1);(2)x2+2x﹣5=0.【分析】(1)利用因式分解法求解可得;(2)利用公式法求解可得.【解答】解:(1)∵2x(x﹣1)﹣3(x﹣1)=0,∴(x﹣1)(2x﹣3)=0,则x﹣1=0或2x﹣3=0,解得x=1或x=;(2)∵a=,b=2,c=﹣5,∴△=(2)2﹣4××(﹣5)=18>0,则x==﹣2±3,即x1=,x2=﹣5.19.已知一次函数y=(m﹣1)x+m﹣2与反比例函数数y=(k≠0).(1)若一次函数与反比例函数的图象都经过点A(m,﹣1),求m与k的值.(2)已知点B(x1,y1),C(x2,y2)在该一次函数图象上,设k=(x1﹣x2)(y1﹣y2),判断反比例函数y=的图象所在的象限,说明理由.【分析】(1)把A(m,﹣1)代入y=(m﹣1)x+m﹣2,即可求得m的值,然后根据待定系数法求得k的值;(2)根据题意可以判断m﹣1的正负,从而可以解答本题.【解答】解:(1)一次函数的图象都经过点A(m,﹣1),∴﹣1=m(m﹣1)+m﹣2且m﹣1≠0,∴m=﹣1,∴A(﹣1,﹣1),∵反比例函数的图象都经过点A(﹣1,﹣1),∴k=1;(2)∵点B(x1,y1),C(x2,y2)在该一次函数图象上,∴①﹣②得y1﹣y2=(m﹣1)(x1﹣x2),∵k=(x1﹣x2)(y1﹣y2),∴k=(m﹣1)(x1﹣x2)2,∴当m>1时,k>0,反比例函数的图象在一三象限;当m<1时,k<0,反比例函数的图象在二四象限.20.为切实减轻中小学生课业负担、全面实施素质教育,某中学对本校学生课业负担情况进行调查.在本校随机抽取若干名学生进行问卷调查,发现被抽查的学生中,每天完成课外作业时间,最长不足120分钟,没有低于40分钟的,且完成课外作业时间低于60分钟(不包括60分钟)的学生数占被调查人数的10%.现将抽查结果绘制成了一个不完整的频数分布直方图,如图所示:(1)这次被抽查的学生有50 人;(2)请补全频数分布直方图;(3)若该校共有1200名学生,请估计该校大约有多少名学生每天完成课外作业时间在80分钟以上(包括80分钟).【分析】(1)根据完成课外作业时间低于60分钟的学生数占被调查人数的10%.可求出抽查的学生人数;(2)根据总人数,现有人数为补上那15人;(3)先求出50人里学生每天完成课外作业时间在80分钟以上的人的比例,再按比例估算全校的人数.【解答】解:(1)5÷10%=50,∴这次被抽查的学生有50人;(2)如图所示;50﹣35=15,(3)由样本知,每天完成课外作业时间在80分钟以上(包括80分钟)的人数有35人,占被调查人数的=,故全校学生中每天完成课外作业时间在80分钟以上(包括80分钟)的人数约有 1200×=840人.21.已知,如图1,四边形ABCD是一张菱形纸片,其中∠A=45°,把点A与点C分别折向点D,折痕分别为EG和FH,两条折痕的延长线交于点O.(1)请在图2中将图形补充完整.(2)求∠EOF的度数.(3)判断四边形DGOH也是菱形吗?请说明理由.【分析】(1)依照题意画出图形;(2)由菱形的性质可得AD=CD,∠A=∠C=45°,∠ADC=135°,由折叠的性质可得AE=DE=AD,GE⊥AD,∠A=∠GDA=45°,DF=FC=CD,HF⊥CD,∠C=∠CDH=45°,由四边形的内角和定理可求解;(3)由题意可证GE∥DH,GD∥HF,可证四边形DGOH是平行四边形,由“ASA”可证△DEG ≌△DFH,可得DG=DH,即可证四边形DGOH是菱形.【解答】解:(1)如图,延长EG,FH交于点O,∵四边形ABCD是菱形,∠A=45°,∴AD=CD,∠A=∠C=45°,∠ADC=135°,∵把△AEG翻折,使得点A与点D重合,折痕为EG;把△CFH翻折,使得点C与点D重合,折痕为FH,∴AE=DE=AD,GE⊥AD,∠A=∠GDA=45°,DF=FC=CD,HF⊥CD,∠C=∠CDH=45°,∵∠EOF+∠OED+∠OFD+∠ADC=360°,∴∠EOF=360°﹣90°﹣90°﹣135°=45°;(2)∵∠ADC=135°,∠ADG=∠CDH=45°,∴∠GDC=∠ADH=90°,且GE⊥AD,HF⊥CD,∴GE∥DH,GD∥HF,∴四边形DGOH是平行四边形,∵AE=DE=AD,DF=FC=CD,AD=CD,∴DE=DF,且∠ADG=∠CDH=45°,∠DEG=∠DFH=90°,∴△DEG≌△DFH(ASA)∴DG=DH,∴四边形DGOH是菱形.22.有长为30m的篱笆,一面利用墙(墙的最大可用长度为10m),围成中间隔有一道篱笆(平行于AB)的矩形花圃,设花圃的一边AB为xm,面积为ym2.(1)用含有x的代数式表示y.(2)如果要围成面积为63m2的花圃,AB的长是多少?(3)能围成面积为72m2的花圃吗!如果能,请求出AB的长;如果不能,请说明理由.【分析】(1)利用矩形面积公式建立函数关系式;(2)把y=63代入函数解析式,求自变量的值,由于是实际问题,自变量的值也要受到限制;(3)把y=72代入函数解析式,求自变量的值,然后检验即可得出结论.【解答】解:(1)由题意得:y=x(30﹣3x),即y=﹣3x2+30x.(2)当y=63时,﹣3x2+30x=63.解此方程得x1=7,x2=3.当x=7时,30﹣3x=9<10,符合题意;当x=3时,30﹣3x=21>10,不符合题意,舍去;∴当AB的长为7m时,花圃的面积为63m2.(3)不能围成面积为72m2的花圃.理由如下:如果y=72,那么﹣3x2+30x=72,整理,得x2﹣10x﹣24=0,解此方程得x1=12>,x2=﹣2(不合题意舍去),当x=12时,30﹣3x=﹣6,不合题意舍去;故不能围成面积为72m2的花圃.23.如图,在矩形ABCD中,已知AB=4,BC=2,E为AB的中点,设点P是∠DAB平分线上的一个动点(不与点A重合).(1)证明:PD=PE.(2)连接PC,求PC的最小值.(3)设点O是矩形ABCD的对称中心,是否存在点P,使∠DPO=90°若存在,请直接写出AP的长.【分析】(1)根据角平分线的定义得到∠DAP=∠EAP,利用SAS定理证明△DAP≌△EAP,根据全等三角形的性质证明结论;(2)作CP′⊥AP′,根据垂线段最短得到P′C最小,根据等腰直角三角形的性质计算,得到答案;(3)根据矩形的性质、三角形中位线定理、勾股定理计算求出AP,再根据勾股定理计算点P在AF上时,AP的长.【解答】(1)证明:∵四边形ABCD为矩形,∴∠DAB=90°,∵AP平分∠DAB,∴∠DAP=∠EAP=45°,在△DAP和△EAP中,,∴△DAP≌△EAP(SAS)∴PD=PE;(2)解:如图1,作CP′⊥AP′于P′,则P′C最小,∵AB∥CD,∴∠DFA=∠EAP,∵∠DAP=∠EAP,∴∠DAP=∠DFA=45°,∴FC=DF=AD=2,∠P′FC=45°,∴P′C=FC×=,∴PC的最小值为;(3)解:如图2,∵DF=FC,OA=OC,∴OF∥AD,∴∠DFO=180°﹣∠ADF=90°,∴当点P与点F重合时,∠DPO=90°,此时,AP==2,当点P在AF上时,作PG⊥AD于G,PH⊥AB于H,∵AP平分∠DAB,PG⊥AD,PH⊥AB,∴PG=PH,设PG=PH=a,由勾股定理得,DP2=(2﹣a)2+a2,OP2=(2﹣a)2+(1﹣a)2,OD2=5,当∠DPO=90°时,DP2+OP2=OD2,即(2﹣a)2+a2+(2﹣a)2+(1﹣a)2=5,解得,a1=2(舍去),a2=,当a=时,AP=,综上所述,∠DPO=90°时,AP=2或.。

浙江省宁波市2019-2020学年初二下期末质量检测数学试题含解析

浙江省宁波市2019-2020学年初二下期末质量检测数学试题含解析

浙江省宁波市2019-2020学年初二下期末质量检测数学试题一、选择题(每题只有一个答案正确)1.如图,线段AB两端点的坐标分别为A(-1,0),B(1,1),把线段AB平移到CD位置,若线段CD两端点的坐标分别为C(1,a),D(b,4),则a+b的值为()A.7 B.6 C.5 D.42.如图,△ABC中,AB=AC=15,AD平分∠BAC,点E为AC的中点,连接DE,若△CDE的周长为21,则BC的长为()A.16 B.14 C.12 D.6→→→路径匀速运动到点D,3.如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A B C D∆的面积为y,P点的运动时间为x,则y关于x的函数图象大致为()设PADA.B.C.D.4.在今年的八年级期末考试中,我校(1)(2)(3)(4)班的平均分相同,方差分别为S12=20.8,S22=15.3,S32=17,S42=9.6,四个班期末成绩最稳定的是()A.(1)班B.(2)班C.(3)班D.(4)班5.某班30名学生的身高情况如下表:身高(m )1.45 1.48 1.50 1.53 1.56 1.60 人数 x y6 8 5 4 关于身高的统计量中,不随x 、y 的变化而变化的有( )A .众数,中位数B .中位数,方差C .平均数,方差D .平均数,众数6.如图,▱ OABC 的顶点 O 、A 、C 的坐标分别是(0,0),(2,0),(0.5,1),则点 B 的坐 标是( )A .(1,2)B .(0.5,2)C .(2.5,1)D .(2,0.5)7.从23、32x 、32x 3x 这四个代数式中任意抽取一个,下列事件中为确定事件的是( ) A .抽到的是单项式B .抽到的是整式C .抽到的是分式D .抽到的是二次根式8.某班组织了一次读书活动,统计了10名同学在一周内的读书时间,他们一周内的读书时间累计如表,则这10名同学一周内累计读书时间的中位数是( )一周内累计的读书时间(小时) 58 10 14 人数(个)1 4 32 A .8 B .7 C .9D .10 9.已知关于x 的方程mx 2+2x ﹣1=0有实数根,则m 的取值范围是( )A .m≥﹣1B .m≤1C .m≥﹣1且m≠0D .m≤1且m≠010.在平面直角坐标系中,已知点P 在第四象限,且点P 到x 轴的距离是4,到y 轴的距离是3,那么点P 的坐标为( )A .()43-,B .()34-,C .()43-,D .()34-,二、填空题 11.某超市促销活动,将A B C ,,三种水果采用甲、乙、丙三种方式搭配装进礼盒进行销售.每盒的总成本为盒中A B C ,,三种水果成本之和,盒子成本忽略不计.甲种方式每盒分别装A B C ,,三种水果631kg kg kg ,,;乙种方式每盒分别装A B C ,,三种水果262kg kg kg ,, .甲每盒的总成本是每千克A 水果成本的12.5倍,每盒甲的销售利润率为20%;每盒甲比每盒乙的售价低25%;每盒丙在成本上提高40%标价后打八折出售,获利为每千克A 水果成本的1.2倍.当销售甲、乙、丙三种方式搭配的礼盒数量之比为225::时,则销售总利润率为__________.100%=⨯利润(利润率)成本12.如图,在矩形ABCD 中,AC 为对角线,点E 为BC 上一点,连接AE,若∠CAD =2∠BAE,CD=CE=9,则AE 的长为_____________.13. .14.如图,1l 与2l 穿过正六边形ABCDEF ,且12l l ,则12∠-∠的度数为______.15.已知,四边形ABCD 中,AB ∥CD ,AB =8,DC =4,点M 、N 分别为边AB 、DC 的中点,点P 从点D 出发,以每秒1个单位的速度从D →C 方向运动,到达点C 后停止运动,同时点Q 从点B 出发,以每秒3个单位的速度从B →A 方向运动,到达点A 后立即原路返回,点P 到达点C 后点Q 同时停止运动,设点P 、Q 运动的时问为t 秒,当以点M 、N 、P 、Q 为顶点的四边形为平行四边形时,t 的值为________。

2019年浙江省八年级下学期期末考试数学试卷(含答案)

2019年浙江省八年级下学期期末考试数学试卷(含答案)

2019年浙江省八年级下学期期末考试数学试卷(含答案)2019年浙江省八年级下学期期末考试试卷数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

5.考试范围:浙教版八下全册。

第Ⅰ卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.若式子2x-1-1-2x+1有意义,则x的取值范围是A。

x≥0.5B。

x≤0.5C。

x=0.5D。

以上答案都不对2.下列命题中,真命题是A。

一组对边平行且一组邻边相等的四边形是平行四边形B。

顺次连接四边形各边中点所得的四边形是矩形C。

有一个角是直角的平行四边形是正方形D。

对角线互相垂直平分的四边形是菱形3.一元二次方程(x+1)(x-3)=2x-5根的情况是A。

无实数根B。

有一个正根,一个负根C。

有两个正根,且都小于3D。

有两个正根,且有一根大于34.已知反比例函数y=2/x,在下列结论中,不正确的是A。

图象必经过点(1,2)B。

图象在第一、三象限C。

y随x的增大而增大D。

若x>1,则y<25.在一次13人参加的歌咏比赛中,预赛成绩各不同,要取前7名参加决赛,XXX已经知道自己的成绩,她想知道自己是否能进入决赛,只需要再知道这13名同学成绩的A。

