全国高中数学联赛及答案
历年全国高中数学联赛试题及答案76套题
历年全国高中数学联赛试题及答案76套题(一)2019年全国高中数学联赛试题及答案1. 小川野升平想在一个边长为6米的正方形的地块上建造一个有一堵墙的房子,墙要用沙发垫、玻璃门中的一种建造,沙发垫墙每平方米需要50元,玻璃门墙每平方米需要80元。
为了满足小川野升平的预算,需要选择合适的方案,可以使花费尽可能少。
请求出该房子沙发垫墙和玻璃门墙各多少平方米,以及花费的最小值。
解:由题意得,房子在四周建墙,所以共4个墙面。
墙面中有一个为门,另外3个可以被沙发垫或玻璃门所替代。
因为墙长宽相等,所以选择沙发垫或玻璃门所用的面积是相等的,即我们只需要考虑使用沙发垫或玻璃门的墙面数量即可。
用$x$表示使用沙发垫的墙面数量,则使用玻璃门的墙面数量为$3-x$,进而可列出花费的表达式:$$f(x)=50x+80(3-x)=80x+240$$为获得花费的最小值,我们需要求出$f(x)$的最小值,即求出$f(x)$的极小值。
因为$f(x)$是$x$的一次函数,所以可求出其导函数$f'(x)=80-30x$。
当$f'(x)=0$时,即$x=\frac83$,此时$f(x)$有极小值$f(\frac83)=400$。
当$x<\frac83$时,$f'(x)>0$,$f(x)$单调递增;当$x>\frac83$时,$f'(x)<0$,$f(x)$单调递减。
所以我们选择使用3个沙发垫的构建方案,所需面积为$3\times6=18m^2$,花费为$50\times18=900$元。
因此,该房子沙发垫墙面积为18平方米,玻璃门墙面积为0平方米,花费最小值为900元。
2. 对于正整数$n$,记$S_n$为$\sqrt{n^2+1}$的小数部分,$T_n$表示$S_1,S_2,\cdots,S_n$的平均值,则$s_n=10T_n-5$。
求$\sum_{k=1}^{2019}s_k$的个位数。
全国高中数学联赛模拟试题及参考答案
全国高中数学联赛训练题(1)第一试一、填空题1.函数3()2731x x f x +=-+在区间[0,3]上的最小值为_____.2.在数列{}n a 中,11a =且21n n n a a a ++=-.若20002000a =,则2010a =_____.3.若集合{|61,}A x x n n N ==-∈,{|83,}B x x n n N ==+∈,则A B 中小于2010的元素个数为_____.4.若方程sin (1)cos 2n x n x n ++=+在π<<x 0上有两个不等实根,则正整数n 的最小值为_____.5.若c b a >>,0=++c b a ,且21,x x 为02=++c bx ax 的两实根,则||2221x x -的取值范围为_____.6.有n 个中心在坐标原点,以坐标轴为对称轴的椭圆的准线都是1x =.若第k (1,2,,)k n = 个椭圆的离心率2k k e -=,则这n 个椭圆的长轴之和为_____.7.在四面体-O ABC 中,若点O 处的三条棱两两垂直,则在四面体表面上与点A 距离为2的点所形成的曲线长度之和为_____.8.由ABC ∆内的2007个点122007,,,P P P 及顶点,,A B C 共2010个点所构成的所有三角形,将ABC ∆分 割成互不重叠的三角形个数最多为_____.二、解答题9.设抛物线22y px =(0)p >的焦点为F ,点A 在x 轴上F 的右侧,以FA 为直径的圆与抛物线在x 轴上方交于不同的两点,M N ,求证:FM FN FA +=.10.是否存在(0,)2πθ∈,使得sin ,cos ,tan ,cot θθθθ的某一排列成等差数列?并说明理由.11.已知实数123123,,,,,a a a b b b 满足:123123a a a b b b ++=++,122331122331a a a a a a bb b b b b ++=++,且123min{,,}a a a 123min{,,}b b b ≤,求证:123max{,,}a a a 123max{,,}b b b ≤.第二试一、设圆的内接四边形ABCD 的顶点D 在直线,,AB BC CA 上的射影分别为,,P Q R ,且ABC ∠与ADC ∠的平分线交于点E ,求证:点E 在AC 上的充要条件是PR QR =.二、已知周长为1的i i i ABC ∆(1,2)i =的三条边的长分别为,,i i i a b c ,并记2224i i i i i i i p a b c a bc =+++(1,2)i =,求证:121||54p p -<.三、是否存在互不相同的素数,,,p q r s ,使得它们的和为640,且2p qs +和2p qr +都是完全平方数?若存在,求,,,p q r s 的值;若不存在,说明理由.四、对n 个互不相等的正整数,其中任意六个数中都至少存在两个数,使得其中一个能整除另一个.求n 的最小值,使得在这n 个数中一定存在六个数,其中一个能被另外五个整除.全国高中数学联赛训练题(1)参考答案:令3xt =,[0,3]x ∈则3()()271f x g t t t ==-+,[1,27]t ∈,而'()3(3)(3)g t t t =-+.故当[1,3]t ∈时,'()0g t <,()g t 单调递减,当[3,27]t ∈时,'()0g t >,()g t 单调递增.所以当3t =,()g t 取得最小值min ()(3)53g t g ==-,即当1x =时,()f x 取得最小值53-.:设2a t =,则由21n n n a a a ++=-依次写出数列{}n a 的前8项为:1,,1,1,,1,1,t t t t t - - - - .于是易知:该数列是以周期6T =的一个周期数列,故由20002000a =可得20006333222000a a a t ⨯+====,从而2010335661120001999a aa t ⨯===-=-=-,即20101999a =-. :由题意若x A ∈,则5(mod 6)x ≡ ,若x B ∈,则3(mod 8)x ≡ ,故若x AB ∈ ,则11(mod 24)x ≡ ,即若x A B ∈ ,则2411x k =+,于是可得满足题意的元素共有84个.:由已知得11sin 12cos x n x --=---,而1sin 2cos xx---表示上半个单位圆(不包括端点)上的动点(cos ,sin )P x x 与定点(2,1)Q -的斜率k ,要满足题意就要直线PQ 与上半个单位圆(不包括端点)有两个不同的交点,此时4(,1)3k ∈--,从而可得11(0,)3n ∈,故3n >,即正整数n 的最小值为4.:由0=++c b a 知方程02=++c bx ax 有一个实数根为1,不妨设11x =,则由韦达定理可知2c x a=.而c b a >>,0=++c b a ,故0,0a c ><,且a a c c >-->,则122c a -<<-,故2221()44c x a<=<,从而可得2212||[0,3)x x -∈.:设第k 个椭圆的长半轴为k a ,焦半径为k c ,则由题意有21k ka c =,2k k k k ce a -==,故可得2k k a -=,于是可得121222212n n n a a a ----+++=+++=- ,故这n 个椭圆的长轴之和为12(12)22n n---=-.:如图,点,M N 分别在棱,AB AC 上,且2AM AN ==,点,E F 分别在棱,OB OC 上,且1OE OF ==,则2AE AF ==,因此,符合题意的点形成的曲线有:①在面OBC 内,以O 为圆心,1为半径的弧EF ,其长度为2π;②在面AOB 内,以A 为圆心,2为半径的弧EM ,其长度为6π;③在面AOC 内,以A 为圆心,2为半径的弧FN ,其长度为6π;④在面ABC 内,以A 为圆心,2为半径的弧MN ,其长度为23π.所以,所求的曲线长度之和为2326632πππππ+++=.:设三角形最多有n 个,则根据角度相等可得20072n πππ⨯+=⨯,故2200714015n =⨯+=.: 令1122(,),(,)M x y N x y ,设点(,0)A a ,则由(,0)2p F 得12FA a p =-,故以FA 为直径的圆为22222()()44a p a p x y +--+=,则可知12,x x 是方程2222()2()44a p a p x px +--+=的两个实根,即是说12,x x 是方程22(23)0x a p x ap --+=,由韦达定理得1223322a p x x a p -+==-. 故121131()()()2222FM FN x p x p a p p a p FA +=+++=-+=-=,即FM FN FA +=.:当(0,)2πθ∈时,函数s i n y x =与cos y x =的图像关于直线4x π=对称,函数t a n y x =与cot y x =的图像也关于直线4x π=对称,且当4πθ=时,sin ,cos ,tan ,cot θθθθ的任一排列均不可能成等差数列.故只需考虑是否存在(0,)4πθ∈使得sin ,cos ,tan ,cot θθθθ的某一排列成等差数列即可.假设存在(0,)4πθ∈符合题意,则由sin cos tan cot θθθθ<<<可知cot tan cos sin θθθθ-=-,从而有s i n c o s s i n c o s θθθθ+=⋅,故2(sin cos )12sin cos 1sin 2θθθθθ⋅=+⋅=+.而2(sin cos )1θθ⋅<,且1sin 21θ+>,故假设不成立.即,不存在这样的θ,使得sin ,cos ,tan ,cot θθθθ的某一排列成等差数列.:设123123a a a b b b p ++=++=,122331122331a a a a a a bb b b b b q ++=++=,且123a a a r =,123'b b b r =, 则123,,a a a 是函数32()f x x px qx r =-+-的零点,123,,b b b 是函数32()'g x x px qx r =-+-的零点.不妨设123123,a a a b b b ≤≤ ≤≤,则由123min{,,}a a a 123min{,,}b b b ≤知11a b ≤. 而1()0f a =,1111213()()()()0g a a b a b a b =---≤,故11()()g a f a ≤,即3232111111'a pa qa r a pa qa r -+-≤-+-,故3232333333'a pa qa r a pa qa r -+-≤-+-, 即33()()g a f a ≤,也即是33132333()()()()()0g a a b a b a b f a =---≤=.若33a b >,则313233()()()0a b a b a b --->,这与33132333()()()()()0g a a b a b a b f a =---≤=矛盾! 所以有123max{,,}a a a 123max{,,}b b b ≤.:由西姆松定理知,,P Q R 共线.由题意易知,,,C Q D R 四点共圆,则有DCA DQR DQP ∠=∠=∠,同样有,,,A P R D 四点共圆,则有DAC DPR DPQ ∠=∠=∠.故DAC ∆∽DPQ ∆,同理可得:DAB ∆∽DRQ ∆,DBC ∆∽DPR ∆,因此有:PRDB DA DP PR BA BC DC DQ QR BCDB BA⋅===⋅⋅.从而PR QR =的充要条件是DA BABC =.又由角平分线的性质得,ABC ADC ∠∠的平分线分AC 的比分别为,BA DABC DC.故命题成立. :由题意知1i i i a b c ++=,且不妨设i i i a b c ≤≤,则由于三角形的三边关系可得102i i i a b c <≤≤<,即可得312121210(12)(12)(12)()327i i i i i i a b c a b c -+-+-<---≤=.2222222(12)(12)(12)12()4()814()812[()()]812(4)12i i i i i i i i i i i i i i ii i i i i i i i i i i i i i i i i i i i i i i i ia b c a b c a b b c c a a b c a b b c c a a b c a b c a b c a b c a b c a b c p ---=-+++++-=-+++-=-+++-++-=-+++=- 从而可得131272i p ≤<,所以121||54p p -<. :由640p q r s +++=,及,,,p q r s 是不同的素数知,,,p q r s 都是奇数.设2222p qs m p qr n ⎧+=⎪⎨+= ⎪⎩ ①②, 并不妨设s r <,则m n <.由①,②可得()()()()m p m p qsn p n p qr-+=⎧⎨-+=⎩.若1m p ->,则由m p n p n p -<-<+可得m p q n p +==-,故2q m n =+,,s m p r n p =-=+,从而2s r m n q +=+=,故23640p q r s p q q p q +++=++=+=.又由23s m p q p =-=-≥,故可得90p ≤,逐一令p 为不大于90的素数加以验证便知此时无解.若1m p -=,则21qs m p p =+=+,故12qs p -=.而q m p n p <+<+,故,2q n p r n p p q =-=+=+. 故332(1)26402p q r s p q s qs q s +++=++=-++=,即有(32)(34)3857719q s ++==⨯⨯于是得3419,3272s q +=+=⨯,故5,67s q ==,从而167,401p r ==.综上可得167,67,401,5p q r s ====或167,67,5,401p q r s ====. :所求的最小正整数26n =.我们分两步来证明,第一步说明25n ≤不行,我们构造如下的25个正整数:543215432154321543215432122222;33333;55555;7,7777;1111111111,,,,,,,,,,,,,,,,,,,①②③④⑤.如上,我们把这25个正整数分成5组,则任意选取六个数都一定会有两个数在同一组,显然在同一组中的这两个数中的一个能整除另一个;另一方面,由于每一组数只有5个,因此所选的六个数必然至少选自两组数,即是说在所选的六个数中不存在其中一个能被另五个整除的数.所以,当25n =时是不行的.对于25n <,也可类似地证明.第二步说明26n =是可以的.我们首先定义“好数组”.如果一数组中的数都在所给定的26个正整数中,其中最大的一个记为a ,除a 外的25个数中没有a 的倍数,且这25个数中所有a 的约数都在这组数中,那么我们称这个数组为“好数组”.(一个“好数组”中的数可以只有一个).现证这样的“好数组”至多有五个.否则,必存在六个“好数组”,我们考虑这六个“好数组”中的最大数,分别记为,,,,,a b c d e f ,由题知六个数,,,,,a b c d e f 中必然存在一个能整除另一个,不妨记为|b a ,即是说a 的约数b 不在a 所在的“好数组”中,这与“好数组”的定义不符,故“好数组”至多有五个.由于“好数组”至多有五个,而所给的正整数有26个,因此至少存在一个“好数组”中有六个数,考虑这个“好数组”中的最大数,由“好数组”的定义知这个数组中至少另有五个数都能整除该数.综上可得,所求的最小正整数26n =.陕西师范大学附中 王全 710061 wangquan1978@。
2021年全国高中数学联赛(A卷一试)(含答案与解析)
2021年全国中学生数学奥林匹克竞赛(初赛)暨2021年全国高中数学联合竞赛一试(A 卷)一、填空题:本大题共8小题,每小题8分,满分64分.1.等差数列{a n }满足a 2021=a 20+a 21=1,则a 1的值为__________.2.设集合A ={1,2,m },其中m 为实数.令B ={a 2|a ∈A },C =A ∪B .若C 的所有元素之和为6,则C 的所有元素之积为__________.3.设函数f (x )满足:对任意非零实数x ,均有f (x )=f (1)·x +()2f x-1,则f (x )在(0,+∞)上的最小值为__________.4.设函数f (x )=cosx +log 2x (x >0),若正实数a 满足f (a )=f (2a ),则f (2a )-f (4a )的值为__________.5.在△ABC 中,AB =1,AC =2,B -C =23π,则△ABC 的面积为__________.6.在平面直角坐标系xOy 中,抛物线Γ:y 2=2px (p >0)的焦点为F ,过Γ上一点P (异于O )作Γ的切线,与y 轴交于点Q .若|FP |=2,|FQ |=1,则向量OP 与OQ 的数量积为__________.7.一颗质地均匀的正方形骰子,六个面上分别标有点数1,2,3,4,5,6.随机地抛掷该骰子三次(各次抛掷结果相互独立),所得的点数依次为a 1,a 2,a 3,则事件“|a 1-a 2|+|a 2-a 3|+|a 3-a 1|=6”发生的概率为__________.8.设有理数r =p q∈(0,1),其中p ,q 为互素的正整数,且pq 整除3600.这样的有理数r 的个数为__________.二、解答题:本大题共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9.已知复数列{z n }满足:z 1=32,z n +1=n z (1+z n i )(n =1,2,…),其中i 为虚数单位.求z 2021的值.10.在平面直角坐标系中,函数y =11x x ++的图像上有三个不同的点位于直线l 上,且这三点的横坐标之和为0.求l 的斜率的取值范围.11.如图,正方体ABCD -EFGH 的棱长为2,在正方形ABFE 的内切圆上任取一点P 1,在正方形BCGF 的内切圆上任取一点P 2,在正方形EFGH 的内切圆上任取一点P 3.求|P 1P 2|+|P 2P 3|+|P 3P 1|的最小值与最大值.2021年全国中学生数学奥林匹克竞赛(初赛)暨2021年全国高中数学联合竞赛一试(A卷)一、填空题:本大题共8小题,每小题8分,满分64分.1.等差数列{a n}满足a2021=a20+a21=1,则a1的值为__________.【答案】1981 4001【解析】2.设集合A={1,2,m},其中m为实数.令B={a2|a∈A},C=A∪B.若C的所有元素之和为6,则C的所有元素之积为__________.【答案】-8【解析】3.设函数f(x)满足:对任意非零实数x,均有f(x)=f(1)·x+()2fx-1,则f(x)在(0,+∞)上的最小值为__________.【答案】-1【解析】4.设函数f(x)=cosx+log2x(x>0),若正实数a满足f(a)=f(2a),则f(2a)-f(4a)的值为__________.【答案】-3或-1【解析】5.在△ABC 中,AB =1,AC =2,B -C =23,则△ABC 的面积为__________.【答案】3314【解析】6.在平面直角坐标系xOy 中,抛物线Γ:y 2=2px (p >0)的焦点为F ,过Γ上一点P (异于O )作Γ的切线,与y 轴交于点Q .若|FP |=2,|FQ |=1,则向量OP 与OQ 的数量积为__________.【答案】32【解析】7.一颗质地均匀的正方形骰子,六个面上分别标有点数1,2,3,4,5,6.随机地抛掷该骰子三次(各次抛掷结果相互独立),所得的点数依次为a 1,a 2,a 3,则事件“|a 1-a 2|+|a 2-a 3|+|a 3-a 1|=6”发生的概率为__________.【答案】14【解析】8.设有理数r =p q∈(0,1),其中p ,q 为互素的正整数,且pq 整除3600.这样的有理数r 的个数为__________.【答案】112【解析】二、解答题:本大题共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9.已知复数列{z n }满足:z 132,z n +1=n z (1+z n i )(n =1,2,…),其中i 为虚数单位.求z 2021的值.【解析】10.在平面直角坐标系中,函数y =11x x ++的图像上有三个不同的点位于直线l 上,且这三点的横坐标之和为0.求l 的斜率的取值范围.【解析】11.如图,正方体ABCD-EFGH的棱长为2,在正方形ABFE的内切圆上任取一点P1,在正方形BCGF的内切圆上任取一点P2,在正方形EFGH的内切圆上任取一点P3.求|P1P2|+|P2P3|+|P3P1|的最小值与最大值.【解析】。