平均数B。

众数C。

方差D。

中位数6.如图,O为坐标原点,菱形OABC的顶点A的坐标为(-3,4),顶点C在x轴的负半轴上,函数y=k(x<0)的图象经过顶点B,则k的值为A。

-12B。

-27C。

-32D。

-367.用反证法证明“三角形的三个外角中至多有一个锐角”,应先假设A。

浙教版初中数学八年级下册期末试卷(2019-2020学年浙江省绍兴市柯桥区

浙教版初中数学八年级下册期末试卷(2019-2020学年浙江省绍兴市柯桥区

2019-2020学年浙江省绍兴市柯桥区八年级(下)期末数学试卷一、选择题(本题有10小题,每小题2分,共20分)1.(2分)在下列英文大写正体字母中,是中心对称图形的是()A.B.C.D.2.(2分)下列数化简的结果与实数5不相等的是()A.B.C.()2D.﹣3.(2分)已知一元二次方程x2﹣4x+m=0有一个根为2,则另一根为()A.﹣4B.﹣2C.4D.24.(2分)如图,要测量池塘两侧的两点A、B之间的距离,可以取一个能直接到达A、B 的点C,连结CA、CB,分别在线段CA、CB上取中点D、E,连结DE,测得DE=35m,则可得A、B之间的距离为()A.30m B.70m C.105m D.140m5.(2分)如图,点E在四边形ABCD的CD边的延长线上,若∠ADE=120°,则∠A+∠B+∠C的度数为()A.240°B.260°C.300°D.320°6.(2分)如图,在△ABC中,AB=AC,∠APB≠∠APC,求证:PB≠PC,当用反证法证明时,第一步应假设()A.AB≠AC B.PB=PC C.∠APB=∠APC D.∠B≠∠C 7.(2分)小欣同学对数据36,3■,58,40,62进行统计分析,发现其中一个两位数的个位数字被墨水污染看不到了,则分析结果与被污染数字无关的是()A.平均数B.方差C.中位数D.众数8.(2分)如图所示的▱ABCD,再添加下列某一个条件,不能判定▱ABCD是矩形的是()A.AC=BD B.AB⊥BC C.∠1=∠2D.∠ABC=∠BCD 9.(2分)小明用四根长度相同的木条首尾相接制作了能够活动的学具,他先活动学具成为图1所示,并测得∠ABC=60°,接着活动学具成为图2所示,并测得∠ABC=90°,若图2对角线BD=20cm,则图1中对角线BD的长为()A.10cm B.10cm C.10cm D.10cm 10.(2分)已知点A在反比例函数y=(x<0,k1<0)的图象上,点B,C在y=(x >0,k2>0)的图象上,AB∥x轴,CD⊥x轴于点D,交AB于点E,若△ABC的面积比△DBC的面积大4,=,则k1的值为()A.﹣9B.﹣12C.﹣15D.﹣18二、填空题(本题有10小题,每小题3分,共30分)11.(3分)代数式中,实数x的取值范围是.12.(3分)将方程x(x﹣2)=x+3化成一般形式后,二次项系数为.13.(3分)甲、乙、丙、丁四人各进行了6次跳远测试,他们的平均成绩相同,方差分别是S甲2=0.65,S乙2=0.55,S丙2=0.50,S丁2=0.45,则跳远成绩最稳定的是.14.(3分)某呼吸机制造商2020年一月份生产呼吸机1000台,2020年三月份生产呼吸机4000台,设二、三月份每月的平均增长率为x,根据题意,可列方程为.15.(3分)如图,在正方形ABCD中,E为对角线AC上一点,连接EB、ED,延长BE交AD于点F,若∠DEB=140°,则∠AFE的度数为:°.16.(3分)若关于x的方程2x(x﹣1)+mx=0有两个相等的实数根,则实数m的值为.17.(3分)如图,△ABC的三个顶点分别为A(1,2),B(4,2),C(4,4).若反比例函数y=在第一象限内的图象与△ABC有交点,则k的取值范围是.18.(3分)如果关于x的一元二次方程ax2+bx+c=0有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”,若(x﹣1)(mx﹣n)=0是倍根方程,则的值为.19.(3分)小敏沿对角线折叠一张矩形纸片,发现所得图形是轴对称图形,接着沿所得图形的对称轴再次折叠后,得到的仍是轴对称图形,则小红折叠的矩形纸片的长宽之比为.20.(3分)如图,已知在平行四边形ABCD中,AB=8,BC=20,∠A=60°,P是边AD上一动点,连结PB,将线段PB绕着点P逆时针旋转90°得到线段PQ,若点Q恰好落在平行四边形ABCD的边上,那么AP的值是.三.解答题、(本题有7小题,共50分)21.(6分)计算:(1)﹣3+2;(2)4×2÷.22.(6分)解方程:(1)2(x﹣1)2=18;(2)x2﹣2x=2x+1.23.(6分)某学校对全体学生“新冠肺炎”疫情防控知识的掌握情况进行了线上测试,该测试共有10道题,每题1分,满分10分.该校将七年级一班和二班的成绩进行整理,得到如下信息:班级平均数中位数众数优秀率(9分及以上为优秀)一班8.62a962%二班8.729b c 请你结合图表中所给信息,解答下列问题:(1)请直接写出a,b,c的值;(2)你认为哪个班对疫情防控知识掌握较好,请说明理由.(选择两个角度说明推断的合理性)24.(7分)在水果销售旺季,某水果店购进一种优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量(千克)与该天的售价x(元/千克)满足的关系为一次函数y=﹣2x+80.(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量;(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?25.(7分)在▱ABCD中,E,F分别是AB,DC上的点,且AE=CF,连接DE,BF,AF.(1)求证:四边形DEBF是平行四边形;(2)若AF平分∠DAB,AE=3,DE=4,BE=5,求AF的长.26.(8分)如图,在平面直角坐标系xOy中,已知点A坐标(2,3),过点A作AH⊥x轴,垂足为点H,AH交反比例函数在第一象限的图象于点B,且满足=2.(1)求该反比例函数的解析式;(2)点C在x正半轴上,点D在该反比例函数的图象上,且四边形ABCD是平行四边形,求点D坐标.27.(10分)共顶点的正方形ABCD与正方形AEFG中,AB=13,AE=5.(1)如图1,求证:DG=BE;(2)如图2,连结BF,以BF、BC为一组邻边作平行四边形BCHF.①连结BH,BG,求的值;②当四边形BCHF为菱形时,直接写出BH的长.2019-2020学年浙江省绍兴市柯桥区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题2分,共20分)1.(2分)在下列英文大写正体字母中,是中心对称图形的是()A.B.C.D.【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.【解答】解:A、是中心对称图形,故此选项符合题意;B、是轴对称图形,不是中心对称图形,故此选项不合题意;C、是轴对称图形,不是中心对称图形,故此选项不合题意;D、是轴对称图形,不是中心对称图形,故此选项不合题意;故选:A.【点评】此题主要考查了中心对称图形定义,关键是找出对称中心.2.(2分)下列数化简的结果与实数5不相等的是()A.B.C.()2D.﹣【分析】根据二次根式的性质解答.【解答】解:A、原式=5,故本选项错误.B、原式=5,故本选项错误.C、原式=5,故本选项错误.D、原式=﹣5,故本选项正确.故选:D.【点评】本题考查了二次根式的性质,二次根式的化简,属于基础题,熟记计算法则即可解题.3.(2分)已知一元二次方程x2﹣4x+m=0有一个根为2,则另一根为()A.﹣4B.﹣2C.4D.2【分析】设方程的另一个根为x1,根据两根之和等于﹣,即可得出关于x1的一元一次方程,解之即可得出结论.【解答】解:设方程的另一个根为x1,根据题意得:2+x1=4,解得:x1=2.故选:D.【点评】本题考查了根与系数的关系,牢记两根之和等于﹣是解题的关键.4.(2分)如图,要测量池塘两侧的两点A、B之间的距离,可以取一个能直接到达A、B 的点C,连结CA、CB,分别在线段CA、CB上取中点D、E,连结DE,测得DE=35m,则可得A、B之间的距离为()A.30m B.70m C.105m D.140m【分析】由D,E分别是边AC,AB的中点,首先判定DE是三角形的中位线,然后根据三角形的中位线定理求得AB的长即可.【解答】解:∵D、E分别是AC、BC的中点,∴DE是△ABC的中位线,根据三角形的中位线定理,得:AB=2DE=70m.故选:B.【点评】本题考查了三角形中位线定理的运用;熟练掌握三角形中位线定理是解决问题的关键.5.(2分)如图,点E在四边形ABCD的CD边的延长线上,若∠ADE=120°,则∠A+∠B+∠C的度数为()A.240°B.260°C.300°D.320°【分析】根据四边形的外角与相邻内角互补,以及多边形内角和定理:(n﹣2)•180 (n ≥3)且n为整数)解答即可.【解答】解:因为∠ADE=120°,∠ADE+∠ADC=180°,所以∠ADC=180°﹣∠ADE=180°﹣120°=60°,因为∠ADC+∠A+∠B+∠C=360°,所以∠A+∠B+∠C=360°﹣∠ADC=360°﹣60°=300°,故选:C.【点评】本题考查多边形的内角与外角.掌握多边形内角和定理:(n﹣2)•180 (n≥3)且n为整数)是解题的关键.6.(2分)如图,在△ABC中,AB=AC,∠APB≠∠APC,求证:PB≠PC,当用反证法证明时,第一步应假设()A.AB≠AC B.PB=PC C.∠APB=∠APC D.∠B≠∠C【分析】假设结论PB≠PC不成立,PB=PC成立.【解答】解:假设结论PB≠PC不成立,即:PB=PC成立.故选:B.【点评】本题考查反证法,解题的关键是熟练掌握反证法的步骤.7.(2分)小欣同学对数据36,3■,58,40,62进行统计分析,发现其中一个两位数的个位数字被墨水污染看不到了,则分析结果与被污染数字无关的是()A.平均数B.方差C.中位数D.众数【分析】利用平均数、中位数、方差和众数的定义对各选项进行判断,即可得出答案.【解答】解:这组数据的平均数、方差和众数都与被涂污数字有关,而这组数据的中位数为40,与被涂污数字无关.故选:C.【点评】本题考查了方差:它也描述了数据对平均数的离散程度.也考查了中位数、平均数和众数的概念.8.(2分)如图所示的▱ABCD,再添加下列某一个条件,不能判定▱ABCD是矩形的是()A.AC=BD B.AB⊥BC C.∠1=∠2D.∠ABC=∠BCD 【分析】矩形的判定定理有:(1)有一个角是直角的平行四边形是矩形.(2)有三个角是直角的四边形是矩形.(3)对角线互相平分且相等的四边形是矩形.据此判断.【解答】解:由对角线相等的平行四边形是矩形,可得当AC=BD时,能判定▱ABCD是矩形.由有一个角是直角的平行四边形是矩形,可得当AB⊥BC时,能判定▱ABCD是矩形.由平行四边形四边形对边平行,可得AD∥BC,即可得∠1=∠2,所以当∠1=∠2时,不能判定▱ABCD是矩形.由有一个角是直角的平行四边形是矩形,可得当∠ABC=∠BCD时,能判定▱ABCD是矩形.故选:C.【点评】本题考查的是矩形的判定定理以及平行四边形的判定和性质,难度一般.9.(2分)小明用四根长度相同的木条首尾相接制作了能够活动的学具,他先活动学具成为图1所示,并测得∠ABC=60°,接着活动学具成为图2所示,并测得∠ABC=90°,若图2对角线BD=20cm,则图1中对角线BD的长为()A.10cm B.10cm C.10cm D.10cm【分析】如图2,利用正方形的性质得到AB=BD=10,如图1,连接AC交BD 于O,根据菱形的性质得到AC⊥BD,OB=OD,BD平分∠ABC,则∠ABO=30°,然后利用含30度的直角三角形三边的关系求出OB,从而得到BD的长.【解答】解:如图2,∵四边形ABCD为正方形,∴AB=BD=×20=10,如图1,连接AC交BD于O,∵四边形ABCD为菱形,∴AC⊥BD,OB=OD,BD平分∠ABC,∵∠ABC=60°,∴∠ABO=30°,∴OA=AB=5,OB=OA=5,∴BD=2OB=10(cm).故选:D.【点评】本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.也考查了正方形的性质.10.(2分)已知点A在反比例函数y=(x<0,k1<0)的图象上,点B,C在y=(x >0,k2>0)的图象上,AB∥x轴,CD⊥x轴于点D,交AB于点E,若△ABC的面积比△DBC的面积大4,=,则k1的值为()A.﹣9B.﹣12C.﹣15D.﹣18【分析】设CE=2t,则DE=3t,利用反比例函数图象上点的坐标特征得到C(,5t),B(,3t),A(,3t),再根据三角形面积公式得到×(﹣)×2t﹣×5t (﹣)=4,然后化简后可得到的值.【解答】解:设CE=2t,则DE=3t,∵点B,C在y=(x>0,k2>0)的图象上,AB∥x轴,CD⊥x轴,∴C(,5t),B(,3t),∴A(,3t),∵△ABC与△DBC的面积之差为4,∴×(﹣)×2t﹣×5t(﹣)=4,∴k1=﹣12.故选:B.【点评】本题考查了反比例函数反比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.也考查了反比例函数图象上点的坐标特征.二、填空题(本题有10小题,每小题3分,共30分)11.(3分)代数式中,实数x的取值范围是x≥1.【分析】根据被开方数是非负数,可得实数x的取值范围.【解答】解:由题意,得x﹣1≥0,解得x≥1,故答案为:x≥1.【点评】本题考查了二次根式有意义的条件,利用被开方数是非负数得出不等式是解题关键.12.(3分)将方程x(x﹣2)=x+3化成一般形式后,二次项系数为1.【分析】先去括号、移项、合并,把方程化为一般式,从而得到二次项系数.【解答】解:去括号得x2﹣2x=x+3,移项得x2﹣2x﹣x﹣3=0,合并得x2﹣3x﹣3=0,所以二次项系数为1.故答案为1.【点评】本题考查了一元二次方程的一般式:要确定二次项系数,一次项系数和常数项,必须先把一元二次方程化成一般形式.13.(3分)甲、乙、丙、丁四人各进行了6次跳远测试,他们的平均成绩相同,方差分别是S甲2=0.65,S乙2=0.55,S丙2=0.50,S丁2=0.45,则跳远成绩最稳定的是丁.【分析】根据方差的意义求解可得.【解答】解:∵S甲2=0.65,S乙2=0.55,S丙2=0.50,S丁2=0.45,∴S丁2<S丙2<S乙2<S甲2,∴跳远成绩最稳定的是丁,故答案为:丁.【点评】本题主要考查方差,解题的关键是掌握方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.14.