全国高中数学联赛试题及答案
全国高中数学联赛试题及答案第一题:设函数f(x)在区间[a, b]上连续,(a < b),且在(a, b)内可导。
证明:存在ξ∈(a,b),使得f(b) - f(a) = (b-a)f'(\xi)解答:根据拉格朗日中值定理,存在c∈(a,b),使得f'(c) = (f(b) - f(a))/(b - a)所以,我们只需证明c=ξ即可。
由于f(x)在[a, b]上连续,并且在(a, b)内可导,所以内点可导连续定理告诉我们:f(x)在[a, b]上一致连续。
依据一致连续性,对于任意ε>0,存在δ>0,使得对于所有的x',x''∈[a, b],只要 |x' - x''| < δ,就有 |f(x') - f(x'')| < ε。
考虑到c∈(a, b),且c=ξ是一个特定值,我们可以取一小段(a,b)中的点序列,使得这个点序列的左右界可以趋近c,同时满足 |x' - x''| < δ。
设这个点序列为{x_n},那么对应的有一个序列{f'(x_n)}。
根据极限的性质,我们可以得到∃ n→∞,使得x_n→c时,f'(x_n)→ f'(c)。
而由于f'(x)在(a, b)内可导,所以根据导数的定义,也就是f'(c) = lim(x→c) (f(x) - f(c))/(x - c)结合拉格朗日中值定理中的等式f'(c) = (f(b) - f(a))/(b - a)我们可以得到:f'(c) = (f(b) - f(a))/(b - a)所以,c=ξ成立,证毕。
第二题:设a, b, c为正实数,且满足 abc=1。
证明:a/(a^3 + 1) + b/(b^3 + 1) + c/(c^3 + 1) ≤ 3/2解答:根据条件abc=1,可以设 a = x/y, b = y/z, c = z/x (其中x, y, z为正实数)。
解析版-2024年全国高中数学联赛福建赛区预赛试卷
2024 年全国高中数学联赛福建赛区预赛 暨 2024 年福建省高中数学竞赛试卷参考答案(考试时间: 2024 年 6 月 22 日上午 9:00-11:30, 满分 160 分)一、填空题 (共 10 小题, 每小题 6 分, 满分 60 分. 请直接将答案写在题中的横线上) 1. 在 △ABC 中,已知 AB =4,BC =2,AC =2√3 ,若动点 P 满足 |CP⃗⃗⃗⃗⃗ |=1 ,则 AP ⃗⃗⃗⃗⃗ ⋅BP ⃗⃗⃗⃗⃗ 的最大值为 . 【答案】 5【解答】取 AB 中点 O ,则AP ⃗⃗⃗⃗⃗ ⋅BP ⃗⃗⃗⃗⃗ =PA ⃗⃗⃗⃗⃗ ⋅PB ⃗⃗⃗⃗⃗ =14[(PA ⃗⃗⃗⃗⃗ +PB ⃗⃗⃗⃗⃗ )2−(PA ⃗⃗⃗⃗⃗ −PB ⃗⃗⃗⃗⃗ )2]=14[(2PO ⃗⃗⃗⃗⃗ )2−BA⃗⃗⃗⃗⃗ 2]=PO ⃗⃗⃗⃗⃗ 2−14×42=PO ⃗⃗⃗⃗⃗ 2−4由 AB =4,BC =2,AC =2√3 ,知 AB 2=CA 2+CB 2 ,于是 CA ⊥CB . 所以 CO =12AB =2 .又 |CP⃗⃗⃗⃗⃗ |=1 ,所以 |PO ⃗⃗⃗⃗⃗ | 的最大值为 CO +1=3 . 所以 AP⃗⃗⃗⃗⃗ ⋅BP ⃗⃗⃗⃗⃗ 的最大值为 32−4=5 . 2. 已知 z 1,z 2,z 3 为方程 z 3=−i 的三个不同的复数根,则 z 1z 2+z 2z 3+z 3z 1= . 【答案】 0【解答】设 z =x +yi (x,y ∈R ) 为方程 z 3=−i 的复数根, 则 z 3=(x +yi )3=x 3+3x 2(yi )+3x (yi )2+(yi )3=−i . 即 x 3+3x 2yi −3xy 2−y 3i =−i,x 3−3xy 2+(3x 2y −y 3)i =−i . 由 x,y ∈R ,得 {x 3−3xy 2=03x 2y −y 3=−1,解得 {x 1=0y 1=1 , {x 2=√32y 2=−12,{x 3=−√32y 3=−12.于是 z 1=i, z 2=√32−12i, z 3=−√32−12i . 所以 z 2+z 3=(√32−12i)+(−√32−12i)=−i ,z 2z 3=(√32−12i)(−√32−12i)=(−12i)2−(√32)2=−14−34=−1.因此 z 1z 2+z 2z 3+z 3z 1=z 1(z 2+z 3)+z 2z 3=i ×(−i )−1=0 .3. 设a=66⋯6⏟10个6,b=33⋯3⏟6个3,则a,b的最大公约数为 .【答案】 33【解答】用(x,y)表示正整数x,y的最大公约数.则(a,b)=(66⋯6⏟10个6,33⋯3⏟6个3)=(33⋯3⏟10个3,33⋯3⏟6个3)=3(11⋯1⏟10个1,11⋯1⏟6个1) .设m=11⋯1⏟10个1, n=11⋯1⏟6个1,则由m=11⋯1⏟10个1=104×11⋯1⏟6个1+1111 ,可知(m,n)=(1111,11⋯1⏟6个1) .同理可得, (m,n)=(1111,11⋯1⏟6↑1)=(11,1111)=(11,11)=11 .所以(a,b)=3(m,n)=33 .4. 某校三个年级举办乒乓球比赛, 每个年级选派 4 名选手参加比赛. 组委会随机将这 12 名选手分成 6 组, 每组 2 人, 则在上述分组方式中每组的 2 人均来自不同年级的概率为 .【答案】64385【解答】设三个年级为甲、乙、丙.12名选手随机分成6组,每组2人的分组方式有: C122C102C82C62C42C22A66=11×9×7×5×3×1种.下面考虑每组的2人均来自不同年级的分组情形.先考虑甲年级4名选手的配对方式: 由于每组2人均来自不同年级, 因此需从乙, 丙两个年级中每个年级各取 2 名选手与甲年级的 4 名选手配对. 故有C42×C42×A44=36×24种方式.再考虑余下 4 人的配对方式,此时乙、丙年级各有 2 人,其分组方式有2×1种.所以每组的 2 人均来自不同年级的分组方式有36×24×2种.所以每组的 2 人均来自不同年级的概率为36×24×211×9×7×5×3×1=64385.5. 如图,在棱长为 6 的正方体ABCD−A1B1C1D1中,点E,F分别为 AB,BC 的中点,点 G 在棱 CC 1 上. 若平面 EFG 与底面 ABCD 所成角的余弦值为 3√1717,则平面 EFG 截正方体 ABCD −A 1B 1C 1D 1 所得截面多边形的周长为 . 【答案】 6√13+3√2【解答】如图,以 D 为原点,射线 DA,DC,DD 1 分别为 x 轴, y 轴,(第 5 题图) z 轴非负半轴建立空间直角坐标系.(第 5 题答题图)则 E (6,3,0),F (3,6,0) . 设 G (0,6,t ) ,则 EF ⃗⃗⃗⃗⃗ =(−3,3,0) , EG ⃗⃗⃗⃗⃗ =(−6,3,t ) . 设 m ⃗⃗ =(x,y,z ) 为平面 EFG 的一个法向量,则{m ⃗⃗ ⋅EF⃗⃗⃗⃗⃗ =−3x +3y +0=0m ⃗⃗ ⋅EG⃗⃗⃗⃗⃗ =−6x +3y +tz =0 ,于是 m ⃗⃗ =(t,t,3) 为平面 EFG 的一个法向量.又 n ⃗ =(0,0,1) 为平面 ABCD 的一个法向量,且平面 EFG 与底面 ABCD 所成角的余弦值 为 3√1717, 所以 |cos⟨m ⃗⃗ ,n ⃗ ⟩|=|m⃗⃗⃗ ⋅n ⃗ |m ⃗⃗⃗ |⋅|n ⃗ ||=√2t 2+9⋅1=3√1717. 结合 t >0 ,解得 t =2 . 所以 G (0,6,2),CG =2 .延长 EF 交直线 DC 于点 M ,由 E,F 分别为 AB,BC 的中点,知点 M 在 DC 延长线上, 且 CM =3 . 由 CG DD 1=26=39=MCMD 知, M,G,D 1 三点共线.于是 GD 1 是截面多边形的一条边.延长 FE 交直线 DA 于点 N ,连接 D 1N 交 AA 1 于点 P ,则 D 1P 也是截面多边形的一条边. 另由AN =3=12A 1D 1 可知, AP =12A 1P ,所以 AP =2,A 1P =4 .连接 PE ,则五边形 EFGD 1P 为平面 EFG 截正方体 ABCD −A 1B 1C 1D 1 所得的截面多边形. 易知 EF =√32+32=3√2,FG =√32+22=√13,GD 1=√42+62=2√13 ,D 1P =√62+42=2√13, PE =√22+32=√13.所以截面五边形的周长为 6√13+3√2 .注: 作 CH ⊥EF 与 H ,则 GH ⊥EF,∠GHC 为二面角 G −EF −D 的平面角,于是 tan∠GHC =CGCH =3√22=2√23,因此 CG =2 。
2024年全国中学生数学奥林匹克竞赛(预赛)暨2024年全国高中数学联赛一试(A卷)试题(含答案)
2024年全国中学生数学奥林匹克竞赛(预赛)暨2024年全国高中数学联合竞赛一试(A 卷)参考答案及评分标准说明:1. 评阅试卷时,请依据本评分标准. 填空题只设8分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题5分为一个档次,不得增加其他中间档次.一、填空题:本大题共8小题,每小题8分,满分64分.1. 若实数1m 满足98log (log )2024m ,则32log (log )m 的值为 . 答案:4049.解:323898log (log )log (3log )12log (log )1220244049m m m .2. 设无穷等比数列{}n a 的公比q 满足01q .若{}n a 的各项和等于{}n a 各项的平方和,则2a 的取值范围是 .答案:1,0(0,2)4. 解:因为数列{}n a 的各项和为11a q,注意到{}n a 各项的平方依次构成首项为21a 、公比为2q 的等比数列,于是2{}n a 的各项和为2121a q. 由条件知211211a a q q,化简得11a q . 当(1,0)(0,1)q 时,22111(1),0(0,2)244a q q q . 3. 设实数,ab 满足:集合2{100}A x x x a R 与3{}B x bx b R 的交集为[4,9],则a b 的值为 .答案:7.解:由于2210(5)25x x a x a ,故A 是一个包含[4,9]且以5x 为中点的闭区间,而B 是至多有一个端点的区间,所以必有[1,9]A ,故9a .进一步可知B 只能为[4,) ,故0b 且34b b ,得2b .于是7a b .4. 在三棱锥P ABC 中,若PA 底面ABC ,且棱,,,AB BP BC CP 的长分别为1,2,3,4,则该三棱锥的体积为 .答案:34. 解:由条件知PA AB ,PA AC .因此PA AC .在ABC 中,22219131cos 22132AB BC AC B AB BC ,故sin B .所以1sin 2ABC S AB BC B 又该三棱锥的高为PA ,故其体积为1334ABC V S PA . 5. 一个不均匀的骰子,掷出1,2,3,4,5,6点的概率依次成等差数列.独立地先后掷该骰子两次,所得的点数分别记为,a b .若事件“7a b ”发生的概率为17,则事件“a b ”发生的概率为 . 答案:421. 解:设掷出1,2,,6 点的概率分别为126,,,p p p .由于126,,,p p p 成等差数列,且1261p p p ,故16253413p p p p p p . 事件“7a b ”发生的概率为1162561P p p p p p p . 事件“a b ”发生的概率为2222126P p p p . 于是22221216253411()()()333P P p p p p p p . 由于117P ,所以21143721P . 6. 设()f x 是定义域为R 、最小正周期为5的函数.若函数()(2)x g x f 在区间[0,5)上的零点个数为25,则()g x 在区间[1,4)上的零点个数为 .答案:11.解:记2x t ,则当[0,5)x 时,[1,32)t ,且t 随x 增大而严格增大.因此,()g x 在[0,5)上的零点个数等于()f t 在[1,32)上的零点个数.注意到()f t 有最小正周期5,设()f t 在一个最小正周期上有m 个零点,则()f t 在[2,32)上有6m 个零点,又设()f t 在[1,2)上有n 个零点,则625m n ,且0n m ,因此4,1m n .从而()g x 在[1,4)上的零点个数等于()f t 在[2,16)[1,16)\[1,2) 上的零点个数,即311m n .7. 设12,F F 为椭圆 的焦点,在 上取一点P (异于长轴端点),记O 为12PF F 的外心,若12122PO F F PF PF ,则 的离心率的最小值为 .答案 解:取12F F 的中点M ,有12MO F F ,故120MO F F . 记1212,,PF u PF v F F d ,则121212PO F F PM F F MO F F 12211()()2PF PF PF PF 222v u , 222121222cos PF PF uv F PF u v d ,故由条件知222222v u u v d ,即22232u v d . 由柯西不等式知222281(3)1()33d u v u v (当3v u 时等号成立).所以 的离心率d e u v .当::u v d 时, 的离心率e 取到最小值8. 若三个正整数,,a b c 的位数之和为8,且组成,,a b c 的8个数码能排列为2,0,2,4,0,9,0,8,则称(,,)a b c 为“幸运数组”,例如(9,8,202400)是一个幸运数组.满足10a b c 的幸运数组(,,)a b c 的个数为 .答案:591.解:对于幸运数组(,,)a b c ,当10a b c 时,分两类情形讨论. 情形1:a 是两位数,,b c 是三位数.暂不考虑,b c 的大小关系,先在,,a b c 的非最高位(五个位置)中选三个位置填0,剩下五个位置还未填,任选其中两个填2,最后三个位置填写4,8,9,这样的填法数为3255C C 3!600 .再考虑其中,b c 的大小关系,由于不可能有b c ,因此b c 与b c 的填法各占一半,故有300个满足要求的幸运数组.情形2:,a b 是两位数,c 是四位数.暂不考虑,a b 的大小关系,类似于情形1,先在,,a b c 的非最高位(五个位置)中选三个位置填0,剩下五个位置填2,2,4,8,9,这样的填法数为600.再考虑其中,a b 的大小关系.若a b ,则必有20a b ,c 的四个数字是0,4,8,9的排列,且0不在首位,有33!18 种填法,除这些填法外,a b 与a b 的填法各占一半,故有600182912个满足要求的幸运数组. 综上,所求幸运数组的个数为300291591 .二、解答题:本大题共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9. (本题满分16分) 在ABC 中,已知sin cos sin cos cos 22A AB B C,求cos C 的值.解:由条件知cos 44C A B. …………4分 假如44A B,则2C ,cos 0C ,但sin 04A ,矛盾. 所以只可能44A B .此时0,2A B ,2C A . …………8分注意到cos 04C A ,故2C ,所以,42A B ,结合条件得cos cos 2sin 22sin cos 244C A A A A2C ,又cos 0C ,化简得28(12cos )1C ,解得cos C…………16分 10.(本题满分20分)在平面直角坐标系中,双曲线22:1x y 的右顶点为A .将圆心在y 轴上,且与 的两支各恰有一个公共点的圆称为“好圆”.若两个好圆外切于点P ,圆心距为d ,求d PA 的所有可能的值. 解:考虑以0(0,)y 为圆心的好圆2220000:()(0)x y y r r .由0 与 的方程消去x ,得关于y 的二次方程2220002210y y y y r .根据条件,该方程的判别式22200048(1)0y y r ,因此220022y r .…………5分对于外切于点P 的两个好圆12, ,显然P 在y 轴上.设(0,)P h ,12, 的半径分别为12,r r ,不妨设12, 的圆心分别为12(0,),(0,)h r h r ,则有2211()22h r r ,2222()22h r r .两式相减得2212122()h r r r r ,而120r r ,故化简得122r r h. …………10分 进而221211222r r r r ,整理得 221122680r r r r .① 由于12d r r ,(1,0)A ,22212()114r r PA h ,而①可等价地写为2212122()8()r r r r ,即228PA d ,所以d PA…………20分 11.(本题满分20分)设复数,z w 满足2z w ,求2222S z w w z 的最小可能值.解法1:设i (,)z a b a b R ,则2i w a b ,故2222242(1)i 642(3)i S a a b b a a a b b a ,22222464a a b a a b2222(1)5(3)5a b a b . ①…………5分记1t a .对固定的b ,记255B b ,求22()(4)f t t B t B 的最小值.由()(4)f t f t ,不妨设2t .我们证明0()()f t f t ,其中0t . 当0[2,]t t 时,04[2,4]t t ,22200()()()((4))((4))f t f t B t B t B t2222220000(4)((4))(28)(28)t t t t t t t t0 (用到02t t 及228y x x 在[2,) 上单调增). …………10分当0[,)t t 时,22200()()(4)(4)f t f t t B t B t B222200(4)(4)t t t t 000()8t t t t t t0 (用到04t t ). …………15分所以200()(4)1616S f t B t .当0b (①取到等号),011a t 时,S 取到最小值16.…………20分解法2:设1i,1i (,)R z x y w x y x y ,不妨设其中0x . 计算得2222(41)(24)i z w x x y x y ,2222(41)(24)i w z x x y x y .所以22Re(2)Re(2)S z w w z 22224141x x y x x y . …………5分利用a b a b ,可得8S x ,① 亦有22222212(1)2(1)S x y x y x . ②…………10分注意到方程282(1)x x 2.当2x 时,由①得816S x .当02x 时,由②得222(1)2(12))16S x .因此当2,0x y 时,S 取到最小值16. …………20分 解法3:因为2w z =−,所以我们有222(2)2411z z z z z22(2)26411z z z z z从而上两式最右边各项分别是z 到复平面中实轴上的点1−1−,33+的距离,所以把i z x y =+换成其实部x 时,都不会增大.因此只需 考虑函数22()2464f x x x x x +−+−+在R 上的最小值.…………10分因为1313−−<<−+<,因此我们有以下几种情况:1.若1x≤−,则2()24f x x x=−,在这一区间上的最小值为(116f−=+;2.若(13x∈−−,则()88f x x=−+,在这一区间上的最小值为(316f=−+…………15分3.若31x∈−,则2()24f x x x=−+,在这一区间上的最小值为((3116f f=−+=−+;4.若13x∈− ,则()88f x x=−,在这一区间上的最小值为(116f−+=−+;5.若3x≥+,则2()24f x x x=−,在这一区间上的最小值为(316f=+.综上所述,所求最小值为((3116f f=−+=−.…………20分。
《全国高中数学联赛真题暨答案(2011-202
−−→ AF1
·
−−→ AF2
+
−−→ BF1
·
−−→ BF2
=
0,
则
|AB| |F1F2|
的值为
.
3.
设a
>
0,函数 f (x)
=
x+
100 x
在区间 (0, a] 上的最小值为 m1,在区间 [a, +∞) 上的
最小值为 m2,若 m1m2 = 2020,则 a 的值为 .
4.
设z
为复数,若
z−2 z−i
为实数(i 为虚数单位),则 |z + 3| 的最小值为
.
5. 在 △ABC 中,AB = 6,BC = 4,边 AC 上的中线长为 √10,则 sin6 A + P − ABC 的所有棱长均为 1,L, M, N 分别为棱 P A, P B, P C 的中点,则该 正三棱锥的外接球被平面 LM N 所截的截面面积为 .
2011 年全国高中数学联赛二试 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 2020 年全国高中数学联赛一试答案 (A 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 72 2020 年全国高中数学联赛二试答案 (A 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 78 2020 年全国高中数学联赛一试答案 (B 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 84 2020 年全国高中数学联赛二试答案(B 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 89 2019 年全国高中数学联赛一试答案 (A 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 93 2019 年全国高中数学联赛二试答案 (A 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 97 2019 年全国高中数学联赛一试答案(B 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 101 2019 年全国高中数学联赛二试答案 (B 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 105 2018 年全国高中数学联赛一试答案 (A 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 109 2018 年全国高中数学联赛二试答案 (A 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 114 2018 年全国高中数学联赛一试答案 (B 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 118 2018 年全国高中数学联赛二试答案 (B 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 122 2017 年全国高中数学联赛一试答案 (A 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 125 2017 年全国高中数学联赛二试答案 (A 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 133 2017 年全国高中数学联赛一试答案 (B 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 141 2017 年全国高中数学联赛二试答案 (B 卷) . . . . . . . . . . . . . . . . . . . . . . . . . 147 2016 年全国高中数学联赛一试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 2016 年全国高中数学联赛二试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 2015 年全国高中数学联赛一试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 2015 年全国高中数学联赛二试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 2014 年全国高中数学联赛一试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 2014 年全国高中数学联赛二试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 2013 年全国高中数学联赛一试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 2013 年全国高中数学联赛二试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 2012 年全国高中数学联赛一试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 2012 年全国高中数学联赛二试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 2011 年全国高中数学联赛一试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 2011 年全国高中数学联赛二试答案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
2023_年全国高中数学联赛(四川预赛)试题及解析
2023年全国高中数学联赛(四川预赛)试题及解析张㊀君(四川省温江中学ꎬ四川成都611130)摘㊀要:文章给出2023年全国高中数学联赛(四川预赛)试题及解析ꎬ部分试题给出一题多解ꎬ解答题给出了有别于参考答案的精彩解法.关键词:高中数学联赛ꎻ四川预赛ꎻ数学竞赛试题中图分类号:G632㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1008-0333(2023)28-0088-05收稿日期:2023-07-05作者简介:张君(1978.10-)ꎬ男ꎬ四川省宣汉人ꎬ本科ꎬ中学高级教师ꎬ从事高中数学教学研究.㊀㊀2023年全国高中数学联赛(四川预赛)试题ꎬ全卷共11道题(满分120分)ꎬ其中8道填空题(每小题8分)ꎬ3道解答题(第9题16分ꎬ第11㊁12题各20分).笔者参考2022年四川预赛试题及其解析[1]ꎬ对2023年四川预赛每道题都进行了分析和研究ꎬ逐个给出解析.1试题内容简析该试题涉及函数性质(第1题)ꎬ平面向量(第2题)ꎬ二项式定理(第3题)ꎬ函数与导数(第4题)ꎬ数论(第5题)ꎬ立体几何(第6题)ꎬ平面解析几何(第9题)ꎬ三角函数与三角变换(第7ꎬ8题)ꎬ函数与数列(第5ꎬ10题)ꎬ函数与不等式(第8ꎬ11题).2试题及其解析题1㊀已知f(x)是定义在R上的函数ꎬ且对任意实数xꎬ均有2f(x)+fx2-1()=1ꎬ则f(2)的值为.解析㊀令x=1ꎬ得2f(1)+f0()=1.①令x=-1ꎬ得2f(-1)+f0()=1.②令x=0ꎬ得2f(0)+f-1()=1.③由①②③解得f(1)=13.令x=2ꎬ得2f(2)+f1()=1.解得f(2)=13.题2㊀设平面向量aꎬb满足:|a|=1ꎬ|b|=2ꎬaʅb.点OꎬAꎬB为平面上的三点ꎬ满足OAң=2a+bꎬOBң=-3a+2bꎬ则ΔAOB的面积为.解析㊀由aʅb建立以O为原点ꎬ分别以向量aꎬb的方向为正方向建立平面直角坐标系ꎬ因为|a|=1ꎬ|b|=2ꎬ所以a=(1ꎬ0)ꎬb=(0ꎬ2).所以OAң=2a+b=(2ꎬ2)ꎬOBң=-3a+2ba=(-3ꎬ4).即A(2ꎬ2)ꎬB(-3ꎬ4).从而求得SΔAOB=7.题3㊀在(-xy+2x+3y-6)6的展开式中ꎬx4y3的系数为.(用具体数字作答)解析㊀因为(-xy+2x+3y-6)6=(y-2)6(x+3)6ꎬ所以x4y3的系数为C36(-2)3 C26 32=-21600.题4㊀设P(0ꎬa)是y轴上异于原点的任意一点ꎬ过点P且平行于x轴的直线与曲线y=1alnx交于点Qꎬ曲线y=1alnx在点Q处的切线交y轴于点Rꎬ则ΔPQR的面积的最小值为.解析㊀由题意知ꎬa=1alnxꎬ解得x=ea2.所以Q(ea2ꎬa).因为yᶄ=1axꎬ所以切线RQ的方程为y-a=1aea2(x-ea2).令x=0ꎬ得R(0ꎬa-1a).所以SΔPRQ=12PQ PR=12aea2.令f(a)=12aea2(a>0)ꎬ所以fᶄ(a)=12ea2(2-a-2).当aɪ0ꎬ22æèçöø÷时ꎬfᶄ(a)<0ꎬf(a)单调递减ꎻ当aɪ22ꎬ+ɕæèçöø÷时ꎬfᶄ(a)>0ꎬf(a)单调递增[2].㊀所以f(a)min=f(22)=2e2.题5㊀㊀设集合I={0ꎬ1ꎬ2ꎬ ꎬ22}ꎬA={(aꎬbꎬcꎬd)|aꎬbꎬcꎬdɪIꎬa+dʉ1(mod23)ꎬ且ad-bcʉ0(mod23)}ꎬ则集合A中元素的个数为.解析㊀若aꎬd中有0ꎬ由于a+dʉ1(mod23)ꎬ则aꎬd()有0ꎬ1()和1ꎬ0()两种情况.此时ad=0ꎬ且ad-bcʉ0(mod23)ꎬ则bꎬc中有0ꎬbꎬc()有45种情况.所以ꎬ此类共有2ˑ45=90种情况.若aꎬd中无0ꎬ由于a+dʉ1(mod23)ꎬ则aꎬd()有2ꎬ22()ꎬ3ꎬ21()ꎬ ꎬ22ꎬ2()共21种情况.因为ad-bcʉ0(mod23)ꎬ注意到km(kꎬmɪ1ꎬ2ꎬ ꎬ22{})对每一个确定的kꎬkm(mɪ1ꎬ2ꎬ ꎬ22{})的每两个值对于mod23不同余ꎬ即与1ꎬ2ꎬ ꎬ22关于mod23同余的值各有一个ꎬ则km(kꎬmɪ1ꎬ2ꎬ ꎬ22{})的值与1ꎬ2ꎬ ꎬ22关于mod23同余的各有22个.则对于每一个aꎬd()ꎬbꎬc()有22种情况.故此类共有21ˑ22=462种情况.㊀所以ꎬ集合A中元素的个数为90+462=552.题6㊀在直三棱柱ABC-A1B1C1中ꎬAB=1ꎬBC=CC1=3ꎬøABC=90ʎꎬ点P是平面ABC上一动点ꎬ则A1P+12PC的最小值为.解析㊀易知ꎬ点P在线段AC上时ꎬA1P+12PC才可能最小.由已知可求得AC=2ꎬAA1=3.设øAA1P=αꎬ则αɪ0ꎬarctan23æèçöø÷ꎬA1P=3cosαꎬAP=3tanα.则A1P+12PC=3cosα+2-3tanα2=1+32-sinα()2cosα.设t=2-sinαcosαꎬ则tcosα+sinα=2.于是t2+1ȡ2ꎬtȡ3.则A1P+12PCȡ52.当t=3时ꎬ3cosα+sinα=2ꎬ则sinα+π3æèçöø÷=1ꎬ解得α=π6.故当α=π6时ꎬA1P+12PC取最小值52.题7㊀如图1ꎬ将函数y=cosx+1(0ɤxɤ2π)的图象Γ画在矩形OABC内ꎬ将AB与OC重合围成一个圆柱ꎬ则曲线Γ在圆柱表面形成的曲线的离心率为.解析㊀如图2ꎬ设图1中OAꎬCB的中点分别为EꎬDꎬ则围成圆柱后AEꎬBD分别为上㊁下底面的直径ꎬ易知AE=2.设AE的中点为GꎬP为曲线上一点ꎬ作PQʅ底面ꎬ垂足为点QꎬQMʅAE于点MꎬMNʊAB交BE于点N.㊀图1㊀函数y=cosx+1图象㊀㊀㊀㊀㊀图2㊀圆柱设AQ(=xꎬ则PQ=1+cosxꎬøAGQ=xꎬøAEQ=x2.所以EQ=AEcosøAEQ=2cosx2ꎬME=QEcosøAEQ=2cos2x2.易知әNME为等腰直角三角形ꎬ则MN=ME=2cos2x2=1+cosx.所以PQ=NMꎬ则四边形PQMN为矩形.所以PNʅNMꎬ则PNʅ平面ABDEꎬ于是点P在平面ABDE内的投影为点N.所以曲线在平面ABDE内的投影为线段BEꎬ于是曲线为过直线BE且垂直于平面ABDE的平面截圆柱侧面所得曲线[3].该曲线为椭圆ꎬ长轴为BE=22ꎬ短轴长等于底面直径2ꎬ所以离心率为22.题8㊀设AꎬBꎬC是ΔABC的三个内角ꎬ则3cosA+2cos2B+cos3C的取值范围为.解析㊀设M=3cosA+2cos2B+cos3C.易知M<6ꎬ当Aң0ꎬBңπꎬCң0时ꎬMң6.当Cң0时ꎬM=-3cosB+C()+2cos2B+cos3Cң-3cosB+2cos2B+1ꎬ又-3cosB+2cos2B+1=4cos2B-3cosB-1=4cosB-38æèçöø÷2-2516ꎬ所以ꎬ当Cң0ꎬB=arccos38πꎬAңπ-arccos38时ꎬMң-2516.下面证明M>-2516.当Aɤπ3时ꎬMȡ3cosπ3-3=-32>-2516.当A>π3时ꎬ0<B<2π3ꎬ0<C<2π3ꎬ0<B+C<2π3.此时ꎬA不是AꎬBꎬC中最小的.(1)若C最小ꎬ则C<AꎬCɤB.此时cosA+cosB-cosC+cos2Cȡ0ꎬ证明如下:cosA+cosB-cosC+cos2C=-cosB+C()-cosC+cosB+cos2C=-2cosB+2C2cosB2+2cosB+2C2cosB-2C2=4cosB+2C2sinB-C2sinC2.因为B+2C2ꎬB-C2ꎬC2ɪ0ꎬπ2[öø÷ꎬ所以cosA+cosB-cosC+cos2Cȡ0成立.所以3cosA+2cos2B+cos3Cȡ3-cosB+cosC-cos2C()+2cos2B+cos3C=-3cosB+2cos2B+3cosC-3cos2C+cos3C=4cos2B-3cosB+4cos3C-6cos2C+1=4cosB-38æèçöø÷2+2cosC-1()22cosC+1()-2516.因为0<C<2π3ꎬ-12<cosC<1ꎬ所以3cosA+2cos2B+cos3C>-2516.(2)若B最小ꎬ则BɤCꎬB<Aꎬ3B+C2ɪ0ꎬπ()ꎬC-B2ɪ0ꎬπ2[öø÷.于是cosA+cos2B=-cosB+C()+cos2B=2sin3B+C2sinC-B2ȡ0ꎮ所以3cosA+2cos2B+cos3CȡcosA+cos3C=-cosB+C()+cos3C>-cosC+cos3C=4cos3C-4cosC.设t=cosCꎬ由于0<C<2π3ꎬ-12<cosC<1ꎬ则-12<t<1.令4cos3C-4cosC=4t3-4t=ft()ꎬ则fᶄt()=12t2-4=43t2-1()ꎬ则ft()的极值点为ʃ13.则ft()在-12ꎬ-13æèçöø÷上单调递增ꎬ在-13ꎬ13æèçöø÷上单调递减ꎬ在13ꎬ1æèçöø÷上单调递增.计算知f-12æèçöø÷=32>-2516ꎬf13æèçöø÷=-833>-2516ꎬ所以ft()>-2516.所以3cosA+2cos2B+cos3C>-2516.综上所述ꎬ3cosA+2cos2B+cos3C的取值范围是-2516ꎬ6æèçöø÷.题9㊀已知抛物线Γ的顶点是原点Oꎬ焦点是F(0ꎬ1).过直线y=-2上任意一点A作抛物线Γ的两条切线ꎬ切点分别为PꎬQꎬ求证:(1)直线PQ过定点ꎻ(2)øPFQ=2øPAQ.证明㊀(1)易得拋物线Γ的方程为x2=4y.设点A(tꎬ-2)ꎬPx1ꎬy1()ꎬQx2ꎬy2()ꎬ则过点P的抛物线Γ的切线l1的方程为y-y1=x12x-x1().即x1x-2y-2y1=0.同理ꎬ过点Q的抛物线Γ的切线l2的方程为x2x-2y-2y2=0.由l1ꎬl2过点Aꎬ可得x1t+4-2y1=0ꎬx2t+4-2y2=0ꎬ这表明ꎬ点Px1ꎬy1()ꎬQx2ꎬy2()的坐标满足方程tx-2y+4=0.所以直线PQ的方程为tx-2y+4=0.所以易得直线PQ过定点(0ꎬ2).(2)不妨设点P在点Q的左边ꎬ则x1<x2.因为tanøPAQ=x1/2-x2/21+(x1/2) (x2/2)=2x1-x2()x1x2+4ꎬ所以tan2øPAQ=2tanøPAQ1-tan2øPAQ=4x1-x2()/x1x2+4()1-4x1-x2()2/x1x2+4()2=4x1-x2()x1x2+4()x1x2+4()2-4x1-x2()2.又因为tanøPFQ=(y1-1)/x1-(y2-1)/x21+[(y1-1)/x1] [(y2-1)/x2]=x2x21/4-1()-x1x22/4-1()x1x2+x21/4-1()x22/4-1()=4x1-x2()x1x2+4()x1x2+4()2-4x1-x2()2ꎬ所以tan2øPAQ=tanøPFQ.易知0ʎ<øPAQ<90ʎ<øPFQ<180ʎ.所以øPFQ=2øPAQ.题10㊀给定正整数n(nȡ2).已知2n个正实数a1ꎬa2ꎬ ꎬa2nꎬ满足:ðnk=1a2k-1 ðnk=1a2k=ᵑnk=1a2k-1+ᵑnk=1a2k.求S=ð2nk=1an-1kak+1的最小值ꎬ其中a2n+1=a1.解析㊀一方面ꎬ记A=ᵑ2nk=1ak()1nꎬ则S=ðnk=1an-12ka2k+1+ðnk=1an-12k-1a2kȡnᵑnk=1an-12ka2k+1æèçöø÷1n+nᵑnk=1an-12k-1a2kæèçöø÷1n=nAᵑnk=1a2k-1+ᵑnk=1a2k()=nAðnk=1a2k-1 ðnk=1a2k()ȡnAnᵑnk=1a2k-1()1n nᵑnk=1a2k()1n=n3.另一方面ꎬ易知n=2时ꎬ取a1=a3=1ꎬa2=a4=2+3时可满足条件ꎬ且S=n3.nȡ3时ꎬ取a1=a2= =a2n=n22æèçöø÷1n-2时可满足条件ꎬ且S=n3.综上所述ꎬ所求的最小值是n3.题11㊀给定正整数aꎬb(aɤb).数列fn{}满足:f1=aꎬf2=bꎬfn+2=fn+1+fn(n=1ꎬ2ꎬ ).若对任意的正整数nꎬ都ðnk=1fk()2ɤλ fnfn+1ꎬ求实数λ的最小值.解析㊀先证以下3个引理:引理1㊀对任意nɪN∗ꎬ有fn+2=ðnk=1fk+f2.证明㊀fn+2=ðn+1k=2fk+1-fk()+f2=ðn+1k=2fk-1+f2=ðnk=1fk+f2.引理2㊀记T=a2+ab-b2ꎬ则对任意nɪN∗ꎬ有fnfn+2+(-1)nT=f2n+1.证明㊀由条件知f3=a+b.从而f1f3+(-1)1T=a(a+b)-a2+ab-b2()=b2=f22ꎬ故结论对n=1成立.假设n=k(kȡ1)时ꎬ结论成立ꎬ即fkfk+2+(-1)kT=f2k+1.当n=k+1时ꎬfk+1fk+3+(-1)k+1T=fk+1fk+1+fk+2()+fkfk+2-f2k+1=fk+1fk+2+fkfk+2=f2k+2ꎬ故当n=k+1时ꎬ结论也成立.由归纳原理知ꎬ对任意的正整数nꎬ都有fnfn+2+(-1)nT=f2n+1.引理3㊀limnң+ɕfnfn+1=5-12.证明㊀首先ꎬ由fnfn+1-fn+1fn+2=fnfn+2-f2n+1fn+1fn+2=(-1)nTfn+1fn+2ң0知limnң+ɕfnfn+1存在ꎬ设其值为aꎬ其中0ɤaɤ1.其次ꎬ将fn+2=fn+1+fn同时除以fn+1ꎬ再令nң+ɕꎬ得1a=1+aꎬ解得a=5-12.回到原题:记Tn=ðnk=1fk()2fnfn+1ꎬn=1ꎬ2ꎬ3ꎬ ꎬ则Tn+1-Tn=ðn+1k=1fk()2fn+1fn+2-ðnk=1fk()2fnfn+1=fnðnk=1fk+fn+1()2-fn+2ðnk=1fk()2fnfn+1fn+2=fn-fn+2()ðnk=1fk()2+2fnfn+1ðnk=1fk()+fnf2n+1fnfn+1fn+2=-fn+1fn+2-f2()2+2fnfn+1fn+2-f2()+fnf2n+1fnfn+1fn+2=2fn+1f2-f22+fnfn+2-f2n+1fnfn+2=2bfn+1-b2-(-1)nTfnfn+2.注意到fn+1ȡbꎬ且(-1)nT=(-1)na2+ab-b2()ɤb2ꎬ所以2bfn+1-b2-(-1)nTȡ2b2-b2-b2=0.因此ꎬTn+1ȡTn对任意的正整数n均成立.由Tn{}单调递减可知:若limnң+ɕTn存在ꎬ则其值为λ的最小值.又limnң+ɕTn=limnң+ɕðnk=1fk()2fnfn+1=limnң+ɕfn+2-f2()2fnfn+1=limnң+ɕfn+1+fn-f2()2fnfn+1=limnң+ɕfn+1+fn()2fnfn+1=limnң+ɕfnfn+1+fn+1fn+2æèçöø÷=5-12+5+12+2=2+5.综上可知ꎬλ的最小值为2+5.参考文献:[1]张君.2022年全国高中数学联赛(四川预赛)试题及解析[J].数理化解题研究ꎬ2022(25):84-88.[2]李鸿昌.我这样做奥数[M].成都:四川省教育电子音像出版社ꎬ2021.[3]甘志国.圆锥曲线光学性质的证明及其应用[J].数学教学ꎬ2017(09):16-18ꎬ37.[责任编辑:李㊀璟]。
2020年全国高中数学联赛试题及详细解析
2020年全国高中数学联赛试题及详细解析一、选择题(本题满分36分,每小题6分)1. 已知△ABC,若对任意t R,BA t BC AC,则△ABC一定为A.锐角三角形 B.钝角三角形 C.直角三角形 D.答案不确定【答案】()2. 设log(2xx 2x 1)log21,则x的取值范围为xA.12x 1B.x12,且x 1C.x 1D.0x 1【答案】()5. 设f(x)x3log2x x21,则对任意实数a,b,a b 0是f(a)f(b)0的A. 充分必要条件B.充分而不必要条件C. 必要而不充分条件D.既不充分也不必要条件【答案】()6.数码a,a,a,L,a1232006中有奇数个9的2020位十进制数2a a a L a1232006的个数为A.11(10200682006) B.22(10200682006)C.10200682006D.10200682006【答案】()二、填空题(本题满分54分,每小题9分)7. 设f(x)sin4x sin x cos x cos4x,则f(x)的值域是。
8. 若对一切R,复数z (a cos )(2a sin )i的模不超过2,则实数a的取值范围为.9. 已知椭圆x2y21164的左右焦点分别为F与F ,点P在直线l:x 3y 823012上. 当F PF 12取最大值时,比PF 1 PF2的值为 .10. 底面半径为 1cm 的圆柱形容器里放有四个半径为 1 2cm 的实心铁球,四个球两两相切,其中底层两球与容器底面相切. 现往容器里注水,使水面恰好浸没所有铁球,则需要注 水 cm 3.11. 方程( x20061)(1x2x4L x2004) 2006 x2005 的实数解的个数为.12. 袋内有 8 个白球和 2 个红球,每 次从中随机取出一个球,然后放回 1 个白球,则第 4次恰好取完所有红球的概率为 . 三、解答题(本题满分 60 分,每小题 20 分)15.设f ( x ) x 2a .记f 1( x ) f ( x ),f n ( x ) f ( f n 1( x )) ,n 2,3, L,n .证明:1M2,4.2020 年全国高中数学联合竞赛加试试卷(考试时间:上午 10:00—12:00)一、以 B 和 B 为焦点的椭圆 △与AB B 的边 AB 交于 C (i =0,0 1 0 1 i i1)。