(3分)某呼吸机制造商2020年一月份生产呼吸机1000台,2020年三月份生产呼吸机4000台,设二、三月份每月的平均增长率为x,根据题意,可列方程为1000(1+x)2=4000.【分析】由该呼吸机制造商2020年一月份及三月份生产呼吸机的数量,即可得出关于x 的一元二次方程,此题得解.【解答】解:依题意,得:1000(1+x)2=4000.故答案为:1000(1+x)2=4000.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.15.(3分)如图,在正方形ABCD中,E为对角线AC上一点,连接EB、ED,延长BE交AD于点F,若∠DEB=140°,则∠AFE的度数为:65°.【分析】先由正方形的性质得出CD=CB,∠DCA=∠BCA,根据SAS证出△BEC≌△DEC,再由全等三角形的对应角相等得出∠DEC=∠BEC=70°,然后根据对顶角相等求出∠AEF,根据正方形的性质求出∠DAC,最后根据三角形的内角和定理即可求出∠AFE的度数.【解答】解:∵四边形ABCD是正方形,∴CD=CB,∠DCA=∠BCA,∵CE=CE,∴△BEC≌△DEC,∴∠DEC=∠BEC=∠DEB=70°,∴∠AEF=∠BEC=70°,∵∠DAC=45°,∴∠AFE=180°﹣70°﹣45°=65°.故答案是65°.【点评】本题主要考查对正方形的性质,全等三角形的性质和判定,三角形的内角和定理,对顶角相等等知识点的理解和掌握,能够熟练地运用这些性质进行推理是解题的关键.16.(3分)若关于x的方程2x(x﹣1)+mx=0有两个相等的实数根,则实数m的值为2.【分析】先把方程化为一般式,再根据判别式的意义得到△=(m﹣2)2﹣4×2×0=0,然后解关于m的方程即可.【解答】解:2x(x﹣1)+mx=0,方程整理为2x2+(m﹣2)x=0,根据题意得△=(m﹣2)2﹣4×2×0=0,解得m=2.故答案为:2.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.17.(3分)如图,△ABC的三个顶点分别为A(1,2),B(4,2),C(4,4).若反比例函数y=在第一象限内的图象与△ABC有交点,则k的取值范围是2≤k≤16.【分析】由于△ABC是直角三角形,所以当反比例函数y=经过点A时k最小,经过点C时k最大,据此可得出结论.【解答】解:∵△ABC是直角三角形,∴当反比例函数y=经过点A时k最小,经过点C时k最大,∴k最小=1×2=2,k最大=4×4=16,∴2≤k≤16.故答案为2≤k≤16.【点评】本题考查的是反比例函数的性质,熟知反比例函数图象上点的坐标特点是解答此题的关键.18.(3分)如果关于x的一元二次方程ax2+bx+c=0有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”,若(x﹣1)(mx﹣n)=0是倍根方程,则的值为4或1.【分析】将方程(x﹣1)(mx﹣n)=0整理成一般式,再根据“倍根方程”的定义,找出[﹣(m+n)]2﹣m•n=0,整理后即可得出2m2﹣5mn+2n2=0,即可求得2m﹣n=0或m﹣2n=0,进而求得的值为4或1.【解答】解:整理(x﹣1)(mx﹣n)=0得:mx2﹣(m+n)x+n=0,∵(x﹣1)(mx﹣n)=0是倍根方程,∴[﹣(m+n)]2﹣m•n=0,∴m2﹣mn+n2=0,即2m2﹣5mn+2n2=0,∴(2m﹣n)(m﹣2n)=0,∴2m﹣n=0或m﹣2n=0,∴m=n或m=2n,∴的值为4或1.故答案为:4或1.【点评】本题考查了根与系数的关系以及因式分解法解一元二次方程,熟练掌握“倍根方程”的定义是解题的关键.19.(3分)小敏沿对角线折叠一张矩形纸片,发现所得图形是轴对称图形,接着沿所得图形的对称轴再次折叠后,得到的仍是轴对称图形,则小红折叠的矩形纸片的长宽之比为1:1或:1.【分析】分两种情形分别讨论即可解决问题.【解答】解:①如图1,当AB:AD=1:1时,四边形ABCD是正方形,此时,点B',E,D重合,∴AF=CF=DF,且∠AFD=90°,此时△ADF是轴对称图形,符合题意.②如图2,当AD:AB=:1时,也符合题意,∵此时∠DAC=30°,∴AC=2CD,∴AF=FC=CD=AB=AB′,∴此时四边形AFEB′是轴对称图形,符合题意.综上所述,矩形纸片ABCD的长宽之比是1:1或:1.故答案为:1:1或:1.【点评】本题考查翻折变换、矩形的性质、轴对称的性质等知识,解题的关键是学会用分类讨论的思想思考问题.20.(3分)如图,已知在平行四边形ABCD中,AB=8,BC=20,∠A=60°,P是边AD上一动点,连结PB,将线段PB绕着点P逆时针旋转90°得到线段PQ,若点Q恰好落在平行四边形ABCD的边上,那么AP的值是4或6.【分析】如图1中,当点Q落在CD上时,作BE⊥AD于E,QF⊥AD交AD的延长线于F.设PE=x.如图2,当点Q落在AD上时,如图3中,当点Q落在直线BC上时,作BE⊥AD于E,PF⊥BC于F.则四边形BEPF是矩形,根据旋转的性质和平行四边形的性质以及三角函数的定义即可得到结论.【解答】解:如图1中,当点Q落在CD上时,作BE⊥AD于E,QF⊥AD交AD的延长线于F.设PE=x.在Rt△AEB中,∵∠A=60°,AB=8,∴BE=12,AE=4,∵将线段PB绕着点P逆时针旋转90°得到线段PQ,∴∠BPQ=90°,∴∠EBP+∠BPE=∠BPE+∠FPQ=90°,∴∠EBP=∠FPQ,∵PB=PQ,∠PEB=∠PFQ=90°,∴△PBE≌△QPF(AAS),∴PE=QF=x,EB=PF=12,∴DF=AE+PE+PF﹣AD=4﹣8+x,∵CD∥AB,∴∠FDQ=∠A,∴tan∠FDQ=tan A==,∴=,∴x=6﹣2,∴PE=6﹣2,∴AP=6﹣2+4=6+2;如图2,当点Q落在AD上时,∵将线段PB绕着点P逆时针旋转90°得到线段PQ,∴∠BPQ=90°,∴∠APB=∠BPQ=90°,在Rt△APB中,∵tan A==,AB=8,∴AP=AB=4;如图3中,当点Q落在直线BC上时,作BE⊥AD于E,PF⊥BC于F.则四边形BEPF 是矩形.在Rt△AEB中,∵∠A=60°,AB=8,∴BE=12,AE=4,∴PF=BE=12,∵△BPQ是等腰直角三角形,PF⊥BQ,∴PF=BF=FQ=12,∴PB=PQ=12,BQ=PB=24>20(不合题意舍去),综上所述,AP的值是或10,故答案为:6+2或4.【点评】本题考查了平行四边形的性质、锐角三角函数、勾股定理、解题的关键是学会用分类讨论的思想思考问题.三.解答题、(本题有7小题,共50分)21.(6分)计算:(1)﹣3+2;(2)4×2÷.【分析】(1)根据二次的性质化简二次根式,再合并同类二次根式便可;(2)先根据二次根式的积与商的运算法则计算,再进行有理数乘法运算.【解答】解:(1)原式=2,(2)原式=8=8×3=24,【点评】本题主要考查了二次根式的混合运算,关键二次根式的运算性质与法则.22.(6分)解方程:(1)2(x﹣1)2=18;(2)x2﹣2x=2x+1.【分析】(1)利用直接开平方法求解可得;(2)利用配方法求解可得.【解答】解:(1)方程两边除以2,得:(x﹣1)2=9,则x﹣1=3或x﹣1=﹣3,则x1=4,x2=﹣2;(2)原方程可整理为:x2﹣4x+4=5,则(x﹣2)2=5,则x﹣2=或x﹣2=﹣,解得:x1=2+,x2=2﹣.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.23.(6分)某学校对全体学生“新冠肺炎”疫情防控知识的掌握情况进行了线上测试,该测试共有10道题,每题1分,满分10分.该校将七年级一班和二班的成绩进行整理,得到如下信息:班级平均数中位数众数优秀率(9分及以上为优秀)一班8.62a962%二班8.729b c 请你结合图表中所给信息,解答下列问题:(1)请直接写出a,b,c的值;(2)你认为哪个班对疫情防控知识掌握较好,请说明理由.(选择两个角度说明推断的合理性)【分析】(1)根据条形统计图中的数据,可以得到a、b、c的值;(2)本题答案不唯一,只要合理即可.【解答】解:(1)由条形统计图可知,一班的人数为:1+2+5+11+18+13=50,a=9,b=8,c=×100%=56%,即a,b,c的值分别为9,8,56%;(2)从平均数看,一班比二班平均分低一些,二班更好;从众数看,一班为9,二班为8,一班更好.【点评】本题考查众数和中位数,解答本题的关键是明确题意,利用数形结合的思想解答.24.(7分)在水果销售旺季,某水果店购进一种优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量(千克)与该天的售价x(元/千克)满足的关系为一次函数y=﹣2x+80.(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量;(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?【分析】(1)把x=23.5代入函数式即可求出结论;(2)根据总利润=每千克利润×销售数量,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【解答】解:(1)∵y与x之间的函数关系式为y=﹣2x+80.∴当x=23.5时,y=﹣2x+80=33.答:当天该水果的销售量为33千克.(2)根据题意得:(x﹣20)(﹣2x+80)=150,解得:x1=35,x2=25.∵20≤x≤32,∴x=25.答:如果某天销售这种水果获利150元,那么该天水果的售价为25元.【点评】本题考查了一元二次方程的应用以及一次函数的应用,解题的关键是:(1)代入求值;(2)找准等量关系,正确列出一元二次方程.25.(7分)在▱ABCD中,E,F分别是AB,DC上的点,且AE=CF,连接DE,BF,AF.(1)求证:四边形DEBF是平行四边形;(2)若AF平分∠DAB,AE=3,DE=4,BE=5,求AF的长.【分析】(1)根据平行四边形的性质得到∠A=∠C,AD=CB,根据全等三角形的性质和平行四边形的判定定理即可得到结论;(2)根据平行线的性质和角平分线的定义得到∠DAF=∠AFD,求得AD=DF,根据勾股定理的逆定理和勾股定理即可得到结论.【解答】(1)证明:∵四边形ABCD是平行四边形,∴∠A=∠C,AD=CB,在△DAE和△BCF中,∴△DAE≌△BCF(SAS),∴DE=BF,∵AB=CD,AE=CF,∴AB﹣AE=CD﹣CF,即DF=BE,∵DE=BF,BE=DF,∴四边形DEBF是平行四边形;(2)解:∵AB∥CD,∴∠DF A=∠BAF,∵AF平分∠DAB,∴∠DAF=∠BAF,∴∠DAF=∠AFD,∴AD=DF,∵四边形DEBF是平行四边形,∴DF=BE=5,BF=DE=4,∴AD=5,∵AE=3,DE=4,∴AE2+DE2=AD2,∴∠AED=90°,∵DE∥BF,∴∠ABF=∠AED=90°,∴AF===4.【点评】本题考查了全等三角形的判定和性质,平行四边形的性质和判定,勾股定理,矩形的性质和判定的应用,能综合运用知识点进行推理是解此题的关键.26.(8分)如图,在平面直角坐标系xOy中,已知点A坐标(2,3),过点A作AH⊥x轴,垂足为点H,AH交反比例函数在第一象限的图象于点B,且满足=2.(1)求该反比例函数的解析式;(2)点C在x正半轴上,点D在该反比例函数的图象上,且四边形ABCD是平行四边形,求点D坐标.【分析】(1)先求出点B坐标,利用待定系数法可求反比例函数解析式;(2)利用平行四边形的性质可得AB∥CD,AB=CD=2,可求点D坐标.【解答】解:∵点A坐标(2,3),∴AH=3,∵=2,∴BH=1,AB=2,∴点B(2,1),设反比例函数的解析式为y=(k≠0),∵点B在反比例函数的图象上,∴k=2×1=2,∴反比例函数的解析式为y=;(2)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD=2,∵AB⊥x轴,∴CD⊥x轴,∴点D纵坐标2,∴点D坐标(1,2).【点评】本题是反比例函数综合题,考查了反比例函数的性质,平行四边形的性质,熟练运用这些性质进行推理是本题的关键.27.(10分)共顶点的正方形ABCD与正方形AEFG中,AB=13,AE=5.(1)如图1,求证:DG=BE;(2)如图2,连结BF,以BF、BC为一组邻边作平行四边形BCHF.①连结BH,BG,求的值;②当四边形BCHF为菱形时,直接写出BH的长.【分析】(1)证△DAG≌△BAE(SAS),即可得出结论;(2)①连接GH,延长HF交AB于N,设AB与EF的交点为M,证△GAB≌△GFH(SAS),得GH=GB,∠GHF=∠GBA,证△GHB为等腰直角三角形,即得结论;②分两种情况,证出点B、E、G在一条直线上,求出AF=EG=AE=10,则OA=OG=OE=5,由勾股定理求出OB=12,求出BG,即可得出答案.【解答】(1)证明:∵四边形ABCD和四边形AEFG是正方形,∴AD=AB=CB,AG=AE,∠DAB=∠GCE=90°,∴∠DAB﹣∠GAF=∠GCE﹣∠GAF,即∠DAG=∠BAE,在△DAG和△BAE中,,∴△DAG≌△BAE(SAS),∴DG=BE;(2)解:①连接GH,延长HF交AB于N,设AB与EF的交点为M,如图2所示:∵四边形BCHF是平行四边形,∴HF∥BC,HF=BC=AB,∵BC⊥AB,∴HF⊥AB,∴∠HFG=∠FMB,又AG∥EF,∴∠GAB=∠FMB∴∠HFG=∠GAB,在△GAB和△GFH中,,∴△GAB≌△GFH(SAS),∴GH=GB,∠GHF=∠GBA,∴∠HGB=∠HNB=90°,∴△GHB为等腰直角三角形,∴BH=BG,∴=;②分两种情况:a、如图3所示:连接AF、EG交于点O,连接BE,∵四边形BCHF为菱形,∴CB=FB,∵AB=CB,∴AB=FB=13,∴点B在AF的垂直平分线上,∵四边形AEFG是正方形,∴AF=EG,OA=OF=OG=OE,AF⊥EG,AE=FE=AG=FG,∴点G、点E都在AF的垂直平分线上,∴点B、E、G在一条直线上,∴BG⊥AF,∵AE=5,∴AF=EG=AE=10,∴OA=OG=OE=5,∴OB===12,∴BG=OB+OG=12+5=17,由①得:BH=BG=17;b、如图4所示:连接AF、EG交于点O,连接BE,同上得:点B、E、G在一条直线上,OB=12,BG=OG+OB﹣OG=12﹣5=7,由①得:BH=BG=7;综上所述,BH的长为17或7.【点评】本题是四边形综合题目,考查了正方形的性质、菱形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、勾股定理、线段垂直平分线的判定等知识;本题综合性强,熟练掌握正方形的性质和菱形的性质,证明三角形全等是解题的关键.。