全国高中数学联赛模拟卷(1)(一试+二试_附详细解答)
全国⾼中数学联赛模拟卷(1)(⼀试+⼆试_附详细解答)全国⾼中数学联赛模拟卷(1)⼀试⼀、填空题(本⼤题共8⼩题,每⼩题8分,共64分)1229x <+的解集为. 2.过正⽅体外接球球⼼的截⾯截正⽅体所得图形可能为______________. ①三⾓形②正⽅形③梯形④五边形⑤六边形3.直线2kx y -=||1x =-有两个不同的交点,则实数k 的取值范围是__ _______.4.复数z ,使322z z z+=,则z 的所有可能值为 _____ ____.5.所有的满⾜条件11aba b a b ab a b ---=?++的正整数对(,)a b 的个数为.6.设,,a b c 为⽅程3120x k x k --=的根(121k k +≠),则111111a b ca b c+++++=--- __. 7.将号码分别为1、2、…、9的九个⼩球放⼊⼀个袋中,这些⼩球仅号码不同,其余完全相同. 甲从袋中摸出⼀个球,其号码为a ,放回后,⼄从此袋中再摸出⼀个球,其号码为b . 则使不等式 0102>+-b a 成⽴的事件发⽣的概率等于.8.已知A , B , C 为△ABC 三内⾓, 向量)2sin 3,2(cosBA B A +-=α,2||=α.如果当C 最⼤时,存在动点M , 使得|||,||,|成等差数列, 最⼤值是__ ___.⼆、解答题(本⼤题共3⼩题,第9题16分,第10、11题20分,共56分)9.对正整数2n ≥,记11112n n k k n a n k --==-∑,求数列{a n }中的最⼤值.10.给定正实数k ,圆⼼为(b a ,)的圆⾄少与抛物线2kx y =有三个公共点,⼀个是原点(0, 0),另两个点在直线b kx y +=上,求b a ,的值(⽤k 表⽰). 11.已知函数,72sin 3|)cos ||sin (|)(--+=x x x a x f 其中a 为实数,求所有的数对(a , n )(n ∈N *),使得函数)(x f y =在区间),0(πn 内恰好有2011个零点.ABCPQ ID O 1 I 1I 2⼆试⼀、(本题满分40分)在Rt ABC ?中,CD 是斜边AB 上的⾼,记12,,I I I 分别是△ADC , △BCD ,△ABC 的内⼼,I 在AB 边上的射影为1O ,,CAB ABC ∠∠的⾓平分线分别交,BC AC 于,P Q ,且PQ 的连线与CD 相交于2O ,求证:四边形1122I O I O 为正⽅形.⼆、(本题满分40分)给定正数a , b , c , d, 证明:ba db a d a dc ad c d c b d c b c b a c b a +++++++++++++++++++333333333333.2222d c b a +++≥三、(本题满分50分)设+∈N k ,定义11=A ,2)1(221+++=+n n nA A kn n , ,2,1=n 证明:当1≥n 时,n A 为整数,且n A 为奇数的充要条件是)4(mod 21或≡n四、(本题满分50分)试求最⼩的正整数,n 使得对于任何n 个连续正整数中,必有⼀数,其各位数字之和是7的倍数.全国⾼中数学联赛模拟卷(1)答案⼀试1.由0211≠+-x 得0,21≠-≥x x ,原不等式可变为()922112+<++x x解得845x 故原不等式的解集为145,00,28-? ?U2.答案:②⑤,解:由对称性可知,所得图形应为中⼼对称图形,且②⑤可以截得3.提⽰:44[2,)(,2]33--?, 曲线为两个半圆,直线过定点(0,?2),数形结合可得.4.答案:0,1,12,12i i -+-- 解:322z z z +==2z z ?,∴2(12)0z z z +-=当 0z =时,满⾜条件,当 0z ≠时,2120z z +-= 设 22(,),212()z a bi a b R a b abi a bi =+∈-++--则∴ 22120(1)220(2)a b a ab b ?-+-=?+=? ,由(2) 2(1)0b a +=1)0b = 代⼊(1) 整理得:2(1)01a a -=?=2)0b ≠,则 1a =- 代⼊(1) 得:242b b =?=±,经检验复数1,12z i =-±均满⾜条件. ∴ z 的所有可能值为0,1,12,12i i -+--. 5.解:显然1a b >≥.由条件得11a a b a a b -->?1b a b -?>11b a b -?≥+,从⽽有bab b b ≥+即b b ab b ≤-,再结合条件及以上结果,可得11a b a b a b a b a b --?++=-aa ab b ≥-+,整理得 11a a b a ab a a b --+≥-?()11a b a a b --=?-1a a -≥,从⽽()211a a a a a a ab a -=+-≥+≥即31a a-≤,所以23a ≤≤.当2a =时,1b =,不符合;当3a =时,2b =(1b =不符合).综上,满⾜本题的正整数对(),a b 只有()32,,故只有1解.6.答案:1212331k k k k ++--,由题意,312()()()x k x k x a x b x c --=--- 由此可得0a b c ++=,1ab bc ca k ++=-,2abc k =以及121(1)(1)(1)k k a b c --=---1113()()3111(1)(1)(1)a b c a b c ab bc ca abc a b c a b c +++-++-+++++=------1212331k k k k ++=-- 7.提⽰:甲、⼄⼆⼈每⼈摸出⼀个⼩球都有9种不同的结果,故基本事件总数为92=81个,由不等式a ?2b +10>0得2b6181135745=++++8.解: 2)cos(2)cos(2122sin 32cos 2||22=+--+=++-?=B A B A B A B A α ,21tan tan cos cos sin sin 2)cos(3)cos(=?=?+=-?B A B A B A B A B A22tan tan 4)tan (tan 2tan tan )tan(tan -=-≤+-=+=+-=B A B A BA B A C ,等号成⽴仅当22tan tan ==B A .令|AB |=2c ,因c 4||||=+, 所以 M 是椭圆1342222=+cy c x 上的动点.故点C (0,c 22), 设M (x ,y ), 则|MC |2=x 2+(c y 22-)2=c y c cy y c cy y y c 3||,2923122344222222≤+--=+-+-. 当y =c 3-时, |MC |2max =22627c +, |MC |max =c 216+. ||AB=4. 9.解:经计算知22a =,33a =,45103a a ==,下⾯⽤数学归纳法证明:当5n ≥时,有103n a ≤ 假设()1053n a n ≤≥,则1211111111122122n n n n n n a n n n +-++++=+?+?++?-- 21111212212n n n n n n n n n n -++??=++?++? ?--?? 112n n n a n n ++=+ 1110186810233533n n n n n n +++≤+?=?≤?<所以数列{a n }中的最⼤值是45103a a ==10.解:设⊙O :,)()(2222b a b y a x +=-+- 即02222=-+-by y ax x抛物线与直线b kx y +=的两个交点坐标为),(),,,(2211y x y x ,则211222kx kx b kx kx b =+??=+?,即12121x x b x x k +==-??①, 这两点亦在圆上,即),(2)(222111*********b kx b b kx ax x by y ax x o +-++-=-+-=?02)1(21212=--+b ax x k同理 02)1(22222=--+b ax x k , 即 12221222,1.1a x x k b x x k ?+=??+?-?=?+?②⽐较①,②知:kk k k b k a 11),1(2122+=+=+= 11.解:⾸先,函数)(x f 以为π周期,且以)(42Z k k x ∈+=ππ为对称轴,即 ))(()2(),()(Z k x f x k f x f x f ∈=-+=+πππ,其次,42)43(,102)4(,7)2(-=+-=+-=a k f a k f a k f πππππ,∵)(x f 关于)(42Z k k x ∈+=ππ对称,∴)(x f 在)42,2(πππ+k k 及)22,42(ππππ++k k 上的零点个数为偶数,要使)(x f 在区间)0πn ,(恰有2011个零点,则上述区间端点必有零点(1)若7=a ,则0)42(,0)2(≠+=πππk f k f ,考虑区间)2,0(π及),2(ππ上的零点个数.ABCP Q ID O 1I 1 I 2令].2,1((cos sin ∈+=t x x t 则0473)(2=-+-==t t t g y ,解得11=t (舍),)4sin(2342π+==x t ,故在2 ,0(π内有两解.当),2(ππ∈x 时,72sin 3)cos (sin 7)(---=x x x x f ,令]2,1((cos sin ∈-=t x x t ,则01073)(2=-+==t t t g y ,解得11=t (舍),3102-=t (舍),故在),2(ππ内⽆解.因此,)(x f 在区间),0(π内有三个零点..503201114)1(3),0(==-=-+n n n n n 个零点。
2024年江西省高中数学联赛初赛试卷答案
2024年全国高中数学联赛江西省预赛试题参考答案(6月23日上午9:3012:00−−)一、填空题(每小题7分,共56分)1.设集合{2,3,4,,4050}A =,集合{(,)|log 8log 6,,}a b B a b b a a A b A =+=∈∈,则集合B 的元素个数为 .答案:68.解:由题log 2a b =或4,又22463396940504096648=<<==,所以集合B 的元素个数为(631)(71)68−+−=.2.设复数z 满足242||021z z z −+=−,则|1|z +的值为 . 答案:2.解:由题12z ≠, 所以 22(42)(21)||0|21|z z z z −−+=−.从而2221(21)|21|||2z z z −=−−,得||z =设21z bi −=(其中R b ∈),再由|2||1|z bi ==+得27b =,所以1|1||3|22z bi +=+==.3.P 是棱长为的正四面体ABCD 面BCD 的中心,,M N 分别是面,ABD ACD 上的动点,则PM MN NP ++的最小值为 .答案 解:如图1,点,S T 分别是点P 关于面ABD ,面ACD 的对称点,线段,PS ST 分别和面ABD 交于点0,Q M ,线段,PT ST 分别和面ACD 交于点0,R N ,点,E F 分别是棱,DB DC 的中点.则线段ST 的长度与PM MN NP ++相等,且是所求的最小值.点P 和线PS 在面ACE ,点P 和线PT 在面ABF 上,从而QR 在面AEF 上,且////QR EF ST ,2ST QR =.为便于计算边长比例和角度,我们先设正四面体的棱长为6,则EA EC ==,EP =从而222761cos 2273PEQ ⋅−∠==⋅,139EQ EQ EQ EA EC EP ===,所以8822,99ST QR EF BC ==⋅=故PM MN NP ++4.222444cos 20cos 40cos 80sin 20sin 40sin 80++++的值为 . 答案:43. 解:注意到,22222222222cos 20cos 40cos 80cos 20cos (6020)cos (6020)1313cos 20(cos 20sin 20)(cos 20sin 20)222233(cos 20sin 20);22++=+−++=+−++=+=444444444222sin 20sin 40sin 80sin 20sin (6020)sin (6020)3131sin 20(cos 20sin 20)(cos 20sin 20)222299(cos 20sin 20).88++=+−++=+−++=+=故所求值为43. 5.设,b c 为实数,满足关于x 的方程2()()0f x bf x c ++=有6个互不相等的实数解,其中11()||||2f x x x x x=−−++,则(2025)(2024)f b f c ++的最小值为 . B 图1答案:20231012. 解: ()f x 的定义域{|0}D x x =≠关于原点对称,且对任意x D ∈,()()f x f x −=,所以()f x 是偶函数,且22,01,()22, 1.x x f x x x −+<<⎧⎪=⎨−⎪⎩画出()f x 的图像,如图2.由图可得:原方程有6个互不相等的实数解当且仅当关于t 的一元二次方程20t bt c ++=的两个根12,t t 满足120,02t t =<<,此时20,(2,0)c b t ==−∈−.再结合函数图像得最小值为22023(1)(2024)022*******f f −+=+−=.6.正实数,,x y z 满足2222248x y x y z ++=,则428log log log x y z ++的最大值为 .答案:13. 解:由2222248244x y x y z x y =++⋅得3624x y z ,其中不等式在222242x y x y z ===,即12,4x y z ===时取到等号,所以 36242864641log log log log log 4.3x y z x y z ++== 故所求最大值为13. 7.平面上同时和三直线34,(5),043y x y x y ==−−=相切的所有圆的半径的乘积为 .答案:36.图2解:设满足条件圆的圆心坐标为(,)a b ,半径为R ,将直线方程化成标准方程再由点到直线的距离公式得|34||4320|||55a b a b R b −+−===,所以 222(3)(3)0,25(34)(4320)(25)(210)0.a b a b b a b a b a b a b −+=⎧=−=+−⇔⎨+−−−=⎩当3a b =时,得(55)(510)0b b −−=,解得121, 2.b b == 当13a b =−时,得55(5)(10)033b b −−−=,解得343, 6.b b ==− 故所有圆的半径的乘积为123636⨯⨯⨯=.8.已知正整数n 的所有正因数排列为: 1231,d d d =<<<则在1,2,3,,2024中使得1088d =的所有数之和为 .答案:2376.解: 注意到388211=⨯的全部(31)(11)8+⨯+=个正因数从小到大依次为: 1,2,4,8,11,22,44,88.要使1088d =当且仅当n 是88的倍数且另有2个小于88的正因数.当n 只有2和11两个素因子时,此时增加n 中11的幂次不影响其小于88的正因数个数,626488=,得5211(1)k n k =⨯,又2024n ,所以5211352n =⨯=.当n 有三个以上素因子时,若第3个素因子23p <,则,2,4p p p 是n 的小于88且不整除88的正因数,与1088d =矛盾,所以23p.再注意到3202421123=⨯⨯,所以,此种情形符合题意的只有2024n =.故所求和为35220242376+=.二、解答题(共64分)9.(14分) 双曲线2222:1x y a b Γ−=的左右顶点,A B 的距离为4.,M N 是Γ右支上不重合的两动点且满足20BN AM k k +=(,AM BN k k 是相应直线的斜率).求动直线MN 经过的定点的坐标.解:设直线0:MN x my x =+,1122(,),(,)M x y N x y .由题得24a =,02,x >120,y y <0102(2)(2)0,x y x y −⋅+>从而 0102(2)(2)0.x y x y −++≠联立2222044b x y b x my x ⎧−=⎨=+⎩,,得22222200(4)2(4)0b m y mb x y x b −++−=,则 22200121222222(4),,44mb x b x y y y y b m b m −−+==−− 从而222001212220(4)4().42mb x x my y y y b m x −−==+−又由20BN AM k k +=得 120221************2012022200102022200102012010(2)22222(2)4()(2)2(4)(2)24(2)(4)2()(2)2my y x y y x y x y x y y x y my y x y x y y x y x x y x y x x x y x y x y y x y x ++++−=⋅==−−+−−+++−+++===−−+−−++−, 即有00242,x x +=−+解得06x =,所以直线MN 过定点(6,0).10.(15分)实数,,a b c 满足44ab bc ca ++=,求222(4)(4)(4)a b c +++的最小值.解: (1)令222(4)(4)(4)D a b c =+++.我们先考虑,,a b c 均是正数情形,此时22222222(4)(4)164()(4)4(),a b a b a b ab a b ++=+++=−++所以2222222(4)(4)(4)((4)4())(4)(2(4)2())a b c ab a b c ab c a b +++=−+++−++ 22(2()8)806400,ab bc ca =++−==等号成立当且仅当42()2ab a b c−+=,即 4()abc a b c =++且44ab bc ca ++=.注意到(,,)(2,4,6)a b c =符合取等条件,故在,,a b c 均是正数情形,D 的最小值为6400.注意到题设条件的对称性,在,,a b c 均是负数情形,D 的最小值也为6400.(2)若0abc =,即,,a b c 中存在取值为0情形,由题不妨设0c =,此时44ab =. 2222(4)(4)(4)4446400.D a b c =+++>⋅>(3)最后考虑,,a b c 的取值为两负一正或一负两正情形,由对称性,不妨设0ab >,此时44()44ab a b c =−+>,也有24446400.D >⋅>综上,D 的最小值为6400,在(,,)(2,4,6)a b c =时取得该最小值.11.(15分)点H 为锐角ABC ∆的垂心,H 与边BC 切于点M 且与边,AB AC 无交点,,BD CE 分别与H 切于点,D E (均异于点M ), ,CF BG 为ABC ∆的高.证明:,,,D E F G 四点共线.证明:如图3,联结,,,,HD HE FD DE EG得,,,HF FB HD DB HG GC HE EC ⊥⊥⊥⊥,BH 平分DBC ∠,CH 平分EBC ∠,且有,,,;,,,H D F B H E G C 分别四点共圆.又360()DHE BHC DHB EHC ∠=−∠+∠+∠360(9090)BHC HBC HCB =−∠+−∠+−∠ 36022BHC A =−∠=∠,所以90180HDE A ABG HDF ∠=−∠=∠=−∠, 故180HDE HDF ∠+∠=,所以,点F 在直线DE 上.同理点G 在直线DE 上.所以,,,D E F G 四点共线.12.(20分)是否存在实数λ和2024次的实系数多项式()P x 和()Q x 满足对任意实数x ,都有22(1)(2)P x x Q x x λ−+=++.请说明理由.解: 不存在.对任意非零多项式()h x ,用deg(())h x 表示其次数.我们这里证明一般的结论:当()P x 不是常数多项式,即deg(())1P x 时,不存在实数λ和实系数多项式()P x 和()Q x 满足对任意实数x ,都有22(1)(2)P x x Q x x λ−+=++.(反证法) 假设存在满足条件的实数λ和多项式()P x 和()Q x .设deg(())P x m =,则1m ,2deg((1))2deg(())2P x x P x m −+==.由代数基本定理方程2(1)(1)P x x P −+=最多有2m 个互异实根.另一方面,由题得对任意实数x ,22(1)(2)P x x Q x x λ++=−+.所以图322222(1)(2)((2)2(2))((2)(2)1)(57).P x x Q x x Q x x P x x P x x λλ−+=++=+−++=++++=++ 令22()1,()57,f x x x g x x x =−+=++则(),()f x g x 均在[1,)+∞上严格单调递增,()()f x g x <,(1)1,(1)13f g ==,从而可按如下方式规范定义取值在[1,)+∞上的数列{}n a 和{}n b :111,1,()()n n n a n b g a f a +===.此时,对任意1n ,有111,1n n n n a a b b ++>>>,1(())(())()(())n n n n P f a P g a P b P f a +===.递推得21(1)(())(())(1),n n n P a a P f a P f a P −+===即严格单调递增的实数列{}n a 的每一项都是方程2(1)(1)P x x P −+=的实根,这与2(1)(1)P x x P −+=最多有2m 个互异实根矛盾,故假设不成立,结论得证.。
2022年全国高中数学联赛加试A卷参考答案
2022年全国中学生数学奥林匹克竞赛(预赛)暨2022年全国高中数学联合竞赛 加试(A 卷)参考答案及评分标准说明:1.评阅试卷时,请严格按照本评分标准的评分档次给分.2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,10分为一个档次,不得增加其他中间档次.一.(本题满分40分)如图,在凸四边形ABCD 中,90ABC ADC ,对角线BD 上一点P 满足2APB CPD ,线段AP 上两点,X Y 满足2AXB ADB ,2AYD ABD .证明:2BD XY .Y XDBCPA证明:注意90ABC ADC ,取AC 的中点O ,则O 为凸四边形ABCD 的外心.显然,P B 在AC 的同侧(否则2APB CPD CPD ,不合题意).根据条件,可知2,2AXB ADB AOB AYD ABD AOD ,分别得到,,,A O X B 四点共圆,,,,A Y O D 四点共圆. ………………10分因此OXA OBA CAB CDB ,OYP ODA CAD CBD ,所以OXY CDB ∽. ………………20分M LK Y X DBCP AO设OM AP 于点M ,CK AP 于点K ,CL BD 于点L . 由O 为AC 的中点,得2CK OM .由于2KPL APB CPD ,即有PC 平分KPL ,故CK CL .………………30分考虑到,OM CL 是相似三角形,OXY CDB 的对应边,XY DB 上的高,从而12XY OM OM BD CL CK , 即有2BD XY . ………………40分二.(本题满分40分)设整数(1)n n 恰有k 个互不相同的素因子,记n 的所有正约数之和为()n .证明:()(2)!n n k .证法1:设1i ki i n p 为n 的标准分解.记1(1,2,,)i i i im p p i k ,则1()ki i n m .我们证明2(1,2,,)i n k km i k .①事实上,111i i i ii i m p p p 11122i i i p 12212i i i i i p p (1,2,,)i k . ………………10分所以11,222122i ji i kk j j j inn nm p kp, 最后一步是因为11121C (2)k k k k 以及021 .故①成立.………………20分由①可知,对每个1,2,,i k ,在1,2,,2n k 中至少有k 个i m 的倍数.从而1,2,,2n k 中可找到两两不同的正整数12,,,k t t t ,它们分别是12,,,k m m m 的倍数.因此1()ki i n m 整除(2)!n k . ………………40分证法2:设1i ki i n p 为n 的标准分解.记1(1,2,,)ii i im p p i k ,则1()ki i n m .令1(1,2,,)jj i i S m j k ,00S .我们证明以下两个结论:(1)()!k n S ;(2)2k S n k .结论(1)的证明:对1,2,,i k ,连续i m 个整数111,2,,i i i S S S 中必存在i m 的倍数,故11(1)(2)Z i i iiS S S m .从而111(1)(2)Z ki i ii i S S S m ,这等价于()!k n S .………………10分结论(2)的证明:对1,2,,i k ,有111ii i ii i m p p p 11122i i i p 12212i ii i i p p. ②………………20分记(1,2,,)i i i p i k ,则2i .反复利用“若,2a b ≥,则ab a b ≥+”,可得11kki i i i n ,结合②得111(21)22kkkk i i i i i i S m k n k .由结论(1)、(2),原题得证. ………………40分三.(本题满分50分)设12100,,,a a a 是非负整数,同时满足以下条件: (1)存在正整数100k ,使得 12k a a a ,而当i k 时0i a ; (2)123100100a a a a ; (3)123100*********a a a a . 求22212310023100a a a a 的最小可能值.解法1:当121819202122231000,19,40,41,0a a a a a a a a a ===========,21k =时,符合题设三个条件,此时10023221192040214140940ii i a==+×+×=∑. ………………10分下面证明这是最小可能值.首先注意21k ≥.否则,若20k ≤,则100111202000kki i i i i i ia ia a ===≤≤∑∑∑,这与条件(3)矛盾. 根据条件(2)、(3),有100100100100221111(20)40400iiiii i i i i a i a ia a ====−+−∑∑∑∑10021(20)40880ii i a ==−+∑. 当2040a ≤时,100100100222011,1,2020(20)(20)10060i iii i i i i i a i a aa ==≠≠−=−≥=−≥∑∑∑,故1002140940ii i a=≥∑. ………………30分当2041a ≥时,由21k ≥及条件(1)可知2141a ≥,故10010010010021111(19)(20)39380iiiii i i i i a i i a ia a ====−−+−∑∑∑∑1001(19)(20)40858i i i i a ==−−+∑21(2119)(2120)4085840940a ≥−−+≥.综上,所求最小值为40940. ………………50分 解法2:对于满足题目条件的非负整数12100,,,a a a ,可对应地取100个正整数12100,,,{1,2,,100}x x x ∈ ,其中恰有1a 个1,2a 个2,……,100a 个100(条件(2)保证恰好是100个数).条件(1)、(3)分别转化为以下条件(A )、(B ):(A ) 存在正整数100k ≤,12100,,,x x x 中不含大于k 的数,且1的个数,2的个数,……,k 的个数依次(非严格地)递增;(B ) 100100112022j i j i x ia ===∑∑,即12100,,,x x x 的平均值为20.22µ=.注意到1001002211i j i j i a x ==∑∑,故题目转化为:100个数12100,,,{1,2,,100}x x x ∈ 满足条件(A )和(B ),求10021j j x =∑的最小值.当12100,,,x x x 取19个19,40个20,41个21时,1002140940j j x ==∑.………………10分下面证明10021j j x =∑的值至少为40940.由于100100100100222221111()1002100()jjj j j j j j x xx x µµµµµ====−−+=+−∑∑∑∑,故转化为考虑10021()j j x µ=−∑的最小值.由20.22µ=知存在21j x ≥,也存在20j x ≤.设12100,,,x x x 中有a 个21j x ≥,b 个20j x =及c 个19j x ≤.由条件(A )可知a b ≥.我们放宽条件(A )至条件(A ′):a b ≥.在条件(A ′)、(B )下,证明最小值仍是在19个19,40个20,41个21时取到. ………………20分由于满足(A ′)、(B )的12100,,,x x x 的取法只有有限种,选取平方和最小的一组12100,,,x x x .若19c ≥,注意到100a b c ++=及a b ≥,有10022221()0.780.22 1.22jj xa b c µ=−≥++∑ 2221001000.780.22 1.2222c c c −− ≥⋅+⋅+2220.78410.2240 1.2219≥×+×+×.………………30分若18c ≤,则82a b +≥.此时有0c >,因为若0c =,则j x 的平均值不小于20.5,与条件(B )不符.亦有0b >.否则,假如0b =,则由82a ≥及0c >知,可取一个20i x <和一个20j x >,替换为1i x +和1j x −,平均值不变,但2222(1)(1)i j i j x x x x ++−<+,平方和变小,a 至多减少1,b 至多增加2,条件(A ′)、(B )仍满足,与12100,,,x x x 使得平方和最小矛盾.又假如存在一个18i x ≤,则由0b >知可取一个20j x =,将,i j x x 替换为1i x +和1j x −,类似可知平均值不变,平方和减小,且b 减少1,条件(A ′)、(B )仍满足,与12100,,,x x x 使得平方和最小矛盾.所以c 个19j x ≤都等于19.但此时1001()0.780.22 1.22jj xa b c µ=−≥−−∑1001000.780.22 1.2222c c c −−≥⋅−⋅− 0.78410.2241 1.22180≥×−×−×>,与条件(B )矛盾.所以当且仅当12100,,,x x x 取19个19,40个20,41个21时,10021()j j x µ=−∑取得最小值,相应地,1001002211i j i j i a x ==∑∑取到最小值40940. ………………50分四.(本题满分50分)求具有下述性质的最小正整数t :将100100 的方格纸的每个小方格染为某一种颜色,若每一种颜色的小方格数目均不超过104,则存在一个1t 或1t 的矩形,其中t 个小方格含有至少三种不同颜色.解:答案是12.将方格纸划分成100个1010×的正方形,每个正方形中100个小方格染同一种颜色,不同的正方形染不同的颜色,这样的染色方法满足题目条件,且易知任意111×或111×的矩形中至多含有两种颜色的小方格.因此12t ≥.………………10分下面证明12t =时具有题述性质.我们需要下面的引理.引理:将1100×的方格表X 的每个小方格染某一种颜色,如果以下两个条件之一成立,那么存在一个112×的矩形,其中含有至少三种颜色.(1)X 中至少有11种颜色.(2)X 中恰有10种颜色,且每种颜色恰染了10个小方格. 引理的证明:用反证法,假设结论不成立.取每种颜色小方格的最右边方格,设分别在(从左往右)第12kx x x <<< 格,分别为12,,,k c c c 色,则对2i k ≤<,有111i i x x −−≥.这是因为若110i i x x −−≤,则从第1i x −格至第1i x +格(不超过12格)中至少含有三种不同颜色(第1i x −格为1i c −色,第i x 格为i c 色,第1i x +格一定不同于1,i i c c −色),与假设不符.若条件(1)成立,则11k ≥,于是10111911100,100x x x ≥+×≥>,矛盾.因此在条件(1)下结论成立.若条件(2)成立,考虑第11x +格至第111x +格,因每种颜色的方格至多10个,故这11个方格至少含有两种颜色,且均不同于1c 色,则从第1x 至第111x +格中至少含有三种颜色,与条件(2)不符.因此在条件(2)下结论也成立.引理得证. ………………20分 回到原问题,设12,,,k c c c 为出现的所有颜色.对1i k ≤≤,记i s 为含有i c 色小方格的个数,i u 为含有i c 色小方格的行的个数,i v 为含有i c 色小方格的列的个数.由条件知104i s ≤.又显然i i i u v s ≥,等号成立当且仅当含有i c 色小方格的所有行与列的交叉位置上都是i c 色小方格.下面证明:15i i i u v s +≥,等号成立当且仅当10,100i i iu v s ===. 若21i i u v +≥,则由104i s ≤知15i i i u v s +>;若20i i u v +≤,则2()2055i i i i ii i u v u v s u v ++≥≥≥,等号成立当且仅当10,100i i iu v s ===. ………………30分 于是111()20005k ki i i i i u v s =+≥=∑∑.若1()2000ki i i u v =+>∑,由抽屉原理知,存在一行或者一列至少含有11种颜色的小方格.若1()2000ki i i u v =+=∑,则由等号成立的条件,可知每种颜色恰染100格,且是10行与10列交叉位置,因此每一行每一列中恰有10种颜色的方格,每种颜色的方格恰有10个.由引理可知这两种情况都导致存在112×或121×的矩形含有至少三种颜色的小方格.综上所述,所求最小的t 为12. ………………50分。
2024年全国高中数学联赛初赛试题+答案[北京、广西、吉林、内蒙、四川、浙江、重庆]
2024年重庆市高中数学联赛初赛试题 2 2024年浙江省高中数学联赛初赛试题 3 2024年四川省高中数学联赛初赛试题 4 2024年吉林省高中数学联赛初赛试题 5 2024年广西省高中数学联赛初赛试题 7 2024年内蒙古高中数学联赛初赛试题 9 2024年北京市高中数学联赛初赛一试 10 2024年北京市高中数学联赛初赛二试 11一、填空题:本大题共8小题,每小题8分,满分64分.1.已知复数z 使得z -4z为纯虚数,则z -1-i 的最小值为.(其中i 为虚数单位)2.设函数f x =2x -2-x 的反函数为y =f -1x ,则不等式f -1x -1 <1的解集为.3.若点A -12,32关于直线y =kx 对称的点在圆x -2 2+y 2=1上,则k =.4.在△ABC 中,已知AB ⋅AC =2BC ⋅BA =3CA ⋅CB,则△ABC 最大角的正弦值为.5.数列a n 满足a 1=1,a n +1-a n a n =a n +2-a n +1a n +2n ∈N * ,若a 1a 2+a 2a 3+⋯+a 6a 7=3,则a 2024=.6.由1,2,⋯,9这九个正整数构成的所有圆排列中,任意相邻两数之积均不超过60的圆排列的个数为.7.已知四面体ABCD 满足AB ⊥BC ,BC ⊥CD ,AB =BC =CD =1,且异面直线AD 与BC 所成的角为60°,则四面体ABCD 的外接球的体积为.ABCD A 1D 1O 1O 8.一珍稀物种出现在地球,对每个珍稀生物,每天有如下事件发生:有p 0≤p ≤1 的概率消失,有1-p3的概率保持不变,有1-p 3的概率分裂成两个,有1-p3的概率分裂成三个.对所有新产生的生物每天也会发生上述事件.假设开始只有一个这样的珍稀生物,若希望最终这种生物灭绝的概率不超过12,则p 至多为.二、解答题:共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9.16分 已知函数f x =ln x -sin x ,若两不相等的实数x 1,x 2∈0,π 满足曲线y =f x 在点x 1,f x 1 和点x 2,f x 2 处的切线斜率相等,求证:f x 1 +f x 2 >-2.10.20分 已知抛物线Ω:y =x 2,动线段AB 在直线y =3x -3上(B 在A 右侧),且AB =2 3.过A 作Ω的切线,取左边的切点为M .过B 作Ω的切线,取右边的切点为N .当MN ⎳AB 时,求点A 的横坐标.11.20分 设x 1=3,x n +1=x n +14-x n +2n ∈N * ,求x 1+x 2+⋯+x n 的值.(其中[x ]表示不超过实数x 的最大整数.)一、填空题(每小题8分,共计96分)1.设集合A =x x -12x -1≤0 ,集合B =x ∣x 2+2x +m ≤0 .若A ⊆B ,则实数m 的取值范围为.2.设函数f :{1,2,3}→{2,3,4}满足f f x -1 =f x ,则这样的函数有个.3.函数y =sin 2x +sin x +1sin 2x +1的最大值与最小值之积为.4.已知数列x n 满足:x 1=22,x n +1=x n n n +1x 2n+n n +1,n ≥1,则通项x n =.5.已知四面体A -BCD 的外接球半径为1,若BC =1,∠BDC =60°,球心到平面BDC 的距离为.6.已知复数z 满足z 24=z -1 510=1,则复数z =.7.已知平面上单位向量a ,b 垂直,c 为任意单位向量,且存在t ∈0,1 ,使得向量a +1-t b 与向量c -a 垂直,则a +b -c的最小值为.8.若对所有大于2024的正整数n ,成立n2024=2024i =0a i C in ,a i ∈N ∗,则a 1+a 2024=.9.设实数a ,b ,c ∈(0,2],且b ≥3a 或a +b ≤43,则max {b -a ,c -b ,4-2c }的最小值为.10.在平面直角坐标系xOy 上,椭圆E 的方程为x 212+y 24=1,F 1为E 的左焦点;圆C 的方程为x -a 2+y -b 2=r 2,A 为C 的圆心.直线l 与椭圆E 和圆C 相切于同一点P 3,1 .当∠OAF 1最大时,实数r =.11.设n 为正整数,且nk =0-1 kC knk 3+9k 2+26k +24=1312,则n =.12.设整数n ≥4,从编号1,2,⋯,n 的卡片中有放回地等概率抽取,并记录下每次的编号.若1,2均出现或3,4均出现就停止抽取,则抽取卡片数的数学期望为.二、解答题(13题满分14分,14、15题满分各20分,合计54)13.正实数k 1,k 2,k 3满足k 1<k 2<k 3;实数c 1,c 2满足c 1=k 2-k 1,c 2-c 1=2k 3-k 2 ,定义函数f x =k 1x ,0≤x ≤1k 2x -c 1,1<x ≤2,k 3x -c 2,x >2 g x =k 1x ,0≤x ≤1k 2x -c 112,1<x ≤2k 3x -c 212,x >2 试问,当k 1,k 2,k 3满足什么条件时,存在A >0使得定义在[0,A ]上的函数g x +f A -x 恰在两点处达到最小值?14.设集合S ={1,2,3,⋯,997,998},集合S 的k 个499元子集A 1,A 2,⋯,A k 满足:对S 中任一二元子集B ,均存在i ∈{1,2,⋯,k },使得B ∈A i .求k 的最小值.15.设f x ,g x 均为整系数多项式,且deg f x >deg g x .若对无穷多个素数p ,pf x +g x 存在有理根,证明:f x 必存在有理根.(考试时间:2024年5月19日9:00∼11:00)一、填空题:本大题共8小题,每小题8分,满分64分.1.设函数f x =ln x +x -2的零点都在区间[a ,b ]a ,b ∈Z ,a <b 内,则b -a 的最小值为.2.已知a >b >1,若log a b +log b a =52,则ba +4的最大值为.3.设a ∈R ,若函数f x =ax -ax-2ln x 在其定义域内为单调递增函数,则实数a 的最小值为.4.用f X ,Γ 表示点X 与曲线Γ上任意一点距离的最小值.已知⊙O :x 2+y 2=1及⊙O 1:x -4 2+y 2=4,设P 为⊙O 上的动点,则f P ,⊙O 1 的最大值为.5.设△ABC 中,AC =2,∠ABC =2∠BAC ,则△ABC 面积的最大值为.6.将边长为1的正方体ABCD -A 1B 1C 1D 1的上底面A 1B 1C 1D 1绕着其中心旋转45°得到一个十面体ABCD -EFGH (如图),则该十面体的体积为.7.若T =100k =1299+k ⋅3101-k ,则T 的末尾数字0的个数为.8.记I ={1,4,5,6},U ={1,2,3,⋯,25},集合U 的子集A =a 1,a 2,a 3,a 4,a 5 ,满足a i -a j ∉I ∀1≤i <j ≤5 ,则符合条件的集合A 的个数为.(用具体数字作答)二、解答题:本大题共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9.(16分)已知t 为正实数,若曲线y =t ⋅e x 与椭圆C :x 22+y 2=1交于A 、B 两个不同的点,求证:直线AB 的斜率k <22.10.(20分)设复数x ,y ,z 满足:x +2y +3z =1.求x 2+y 2+z 2+x 2+y 2+z 2的最小值.11.(20分)给定正整数n ≥2,数组a 1,a 2,⋯,a n 称为“好数组”是指:a 1,a 2,⋯,a n 均不为0,a 1=1,且对任意的1≤k ≤n -1,均有a k +1+a k a k +1-a k -1 =0.求“好数组”a 1,a 2,⋯,a n 的组数.一、选择题:本大题共6小题,每小题x 分,满分x 分.1.记S =32+432-4+42+442-4+52+452-4+⋯+132+4132-4,则与S 最接近的整数为()A.14B.15C.16D.172.在四边形ABCD 中,AB ⎳CD ,AC =λAB +μAD λ,μ∈R .若λ+μ=32,则CDAB=()A.13B.12C.1D.23.函数f x =ax 3-6x a ∈R ,若f x ≤2对∀x ∈-1,12成立,则()A.f x ≤1对∀x ∈-12,12 成立B.f x ≤32对∀x ∈-12,12成立C.f x ≤18对∀x ∈-32,32成立D.f x ≤352对∀x ∈-32,32成立4.在正四面体ABCD 中,棱AD 的中点和面BCD 的中心的连线为MN ,棱CD 的中点和面ABC 的中心的连线为PQ ,则MN 与PQ 所成角的余弦值为()A.118B.117C.116D.1155.