2019-2020学年浙江省嘉兴市八年级(下)期末数学试卷和答案

2019-2020学年浙江省嘉兴市八年级(下)期末数学试卷和答案

2019-2020学年浙江省嘉兴市八年级(下)期末数学试卷一、选择题(本题有10小题,每小题3分,共30分.请选出一个符合题意的正确选项不选、多选、错选,均不给分)1.(3分)下列属于一元二次方程的是()A.x2﹣3x+y=0B.x2+2x=C.2x2=5xD.x(x2﹣4x)=32.(3分)以下关于新型冠状病毒(2019﹣nCoV)的防范宣传图标中是中心对称图形的是()A.B.C.D.3.(3分)已知反比例函数的图象经过点(1,3),则这个反比例函数的表达式为()A.y=B.y=C.y=D.y=﹣4.(3分)下列各数中,能使二次根式有意义的是()A.﹣1B.0C.2D.15.(3分)如图,点E是▱ABCD中边BC延长线上一点,下列结论不一定成立的是()A.AB=CD B.∠ABD+∠ADB=∠DCEC.∠BAD=∠BCD D.∠ABD=∠CBD6.(3分)已知一组数据x1,x2,x3,把每个数据都减去2,得到一组新数据x1﹣2,x2﹣2,x3﹣2,对比这两组数据的统计量不变的是()A.平均数B.方差C.中位数D.众数7.(3分)用反证法证明命题“在四边形中至少有一个内角不大于90°”时,首先应假设()A.每个内角都小于90°B.每个内角都大于90°C.没有一个内角大于90°D.每个内角都等于90°8.(3分)点A(a,b),B(a﹣1,c)在反比例函数y=的图象上,则b与c的大小关系为()A.b<c B.b=c C.b>c D.不能确定9.(3分)如图,在正方形ABCD中,点G为CD边上一点,连接AF,BD交于点P,过点F作FH∥BG交BC于点H,连接AH,下列结论中错误的是()A.HE=CD B.△AHF是等腰直角三角形C.点P为AF中点D.PK=BK+DP10.(3分)关于x的方程kx2﹣(2k+1)x+k+1=0(k为非零常数),下列说法:①当k=1时;②x=1是该方程的实数根;③该方程有两个不相等的实数根.其中正确的是()A.①②B.②③C.②D.③二、填空题(本题有10小题,每小题3分,共30分)11.(3分)=.12.(3分)五边形的外角和的度数是.13.(3分)一元二次方程x2=2x的根是.14.(3分)要使矩形ABCD成为正方形,可添加的条件是(写一个即可).15.(3分)小丽参加单位举行的演讲比赛,评分规则及小丽的得分如下表:演讲内容语言表达仪表仪容所占比例30%60%10%小丽得分908575则小丽的最终演讲评分为.16.(3分)已知反比例函数y=,当x>3时,y的取值范围是.17.(3分)某商店4月份营业额为2.7万元,6月份营业额为3.5万元,平均每月的增长率为x.18.(3分)已知关于x的方程2x2﹣3x+m=0(m是正整数),有实数根,则代数式m2﹣3m+2的值是.19.(3分)如图,四边形ABCD中,AB=BC=3,∠ABC=120°,点E是对角线BD上的一个动点,BC,CD,垂足分别为点F,H,I,G,连接FG和HI.20.(3分)如图,在平面直角坐标系xOy中,已知菱形ABCD的顶点A(0,2)(2,0),顶点B在x轴上,顶点D在反比例函数y=,点E为边CD上的动点,过点E作EF∥x轴交反比例函数图象于点F,当CE=CG时,点F的坐标为.三、解答题21.计算:(1)﹣;(2)解方程:x2+4x﹣5=0.22.如图,两张完全相同的方格纸,方格纸中的每个小正方形的边长均为1,A,连接AB,请完成下列作图:(1)在图1中以AB为边作一个▱ABCD,使▱ABCD各顶点都在格点上.(2)在图2中以AB为对角线作一个菱形,使得菱形的面积为15,且菱形各顶点都在格点上.23.某校为了了解学生对“防溺水”安全知识的掌握情况,从各年级学生中抽取部分学生进行检测,并对所有抽测学生的成绩(百分制),根据表格提供的信息解答下列问题:某校部分学生“防溺水”安全知识检测成绩统计表检测成绩分数段频数频率熟悉程度(分)90≤x≤100240.48非常熟悉80≤x<90a0.36熟悉70≤x<8060.12有点熟悉60≤x<702b不熟悉(1)求表中a和b的值;(2)分别写出抽测学生成绩中的中位数和众数所在的分数段;(3)如果该校有2600名学生,请估计本校对“防溺水”安全知识“非常熟悉”的学生人数.24.某一皮衣专卖店销售某款皮衣,其进价为每件750元,经市场调查发现,平均每天可售出30件,每件降价50元,皮衣专卖店若想要平均每天获利12000元,则每件皮衣定价为多少元?(1)以下是小明和小红的两种不同设法,请帮忙填完整:小明:设每件皮衣降价x元,由题意,可列方程:.小红:设每件皮衣定价为y元,由题意,可列方程:.(2)请写出一种完整的解答过程.25.如图,反比例函数y=与一次函数y=﹣x+b的图象交于点A (1,3)(1)求k的值和点B的坐标.(2)结合图象,直接写出当不等式<﹣x+b成立时x的取值范围.(3)若点C是反比例函数y=第三象限图象上的一个动点,当CA=CB时26.如图,将矩形ABCD绕着点C按顺时针方向旋转得到矩形FECG,使点B落在AD边上的点E处,连接BE.(1)求证:BE平分∠AEC;(2)取BC中点P,连接PH,求证:PH∥CG;(3)若BC=2AB=2,求BG的长.答案一、选择题(本题有10小题,每小题3分,共30分.请选出一个符合题意的正确选项不选、多选、错选,均不给分)1.【解答】解:A、方程含有两个未知数;B、不是整式方程;C、符合一元二次方程的定义;D、未知数的最高次数是3次,故本选项错误.故选:C.2.【解答】解:A、是中心对称图形;B、不是中心对称图形;C、不是中心对称图形;D、不是中心对称图形;故选:A.3.【解答】解:设该反比例函数的解析式为:y=(k≠0).把(1,5)代入,得3=,解得k=6.则该函数解析式为:y=.故选:B.4.【解答】解:由题意得,2x﹣3≥2,解得,x≥,观察选项,只有选项C符合题意.故选:C.5.【解答】解:(A)在▱ABCD中,AB=CD,故A正确.(B)在▱ABCD中,AB∥CD∴∠ABD=∠CDB,∴∠ABD+∠ADB=∠CDB+∠ADB=∠ADC,∵AD∥BC,∴∠ADC=∠DCE,∴∠ABD+∠ADB=∠DCE,故B正确.(C)在▱ABCD中,∠BAD=∠BCD,故C正确.(D)在▱ABCD中,AB∥CD∴∠ABD=∠CDB,故(D)不一定成立.故选:D.6.【解答】解:∵数据x1,x2,x6,把每个数据都减去2,得到一组新数据x1﹣3,x2﹣2,x2﹣2,∴对比这两组数据的统计量不变的是方差;故选:B.7.【解答】解:反证法证明命题“在四边形中至少有一个内角不大于90°”时,首先应假设每个内角都大于90°,故选:B.8.【解答】解:∵k=1>0,∴当x>4时,y值x值的增大而减小.又∵a>1,∴a>a﹣1>7,∴b<c.故选:A.9.【解答】解:A.∵四边形CEFG是正方形,∴GF∥CE,GF=CE,∵BG∥HF,∴四边形BHFG为平行四边形,∴GF=BH,∴BH=CE,∴BC=HE,∵四边形ABCD为正方形,∴BC=CD.∴HE=CD,故A正确;B.∵ABCD是正方形,∴AB=BC,CE=EF,∵BC=HE,BH=CE,∴AB=HE,BH=EF,∴△ABH≌△HEF(SAS),∴AH=HF,∠BAH=∠EHF,∵∠BAH+∠AHB=90°,∴∠EHF+∠AHB=90°,∴∠AHF=90°,∴△AHF为等腰直角三角形,故B正确;C.过H作HM⊥BC,连接MF,∵四边形ABCD是正方形,∴∠ABC=90°,∠HBD=,∴∠HBM=45°,∴BH=MH,∵△ABH≌△HEF,∴BH=EF,∴MH=EF,∴四边形EFMH为矩形,∴MF∥BE∥AD,MF=HE,∴∠DAP=∠MFP,∠ADP=∠FMP,∵AD=BC=HE,∴AD=MF,∴△PAD≌△PFM(ASA),∴AP=FP,故C正确;D.将△ADP绕点A顺时针旋转90,连接QK,∠QAP=90°,∵△AHF是等腰直角三角形,∴∠HAF=45°,∴∠QAK=∠PAK=45°,∵AK=AK,∴△AQK≌△APK(SAS),∴QK=PK,∵四边形ABCD是正方形,∴∠ABD=∠ADB=45°,由旋转性质知,∠ABQ=∠ADP=45°,∴∠QBK=90°,∴BK6+BQ2=QK2,∴BK6+DP2=KP2,故D错误;故选:D.10.【解答】解:关于x的方程kx2﹣(2k+2)x+k+1=0(k为非零常数),①当k=8时,方程即为x2﹣3x+6=0,则x=1或3,不符合题意;②把x=1代入方程,左边=k﹣(2k+8)+k+1=0,左边=右边,故说法②正确,符合题意;③∵k为非零常数,∴kx5﹣(2k+1)x+k+8=0是关于x的一元二次方程,∵△=[﹣(2k+8)]2﹣4k(k+3)=1>0,∴该方程有两个不相等的实数根,故说法③正确,符合题意;故选:B.二、填空题(本题有10小题,每小题3分,共30分)11.【解答】解:原式==5.故答案为:5.12.【解答】解:五边形的外角和是360度.13.【解答】解:移项,得x2﹣2x=5,提公因式得,x(x﹣2)=0,x=4或x﹣2=0,∴x3=0,x2=5.故答案为:x1=0,x4=2.14.【解答】解:根据有一组邻边相等或对角线互相垂直的矩形是正方形,得到应该添加的条件为:AB=BC或BC=CD或CD=DA 或DA=AB或AC⊥BD.故答案为:AB=BC.15.【解答】解:小丽的最终演讲评分为90×30%+85×60%+75×10%=85.5,故答案为:85.5.16.【解答】解:∵y=,6>6,∴当x>0时,y随x的增大而减小,y=2,∴当x>4时,y的取值范围是0<y<2,故答案为:3<y<2.17.【解答】解:依题意,得:2.7(4+x)2=3.8.故答案为:2.7(3+x)2=3.6.18.【解答】解:∵关于x的方程2x2﹣6x+m=0有实数根,∴△=(﹣3)3﹣4×2m≥4,解得m≤,∵m是正整数,∴m=5,∴m2﹣3m+5=12﹣3×1+2=8.故答案为:0.19.【解答】解:如图,连接AE.∵EF⊥AB,EG⊥AD,∴∠EFA=∠EGA=∠FAG=90°,∴四边形AFEG是矩形,∴FG=AE,同法可证,HI=EC,∵∠BAD=∠BCD=90°,AB=CB,∴Rt△ABD≌△Rt△CBD(HL),∴∠ABD=∠CBD=∠ABC=60°,∵AB=CB,∠ABE=∠CBE,∴△ABE≌△CBE(SAS),∴AE=EC,∴FG=HI=AE,∴FG+HI=8AE,∴当AE最小时,FG+HI的值最小,根据垂线段最短可知,当AE⊥BD时,AE的最小值=AB•sin60°=3×=,∴FG+HI的最小值为3.故答案为2.20.【解答】解:连接AC,过点F作FM⊥x轴,∵A(0,2)),0),∴OA=2,OC=2,∴AC==4==,∴∠OCA=60°,∵菱形ABCD,∴△ABC是正三角形,∴AB=BC=CA=8=AD=CD,∴D(4,2),∴反比例函数的关系式为y=,∵EF∥x轴,FG∥CD,∴四边形CGFE是菱形,且∠ECG=60°,在Rt△FMG中,∠GFM=30°,设GM=x,则CG=GF=8x x,∴点F(2+2x,x),又∵点F(2+3x,x)在y=,∴(2+3x)•x=8,解得,x2=﹣2(舍去),x2=,∴点F(6,),故答案为:(7,).三、解答题21.【解答】解:(1)原式=2﹣=;(2)(x+5)(x﹣3)=0,x+5=3或x﹣1=0,所以x4=﹣5,x2=5.22.【解答】解:(1)如图所示:▱ABCD即为所求;(2)如图所示:菱形ADBC即为所求.23.【解答】解:(1)24÷0.48=50(人),a=50×0.36=18,答:表格中的a=18,b=2.04;(2)将50个学生的成绩从小到大排列后,处在第25,因此中位数在80≤x<90组,学生成绩的众数,由于不知道每一个学生的具体成绩;(3)2600×0.48=1248(人),答:本校对“防溺水”安全知识“非常熟悉”的学生人数为1248人.24.【解答】解:(1)小明:设每件皮衣降价x元,则平均每天的销售量为(30+x÷50×10)件,依题意,得:(1100﹣x﹣750)(30+x÷50×10)=12000;小红:设每件皮衣定价为y元,则平均每天的销售量为(30+,依题意,得:(y﹣750)(30+.故答案为:(1100﹣x﹣750)(30+x÷50×10)=12000;(y﹣750)(30+.(2)选择小明的的设法,则(1100﹣x﹣750)(30+x÷50×10)=12000,整理,得:x2﹣200x+7500=0,解得:x4=50,x2=150,∴1100﹣x=1050或950.答:每件皮衣定价为1050元或950元.选择小红的设法,则(y﹣750)(30+,整理,得:y2﹣2000y+997500=2,解得:y1=1050,y2=950.答:每件皮衣定价为1050元或950元.25.【解答】解:(1)将点A的坐标分别代入一次函数y=﹣x+b与反比例函数y=(x>0)并解得:b=4,故一次函数与反比例函数的表达式分别为:y=﹣x+8,y=,则,解得,故点B的坐标为(3,8);(2)从函数图象看,不等式;(3)设点C(m,),∵CA=CB,∴(m﹣1)3+(﹣3)8=(m﹣3)2+(﹣1)2,解得:m=(舍去正值),故C().26.【解答】解:(1)∵矩形ABCD绕着点C按顺时针方向旋转得到矩形FECG,∴CB=CE,∴∠EBC=∠BEC,又∵AD∥BC,∴∠EBC=∠BEA,∴∠BEA=∠BEC,∴BE平分∠AEC;(2)如图1,过点B作CE的垂线BQ,∵BE平分∠AEC,BA⊥AE,∴AB=BQ,∴CG=BQ,∵∠BQH=∠GCH=90°,BQ=AB=CG,∴△BHQ≌△GHC(AAS),∴BH=GH,即点H是BG中点,又∵点P是BC中点,∴PH∥CG;(3)如图2,过点G作BC的垂线GM,∵BC=3AB=2,∴BQ=1,∴∠BCQ=30°,∵∠ECG=90°,∴∠GCM=60°,∴,,∴.第21页(共21页)。