已知函数f x =2x 4-18x 2+12x +68+x 2-x +1,则()A.f x 的最小值为8 B.f x 的最小值为9C.f x =8有1个实根D.f x =9有1个实根6.已知A ,B ,C 是平面上三个不同点,且BC =a ,CA =b ,AB =c ,则c a +b +bc的最小值为()A.2-12B.22-12C.2-22D.1-22二、填空:本大题共6小题,每小题x 分,满分x 分.7.设集合S ={1,2,3,4,5}.若S 的子集A 满足:若x ∈A ,则6-x ∈A ,则称子集A 具有性质p ,现从S 的所有非空子集中,等可能地取出一个,则所取出的非空子集具有性质p 的概率为.8.函数f x =log a 4-ax (a >0,且a ≠1),若f x ≥1对∀x ∈[1,2]成立,则实数a 的取值范围.9.已知甲、乙、丙、丁四位同学对某10道判断题的解答情况如下表:题号12345678910甲×√××√×√√√×乙××√√×√√√××丙√√×√√√×√×√丁××√√××√√××若甲、乙、丙三人均答对7题,则丁答对的题数为.10.已知函数f x =ln x -1x2+2ax -ax .若∃m >0,使得f m ≥a 2,则实数a 的最大值为11.设函数f x =sin x⋅sin3x,若关于x的方程f x =a在(0,π]上有奇数个不同的实数解,则实数a的值为.12.在△ABC中,AP平分∠BAC,AP交BC于P,BQ平分∠ABC,BQ交CA于Q,∠BAC=30°,且AB+BP =AQ+QB,则∠ABC的度数为.三、解答:本大题共4小题,每小题x分,满分x分.13.已知椭圆C1的中心为坐标原点O,焦点在坐标轴上.圆C2的圆心为坐标原点O,过点A-2,0且倾斜角为30°的直线与圆C2相切.(1)求圆C2的方程;(2)过圆C2上任意一点P x0,y0x0⋅y0≠0作圆C2的切线,与椭圆C1交于A,B两点,均有∠AOB=90°成立.判断椭圆C1是否过定点?说明理由.14.已知数列a n满足:a1=1,a2=2,a n+1=1a n+an-1n≥2.求证:2024k=11a k>88.15.如图,⊙O1、⊙O2外切于点A,过点A的直线交⊙O1于另一点B,交⊙O2于另一点C,CD切⊙O1于点D,在BD的延长线上取一点F,使得BF2=BC2-CD2,连接CF交⊙O2于E,求证:DE与⊙O2相切.16.全体正有理数的集合Q+被分拆为三个集合A,B,C(即A∪B∪C=Q+,且A∩B=B∩C=C∩A=∅,满足B*A=B,B*B=C,B*C=A,这里H*K={h⋅k∣h∈H,k∈K}.(1)给出一个满足要求的例子(即给出A,B,C);(2)给出一个满足要求的例子,且1,2,⋯,35中的任意两个相邻正整数均不同时在A中.2024年广西省高中数学联赛初赛试题一、填空题(本大题共8小题,每小题10分,共80分).1.设函数f x =log2x.若a<b且f a =f b ,则a+2024b的取值范围是.2.已知椭圆x 2a2+y2b2=1a>b>0的焦点为F1,F2,M为椭圆上一点,∠F1MF2=π3,OM=153b.则椭圆的离心率为.3.若正实数x,y满足x-2y=2x-y,则x的最大值为.4.方程3x=x37的正整数解为.5.设x1,x2,x3,x4均是正整数,且x i x j x k∣1≤i<j<k≤4=18,36,54.则x1+x2+x3+x4=.6.正三棱雉P-ABC中,AP=3,AB=4.设D是直线BC上一点,面APD与直线BC的夹角为45°,则线段PD的长度是.7.已知四次多项式x4-25x3+ax2+61x-2024的四个根中有两个根的乘积是-253,则实数a=.8.设数列x n满足x1=2001,x n+1=x n+y n,其中y n等于x n的个位数,则x2024=.二、解答题(本大题共4小题,共70分.解答应写出文字说明、证明过程或演算步骤.)9.(15分)如图所示,AD=CD,DP=EP,BE=CE,DP<AD<BE,∠ADC=∠DPE=∠BEC=90°.证明:P为线段AB的中点.10.(15分)设A为数集{1,2,3,⋯,2024}的n元子集,且A中的任意两个数既不互素又不存在整除关系.求n 的最大值.11.(20分)用[x]表示不超过x的最大整数.设数列x n满足:x1=1,x n+1=4x n+11x n.求x2024的个位数.12.(20分)图G是指一个有序二元组V,E,其中V称为顶点集,E称为边集.一个图G中的两点x,y的距离是指从x到y的最短路径的边数,记作d x,y.一个图G的直径是指G中任意两点的距离的最大值,记作diam G.∣x,y∈G,即diam G=max d x,y记Z n={[0],[1],[2],⋯,[n-1]}是模n的剩余类,定义Z n上的加法和乘法,均是模n的加法和乘法,例如在Z12={[0],[1],[2],⋯,[11]}中:[3]+[4]=[7],[6]+[9]=[3];[3]⋅[4]=[0],[6]⋅[9]=[6].在Z n中,设[x]≠[0].若存在[y]≠[0]使得[x]⋅[y]=[0],则称[x]是Z n的一个零因子.记Z n的所有零因子的集合为D Z n,它是以={[2],[3],[4],[6],[8],[9],[10]}.Z n的零因子图,记为ΓZ n .例如D Z12D Z n为顶点集,两个不同的顶点[x],[y]之间有一条边相连当且仅当[x]⋅[y]=[0].下图是ΓZ12的例子.证明:对一切的整数n≥2,都有diamΓZ n≤3.2024年内蒙古高中数学联赛初赛试题(2024年5月19日,8:30-9:50)一、填空题(本题满分64分,每小题8分)1.集合M ={1,2,3,5,6}的全部非空子集的元素和等于.2.设a ,b ,c 是实数,满足a +b +c =1,a 2+b 2+c 2=1,a ≠0,bca 3的取值范围为.3.已知正三棱柱ABC -A 1B 1C 1的侧棱长为4,底面边长为2,过点A 的一个平面截此棱柱,与侧棱BB 1,CC 1分别交于点M ,N ,若△MNA 为直角三角形,则△MNA 面积的最大值为.4.已知在△ABC 中BC =3,A =π3,BD =14BC,则线段AD 的最大值为.5.从1,2,⋯,11中任取三个不同的数,则这三个数可以构成等差数列的概率为.6.O 是原点,椭圆x 24+y 25=1,直线l 过1,0 且与椭圆交于A ,B 两点,则△ABO 面积的最大值为.7.数列a n 中,a 1=110,且对任意n ∈N *,a n +1=a 2n +a n ,求2024n =11a n+1 的整数部分是.8.已知关于x 的方程x 3-3x +4=0的三个复数根分别为z 1,z 2,z 3,则z 1-z 2 2z 2-z 3 2z 3-z 1 2的值为.二、解答题(本题满分56分)9.(16分)已知双曲线C :x 24-y 23=1,直线l :y =kx +1与双曲线C 的左右支分别相交于A ,B 两点,双曲线C 在A ,B 两点处的切线相交于点P ,求△ABP 面积的最小值.10.(20分)已知函数f x =e x -1-xax 2-2x +1.(1)当a =0时,讨论f x 在-4,12上的极值.(2)若x =0是f x 的极小值点,求a 的取值范围.11.(20分)设n 是一个给定的正整数,集合S n =i ,j ∣1≤i ,j ≤2n ,i ,j ∈N * ,求最大的正数c =c n ,使得对任意正整数d 1,d 2,都存在集合S n 的子集P ,满足集合P 至少有cn 2个元素,且集合P 的任两个元素i ,j ,k ,l 均有i -k2+j -l 2≠d 1,i -k 2+j -l 2≠d 2.2024年北京市高中数学联赛初赛一试考试时间:8:00-9:20一、填空题(1-8题每题8分,第9题16分,第10,11题每题20分,共120分)1.设整数集合A=a1,a2,a3,a4,a5,若A中所有三元子集的三个元素之积组成的集合为B={-30,-15, -10,-6,-5,-3,2,6,10,15},则集合A={-30,-15,-10,-6,-5,-3,20,10,15},则集合A=.2.已知函数f x =x+2,x<0;ln12x+1,x≥0.若关于x的方程f f x=m恰有三个不相等的实数根x1,x2,x3且满足x1<x2<x3,则2x1+9ln x2+4的取值范围是.3.从1,2,⋯,2024中任取两个数a,b a≤b,则3a+7b的值中,个位数字为8的数有个.4.设复数z满足3z-2i=6,令z1=z2-10z+74z-5+7i,则z1的最大值是.5.已知函数f x =x,若x为无理数;q+1p,若x=qp,其中p,q∈N*,且p,q互质,p>q.则函数f x 在区间89,910上的最大值为.6.对于c>0,若非零实数a,b满足4a2-2ab+4b2-c=0,且使2a+b最大,则3a-4b+2c的最小值为.7.已知函数f x =cos4x+sin4x+a sin4x-b,且f x+π6为奇函数.若方程f x +m=0在[0,π]上有四个不同的实数解x1,x2,x3,x4,则fx1+x2+x3+x44的平方值为.8.已知A⊆{1,2,⋯,2625},且A中任意两个数的差的绝对值不等于4,也不等于9,则A 的最大值为.9.设多项式f x =x2024+2023i=0c ix i,其中c i∈{-1,0,1}.记N为f x 的正整数根的个数(含重根).若f x 无负整数根,N的最大值是.10.在棱长为4的正方体ABCD-A1B1C1D1中,E为棱AA1上的一点,且A1E=1,F为截面A1BD上的动点,则AF+FE的最小值等于.11.数列a n定义如下:设2n!n!n+2024!写成既约分数后的分母为A n ,a n等于2A n 的最大质因数,则a n的最大值等于.2024年北京市高中数学联赛初赛二试考试时间:9:40-12:301.(40分)设a,b,c是三个正数,求证:2a2a2+b2+c2+2ba2+2b2+c2+2ca2+b2+2c2≤32a+b+c5a2+5b2+5c2+ab+bc+ca.2.(40分)如图所示,锐角△ABC的三条高线AD,BE,CF交于点H,过点F作FG⎳AC交直线BC于点G,设△CFG的外接圆为⊙O,⊙O与直线AC的另一个交点为P,过P作PQ⎳DE交直线AD于点Q,连接OD,OQ.求证:OD=OQ.3.(50分)有n个球队参加比赛,球队之间的比赛计划已经安排好了.但是每场比赛的主场客场还没有分配好.这时每个球队都上报了自己能够接受的客场比赛的最大次数.最终组委会发现这些次数加在一起恰好是比赛的总场次,并且组委会还发现任意挑出若干支球队,他们能够接受的客场次数之和都要大于等于他们之间的比赛总场次.请问组委会能否安排好主客场使得每支球队都满意,请证明你的结论.4.(50分)设a1,a2,⋯,a n为n个两两不同的正整数且a1a2⋯a n恰有4048个质因数.如果a1,a2,⋯,a n中任意多个数相乘均不是一个整数的4049次方,求n的最大值.2024年重庆市高中数学联赛初赛试题 2 2024年浙江省高中数学联赛初赛试题 3 2024年四川省高中数学联赛初赛试题 4 2024年吉林省高中数学联赛初赛试题 5 2024年广西省高中数学联赛初赛试题 7 2024年内蒙古高中数学联赛初赛试题 9 2024年北京市高中数学联赛初赛一试 10 2024年北京市高中数学联赛初赛二试 112024年重庆市高中数学联赛初赛试题一、填空题:本大题共8小题,每小题8分,满分64分.1.已知复数z 使得z -4z为纯虚数,则z -1-i 的最小值为2-2.(其中i 为虚数单位)【答案】2-2【解析】z -4z 为纯虚数⇒z -4z =-z -4z⇔z +z =4z +zzz.当z +z=0时,,z -1-i min =1;当z +z≠0时,,则z =2,,此时z -1-i min =2-2<1,,当z =21+i 可取等号.2.设函数f x =2x -2-x 的反函数为y =f -1x ,则不等式f -1x -1 <1的解集为-12,52 .【答案】-12,52 【解析】因为f x 为R 上单调递增的奇函数,,且值域为R ,,所以f -1x 也为R 上单调递增的奇函数.注意f 1 =32,,故f -1x -1 <1⇔-32<x -1<32⇔-12<x <52.3.若点A -12,32 关于直线y =kx 对称的点在圆x -2 2+y 2=1上,则k =3.【答案】3【解析】注意点A 在圆x 2+y 2=1上,,且A 关于直线y =kx 对称的点必然在圆x 2+y 2=1上,,而圆x 2+y 2=1与圆x -2 2+y 2=1仅有唯一公共点B 1,0 ,,因此对称点只能是B .易知∠AOB =120°,,因此k =tan60°= 3.4.在△ABC 中,已知AB ⋅AC =2BC ⋅BA =3CA ⋅CB ,则△ABC 最大角的正弦值为31010.【答案】31010【解析】设△ABC 的内角A ,,B ,,C 所对的边分别为a ,,b ,,c ,,由条件知b 2+c 2-a 22=a 2+c 2-b 2=3a 2+b 2-c 2 2,,解得b 2=85a 2,,c 2=95a 2,,故最大角为角C ,,由余弦定理得cos C =a 2+b 2-c 22ab =1010⇒sin C =31010.5.数列a n 满足a 1=1,a n +1-a n a n =a n +2-an +1a n +2n ∈N * ,若a 1a 2+a 2a 3+⋯+a 6a 7=3,则a 2024=62029.【答案】62029【解析】由a n +1-a n a n =a n +2-a n +1a n +2可得1a n +1a n +2=2a n +1,,则数列1a n 为等差数列,,首项为1a 1=1,,设公差为d ,,则a 1a 2+a 2a 3+⋯+a 6a 7=11+d +11+d 1+2d +⋯+11+5d 1+6d=1d 1-11+d +11+d -11+2d +⋯11+5d -11+6d =61+6d =3⇒d =16,,故1a 2024=1+20236=20296⇒a 2024=62029.6.由1,2,⋯,9这九个正整数构成的所有圆排列中,任意相邻两数之积均不超过60的圆排列的个数为21600.【答案】21600【解析】一个圆排列满足要求当且仅当该排列中8,,9与7,,9这两对数均不能相邻.设满足8,,9相邻的圆排列有N1个,,满足7,,9相邻的圆排列有N2个,,满足8,,9相邻且7,,9相邻的圆排列有N3个,,则N1= N2=A22⋅7!,,N3=A22⋅6!,,从而由容斥原理,,满足要求的排列的个数为N=8!-N1+N2-N3=21600.7.已知四面体ABCD满足AB⊥BC,BC⊥CD,AB=BC=CD=1,且异面直线AD与BC所成的角为60°,则四面体ABCD的外接球的体积为55π6.ABC DA1D1 O1O【答案】55π6【解析】由题设条件,,可将四面体补成直三棱柱ABD1-A1CD,,如图所示.由题知∠A1AD=60°,,AA1=1,,于是A1D=AD1=3,,又AB=BD1=1,,则∠ABD1=120°.设四面体ABCD的外接球球心为O,,则O在平面ABD1的投影O1为△ABD1的外心,,且OO1=12.由正弦定理知,,O1A=1,,从而外接球半径R=OA=52,,于是V=43πR3=55π6.8.一珍稀物种出现在地球,对每个珍稀生物,每天有如下事件发生:有p0≤p≤1的概率消失,有1-p3的概率保持不变,有1-p3的概率分裂成两个,有1-p3的概率分裂成三个.对所有新产生的生物每天也会发生上述事件.假设开始只有一个这样的珍稀生物,若希望最终这种生物灭绝的概率不超过12,则p至多为5 17.【答案】517【解析】设开始有一个珍稀生物、最终灭绝的概率为f1 =q≤12,,那么若开始有n个珍稀生物、最终灭绝的概率则为f n =q n.由题知,,f1 =p+1-p3f1 +1-p3f2 +1-p3f3 ,,从而有q=p+1-p3q+1-p 3q2+1-p3q3即q-11-p3q2+2q+3-1∣=0,,由于q≤12,,则0=1-p3q2+2q+3-1≤1-p 3⋅174-1,,得p≤517.故p至多为517.注:该题也可以用母函数.其第n天的母函数为f n x ,,其中f x =p+1-p3x+1-p3x2+1-p3x3,,考虑limn→+∞f n 0 ≤12即可.二、解答题:共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9.16分已知函数f x =ln x-sin x,若两不相等的实数x1,x2∈0,π满足曲线y=f x 在点x1,f x1和点x2,f x2处的切线斜率相等,求证:f x1 +f x2 >-2.【解析】先证一个引理:对x>0,,有sin x<x.引理的证明:令φx =sin x-x,,φ x =cos x-1≤0,,故φx 为减函数,,所以当x>0时,,φx <φ0 =0,,引理得证!4分回到原题:f x =1x-cos x,,由题知f x1=f x2 .不妨x 1>x 2,,则x 1-x 22∈0,π2,,于是由f x 1 =f x 2 并结合引理可得x 1-x 2x 1x 2=cos x 2-cos x 1=2sin x 1+x 22sin x 1-x228分≤2sin x 1-x 22<2×x 1-x22=x 1-x 2,,因此x 1x 2>1.12分所以f x 1 +f x 2 =ln x 1x 2-sin x 1-sin x 2>-sin x 1-sin x 2≥-2.16分10.20分 已知抛物线Ω:y =x 2,动线段AB 在直线y =3x -3上(B 在A 右侧),且AB =2 3.过A 作Ω的切线,取左边的切点为M .过B 作Ω的切线,取右边的切点为N .当MN ⎳AB 时,求点A 的横坐标.【解析】设M x 1,x 21 ,,N x 2,x 22 ,,注意k MN =x 22-x 21x 2-x 1=x 1+x 2,,从而当MN ⎳AB 时,,k MN =k AB =3⇒x 1+x 2= 3.5分因为y =2x ,,所以k AM =2x 1,,可得切线AM 的方程为y -x 21=2x 1x -x 1 ,,即y =2x 1x -x 21.同理可得切线BN 的方程为y =2x 2x -x 22.由题设中A ,,B 的要求,,可设A t ,3t -3 ,,B t +3,3t ,,10分将A t ,3t -3 代入切线AM 的方程,,得3t -3=2tx 1-x 21,,即x 21-2tx 1+3t -3=0,,可求得x 1=t -t 2-3t +3,,这里取较小的根是因为M 为左边的切点.同理可求得x 2=t +3+t 2+3t +3.15分于是x 1+x 2=3⇒t -t 2-3t +3+t +3+t 2+3t +3=3,,整理得t 1+3t 2-3t +3+t 2+3t +3=0⇒t =0.故点A 的横坐标为0.20分11.20分 设x 1=3,x n +1=x n +14-x n +2n ∈N * ,求x 1+x 2+⋯+x n 的值.(其中[x ]表示不超过实数x 的最大整数.)【解析】设f x =x +14-x +2=12x +14+x +2.对于x >0,,f x 连续且单调递减.由于x 1>2,,则0<x 2=f x 1 <f 2 =2,,进而依次可以得到x 3>2,,0<x 4<2,,即0<x 2k <2,,x 2k +1>2.5分令g x =x +f x .由于g x =1+12x +14-12x +2>0恒成立,,故当x ≥0时,,g x 单调递增.又由于g 2 =4,,故当x >2时,,g x >4;当0<x <2时,,g x <4.10分当n 为偶数时,,设n =2k k ∈N * ,,有x 1+⋯+x 2k =x 1+x 2 +x 3+x 4 +⋯+x 2k -1+x 2k =g x 1 +g x 3 +⋯+g x 2k -1 >4k ,,且x 1+⋯+x 2k =x 1+x 2+x 3 +x 4+x 5 +⋯+x 2k -2+x 2k -1 +x 2k =x 1+g x 2 +g x 4 +⋯+g x 2k -2 +x 2k <4k +1,,故x 1+x 2+⋯+x 2k =4k =2n .当n 为大于1的奇数时,,设n =2k +1k ∈N * ,,有x 1+⋯+x 2k +1=x 1+x 2 +x 3+x 4 +⋯+x 2k -1+x 2k +x 2k +1=g x 1 +g x 3 +⋯+g x 2k -1 +x 2k +1>4k +2x 1+⋯+x 2k +1=x 1+x 2+x 3 +x 4+x 5 +⋯+x 2k +x 2k +1=x1+g x2+g x4 +⋯+g x2k<4k+3,,故x1+x2+⋯+x2k+1=4k+2=2n.当n=1时,,x1=3.综上,,当n=1时,,x1=3;当n≥2时,,x1+x2+⋯+x n=2n.20分2024年浙江省高中数学联赛初赛试题一、填空题(每小题8分,共计96分)1.设集合A=x x-12x-1≤0,集合B=x∣x2+2x+m≤0.若A⊆B,则实数m的取值范围为m≤-3.【答案】m≤-3【解析】集合A=x 12<x≤1,,要使A⊆B,,则12+2×1+m≤0,,解得m≤-3.2.设函数f:{1,2,3}→{2,3,4}满足f f x -1=f x ,则这样的函数有10个.【答案】10【解析】令y=f x -1∈{1,2,3},,则f y =y+1.对f1 =2以下三种情况都满足条件f2 =f3 =2;f2 =f3 =3;f2 =f3 =4,,共3种.同理对f2 =3,,f1 =f3 有3种情况;f3 =4,,f1 =f2 也有3种情况.又f1 =2,,f2 =3,,f3 =4显然满足条件.所以满足已知条件的函数共有3×3+1=10个.(可以看出这种映射的限制仅在值域上,,因此也可对值域大小分类讨论.)3.函数y=sin 2x+sin x+1sin2x+1的最大值与最小值之积为34.【答案】34【解析】令t=sin x,,-1≤t≤1,,原式变形y=1+1t+1t ,,当t≠0时,,12≤y≤32.当t=0时,,y=1.所以y的最大、最小值分别为32,,12,,其积为34.4.已知数列x n满足:x1=22,x n+1=xnn n+1x2n+n n+1,n≥1,则通项x n=n3n-1.【答案】n3n-1【解析】将已知条件变形得1x2n+1-1x2n=1n-1n+1,,将上式从1到n叠加得到1 x2n -1x21=1-1n,,即x n=n3n-1.5.已知四面体A-BCD的外接球半径为1,若BC=1,∠BDC=60°,球心到平面BDC的距离为6 3.【答案】63【解析】因为球心在平面BDC上的投影就是△BDC的外心,,由已知求得△BDC的外接圆半径为33,,所以球心到平面BDC的距离为1-332=63.6.已知复数z满足z24=z-1510=1,则复数z=12±32i.【答案】12±32i【解析】由已知得z =z-1=1,,解得z=12±3i2.显然这两个解满足题设条件.。
历年全国高中数学联赛试题及答案(76套题)
1988年全国高中数学联赛试题第一试(10月16日上午8∶00——9∶30)一.选择题(本大题共5小题,每小题有一个正确答案,选对得7分,选错、不选或多选均得0分):1.设有三个函数,第一个是y=φ(x ),它的反函数是第二个函数,而第三个函数的图象与第二个函数的图象关于x +y=0对称,那么,第三个函数是( )A .y=-φ(x )B .y=-φ(-x )C .y=-φ-1(x )D .y=-φ-1(-x ) 2.已知原点在椭圆k 2x 2+y 2-4kx +2ky +k 2-1=0的内部,那么参数k 的取值范围是( ) A .|k |>1 B .|k |≠1 C .-1<k <1 D .0<|k |<1 3.平面上有三个点集M ,N ,P :M={(x ,y )| |x |+|y |<1},N={(x ,y )|(x -12)2+(y +12)2+(x +12)2+(y -12)2<22}, P={(x ,y )| |x +y |<1,|x |<1,|y |<1}.则A .M ⊂≠P ⊂≠NB .M ⊂≠N ⊂≠PC .P ⊂≠N ⊂≠MD .A 、B 、C 都不成立 4.已知三个平面α、β、γ,每两个之间的夹角都是θ,且α∩β=a ,β∩γ=b ,γ∩α=c .若有 命题甲:θ>π3;命题乙:a 、b 、c 相交于一点. 则A .甲是乙的充分条件但不必要B .甲是乙的必要条件但不充分C .甲是乙的充分必要条件D .A 、B 、C 都不对5.在坐标平面上,纵横坐标都是整数的点叫做整点,我们用I 表示所有直线的集合,M 表示恰好通过1个整点的集合,N 表示不通过任何整点的直线的集合,P 表示通过无穷多个整点的直线的集合.那么表达式 ⑴ M ∪N ∪P=I ; ⑵ N ≠Ø. ⑶ M ≠Ø. ⑷ P ≠Ø中,正确的表达式的个数是A .1B .2C .3D .4 二.填空题(本大题共4小题,每小题10分):1.设x ≠y ,且两数列x ,a 1,a 2,a 3,y 和b 1,x ,b 2,b 3,y ,b 4均为等差数列,那么b 4-b 3a 2-a 1= .2.(x +2)2n +1的展开式中,x 的整数次幂的各项系数之和为 .3.在△ABC 中,已知∠A=α,CD 、BE 分别是AB 、AC 上的高,则DEBC= .4.甲乙两队各出7名队员,按事先排好顺序出场参加围棋擂台赛,双方先由1号队员比赛,负者被淘汰,胜者再与负方2号队员比赛,……直至一方队员全部淘汰为止,另一方获得胜利,形成一种比赛过程.那么所有可能出现的比赛过程的种数为 .三.(15分)长为2,宽为1的矩形,以它的一条对角线所在的直线为轴旋转一周,求得到的旋转体的体积. 四.(15分) 复平面上动点Z 1的轨迹方程为|Z 1-Z 0|=|Z 1|,Z 0为定点,Z 0≠0,另一个动点Z 满足Z 1Z=-1,求点Z 的轨迹,指出它在复平面上的形状和位置.五.(15分)已知a 、b 为正实数,且1a +1b =1,试证:对每一个n ∈N *,(a +b )n -a n -b n ≥22n -2n +1.1988年全国高中数学联赛二试题一.已知数列{a n },其中a 1=1,a 2=2,a n +2=⎩⎨⎧5a n +1-3a n (a n ·a n +1为偶数),a n +1-a n (a n ·a n +1为奇数).试证:对一切n ∈N*,a n ≠0.二.如图,在△ABC 中,P 、Q 、R 将其周长三等分,且P 、Q 在AB 边上,求证:S ∆PQR S ∆ABC >29.三.在坐标平面上,是否存在一个含有无穷多直线l 1,l 2,……,l n ,…的直线族,它满足条件: ⑴ 点(1,1)∈l n ,(n=1,2,3,……); ⑵ k n +1=a n -b n ,其中k n +1是l n +1的斜率,a n 和b n 分别是l n 在x 轴和y 轴上的截距,(n=1,2,3,……); ⑶ k n k n +1≥0,(n=1,2,3,……). 并证明你的结论.N ACBPQ R H1988年全国高中数学联赛解答一试题一.选择题(本大题共5小题,每小题有一个正确答案,选对得7分,选错、不选或多选均得0分): 1.设有三个函数,第一个是y=φ(x ),它的反函数是第二个函数,而第三个函数的图象与第二个函数的图象关于x +y=0对称,那么,第三个函数是( )A .y=-φ(x )B .y=-φ(-x )C .y=-φ-1(x )D .y=-φ-1(-x )解:第二个函数是y=φ-1(x ).第三个函数是-x=φ-1(-y ),即y=-φ(-x ).选B .2.已知原点在椭圆k 2x 2+y 2-4kx +2ky +k 2-1=0的内部,那么参数k 的取值范围是( ) A .|k |>1 B .|k |≠1 C .-1<k <1 D .0<|k |<1 解:因是椭圆,故k ≠0,以(0,0)代入方程,得k 2-1<0,选D . 3.平面上有三个点集M ,N ,P :M={(x ,y )| |x |+|y |<1},N={(x ,y )|(x -12)2+(y +12)2+(x +12)2+(y -12)2<22}, P={(x ,y )| |x +y |<1,|x |<1,|y |<1}.则A .M ⊂≠P ⊂≠NB .M ⊂≠N ⊂≠PC .P ⊂≠N ⊂≠MD .A 、B 、C 都不成立解:M 表示以(1,0),(0.1),(-1,0),(0,-1)为顶点的正方形内部的点的集合(不包括边界);N 表示焦点为(12,-12),(-12,12),长轴为22的椭圆内部的点的集合,P 表示由x +y=±1,x=±1,y=±1围成的六边形内部的点的集合.故选A .4.已知三个平面α、β、γ,每两个之间的夹角都是θ,且α∩β=a ,β∩γ=b ,γ∩α=c .若有命题甲:θ>π3;命题乙:a 、b 、c 相交于一点. 则A .甲是乙的充分条件但不必要B .甲是乙的必要条件但不充分C .甲是乙的充分必要条件D .A 、B 、C 都不对解:a ,b ,c 或平行,或交于一点.但当a ∥b ∥c 时,θ=π3.当它们交于一点时,π3<θ<π.选C .5.在坐标平面上,纵横坐标都是整数的点叫做整点,我们用I 表示所有直线的集合,M 表示恰好通过1个整点的集合,N 表示不通过任何整点的直线的集合,P 表示通过无穷多个整点的直线的集合.那么表达式 ⑴ M ∪N ∪P=I ; ⑵ N ≠Ø. ⑶ M ≠Ø. ⑷ P ≠Ø中,正确的表达式的个数是A .1B .2C .3D .4 解:均正确,选D .二.填空题(本大题共4小题,每小题10分):1.设x ≠y ,且两数列x ,a 1,a 2,a 3,y 和b 1,x ,b 2,b 3,y ,b 4均为等差数列,那么b 4-b 3a 2-a 1= .解:a 2-a 1=14(y -x ),b 4-b 3=23(y -x ),⇒b 4-b 3a 2-a 1=83.2.(x +2)2n +1的展开式中,x 的整数次幂的各项系数之和为 . 解:(x +2)2n +1-(x -2)2n +1=2(C 12n +12x n +C 32n +123x n -1+C 52n +125x n -2+…+C 2n +12n +122n +1). 令x=1,得所求系数和=12(32n +1+1).3.在△ABC 中,已知∠A=α,CD 、BE 分别是AB 、AC 上的高,则DEBC = .解:△AED ∽△ABC ,DE BC =ADAC=|cos α|.4.甲乙两队各出7名队员,按事先排好顺序出场参加围棋擂台赛,双方先由1号队员比赛,负者被淘汰,胜者再与负方2号队员比赛,……直至一方队员全部淘汰为止,另一方获得胜利,形成一种比赛过程.那么所有可能出现的比赛过程的种数为 .解 画1行14个格子,每个格子依次代表一场比赛,如果某场比赛某人输了,就在相应的格子中写上他的顺序号(两方的人各用一种颜色写以示区别).如果某一方7人都已失败则在后面的格子中依次填入另一方未出场的队员的顺序号.于是每一种比赛结果都对应一种填表方法,每一种填表方法对应一种比赛结果.这是一一对应关系.故所求方法数等于在14个格子中任选7个写入某一方的号码的方法数.∴共有C 714种比赛方式.三.(15分)长为2,宽为1的矩形,以它的一条对角线所在的直线为轴旋转一周,求得到的旋转体的体积.解:过轴所在对角线BD 中点O 作MN ⊥BD 交边AD 、BC 于M 、N ,作AE ⊥BD 于E ,则△ABD 旋转所得旋转体为两个有公共底面的圆锥,底面半径AE=23=63.其体积V=π3(63)2·3=239π.同样, △BCD 旋转所得旋转体的体积=239π.其重叠部分也是两个圆锥,由△DOM ∽△DAB ,DO=32,OM=DO ·AB DA =64. ∴其体积=2·13π·(64)2·32=38π.∴ 所求体积=2·239π-38π=23723π.四.(15分) 复平面上动点Z 1的轨迹方程为|Z 1-Z 0|=|Z 1|,Z 0为定点,Z 0≠0,另一个动点Z 满足Z 1Z=-1,求点Z 的轨迹,指出它在复平面上的形状和位置.解:Z 1=-1Z ,故得|-1Z -Z 0|=|1Z |,即|ZZ 0+1|=1.|Z +1Z 0|=|1Z 0|.即以-1Z 0为圆心|1Z 0|为半径的圆.五.(15分)已知a 、b 为正实数,且1a +1b =1.试证:对每一个n ∈N *,(a +b )n -a n -b n ≥22n -2n +1.证明:由已知得a +b=ab .又a +b ≥2ab ,∴ ab ≥2ab ,故a +b=ab ≥4.于是(a +b )k =(ab )k ≥22k . 又 a k +b k ≥2a k b k =2(a +b )k ≥2k +1.下面用数学归纳法证明: 1° 当n=1时,左=右=0.左≥右成立. 2° 设当n=k (k ≥1,k ∈N )时结论成立,即(a +b )k -a k -b k ≥22k -2k +1成立.则(a +b )k +1-a k +1-b k +1=(a +b )(a +b )k -(a k +b k )(a +b )+ab (a k -1+b k -1)=(a +b )[(a +b )k -a k -b k ]+ ab (a k -1+b k -1)≥4∙(22k -2k +1)+4∙2k =22(k +1)-4∙2k +1+4∙2k =22(k +1)-2(k +1)+1.即命题对于n=k +1也成立.故对于一切n ∈N *,命题成立.二试题一.已知数列{a n },其中a 1=1,a 2=2,O N MEBCD Aa n +2=⎩⎨⎧5a n +1-3a n (a n ·a n +1为偶数),a n +1-a n (a n ·a n +1为奇数).试证:对一切n ∈N *,a n ≠0.(1988年全国高中竞赛试题)分析:改证a n ≢0(mod 4)或a n ≢0(mod 3).证明:由a 1=1,a 2=2,得a 3=7,a 4=29,…… ∴ a 1≡1,a 2≡2,a 3≡3(mod 4).设a 3k -2≡1,a 3k -1≡2,a 3k ≡3(mod 4).则 a 3k +1≡5×3-3×2=9≡1(mod 4);a 3k +2≡1-3=-2≡2(mod 4);a 3k +3≡5×2-3×1=7≡3(mod 4). 根据归纳原理知,对于一切n ∈N ,a 3n -2≡1,a 3n -1≡2,a 3n ≡3(mod 4)恒成立,故a n ≢0(mod 4)成立,从而a n ≠0.又证:a 1≡1,a 2≡2(mod 3).设a 2k -1≡1,a 2k ≡2(mod 3)成立,则当a 2k -1∙a 2k 为偶数时a 2k +1≡5×2-3×1≡1(mod 3),当a 2k -1∙a 2k 为奇数时a 2k +1≡2-1≡1(mod 3),总之a 2k +1≡1(mod 3).当a 2k ∙a 2k +1为偶数时a 2k +2≡5×1-3×2≡2(mod 3),当a 2k ∙a 2k +1为奇数时a 2k +2≡1-2≡2(mod 3),总之,a 2k +2≡2(mod 3).于是a n ≢0(mod 3).故a n ≠0.二.如图,在△ABC 中,P 、Q 、R 将其周长三等分,且P 、Q 在AB 边上,求证:S ∆PQR S ∆ABC >29.证明:作△ABC 及△PQR 的高CN 、RH .设△ABC 的周长为1.则PQ=13.则S ∆PQR S ∆ABC =PQ ·RH AB ·CN =PQ AB ·AR AC ,但AB <12,于是PQ AB >23,AP ≤AB -PQ <12-13=16,∴ AR=13-AP >16,AC <12,故AR AC >13,从而S ∆PQR S ∆ABC >29.三.在坐标平面上,是否存在一个含有无穷多直线l 1,l 2,……,l n ,…的直线族,它满足条件:⑴ 点(1,1)∈l n ,(n=1,2,3,……); ⑵ k n +1=a n -b n ,其中k n +1是l n +1的斜率,a n 和b n 分别是l n 在x 轴和y 轴上的截距,(n=1,2,3,……); ⑶ k n k n +1≥0,(n=1,2,3,……). 并证明你的结论.证明:设a n =b n ≠0,即k n -1=-1,或a n =b n =0,即k n =1,就有k n +1=0,此时a n +1不存在,故k n ≠±1. 现设k n ≠0,1,则y=k n (x -1)+1,得b n =1-k n ,a n =1-1k n ,∴ k n +1=k n -1k n .此时k n k n +1=k n 2-1.∴ k n >1或k n <-1.从而k 1>1或k 1<-1.⑴ 当k 1>1时,由于0<1k 1<1,故k 1>k 2=k 1-1k 1>0,若k 2>1,则又有k 1>k 2>k 3>0,依此类推,知当k m >1时,有k 1>k 2>k 3>∙…>k m >k m +1>0,且0<1k 1<1k 2<…<1k m<1,k m +1=k m -1k m <k m -1k 1=k m -1-1k m -1-1k 1<k m -1-2k 1<…<k 1-mk 1.由于k 1-m k 1随m 的增大而线性减小,故必存在一个m 值,m=m 0,使k 1-m 0k 1≤1,从而必存在一个m 值m=m 1≤m 0,使k m 1-1≥1,而1>k m 1=k m 1-1-1k m 1-1>0,此时k m 1·k m 1+1<0.即此时不存在这样的直线族.⑵ 当k 1<-1时,同样有-1<1k 1<0,得k 1<k 2=k 1-1k 1<0.若k 2<-1,又有k 1<k 2<k 3<0,依此类推,知当N ACBPQ R Hk m <-1时,有k 1<k 2<k 3<∙…<k m <k m +1<0,且0>1k 1>1k 2>…>1k m>-1,k m +1=k m -1k m >k m -1k 1=k m -1-1k m -1-1k 1>k m -1-2k 1>…>k 1-mk 1.由于k 1-m k m 随m 的增大而线性增大,故必存在一个m 值,m=m 0,使k 1-m 0k 1≥-1,从而必存在一个m值,m=m 1(m 1≤m 0),使k m 1-1≤-1,而-1<k m 1=k m 1-1k m 1-1<0,此时k m 1·k m 1+1<0. 即此时不存在这样的直线族.综上可知这样的直线族不存在.厦门市参加2010年福建省高中数学竞赛 暨2010年全国高中数学联赛福建赛区竞赛的通知贵校教务处转数学教研组:根据闽科协发【2010】39号文件《关于举办2010年全国高中数学联赛福建赛区竞赛的通知》,以及省数学会《关于2010年福建省高中数学竞赛暨2010年全国高中数学联赛福建赛区竞赛的通知》,根据我市情况,有关竞赛工作通知如下:一、赛制、竞赛时间和命题范围竞赛分预赛和复赛两个阶段。
2020年全国高中数学联赛试题及详细解析
2020年全国高中数学联赛试题及详细解析一、选择题(每小题6分,共36分)1.(2020年全国高中数学联赛)删去正整数数列1,2,3,……中的所有完全平方数,得到一个新数列.这个数列的第2020项是(A) 2046 (B) 2047 (C) 2048 (D) 20492.设a ,b ∈R ,ab ≠0,那么直线ax -y +b=0和曲线bx 2+ay 2=ab 的图形是yxO Ox yO xyyx O A.B. C.D.3.过抛物线y 2=8(x +2)的焦点F 作倾斜角为60°的直线,若此直线与抛物线交于A 、B 两点,弦AB 的中垂线与x 轴交于点P ,则线段PF 的长等于(A ) 163 (B) 83 (C) 1633 (D) 8 34.若x ∈[-5π12 ,-π3 ],则y=tan(x +2π3 )-tan(x +π6 )+cos(x +π6 )的最大值是(A) 125 2 (B) 116 2 (C) 116 3 (D) 1253二.填空题(每小题9分,共54分)7.不等式|x |3-2x 2-4|x |+3<0的解集是 .8.设F 1、F 2是椭圆x 29+y 24=1的两个焦点,P 是椭圆上一点,且|PF 1|∶|PF 2|=2∶1,则△PF 1F 2的面积等于 .9.已知A={x |x 2-4x +3<0,x ∈R },B={x |21-x +a ≤0,x 2-2(a +7)x +5≤0,x ∈R}若A ⊆B ,则实数a 的取值范围是 .10.已知a ,b ,c ,d 均为正整数,且log a b=32,log c d=54,若a -c=9,则b -d= .11.将八个半径都为1的球分放两层放置在一个圆柱内,并使得每个球都和其相邻的四个球相切,且与圆柱的一个底面及侧面都相切,则此圆柱的高等于 .12. 设M n ={(十进制)n 位纯小数0.-a 1a 2…a n |a i 只取0或1(i=1,2,…,n -1),a n =1},T n 是M n 中元素的个数,S n 是M n 中所有元素的和,则lim n →∞S nT n= .五、(本题满分20分)15.一张纸上画有一个半径为R 的圆O 和圆内一个定点A ,且OA=a ,折叠纸片,使圆周上某一点A '刚好与点A 重合.这样的每一种折法,都留下一条折痕.当A '取遍圆周上所有点时,求所有折痕所在直线上点的集合.加试题(10月12日上午10:00-12:00)一、(本题50分)过圆外一点P 作圆的两条切线和一条割线,切点为A 、B ,所作割线交圆于C 、D 两点,C 在P 、D 之间.在弦CD 上取一点Q ,使∠DAQ=∠PBC . 求证:∠DBQ=∠PAC .二、(本题50分)设三角形的三边长分别是正整数l ,m ,n .且l >m >n >0.已知⎩⎨⎧⎭⎬⎫3l104=⎩⎨⎧⎭⎬⎫3m104=⎩⎨⎧⎭⎬⎫3n104,其中{x }=x -[x ],而[x ]表示不超过x 的最大整数.求这种三角形周长的最小值.三、(本题50分)由n 个点和这些点之间的l 条连线段组成一个空间图形,其中n=q 2+q +1,l ≥12q (q +1)2+1,q ≥2,q ∈N .已知此图中任四点不共面,每点至少有一条连线段,存在一点至少有q +2条连线段.证明:图中必存在一个空间四边形(即由四点A 、B 、C 、D 和四条连线段AB 、BC 、CD 、DA 组成的图形).2020年全国高中数学联赛解答第一试一、选择题(每小题6分,共36分)1.删去正整数数列1,2,3,……中的所有完全平方数,得到一个新数列.这个数列的第2020项是(A) 2046 (B) 2047 (C) 2048 (D) 2049 【答案】C【解析】452=2025,462=2116.在1至2025之间有完全平方数45个,而2026至2115之间没有完全平方数.故1至2025中共有新数列中的2025-45=1980项.还缺2020-1980=23项.由2025+23=2048.知选C .3.过抛物线y 2=8(x +2)的焦点F 作倾斜角为60°的直线,若此直线与抛物线交于A 、B 两点,弦AB 的中垂线与x 轴交于点P ,则线段PF 的长等于(A) 163 (B) 83 (C) 1633 (D) 8 3【答案】A【解析】抛物线的焦点为原点(0,0),弦AB 所在直线方程为y=3x ,弦的中点在y=p k =43上,即AB 中点为(43,43),中垂线方程为y=-33(x -43)+43,令y=0,得点P 的坐标为163.∴ PF=163.选A .4.若x ∈[-5π12 ,-π3],则y=tan(x +2π3)-tan(x +π6)+cos(x +π6)的最大值是(A) 125 2 (B) 116 2 (C) 116 3 (D) 1253【答案】C【解析】令x +π6=u ,则x +2π3=u +π2,当x ∈[-5π12,-π3]时,u ∈[-π4,-π6],y=-(cot u +tan u )+cos u=-2sin2u +cos u .在u ∈[-π4,-π6]时,sin2u 与cos u 都单调递增,从而y 单调递增.