浙江省八年级下学期数学期末考试试卷

浙江省八年级下学期数学期末考试试卷

浙江省八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题(每小题3分,共计30分) (共10题;共30分)1. (3分)最小的自然数是()A . 0B . 1C . 不存在D . 无数个2. (3分) (2019八下·镇江期中) 下列四个命题,其中真命题共有()①一组对边平行且一组对角相等的四边形是平行四边形;②对角线互相垂直且相等的四边形是正方形;③顺次连接矩形四边中点得到的四边形是菱形;④正五边形既是轴对称图形又是中心对称图形.A . 1个B . 2个C . 3个D . 4个3. (3分) (2019八下·大埔期末) 如图,在平面直角坐标系中,▱MNEF的两条对角线ME,NF交于原点O,点F 的坐标是(3,2),则点N的坐标为()A . (-3,-2)B . (-3,2)C . (-2,3)D . (2,3)4. (3分) (2021八下·杏花岭月考) 已知,下列不等式成立的是()A .B .C .D .5. (3分) (2020八上·海淀期中) 如图,△ABC中,若AB=AC , BD=CE , CD=BF ,则∠EDF=()A . 90°-∠AB . 180°-2∠AC .D .6. (3分) (2020八上·渝北月考) 如图,∠A=∠D=90°,AC=DB,则△ABC≌△DCB的理由是()A . HLB . ASAC . AASD . SAS7. (3分) (2016八上·绵阳期中) 如图所示,在△ABC中,AC⊥BC,AE为∠BAC的平分线,DE⊥AB,AB=7cm,AC=3cm,则BD等于()A . 1cmB . 2cmC . 3cmD . 4cm8. (3分)已知命题:等边三角形是等腰三角形.则下列说法正确的是()A . 该命题为假命题B . 该命题为真命题C . 该命题的逆命题为真命题D . 该命题没有逆命题9. (3分) (2020九上·镇海期中) 已知M(1,2),N(3,-3),P(x,y)三点可以确定一个圆,则以下P点坐标不满足要求的是()A . (3,5)B . (-3,5)C . (1,2)D . (1,-2)10. (3分)(2018·眉山) 如图,在 ABCD中,CD=2AD,BE⊥AD于点E,F为DC的中点,连结EF、BF,下列结论:①∠ABC=2∠ABF;②EF=BF;③S四边形DEBC=2S△EFB;④∠CFE=3∠DEF,其中正确结论的个数共有()。

2019-2020学年浙教版八年级数学下册期末测试卷(含答案)

2019-2020学年浙教版八年级数学下册期末测试卷(含答案)

2019-2020学年八年级数学下册期末测试题一、选择题(共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一个是符合题意的,请把正确的选项填在题后的括号内)1 )A .3B .-3C .81D .-812.下列图案中,属于中心对称图形且属于轴对称图形的是( )A B C D3.某校4个小组参加植树活动,平均每组植树10株.已知第一,二,四组分别植树9株、9株、8株,那么第三小组植树( )A .14株B .13株C .12株D .11株4.将一元二次方程224x x -+=-化成一般形式为( )A . 2420x x -+=B . 2420x x --=C . 2420x x ++=D . 2420x x +-=5.在式子1x ,11x -x 可以取到0和1的是( )A . 1xB . 11x - C ..6.一个四边形截去一个角后,形成新的多边形的内角和是( )A .180°B .360°或540°C .540°D .180°或360°或540°7.已知方程20ax c +=有两个不相等的实根,则一元二次方程20ax bx c ++=必有( )A .两个不相等的实根B .两个相等的实根C .无实根D .不能确定8.如图,在菱形ABCD 中,AB 4,BAD 120,E,F ︒=∠=分别是边BC,CD 中点,则AEF面积等于( )A .B . . D . 9.如图,在正方形ABCD 的外侧,作等边三角形ADE ,若45BED ∠=︒,则BFC ∠=( )A .30°B .45°C .60°D .75°10.如图,在矩形ABCD 中,点E F 、分别在边AB BC 、上,且3BE AB 35==,将矩形沿直线EF 折叠,点B 恰好落在AD 边上的点P 处,连结BP 交EF 于点Q ,则PQ 的长度是( )A .B .. .二、填空题(共6小题,每小题3分,满分18分)11a 的取值范围是_________12.已知数据:3,3,6,5,a ,-2,-7,5的众数是5,则这组数据的中位数是____________.13.某超市一月份的营业额为200万元,三月份的营业额为242万元,如果每月比上月增长的百分数相同,设平均每月的增长率为x ,则可列方程___________________14.如图,在ABCD 中,对角线AC 与BD 交于点O ,增加一个条件______________,使ABCD 成为菱形.15.关于x 的方程2230x x +-=和22240x x m m +++=有公共根,则m 的值为___.16.如图,在平面直角坐标系中,O 为坐标原点,四边形OABC 是矩形,点A C ,的坐标分别为90((03A C ,),,),点D 以2/cm s 的速度从A 出发向终点O 运动,点P 以1/cm s 的速度从C 出发向终点B 运动,当ODP ∆是以OP 为一腰的等腰三角形时,点P 的坐标为______三、解答题(本题有7小题,共52分,解答需要写出必要的文字说明,演算步骤和证明过程)17、计算:(1(218、解方程:(1)226x x =(2)22610x x -+=19、如图,在平行四边形ABCD 中,E F 、是对角线A C 、上的两点,且AE CF =,求证:四边形BFDE 是平行四边形.20、各顶点都在方格纸格点(横竖格子线的交错点)上的多边形称为格点多边形.如何计算它的面积?奥地利数学家皮克证明了格点多边形的面积公式: 112S a b =+-,其中a 表示多边形内部的格点数,b 表示多边形边界上的格点数,S 表示多边形的面积.如图①,1a 4,b 7,S 47162===+⨯-= (1)请算出图②中格点多边形的面积是 .(2)请在图③中画一个格点平行四边形,使它的面积为7,且每条边上除顶点外无其他格点.(3)请在图④中画一个格点菱形(非正方形),使它内部和边界上都只含有4个格点,并算出它的面积是 .21、某校德育处组织“四品八德”好少年评比活动,每班只有一个名额.现某班有甲、乙、丙三名学生参与竞选,第一轮根据“品行规范”、“学习规范”进行量化考核.甲乙丙他们的量化考核成绩(单位:分)分别用两种方式进行了统计,如下表和图1:(1)请将表和图1中的空缺部分补充完整;(2)竞选的第二轮是由本班的50位学生进行投票,每票计6分,甲、乙、丙三人的得票情况如图2(没有弃权票,每名学生只能选一人).①若将“品行规范”、“学习规范”、“得票”三项测试得分按4:3:3的比例确定最后成绩,通过计算谁将会被推选为校“四品八德”好少年.②若规定得票测试分占20%,要使甲学生最后得分不低于91分,则“品行规范”成绩在总分中所占比例的取值范围应是.22、某汽车销售公司4月份销售某厂汽车,在一定范围内,每辆汽车的进价与销售量有如下关系:若当月仅售出1辆汽车,则该汽车的进价为30万元:每多售出1辆,所有售出汽车的进价均降低0.1万元/辆,月底厂家一次性返利给销售公司,每辆返利0.5万元.(1)若该公司当月售出5辆汽车,则每辆汽车的进价为万元.(2)若汽车的售价为31万/辆,该公司计划当月盈利12万元,那么需要售出多少辆汽车?(盈利=销售利润+返利)23、如图,Rt ABO 在直角坐标系第一象限内,OB 与x 轴重合,ABO Rt ∠=∠,4OA =,30AOB ∠=︒ ,点Q 从点B 出发,以每秒3个单位向点O 运动,点P 同时从点O 出发以每秒3个单位向点A 运动,当其中有一点到达终点时,另一点立即停止运动.C 是射线BA 上的一点,且2BQ BC =,以BQ BC ,为邻边作矩形QBCD .设运动时间为t 秒. (1)写出点A 的坐标( , );OP = ;BC = .(用t 的代数式表示)(2)当点D 落在OA 上时,求此时PD 的长?(3)①在P Q 、的运动过程中,直角坐标系中是否存在点H ,使得P Q D H 、、、四点构成的四边形是菱形?若存在求出t 的值,不存在,请说明理由.②如图,以PQ 为边按逆时针方向做正方形PQEF ,当正方形PQEF 的顶点E 或F 落在矩形QBCD 的某一边上时,则t = (直接写出答案)答案一、选择题(本题有 10 个小题,每小题 3 分,共 30 分)11.3a ≤;12.4;13.2200(1)242x +=;14.AC BD ⊥(或 AB BC =等)15.-1 或-3;16.(6-或9,34⎛⎫ ⎪⎝⎭三、解答题(本题有 7 小题,共 52 分)17、(1)原式=274-+=-1;(2)原式==18.(1)解2260x x -=2(3)0x x -=120,3x x ==(2)解224(6)42128b ac -=--⨯⨯=1,2x ==19.证明:连接DB ,交AC 于点O ,ABCD ,AO CO,DO BO ∴==,又AE CF =,EO FO ∴=,∴四边形BFDE 是平行四边形.20.(1)12.5(2)如图,(3)5.21、(1)85;如图红色部(2)解:甲得票5030%690=⨯⨯=分乙得票5036%6108=⨯⨯=分丙得票5034%6102=⨯⨯=分(954803903)1089x =⨯+⨯+⨯÷=甲分(9048531083)1093.9x =⨯+⨯+⨯÷=乙分(8549031023)1091.6x =⨯+⨯+⨯÷=丙分所以乙将被推荐为校“四品八德”好少年(3)0.60.8x ≤<22、(1)29.6;(2)解:设需要销售 x 辆则{31[300.1(1)]0.5}12x x ---+=化简得 2141200x x +-=(6)(20)0x x -+=,12x 6;x 20∴==- (舍去)答:需要销售 6 辆汽车.23、(1)2);3;2A OP t BC t =-=-;(2)如图:BC QD 2t ==,30?AOB ∠=︒ 4OD t ∴=,又3OP t =,PD t ∴=,易得 OQ ,BQ ==OB OQ BQ ∴=+=+=2t 3∴= 23PD ∴=(3)①存在,四边形PQDH 为菱形,只需要 PQ QD = 即可DQ PQ 2t ∴==,过点 P 作PG OB ⊥,3PG 2t ∴=, OG =,GQ 22t t ∴=-= 由有勾股定理:222PG GQ PQ +=,得:21730120t t -+=解得:1,2x =②60t59-==或 60t 74-==或 t 2==4t 5=。

浙教版2019-2020学年年八年级数学下册期末模拟测试卷(含答案)

浙教版2019-2020学年年八年级数学下册期末模拟测试卷(含答案)

2019-2020学年年八年级数学下册期末模拟测试卷一、选择题(共10题;共30分)1.下列汽车标志中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.2.国家实行一系列“三农”优惠政策后,农民收入大幅度增加.某乡所辖村庄去年的月人均收入(单位:百元)情况如下表:该乡去年各村庄年人均收入的中位数、平均数分别是()A. 4、3B. 4、4C. 5、4D. 5、53.用反证法证明“在△ABC中,若AB≠AC,则∠B≠∠C”时,第一步应假设()A. AB=ACB. AB≠ACC. ∠B=∠CD. ∠B≠∠C4.下列计算正确的是()A. √2+√3=√5B. √12−√3=√3C. √3⋅√2=6D. √(−5)2=−55.如果关于x的一元二次方程(m+1)x2+x+m2﹣2m﹣3=0有一个根为0,则m的值()A. ﹣1B. 3C. ﹣1或3D. 以上答案都不对6.如图,□ABCD的对角线AC、BD相交于点O ,且AC+BD=24.若△OAB的周长是20,则AB的长为()A. 8B. 9C. 10D. 127.如图,在长方形钟面示意图中,时钟的中心在长方形对角线的交点上,长方形宽为 40cm ,钟面数字 2 在长方形的顶点处,则长方形的长为()cmA. 80B. 60C. 50D. 408.反比例函数y=k在第一象限的图象如图所示,则k的值可能是()xA. 3B. 5C. 6D. 89.如图,正方形ABCD 中,AB=4,E为CD上一动点,连接AE交BD于F,过F作FH⊥AE于F,过H 作HG ⊥BD 于 G.则下列结论:①AF=FH;②∠HAE=45°;③BD=2FG;④△CEH 的周长为 8.其中正确的个数是()A. 1个B. 2个C. 3个D. 4个10.如图,在平面直角坐标系中,四边形 ABCD是菱形,BC∥x 轴.AD 与 y轴交于点 E,反比例函数 y=kx(x>0)的图象经过顶点 C、D,已知点 C的横坐标为5,BE=2DE,则 k的值为()A. 154B. 32C. 403D. 5二、填空题(共6题;共24分)11.已知一个正n边形的内角和为1080°,则n=________。

2018-2019学年浙教版八年级数学下学期期末测试卷(含答案)

2018-2019学年浙教版八年级数学下学期期末测试卷(含答案)

2018-2019学年八年级(下)期末数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.下列属于最简二次根式的是()A.B.C.D.2.下列方程是一元二次方程的是()A.x﹣3=2x B.x2﹣2=0 C.x2﹣2y=1 D.3.如图在平行四边形中,∠B+∠D=100°,则∠B等于()A.50°B.65°C.100°D.130°4.阿克苏冰糖心苹果享誉全国,具有果面光滑细腻、果肉细腻、果核透明等特点,五个苹果的质量(单位:g)分别为:180,200,210,180,190,则这五个苹果质量的中位数和众数分别为()A.200和180 B.200和190 C.180和180 D.190和180 5.用反证法证明,“在△ABC中,∠A、∠B对边是a、b,若∠A>∠B,则a>b.”第一步应假设()A.a<b B.a=b C.a≤b D.a≥b6.反比例函数的图象如图所示,则k的值可能是()A.﹣1 B.C.1 D.27.某商店四月份的利润为6.3万元,此后两个月进入淡季,利润均以相同的百分比下降,至六月份利润为5.4万元.设下降的百分比为x,由题意列出方程正确的是()A.5.4(1+x)2=6.3 B.5.4(1﹣x)2=6.3C.6.3(1+x)2=5.4 D.6.3(1﹣x)2=5.48.函数y=6﹣x与函数y=(x>0)的图象交于A、B两点,设点A的坐标为(x1,y1),则边长分别为x1、y1的矩形面积和周长分别为()A.4,12 B.4,6 C.8,12 D.8,69.如图,在菱形ABCD中,AB=5,对角线AC=6.若过点A作AE⊥BC,垂足为E,则AE的长为()A.4 B.C.D.510.如图,将三角形纸片△ABC沿DE折叠,使点A落在BC边上的点F处,且DE∥BC,下列结论中,一定正确的个数是()①△BDF是等腰三角形;②DE=BC;③四边形ADFE是菱形;④∠BDF+∠FEC=2∠A.A.1 B.2 C.3 D.4二、填空题(本题有6小题,每小题4分,共24分)11.若二次根式有意义,则x的取值范围是.12.反比例函数y=﹣的图象位于第象限.13.如图,一束平行太阳光照射到每个内角都相等的五边形上,若∠1=44°,则∠2=.14.在棋盘中建立如图所示的平面直角坐标系,三颗棋子A,O,B的位置如图所示,它们的坐标分别是(﹣1,1),(0,0)和(1,0),在其他点位置添加一颗棋子P,使A,O,B,P四颗棋子成为一个中心对称图形,请写出棋子P 的位置坐标(写出1个即可).15.如图,矩形ABCD中,AB=8,点E是AD上的一点,有AE=4,BE的垂直平分线交BC的延长线于点F,连结EF交CD于点G,若G是CD的中点,GE=5,则FO的长是.16.如图,边长为2的正方形OABC顶点O与坐标原点O重合,边OA、OC分别与x、y正半轴重合,在x轴上取点P(﹣2,0),将正方形OABC绕点O逆时针旋转a°(0°<a<180°),得到正方形OA′B′C′,在旋转过程中,使得以P,A′,B′为顶点的三角形是等腰三角形时,点A′的坐标是.三、解答题(本题共8个小题,共66分)17.计算:(1)(﹣)2﹣+(2)18.解下列方程:(1)x2+3x=0(2)x2﹣4x+1=019.如图,已知E、F分别是▱ABCD的边BC、AD上的点,且BE=DF.求证:四边形AECF是平行四边形.20.在如图所示的4×4的网格中,每个小正方形的边长都为1,点A在格点(小正方形的顶点)上,试在各网格中画出各顶点在格点上,有一边长为,且分别符合以下条件的图形.21.文明交通是金华创建全国文明城市重要窗口,是城市文明程度的最直观体现,市区也正式吹响了交通文明整治行动的号角.八(3)班为了参加学校举行的“文明出行”知识竞赛,在班里选取了若干名学生,分成人数相同的甲乙两组,进行了四次“文明出行”模拟竞赛,成绩优秀的人数和优秀率分别绘制成如下统计图.根据统计图,解答下列问题:(1)八(3)班甲、乙两组共有名学生参加模拟竞赛?并将条形统计图补充完整.2=1.5,请通过计算(2)已求得甲组成绩优秀人数的平均数=7,S说明,哪组成绩优秀的人数较稳定?22.研学旅行继承和发展了我国传统游学、“读万卷书,行万里路”的教育理念和人文精神,成为素质教育的新内容和新方式.某校八(1)班组织学生进行“一日研学”活动,某旅行社推出了如下收费标准:如果人数不超过30人,人均旅游费用为100元;如果超过30人,则每超过1人,人均旅游费用降低2元,但人均旅游费用不能低于80元.(1)当参加人数25人时,人均旅游费用元;当参加人数40人时,人均旅游费用元;(2)已知该班实际人数超过30人,共支付给旅行社3150元.问:共有多少名同学参加了研学活动?23.在直角坐标系xOy中,矩形ABCD的顶点A、B在x轴上,矩形ABCD的相邻两边长之比2:1,顶点C在反比例函数y=(k>0)的图象上.(1)当点A与原点重合,且矩形ABCD的面积为2时,求反比例函数的解析式;(2)当A点坐标为(1,0)时,点C在反比例函数y=图象上,且AB>BC 时,求矩形ABCD边AB的长;(3)当A点坐标为(5,0)时,在反比例函数y=图象上,符合题意的矩形ABCD有个.24.(12分)将一个含30°、60°、90°角的直角三角形纸片EFO放置在平面直角坐标系中,点E(5,0),点F(0,),点O(0,0),直线OP【解析式为y=kx(k>0)】与线段EF交于点P,沿着OP折叠该纸片,得点E的对应点B.(1)如图①,当点B在第一象限,且满足BF⊥OF时,求△OBF的面积;(2)如图②,当直线OP与x轴夹角为30°(即∠POE=30°)时,求出OP 和BF的长;(3)当对称点B坐标是(3,4)时,此时y轴上有一动点A,以AB为边作正方形ABCD或以AB为对角线构造正方形ACBD.当正方形的顶点C(或D)落在x轴上时,请求出另一顶点D(或C)的坐标.2018-2019学年八年级(下)期末数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分)1.【解答】解:A、被开方数含能开得尽方的因数或因式,故A错误;B、被开方数含分母,故B错误;C、被开方数含能开得尽方的因数或因式,故C错误;D、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D正确;故选:D.2.【解答】A、x﹣3=2x是一元一次方程,故此选项错误;B、x2﹣2=0是一元二次方程,故此选项正确;C、x2﹣2y=1是二元二次方程,故此选项错误;D、+1=2x,是分式方程,故此选项错误.故选:B.3.【解答】解:▱ABCD中,∠B=∠D,∵∠B+∠D=100°,∴∠B=×100°=50°,故选:A.4.【解答】解:将这5个苹果质量从小到大重新排列为:180、180、190、200、210,所以这五个苹果质量的中位数为190kg、众数为180kg,故选:D.5.【解答】解:根据反证法的步骤,得第一步应假设a>b不成立,即a≤b.故选:C.6.【解答】解:∵反比例函数在第一象限,∴k>0,∵当图象上的点的横坐标为1时,纵坐标小于1,∴k<1,故选:B.7.【解答】解:由题意得,5月份的利润为:6.3(1﹣x),6月份的利润为:6.3(1﹣x)(1﹣x),故可得方程:6.3(1﹣x)2=5.4.故选:D.8.【解答】解:∵点A(x1,y1)在函数y=上,∴x1y1=4,矩形面积=|x1×y1|=4,∵点A(x1,y1)在函数y=6﹣x上,∴x1+y1=6,∴矩形周长=2(x1+y1)=12.故选:A.9.【解答】解:连接BD,交AC于O点,∵四边形ABCD是菱形,∴AB=BC=CD=AD=5,∴AC⊥BD,AO=AC,BD=2BO,∴∠AOB=90°,∵AC=6,∴AO=3,∴B0==4,∴DB=8,∴菱形ABCD的面积是×AC•DB=×6×8=24,∴BC•AE=24,AE=,故选:C.10.【解答】解:①∵DE∥BC,∴∠ADE=∠B,∠EDF=∠BFD,又∵△ADE≌△FDE,∴∠ADE=∠EDF,AD=FD,AE=CE,∴∠B=∠BFD,∴△BDF是等腰三角形,故①正确;同理可证,△CEF是等腰三角形,∴BD=FD=AD,CE=FE=AE,∴DE是△ABC的中位线,∴DE=BC,故②正确;∵∠B=∠BFD,∠C=∠CFE,又∵∠A+∠B+∠C=180°,∠B+∠BFD+∠BDF=180°,∠C+∠CFE+∠CEF=180°,∴∠BDF+∠FEC=2∠A,故④正确.而无法证明四边形ADFE是菱形,故③错误.所以一定正确的结论个数有3个,故选:C.二、填空题(本题有6小题,每小题4分,共24分)11.【解答】解:根据二次根式有意义的条件,x﹣1≥0,∴x≥1.故答案为:x≥1.12.【解答】解:反比例函数y=﹣的k=﹣15<0,∴反比例函数y=﹣的图象位于第二四象限,故答案为:二四.13.【解答】解:∵AB∥CD,∴∠1=∠3=44°,∵∠4=180°﹣=108°,∴∠2=180°﹣108°﹣44°=28°,故答案为:28°.14.【解答】解:如图所示:点P(0,1)答案不唯一.故答案为:(0,1).15.【解答】解:∵矩形ABCD,AB=8,AE=4,∴∠A=90°,∴BE=,∵BE的垂直平分线交BC的延长线于点F,∴EO=,∵G是CD的中点,∴DG=GC,在△EDG与△FCG中,∴△EDG≌△FCG,∴EG=GF=5,∴EF=10,∴在Rt△EFO中,OF=.故答案为:416.【解答】解:有四种情形:①如图1中,当PB′=PA′时,连接PC′.易证△POC′是等边三角形,∴∠POA′=150°,∠A′OA=30°,∵OA′=2,∴A′(,1).②如图2中,当A′与C重合时,△PA′B′是等腰三角形,此时A′(0,2)③如图3中,当PA′=A′B′时,△A′OP是等边三角形,∴∠A′OP=60°,∴A′(﹣1,).④如图4中,当PA′=PB′时,易证△POC′是等边三角形,∴∠POC′=60°,∵∠A′OC′=90°,∴∠A′OP=30°,∵OA′=2,∴A′(﹣,1),综上所述,满足条件的点A′坐标为(,1)或(0,2)或(﹣1,)或(﹣,1).故答案为(,1)或(0,2)或(﹣1,)或(﹣,1).三、解答题(本题共8个小题,共66分)17.【解答】解:(1)原式=6﹣5+3=4;(2)原式=﹣2=2﹣6=﹣4.18.【解答】解:(1)分解因式得:x(x+3)=0,可得x=0或x+3=0,解得:x1=0,x2=﹣3;(2)方程整理得:x2﹣4x=﹣1,配方得:x2﹣4x+4=3,即(x﹣2)2=3,开方得:x﹣2=±,则x1=2+,x2=2﹣.19.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,且AD=BC,∴AF∥EC,∵BE=DF,∴AF=EC,∴四边形AECF是平行四边形.20.【解答】解:如图所示:21.【解答】解:(1)总人数:(5+6)÷55%=20(人),第四次乙组的优秀人数为:20×85%﹣8=17﹣8=9(人).补全条形统计图,如图所示:(2)=(6+8+5+9)÷4=7,S2=×[(6﹣7)2+(8﹣7)2+(5﹣7)2+(9﹣7)2]=2.5,乙组S2<S2乙组,甲组所以甲组成绩优秀的人数较稳定.22.【解答】解:(1)当参加人数25人时,人均旅游费用100元;当参加人数40人时,人均旅游费用100﹣2(40﹣30)=80元;故答案为:100,80.(2)设共有x名同学参加了研学活动,根据题意,得:x[100﹣2(x﹣30)]=3150,整理,得:x2﹣80x+1575=0,解得:x1=35,x2=45,∵100﹣2(x﹣30)≥80,∴x≤40,∴x=35,答:共有35名同学参加了研学活动.23.【解答】解:(1)设点C的坐标为(m,),∵四边形ABCD是矩形,点A与原点重合,∴AB=|m|,BC=||,∵矩形ABCD的面积为2,∴AB×BC=2,∴|m|×||=2,∴|k|=2,∵k>0,∴k=2;(2)∵点C在反比例函数y=图象上,∴设C(n,),∴B(n,0),BC=||,∵A(1,0),∴AB=|n﹣1|,∵AB>BC,矩形ABCD的相邻两边长之比2:1,∴|n﹣1|=2||,∴|n2﹣n|=6,∴n=3或n=﹣2,∴AB=2;(3)∵点C在反比例函数y=图象上,∴设C(n,),∴B(n,0),BC=||,∵A(5,0),∴AB=|n﹣5|,∵矩形ABCD的相邻两边长之比2:1,∴|n﹣5|=2||或||=2|n﹣5|,①当|n﹣5|=2||,∴|n2﹣5n|=6,∴Ⅰ、n2﹣5n+6=0,∴n=2或n=3,Ⅱ、n2﹣5n﹣6=0,∴n=6或n=﹣1,②当||=2|n﹣5|时,∴2|n2﹣5n|=3,∴Ⅰ、2n2﹣10n+3=0,∴n=Ⅱ、2n2﹣10n﹣3=0,∴n=,∴符合题意的矩形ABCD有8个,故答案为:8.24.【解答】解:(1)如图①中,∵E(5,0),点F(0,),∴OE=5,OF=,由翻折不变性可知:OB=OE=5,在Rt△OBF中BF===,∴S△OBF=××=.(2)如图②中,由复杂不变性可知,∠POE=∠POB=∠FOB=30°,∵tan∠FEO=,∴∠FEO=30°,EF=2OF=,∴∠POE=∠PEO=30°,∴PO=PE,∵∠POF=∠PFO=60°,∴△POF是等边三角形,∴OP=OF=PF=PE=,∵∠OPB=∠OPE=120°,∴∠POF+∠OPB=180°,∴OF∥PB,OF=PE=PB,∴四边形OPBF是平行四边形,∵OP=OF,∴四边形OPBF是菱形,∴BF=OF=.(3)如图③中,当点D落在x轴上时,作BE⊥y轴于E.∵∠AOD=∠AEB=∠BAD=90°,∴∠BAE+∠ABE=90°,∠BAE+∠OAD=90°,∴∠OAD=∠ABE,∵AD=AB,∴△OAD≌△EBA,∴BE=OA=3,AE=OD=1,∴D(1,0),此时C(4,1)如图④中当点D落在x轴的负半轴上时,作BE⊥y轴于E,同法可证:OA=BE=3,AE=DO=3+4=7,∴D(﹣7,0),此时C(﹣4,10).如图⑤中,当AB为对角线,点D在x轴上时,作BE⊥x轴于E,由△DEB≌△AOD,可得OD=BE=4,∴D(﹣4,0),此时C(7,﹣3).如图⑥中,当AB为对角线时,点C在x轴上时,同法可得C(4,0),此时D (﹣1,3)。