于是u=-π6时,y 取得最大值1163,故选C .二.填空题(每小题9分,共54分)7.不等式|x |3-2x 2-4|x |+3<0的解集是 .【答案】(-3,-5-12)∪(5-12,3). 【解析】即|x |3-2|x |2-4|x |+3<0,⇒(|x |-3)(|x |-5-12)(|x |+5+12)<0.⇒|x |<-5+12,或5-12<|x |<3. ∴ 解为(-3,-5-12)∪(5-12,3).9.已知A={x |x 2-4x +3<0,x ∈R },B={x |21-x +a ≤0,x 2-2(a +7)x +5≤0,x ∈R}若A ⊆B ,则实数a 的取值范围是 .【答案】-4≤a ≤-1.【解析】A=(1,3);又,a ≤-21-x∈(-1,-14),当x ∈(1,3)时,a ≥x 2+52x-7∈(5-7,-4).∴ -4≤a ≤-1.10.已知a ,b ,c ,d 均为正整数,且log a b=32,log c d=54,若a -c=9,则b -d= .【答案】93【解析】a 3=b 2,c 5=d 4,设a=x 2,b=x 3;c=y 4,d=y 5,x 2-y 4=9.(x +y 2)(x -y 2)=9.∴ x +y 2=9,x -y 2=1,x=5,y 2=4.b -d=53-25=125-32=93.11.将八个半径都为1的球分放两层放置在一个圆柱内,并使得每个球都和其相邻的四个球相切,且与圆柱的一个底面及侧面都相切,则此圆柱的高等于 .【答案】2+48【解析】如图,ABCD 是下层四个球的球心,EFGH 是上层的四个球心.每个球心与其相切的球的球心距离=2.EFGH 在平面ABCD 上的射影是一个正方形.是把正方形ABCD 绕其中心旋转45︒而得.设E 的射影为N ,则MN=2-1.EM=3,故EN 2=3-(2-1)2=22.∴ EN=48.所求圆柱的高=2+48.12. 设M n ={(十进制)n 位纯小数0.-a 1a 2…a n |a i 只取0或1(i=1,2,…,n -1),a n =1},N MHGFEDCBAT n 是M n 中元素的个数,S n 是M n 中所有元素的和,则lim n →∞S nT n= .【答案】118【解析】由于a 1,a 2,…,a n -1中的每一个都可以取0与1两个数,T n =2n -1.在每一位(从第一位到第n -1位)小数上,数字0与1各出现2n -2次.第n 位则1出现2n -1次.∴ S n =2n -2⨯0.11…1+2n -2⨯10-n.∴ lim n →∞S n T n =12⨯19=118.四、(本题满分20分)14.设A 、B 、C 分别是复数Z 0=a i ,Z 1=12+b i ,Z 2=1+c i(其中a ,b ,c 都是实数)对应的不共线的三点.证明:曲线Z=Z 0cos 4t +2Z 1cos 2t sin 2t +Z 2sin 4t (t ∈R)与△ABC 中平行于AC 的中位线只有一个公共点,并求出此点.【解析】曲线方程为:Z=a icos 4t +(1+2b i)cos 2t sin 2t +(1+c i)sin 4t=(cos 2t sin 2t +sin 4t )+i(a cos 4t +2b cos 2t sin 2t +c s in 4t )∴ x=cos 2t sin 2t +sin 4t=sin 2t (cos 2t +sin 2t )=sin 2t .(0≤x ≤1) y=a cos 4t +2b cos 2t sin 2t +c sin 4t=a (1-x )2+2b (1-x )x +cx 2即 y=(a -2b +c )x 2+2(b -a )x +a (0≤x ≤1). ①若a -2b +c=0,则Z 0、Z 1、Z 2三点共线,与已知矛盾,故a -2b +c ≠0.于是此曲线为轴与x 轴垂直的抛物线.AB 中点M :14+12(a +b )i ,BC 中点N :34+12(b +c )i .与AC 平行的中位线经过M (14,12(a +b ))及N (34,12(b +c ))两点,其方程为4(a -c )x +4y -3a -2b +c=0.(14≤x ≤34). ②令 4(a -2b +c )x 2+8(b -a )x +4a=4(c -a )x +3a +2b -c .即4(a -2b +c )x 2+4(2b -a -c )x +a -2b +c=0.由a -2b +c 0,得4x 2+4x +1=0, 此方程在[14,34]内有惟一解: x=12.以x=12代入②得, y=14(a +2b +c ).∴ 所求公共点坐标为(12,14(a +2b +c )).加试题(10月12日上午10:00-12:00)一、(本题50分)过圆外一点P 作圆的两条切线和一条割线,切点为A 、B ,所作割线交圆于C 、D 两点,C 在P 、D 之间.在弦CD 上取一点Q ,使∠DAQ=∠PBC . 求证:∠DBQ=∠PAC .分析:由∠PBC=∠CDB ,若∠DBQ=∠PAC=∠ADQ ,则∆BDQ ∽∆DAQ .反之,若∆BDQ ∽∆DAQ .则本题成立.而要证∆BDQ ∽∆DAQ ,只要证BD AD =DQAQ即可.二、(本题50分)设三角形的三边长分别是正整数l ,m ,n .且l >m >n >0.已知⎩⎨⎧⎭⎬⎫3l104=⎩⎨⎧⎭⎬⎫3m104=⎩⎨⎧⎭⎬⎫3n104,其中{x }=x -[x ],而[x ]表示不超过x 的最大整数.求这种三角形周长的最小值.【解析】当3l、3m、3n的末四位数字相同时,⎩⎨⎧⎭⎬⎫3l104=⎩⎨⎧⎭⎬⎫3m104=⎩⎨⎧⎭⎬⎫3n104.即求满足3l ≡3m ≡3n ( mod 104)的l 、m 、n .∴ 3n (3l -n -1)≡0 (mod 104).(l -n >0)但 (3n ,104)=1,故必有3l -n ≡1(mod 104);同理3m -n ≡1(mod 104).下面先求满足3x ≡1(mod 104)的最小正整数x .∵ ϕ(104)=104⨯12⨯45=4000.故x |4000.用4000的约数试验:∵ x=1,2,时3x ≡∕1(mod 10),而34≡1(mod 10),∴ x 必须是4的倍数;∵ x=4,8,12,16时3x ≡∕1(mod 102),而320≡1(mod 102),∴ x 必须是20的倍数;∵ x=20,40,60,80时3x ≡∕1(mod 103),而3100≡1(mod 103),∴ x 必须是100的倍数;∵ x=100,200,300,400时3x ≡∕1(mod 104),而3500≡1(mod 104).即,使3x ≡1(mod 104)成立的最小正整数x=500,从而l -n 、m -n 都是500的倍数, 设l -n=500k ,m -n=500h ,(k ,h ∈N*,k >h ).由m +n >l ,即n +500h +n >n +500k ,⇒n >500(k -h )≥500,故n ≥501.取n=501,m=1001,l=1501,即为满足题意的最小三个值. ∴ 所求周长的最小值=3003.三、(本题50分)由n 个点和这些点之间的l 条连线段组成一个空间图形,其中n=q 2+q +1,l ≥12q (q +1)2+1,q ≥2,q ∈N .已知此图中任四点不共面,每点至少有一条连线段,存在一点至少有q +2条连线段.证明:图中必存在一个空间四边形(即由四点A 、B 、C 、D 和四条连线段AB 、BC 、CD 、DA 组成的图形).现设任一点连的线数≤n -2.且设b 0=q +2≤n -2.且设图中没有四边形.于是当i ≠j 时,B i 与B j 没有公共的点对,即|B i ∩B j |≤1(0≤i ,j ≤n -1).记B 0-=V \B 0,则由|B i ∩B 0|≤1,得|B i ∩B 0-|≥b i -1(i =1,2,…,n -1),且当1≤i ,j ≤n -1且i ≠j 时,B i ∩B 0-与B j ∩B 0-无公共点对.从而B 0-中点对个数≥i =1n -1∑(B i ∩B 0-中点对个数).即C 2 n -b 0≥i =1n -1∑C 2 |B i ∩B 0-|≥i =1n -1∑C 2 b i -1=12i =1n -1∑ (b 2i -3b i +2)≥12[1n -1(i =1n -1∑b i )2-3i =1n -1∑b i +2(n -1)](由平均不等式)=12[1n -1(2l -b 0)2-3(2l -b 0)+2(n -1)]=12(n -1)[(2l -b 0)2-3(n -1)(2l -b 0)+2(n -1)2]=12(n -1)(2l -b 0-n +1)(2l -b 0-2n +2)(2l ≥q (q +1)2+2=(n -1)(q +1)+2)≥12(n -1)[(n -1)(q +1)+2-b 0-n +1][(n -1)(q +1)+2-b 0-2n +2]=12(n -1)[(n -1)q +2-b 0][(n -1)(q -1)+2-b 0].(两边同乘以2(n -1)即 (n -1)(n -b 0)(n -b 0-1)≥(nq -q +2-b 0)(nq -q -n +3-b 0).(n -1≥q (q +1)代入) 得 q (q +1)(n -b 0)(n -b 0-1)≥(nq -q +2-b 0)(nq -q -n +3-b 0).(各取一部分因数比较) ①但(nq -q -n +3-b 0)-q (n -b 0-1)=(q -1)b 0-n +3(b 0≥q +2)≥(q -1)(q +2)-n +3=q 2+q +1-n =0.②(nq -q +2-b 0)-(q +1)(n -b 0)=qb 0-q -n +2≥q (q +1)-n +2=1>0. ③由假设,不存在处在不同行的2个红点对,使此四点两两同列,所以,有(由于去掉了q +2列,故还余q 2-1列,不同的列对数为C 2 q 2-1)i =1n -1∑C 2 m i ≤C 2 q 2-1. 所以q 2·q (q -1)+q (q -1)(q -2)≤(q 2-1)(q 2-2).⇒ q (q -1)(q 2+q -2)≤(q -1)(q +1)(q 2-2)⇒q 3+q 2-2q ≤q 3+q 2-2q -2.矛盾.故证.。
2024年全国中学生数学奥林匹克竞赛(预赛)暨2024年全国高中数学联赛加试(A卷)试题(含答案)
2024年全国中学生数学奥林匹克竞赛(预赛)暨2024年全国高中数学联合竞赛加试(A 卷)参考答案及评分标准说明:1.评阅试卷时,请严格按照本评分标准的评分档次给分.2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,10分为一个档次,不得增加其他中间档次.一.(本题满分40分)给定正整数r .求最大的实数C ,使得存在一个公比为r 的实数等比数列1{}n n a ,满足n a C 对所有正整数n 成立.(x 表示实数x 到与它最近整数的距离.)解:情形1:r 为奇数.对任意实数x ,显然有12x ,故满足要求的C 不超过12. 又取{}n a 的首项112a ,注意到对任意正整数n ,均有1n r 为奇数,因此1122n n r a .这意味着12C 满足要求.从而满足要求的C 的最大值为12. …………10分 情形2:r 为偶数.设*2()r m m N .对任意实数 ,我们证明1a 与2a 中必有一数不超过21m m ,从而21m C m . 事实上,设1a k ,其中k 是与1a 最近的整数(之一),且102. 注意到,对任意实数x 及任意整数k ,均有x k x ,以及x x .若021m m ,则121m a k m . 若1212m m ,则22221m m m m ,即21m m r m m ,此时 2121m a a r kr r r m . …………30分 另一方面,取121m a m ,则对任意正整数n ,有1(2)21n n m a m m ,由二项式展开可知11(211)(1)2121n n n m m a m K m m ,其中K 为整数,故21n m a m .这意味着21m C m 满足要求. 从而满足要求的C 的最大值为212(1)m r m r .综上,当r 为奇数时,所求C 的最大值为12;当r 为偶数时,所求C 的最大值为2(1)r r . …………40分二.(本题满分40分)如图,在凸四边形ABCD 中,AC 平分BAD ,点,E F 分别在边,BC CD 上,满足||EF BD .分别延长,FA EA 至点,P Q ,使得过点,,A B P 的圆1 及过点,,A D Q 的圆2 均与直线AC 相切.证明:,,,B P Q D 四点共圆.(答题时请将图画在答卷纸上)证明:由圆1 与AC 相切知180BPA BAC CAD CAF PAC ,故,BP CA 的延长线相交,记交点为L .由||EF BD 知CE CF CB CD.在线段AC 上取点K ,使得CK CE CF CA CB CD ,则||,||KE AB KF AD . …………10分由ABL PAL KAF ,180180BAL BAC CAD AKF ,可知ABL KAF ∽,所以KF AB AL KA. …………20分 同理,记,DQ CA 的延长线交于点L ,则KE AD AL KA. 又由||,||KE AB KF AD 知KE CK KF AB CA AD,即KE AD KF AB . 所以AL AL ,即L 与L 重合.由切割线定理知2LP LB LA LQ LD ,所以,,,B P Q D 四点共圆.…………40分三.(本题满分50分)给定正整数n .在一个3n ×的方格表上,由一些方格构成的集合S 称为“连通的”,如果对S 中任意两个不同的小方格,A B ,存在整数2l ≥及S 中l 个方格12,,,lA C C CB ==,满足iC 与1i C +有公共边(1,2,,1i l −).求具有下述性质的最大整数K :若将该方格表的每个小方格任意染为黑色或白色,总存在一个连通的集合S ,使得S 中的黑格个数与白格个数之差的绝对值不小于K .解:所求最大的K n =.对一个由小方格构成的集合S ,记b S 是S 中的黑格个数,w S 是S 中的白格个数. 用[,]i j 表示第i 行第j 列处的方格,这里13i ≤≤,1j n ≤≤.对于两个方格[,]A i j =,[,]B i j ′′=, 定义它们之间的距离为(,)||||d A B i i j j ′′=−+−.首先,如果将方格表按国际象棋棋盘一样黑白间隔染色,我们证明对任意连通的集合S ,均有||b w S S n −≤,这表明K n ≤.设[1,1]是黑格,并记{0,1}ε∈,满足(mod 2)n ε≡.先证b w S S n −≤.可不妨设S 包含所有黑格,这是因为若S 不包含所有黑格, 取不属于S 的黑格A 满足(,)d A S 最小,这里(,)min (,)B Sd A S d A B ∈=.易知(,)1d A S =或2.若(,)1d A S =,取{}S S A ′=,则S 仍是连通的,且b w S S ′′−更大. 若(,)2d A S =,则存在与A 相邻的白格C ,而C 与S 中某个方格B 相邻,取{,}S S A B ′= ,则S 仍是连通的,且bw S S ′′−不变. 因而可逐步扩充S ,使得S 包含所有黑格,保持S 的连通性,且b w S S −不减.考虑白格集合{[,]|}k W i j i j k =+=,3,5,,1k n ε++,每个k W 中至少有一个方格属于S ,否则不存在从黑格[1,1]A S =∈到黑格[3,1]B n ε=−+的S 中路径.故1()2w S n ε≥+,而1(3)2b S n ε=+,故b w S S n −≤. …………10分 类似可证w b S S n −≤.同上,可不妨设S 包含所有白格, 从而1(3)2w S n ε=−. 再考虑黑格集合{[,]|}k B i j i j k =+=, 4,6,,2k n ε+−,每个k B 中至少有一个黑格属于S ,否则不存在从白格[1,2]A =到白格[3,]B n ε=−的S 中路径. 从而1()2b S n ε≥−,故w b S S n −≤. …………20分 下面证明K n =具有题述性质,即对任意的染色方案,总存在连通的集合S , 使得b w S S n −≥.设表格中共有X 个黑格和Y 个白格,在第二行中有x 个黑格和y 个白格. 于是3X Y n +=, x y n +=.故()()()()2X y Y x X Y x y n −+−=+−+=.由平均值原理可知max{,}X y Y x n −−≥.不妨设X y n −≥.取S 为第二行中的y 个白格以及所有X 个黑格.由于S 包含第二行中所有方格,因而S 是连通的. 而b S X =,w S y =,b w S S X y n −=−≥.综上所述,max K n =. …………50分四.(本题满分50分)设,A B 为正整数,S 是一些正整数构成的一个集合,具有下述性质:(1) 对任意非负整数k ,有k A S ;(2) 若正整数n S ,则n 的每个正约数均属于S ;(3) 若,m n S ,且,m n 互素,则mn S ;(4) 若n S ,则An B S .证明:与B 互素的所有正整数均属于S .证明:先证明下述引理.引理:若n S ,则n B S .引理的证明:对n S ,设1n 是n 的与A 互素的最大约数,并设12n n n ,则2n 的素因子均整除A ,从而12(,)1n n .由条件(1)及(2)知,对任意素数|p A 及任意正整数k ,有k p S .因此,将11k A n 作标准分解,并利用(3)知11k A n S .又2|n n ,而n S ,故由(2)知2n S .因112(,)1k A n n ,故由(3)知112k A n n S ,即1k A n S .再由(4)知k A n B S (对任意正整数k ). ① …………10分 设n B C D ,这里正整数C 的所有素因子均整除A ,正整数D 与A 互素,从而(,)1C D .由(1)及(2)知C S (见上面1k A n S 的证明). 另一方面,因(,)1D A ,故由欧拉定理知()1D D A .因此()()(1)()0(mod )D D A n B A n n B D ,但由①知()D A n B S ,故由(2)知D S .结合C S 及(,)1C D 知CD S ,即n B S .引理证毕. …………40分回到原问题.由(1),取0k 知1S ,故反复用引理知对任意正整数y ,有1By S .对任意*,(,)1n n B N ,存在正整数,x y 使得1nx By ,因此nx S ,因|n nx ,故n S .证毕. …………50分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全国高中数学联赛试题
第一试10月12日
一、选择题
本题共有6小题,每题均给出(A )、(B )、(C )、(D )四个结论,其中有且仅有一个是正确的,请将正确答案的代表字母填在题后的括号内,每小题选对得6分;不选、选错或选出的代表字母超过一个(不论是否写在括号内),一律得0分。
1. 删去正整数数列1,2,3,……中的所有完全平方数,
得到一个新数列.
这个数列的第
2003
项是
【答】()
(A )2046 (B) 2047
(C) 2048
(D)
2049
2.设,,0,a b
R ab 那么直线0ax
y b 和曲线2
2
bx
ay
ab 的图形是【答】(
)
(A) (B)
(C) (D)
3. 过抛物线
2
82
y
x 的焦点F 作倾斜角为60的直线. 若此直线与抛物线交于
A ,
B 两点,
弦AB 的中垂线与x 轴交于P 点,则线段PF 的长等于【答】(
)
(A )
163
(B)
83(C)
1633
(D) 83
4. 若5,
,123
x
则2tan tan cos 3
6
6
y
x
x
x
的最大值是
(A )
1225
(B)
112
6
(C)
127
(D)
125
【答】(
)
5. 已知
,x y 在区间
2,2内,且1,xy
则函数2
2
494
9
u
x
y
的最小值是
(A )
85
(B)2411
(C) 127
(D)
125
【答】()
6.在四面体ABCD 中设1,3AB CD
,直线AB 与CD 的距离为2,夹角为
3
,则四面体
ABCD 的体积等于【答】(
)
(A )
32
(B)
12
(C)
13
(D)
33
二、填空题(本题满分54分,每小题9分)本题共有6小题,要求直接将答案写在横线上。
7.不等式
3
2
2430x
x
x
的解集是______________
8.设12,F F 是椭圆
2
2
194
x y
的两个焦点,P 是椭圆上的点,且12:2:1PF PF ,则12
PF F 的面积等于_____________. 9. 已知
2
43
0,,A
x x x x R 12
20,275
0,.x
B
x a
x a
x
x
R 若A
B ,则实数a 的取值范围是
_____________. 10.
已知,,,a b c d 均为正整数,且35log ,log ,2
4
a c b
d
若9a c ,则
b d
____________.
11. 将八个半径都为1的球分两层放置在一个圆柱内,并使得每个球和其相邻的四个球相切,且与圆柱的一个底面及侧面都相切,则此圆柱的高等于
________.
12.设_____________
120.011,2,
,1),1,
n
n i n
M n a a a a i
n a 十进制位纯小数只取或(n T 是n M 中元素的个数,n S 是n M 中所有元素的和,则
lim
n n
n
S T ________.
三、解答题(本题满分60分,每小题20分)
13.设
35,2
x 证明不等式2123153219.
x x x y
x
y
x
y
x
x
y。