浙江省衢州市2019-2020学年八年级第二学期期末统考数学试题含解析

浙江省衢州市2019-2020学年八年级第二学期期末统考数学试题含解析

浙江省衢州市2019-2020学年八年级第二学期期末统考数学试题一、选择题(每题只有一个答案正确)1.正比例函数y=3x 的大致图像是( )A .B .C .D .2.若正多边形的一个外角是60︒,则该正多边形的内角和为( )A .360︒B .540︒C .720︒D .900︒3.下列命题,是真命题的是( )A .对角线互相垂直的四边形是菱形B .对角线相等的四边形是矩形C .对角线互相垂直平分的四边形是正方形D .对角线相等的菱形是正方形4.如图,AD 是△ABC 的角平分线,DF ⊥AB,垂足为F,DE=DG,△ADG 和△AED 的面积分别为50和38,则△EDF 的面积为( )A .6B .12C .4D .85.在平面直角坐标系中,将点()1,2先向左平移2个单位长度,再向下平移3个单位长度,则平移后得到的点是( )A .()1,1--B .()1,5-C .()3,1-D .()3,56.的值是( ) A .±4 B .4 C .﹣4 D .±2 7.下列调查中,不.适宜用普查的是() A .了解全班同学每周体育锻炼的时间;B .了解全市中小学生每天的零花钱;C .学校招聘教师,对应聘人员面试;D .旅客上飞机前的安检. 8.不等式组1{1x x >-≤的解集在数轴上可表示为( )A .B .C .D . 9.若a b =25,则a b b+的值是() A .75 B .35 C .32 D .5710.若分式14a -有意义,则a 的取值范围为( ) A .a≠4B .a >4C .a <4D .a =4二、填空题 11.如图,点A 在双曲线(0)k y x x=<上,B 为y 轴上的一点,过点A 作AC x ⊥轴于点C ,连接BC 、AB ,若ABC ∆的面积是3,则k =__.12.如图,在△ABC 中,∠ACB=90°,AC=4,BC=3,将△ABC 绕点A 顺时针旋转得到△ADE (其中点B 恰好落在AC 延长线上点D 处,点C 落在点E 处),连接BD ,则四边形AEDB 的面积为______.13.若关于13311ax x x x x -+=--的分式方程有增根,则a =_____; 14.请写出一个图象经过点()1,1的一次函数的表达式:______.15.计算:18-2=________.16.在一个不透明的布袋中,红色、黑色的玻璃球共有20个,这些球除颜色外其它完全相同.将袋中的球搅匀,从中随机摸出一个球,记下颜色后再放回袋中,不断地重复这个过程,摸了200次后,发现有60次摸到黑球,请你估计这个袋中红球约有_____个.17.如图,在平行四边形ABCD 中,E 为AD 边上一点,且AE =AB ,若∠BED =160°,则∠D 的度数为__________.三、解答题18.计算:(1)18322(2)(2×25)19.(6分)如图,直线y =-x +10与x 轴、y 轴分别交于点B ,C ,点A 的坐标为(8,0),P(x ,y)是直线y =-x +10在第一象限内的一个动点.(1)求△OPA 的面积S 与x 的函数解析式,并写出自变量x 的取值范围;(2)过点P 作PE ⊥x 轴于点E ,作PF ⊥y 轴于点F ,连接EF ,是否存在一点P 使得EF 的长最小,若存在,求出EF 的最小值;若不存在,请说明理由.20.(6分)如图,是一位护士统计一位病人的体温变化图,请根据统计图回答下列问题:(1)病人的最高体温是达多少?(2)什么时间体温升得最快?(3)如果你是护士,你想对病人说____________________.21.(6分)因式分解是数学解题的一种重要工具,掌握不同因式分解的方法对数学解题有着重要的意义.我们常见的因式分解方法有:提公因式法、公式法、分组分解法、十字相乘法等.在此,介绍一种方法叫“试根法”.例:32331x x x -+-,当=1x 时,整式的值为0,所以,多项式有因式=1x ,设32331(1)x x x x -+-=-()21x ax ++,展开后可得2a =-,所以()3223331(1)21(1)x x x x x x x -+-=--+=-,根据上述引例,请你分解因式:(1)2231x x -+;(2)32331x x x +++.22.(8分)解方程:请选择恰当的方法解方程(1)3(x ﹣5)2=2(5﹣x );(2)3x 2+5(2x+1)=1.23.(8分)如图,在▱ABCD 中,点E 是CD 的中点,连接BE 并延长交AD 延长线于点F .(1)求证:点D 是AF 的中点;(2)若AB=2BC ,连接AE ,试判断AE 与BF 的位置关系,并说明理由.24.(10分)先化简,再求值:22214()244a a a a a a a a+--+÷--+,其中 a 满足2410a a --=. 25.(10分)如图,矩形OABC 的顶点与坐标原点O 重合,将△OAB 沿对角线OB 所在的直线翻折,点A 落在点D 处,OD 与BC 相交于点E ,已知OA=8,AB=4(1)求证:△OBE 是等腰三角形;(2)求E 点的坐标;(3)坐标平面内是否存在一点P ,使得以B ,D ,E ,P 为顶点的四边形是平行四边形?若存在,请直接写出P 点坐标;若不存在,请说明理由.参考答案一、选择题(每题只有一个答案正确)1.B【解析】∵3>0,∴图像经过一、三象限.故选B.点睛:本题考查了正比例函数图象与系数的关系:对于y=kx ,当k >0时, y=kx 的图象经过一、三象限;当k <0时, y=kx 的图象经过二、四象限.2.C【解析】【分析】根据正多边形的外角度数求出多边形的边数,根据多边形的内角和公式即可求出多边形的内角和. 【详解】由题意,正多边形的边数为360660n︒==︒,其内角和为()2180720n-⋅︒=︒.故选C.【点睛】考查多边形的内角和与外角和公式,熟练掌握公式是解题的关键.3.D【解析】【分析】根据菱形的判定方法对A进行判断;根据矩形的判定方法对B进行判断;根据正方形的判定方法对C进行判断;根据平行四边形的判定方法对D进行判断.【详解】解:A、对角线互相垂直的平行四边形是菱形,所以A选项错误;B、对角线相等的平行四边形是矩形,所以B选项错误;C、对角线互相垂直平分且相等的四边形是正方形,所以C选项错误;D、对角线相等的菱形是正方形,正确,是真命题;所以D选项正确.故选:D.【点睛】本题考查度的是命题的真假判断以及矩形、菱形的判定正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.熟练掌握矩形、菱形的判定定理是解答此题的关键.4.A【解析】【分析】过点D作DH⊥AC于H,根据角平分线上的点到角的两边距离相等可得DF=DH,然后利用“HL”证明Rt△DEF 和Rt△DGH全等,根据全等三角形的面积相等可得S△EDF=S△GDH,设面积为S,然后根据S△ADF=S△ADH列出方程求解即可.【详解】解:如图,过点D作DH⊥AC于H,∵AD 是△ABC 的角平分线,DF ⊥AB ,∴DF=DH ,在Rt △DEF 和Rt △DGH 中,DE=DG {DF=DH, ∴Rt △DEF ≌Rt △DGH (HL ),∴S △EDF =S △GDH ,设面积为S ,同理Rt △ADF ≌Rt △ADH ,∴S △ADF =S △ADH ,即38+S=50-S ,解得S=1.故选A .【点睛】本题考查角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,解题的关键是作辅助线构造出全等三角形并利用角平分线的性质.5.A【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减进行解答即可.【详解】解:将点()1,2先向左平移2个单位长度得()1,2-,再向下平移3个单位长度得()1,1--.故选A.【点睛】本题主要考查点坐标的平移规律:左减右加纵不变,上加下减横不变.6.B【解析】【分析】 由于表示的算术平方根,所以根据算术平方根的定义即可得到结果.【详解】,. 故选:.【点睛】本题主要考查算术平方根的定义,一个非0数的算术平方根是正数,算术平方根容易与平方根混淆,学习中一定要熟练区分之.7.B【解析】【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】A 、了解全班同学每周体育锻炼的时间,数量不大,宜用全面调查,故A 选项错误;B 、了解全市中小学生每天的零花钱,数量大,不宜用全面调查,故B 选项正确;C 、学校招聘教师,对应聘人员面试,必须全面调查,故C 选项错误;D 、旅客上飞机前的安检,必用全面调查,故D 选项不正确.故选B .【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8.D【解析】【分析】先解不等式组11x x >-⎧⎨≤⎩可求得不等式组的解集是11x -<≤,再根据在数轴上表示不等式解集的方法进行表示.【详解】解不等式组11x x >-⎧⎨≤⎩可求得: 不等式组的解集是11x -<≤,故选D.【点睛】本题主要考查不等组的解集数轴表示,解决本题的关键是要熟练掌握正确表示不等式组解集的方法. 9.A【解析】【分析】先设a=2k ,则b=5k ,然后将它们分别代入a b b+,计算即可求出其值即可.【详解】 解:∵a b =25, 设a=2k ,则b=5k ,∴a b b+=2577555k k k k k +==. 故选A .【点睛】本题考查了比例的基本性质,比较简单,关键是巧设未知数,可使计算简便.10.A【解析】【分析】分式有意义时,分母a-4≠0【详解】依题意得:a−4≠0,解得a≠4.故选:A【点睛】此题考查分式有意义的条件,难度不大二、填空题11.-6【解析】【分析】连结OA ,如图,利用三角形面积公式得到S △OAC =S △CAB =3,再根据反比例函数的比例系数k 的几何意义得到1||32k =,然后去绝对值即可得到满足条件的k 的值. 【详解】解:连结OA ,如图,AC x ⊥轴,//AC OB ∴,3OAC CAB S S ∆∆∴==,而1||2OACS k∆=,∴1||32k=,k<,6k∴=-.故答案为:6-.【点睛】本题考查了反比例函数的比例系数k的几何意义:在反比例函数kyx=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.12.27 2【解析】【分析】通过勾股定理计算出AB长度,利用旋转性质求出各对应线段长度,利用面积公式解答即可.【详解】∵在△ABC中,∠C=90°,AC=4,BC=3,∴AB=5,∵将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,∴AD=AB=5,∴CD=AD−AC=1,∴四边形AEDB的面积为1127 24313222⨯⨯⨯+⨯⨯=,故答案为27 2.【点睛】本题考查的知识点是旋转的性质,解题关键是熟记旋转前后的对应边相等.13.1【解析】【分析】方程两边都乘以最简公分母(x –1),把分式方程化为整式方程,再根据分式方程的增根就是使最简公分母等于0的未知数的值求出x的值,然后代入进行计算即可求出a的值.【详解】解:方程两边都乘(x﹣1),得1-ax+3x=3x﹣3,∵原方程有增根∴最简公分母x ﹣1=0,即增根为x=1,把x=1代入整式方程,得a=1.【点睛】此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.方程的增根不适合原方程,但适合去分母后的整式方程,这是求字母系数的重要思想方法.14.y=2x-1【解析】【分析】可设这个一次函数解析式为:y kx 1=-,把()1,1代入即可.【详解】设这个一次函数解析式为:y kx 1=-,把()1,1代入得k 2=,∴这个一次函数解析式为:y 2x 1(=-不唯一).【点睛】一次函数的解析式有k ,b 两个未知数.当只告诉一个点时,可设k ,b 中有一个已知数,然后把点的坐标代入即可.15.【解析】试题解析:原式==故答案为16.1【解析】【分析】估计利用频率估计概率可估计摸到黑球的概率为0.3,然后根据概率公式计算这个口袋中黑球的数量,继而得出答案.【详解】因为共摸了200次球,发现有60次摸到黑球,所以估计摸到黑球的概率为0.3,所以估计这个口袋中黑球的数量为20×0.3=6(个),则红球大约有20-6=1个,故答案为:1.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.17.40°.【解析】【分析】根据平行四边形的性质得到AD∥BC,求得∠AEB=∠CBE,根据等腰三角形的性质得到∠ABE=∠AEB,根据平角的定义得到∠AEB=20°,可得∠ABC的度数,根据平行四边形的对角相等即可得结论.【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEB=∠CBE,∵AB=AE,∴∠ABE=∠AEB,∵∠BED=160°,∴∠AEB=20°,∴∠ABC=∠ABE+∠CBE=2∠AEB=40°,∴∠D=∠ABC=40°.故答案为40°.【点睛】本题考查平行四边形的性质,平行线的性质,等腰三角形的性质,正确的识别图形是解题的关键.三、解答题18.(1)22)-213【解析】【分析】(1)先化简,再合并同类项即可求解.(2)利用二次根式的乘除法运算即可.(1)(2)(×5)=15+2-13【点睛】此题考查二次根式的混合运算,解题关键在于掌握运算法则19. (1) S =40-4x(0<x<10);(2)存在点P 使得EF 的长最小,最小值为【解析】试题分析:(1)利用三角形面积公式,得到S △OPA 面积,得到S 和x 的关系.(2) 四边形OEPF 为矩形,OP 垂直于BC 时,OP 最小,EF 也最小.试题解析:解:(1)S △OPA =12OA·y =12×8×(-x +10)=40-4x. ∴S =40-4x(0<x<10).(2)存在点P 使得EF 的长最小,∵四边形OEPF 为矩形,∴EF =OP ,∴OP ⊥BC 时,OP 最小,即EF 最小.∵B(10,0),C(0,0),∴OB =OC =10,BC =∴OP =OB OC BC=∴EF 的最小值为20.(1)1.1℃;(2)14-18;(3)注意身体的健康【解析】【分析】根据折线图可得,(1)这天病人的最高体温即折线图的最高点是1.1°C;(2)14-18时,折线图上升得最快,故这段时间体温升得最快;(3)根据折线图分析即可得出答案,答案不唯一,如注意身体的健康,符合折线图即可.【详解】(1)由图可知:病人的最高体温是达1.1℃;(2)由图可知:体温升得最快的时间段为:14-18;(3)注意身体的健康(只要符合图形即可,答案不唯一)【点睛】本题考查折线统计图的运用,折线统计图表示的是事物的变化情况,如增长的速度.21.(1)(1)(21)x x --;(2)3(1)x +【分析】(1)先找出x=1时,整式的值为0,进而找出一个因式,再将多项式分解因式,即可得出结论;(2)先找出x=-1时,整式的值为0,进而找出一个因式,再将多项式设成分解因式的形式,即可得出结论.【详解】(1)当x=1时,整式的值为0,所以,多项式有因式(x-1),于是2x 2-1x+1=(x-1)(2x-1);(2)当x=-1时,整式的值为0,∴多项式x 1+1x 2+1x+1中有因式(x+1),于是可设x 1+1x 2+1x+1=(x+1)(x 2+mx+1)=x 1+(m+1)x 2+(1+m )x+1,∴m+1=1,,∴m=2,∴x 1+1x 2+1x+1=(x+1)(x 2+2x+1)=(x+1)1.【点睛】此题考查了用“试根法”分解因式,考查了学生的阅读理解能力以及知识的迁移能力.22.(1)12135,3x x ==-(2)1255,33x x --== 【解析】【分析】(1)移项后分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)整理后求出b 2-4ac 的值,再代入公式求出即可.【详解】解:(1)3(x ﹣5)2=2(5﹣x ),3(x ﹣5)2+2(x ﹣5)=1,(x ﹣5)[3(x ﹣5)+2]=1,x ﹣5=1,3(x ﹣5)+2=1,x 1=5,x 2=﹣133; (2)3x 2+5(2x+1)=1,整理得:3x 2+11x+5=1,b 2﹣4ac =112﹣4×3×5=41,x ,x 1,x 2. 【点睛】本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解此题的关键.23.(1)见解析;(2)AE ⊥BF ,理由见解析.【解析】【分析】(1)根据平行四边形的性质可得AD ∥BC ,AD=BC ,然后利用AAS 即可证出BC=DF ,从而得出AD=DF ,即可证出结论;(2)根据全等三角形的性质可得BE=EF ,然后证出AB=AF ,利用三线合一即可得出结论.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD=BC ,∴∠CBE=∠F ,∵点E 为CD 的中点,∴CE=DE ,在△BCE 和△FDE 中,CBE F CEB DEF CE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BCE ≌△FDE (AAS ),∴BC=DF ,∴AD=DF ,即点D 是AF 的中点;(2)∵△BCE ≌△FDE ,∴BE=EF ,∵AB=2BC ,BC=AD ,AD=DF ,∴AB=AF ,∴AE ⊥BF .【点睛】此题考查的是平行四边形的性质、全等三角形的判定及性质和等腰三角形的性质,掌握平行四边形的性质、全等三角形的判定及性质和三线合一是解决此题的关键.24.21(2)a -,15.【分析】先进行分式混合运算,再由已知得出2(2)5a -=,代入原式进行计算即可.【详解】原式=221[](2)(2)4a a a a a a a +-+⨯--- =2(2)(2)(1)(2)4a a a a a a a a +-+-⨯-- =24(2)4a a a a a -⨯--=21(2)a -, 由a 满足2410a a --=得2(2)5a -=,故原式=15. 【点睛】本题考查了分式的混合运算——分式的化简求值,熟练掌握运算法则以及运算顺序是解题的关键. 25.(1)见解析; (2)(3,4); (3)(315,85)或(495,325)或(15-,325). 【解析】【分析】(1)由矩形的性质得出OA ∥BC ,∠AOB=∠OBC ,由折叠的性质得∠AOB=∠DOB ,得出∠OBC=∠DOB ,证出OE=BE 即可;(2)设OE=BE=x ,则CE=8-x ,在Rt △OCE 中,由勾股定理得出方程,解方程即可;(3)先求出点D 的坐标,然后根据B 、D 、E 三点的坐标利用中点坐标公式分三种情况,即可求出P 点的坐标.[点(a,b)与(c,d)所连线段的中点坐标是(2a c +,2b d +)] 【详解】解:(1)证明:∵四边形OABC 是矩形,∴OA ∥BC ,∴∠AOB=∠OBC ,由折叠的性质得:∠AOB=∠DOB ,∴∠OBC=∠DOB ,∴△OBE 是等腰三角形;(2)设OE=BE=x ,则CE=BC-BE=OA-BE=8-x ,在Rt △OCE 中,由勾股定理得:42+(8-x )2=x 2,解得:x=5,∴CE=8-x=3,∵OC=4,∴E 点的坐标为(3,4);(3)坐标平面内存在一点P ,使得以B ,D ,E ,P 为顶点的四边形是平行四边形.理由如下:作DH ⊥BE 于H在Rt △BDE 中,BE=5,BD=4,DE=3 ∴1153422DH ⨯⋅=⨯⨯ ∴DH=125 ∴221293()55-= ∴CH=245∴点D 的坐标是(245,325) ∴当BE 为平行四边形的对角线时,点P 的坐标为(3+8-245,4+4-325),即(315,85); 当BD 为平行四边形的对角线时,点P 的坐标为(8+245-3,4+325-4),即(495,325); 当DE 为平行四边形的对角线时,点P 的坐标为(3+245-8,4+325-4),即(15-,325); 综上所述,坐标平面内存在一点P ,使得以B ,D ,E ,P 为顶点的四边形是平行四边形,P 点坐标为(315,85)或(495,325)或(15-,325). 【点睛】本题是四边形综合题目,考查了矩形的性质、翻折变换的性质、坐标与图形性质、勾股定理、平行四边形的性质、中点坐标公式等知识,本题综合性强,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考常考题型.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年浙江省八年级下学期期末考试试卷
数 学
(考试时间:120分钟 试卷满分:120分)
注意事项:
1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

5.考试范围:浙教版八下全册。

第Ⅰ卷
一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)
1+1有意义,则x 的取值范围是 A .x ≥0.5
B .x ≤0.5
C .x =0.5
D .以上答案都不对
2.下列命题中,真命题是
A .一组对边平行且一组邻边相等的四边形是平行四边形
B .顺次连接四边形各边中点所得的四边形是矩形
C .有一个角是直角的平行四边形是正方形
D .对角线互相垂直平分的四边形是菱形 3.一元二次方程(1)(3)25x x x +-=-根的情况是 A .无实数根
B .有一个正根,一个负根
C .有两个正根,且都小于3
D .有两个正根,且有一根大于3
4.已知反比例函数2
y x
=
,在下列结论中,不正确...的是 A .图象必经过点(1,2) B .图象在第一、三象限 C .y 随x 的增大而增大
D .若x >1,则y <2
5.在一次13人参加的歌咏比赛中,预赛成绩各不同,要取前7名参加决赛,小丽已经知道自己的成绩,
她想知道自己是否能进入决赛,只需要再知道这13名同学成绩的 A .平均数 B .众数 C .方差
D .中位数
6.如图,O 为坐标原点,菱形OABC 的顶点A 的坐标为(34)-,
,顶点C 在x 轴的负半轴上,函数(0)k
y x x
=
<的图象经过顶点B ,则k 的值为
A .12-
B .27-
C .32-
D .36-
7.用反证法证明“三角形的三个外角中至多有一个锐角”,应先假设 A .三角形的三个外角都是锐角 B .三角形的三个外角中至少有两个锐角 C .三角形的三个外角中没有锐角 D .三角形的三个外角中至少有一个锐角
8.如图,将正方形OABC 放在平面直角坐标系xOy 中,O 是原点,若点A 的坐标为(1,3),则点C 的坐标为
A 31)
B .(-13)
C .(31)
D .(3-1)
9.若样本x 1+1,x 2+1,…,x n +1的平均数为10,方差为2,则对于样本x 1+2,…,x n +2,下列结论
正确的是
C.平均数为11,方差为2 D.平均数为12,方差为4
10.已知:如图,在ABCD中,点E在AD上,连接BE,DF∥BE交BC于点F,AF与BE交于点M,CE与DF交于点N,AF,BE分别平分∠BAD,∠ABC.CE,DF分别平分∠BCD,∠ADC,则四边形MFNE是
A.菱形B.矩形
C.平行四边形D.正方形
第Ⅱ卷
二、填空题(本大题共6小题,每小题4分,共24分)
11.已知函数23
(2)n n
y n x+-
=+(n是常数),当n=__________时,此函数是反比例函数.
12.已知3是关于x的方程x2-2x-n=0的一个根,则n的值为__________.
13.如图,ABCD中,AC、BD相交于点O,若AD=6,AC+BD=16,则△BOC的周长为__________.
14.设5的整数部分为a,小数部分为b,则代数a2+ab的值是__________.
15.如图,正方形ABCD的对称中心在坐标原点,AB∥x轴,AD、BC分别与x轴交于E、F,连接BE、
DF,若正方形ABCD的顶点B,D在双曲线y=a
x
上,实数a满足a1-a=1,则四边形DEBF的面积是
__________.
16.如图,在矩形ABCD中,点E是边CD的中点,将△ADE沿AE折叠后得到△AFE,且点F在矩形
ABCD的内部,将AF延长后交边BC于点G,且
2
7
CG
CB
=,则
AB
AD
的值为__________.
三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分6分)计算或化简:
(1)8322+-;(2)2(23)(25)(25)+-+-.
18.(本小题满分8分)某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,
3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同. (1)求每个月生产成本的下降率; (2)请你预测4月份该公司的生产成本.
19.(本小题满分8分)如图,在平面直角坐标系中,过点A (-2,0)作y 轴的平行线交反比例函数y =
k
x
的图象于点B ,AB =
32
. (1)求反比例函数的表达式;
(2)若P (x 1,y 1),Q (x 2,y 2)是该反比例函数图象上的两点,且x 1<x 2时,y 1>y 2,指出点P ,Q 各位于哪个象限?并简要说明理由.
20.(本小题满分10分)如图,△ABC 中,M 是AB 的中点,DM ∥AC 交BC 于D ,延长DM 到E ,使
ME =DM ,连接AE 、AD 、BE .
(1)求证:四边形ADBE 是平行四边形; (2)求证:BD =CD .
21.(本小题满分10分)如图,四边形ABCD 为正方形,点A 的坐标为(0,1),点B 的坐标为(0,
-2),反比例函数
k
y
x
=的图象经过点C,一次函数y ax b
=+的图象经过A、C两点.
(1)求反比例函数与一次函数的解析式;
(2)求反比例函数与一次函数的另一个交点M的坐标;
(3)若点P是反比例函数图象上的一点,△OAP的面积恰好等于正方形ABCD的面积,求P点的坐标.
22.(本小题满分12分)某中学开展“唱红歌”比赛活动,九年级(1)、(2)班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩如图所示.
班级平均数(分)中位数众数
九(1)85 85
九(2)80
(1)根据图示填写上表;
(2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;
(3)计算两班复赛成绩的方差,并说明哪个班级的成绩较稳定.
23.(本小题满分12分)边长为a的正方形ABCD中,点E是BD上一点,过点E作EF⊥AE交射线CB于点F,连接CE.
(1)若点F在边BC上(如图).
①求证:CE=EF;
②若BC=2BF,求DE的长.
(2)若点F在CB延长线上,BC=2BF,请直接写出DE的长.。

相关文档
最新文档