高二物理动量守恒定律
高中物理【动量守恒定律】知识点、规律总结
2.反冲 (1)定义:当物体的一部分以一定的速度离开物体时,剩余部分将获得一个反向冲量, 这种现象叫反冲运动. (2)特点:系统内各物体间的相互作用的内力_远__大__于___系统受到的外力.实例:发射 炮弹、爆竹爆炸、发射火箭等. (3)规律:遵从动量守恒定律. 3.爆炸问题 爆炸与碰撞类似,物体间的相互作用时间很短,作用力很大,且_远__大__于___系统所受 的外力,所以系统动量_守__恒___.
的动量
系统性 研究的对象是相互作用的两个或多个物体组成的系统 动量守恒定律不仅适用于低速宏观物体组成的系统,还适用于接近光速运动
普适性 的微观粒子组成的系统
2.应用动量守恒定律的解题步骤 (1)明确研究对象,确定系统的组成(系统包括哪几个物体及研究的过程). (2)进行受力分析,判断系统动量是否守恒(或某一方向上是否守恒). (3)规定正方向,确定初、末状态动量. (4)由动量守恒定律列出方程. (5)代入数据,求出结果,必要时讨论说明.
两个原来静止的物体发生相互作用时,若所受外力的矢量和为零,则动量守恒,在
相互作用的过程中,任一时刻两物体的速度大小之比等于质量的反比.这样的问题归为
“人船模型”问题.
2.“人船模型”的特点
(1)两物体满足动量守恒定律:m1v1-m2v2=0. (2)运动特点:人动船动,人静船静,人快船快,人慢船慢,人左船右;人船位移比
2.弹性碰撞的结论 两球发生弹性碰撞时应满足动量守恒和机械能守恒.以质量为 m1、速度为 v1 的小 球与质量为 m2 的静止小球发生正面弹性碰撞为例,则有 m1v1=m1v1′+m2v2′ 12m1v21=12m1v1′2+12m2v2′2
【总结提升】 碰撞问题解题策略 (1)抓住碰撞的特点和不同种类碰撞满足的条件,列出相应方程求解. (2)可熟记一些公式,例如“一动一静”模型中,两物体发生弹性正碰后的速度满足: v1=mm11- +mm22v0、v2=m12+m1m2v0. (3)熟记弹性正碰的一些结论,例如,当两球质量相等时,两球碰撞后交换速度.
高二物理期末复习动量守恒定律应用知识点
高二物理期末复习动量守恒定律应用知识点
动量守恒定律是自然界中最重要最普遍的守恒定律之一。
以下是动量守恒定律应用知识点,请大家认真学习。
1.理解障碍
层析法理解碰撞、爆炸类问题的特点.
(1)爆炸和碰撞具有一个共同特点,即相互作用的力为变力,作用的时间短,作用力很大,且远远大于系统受的外力,故均可用动量守恒定律来处理.
(2)在爆炸过程中,因有其他形式的能转化为动能,所以系统的动能会增加.
(3)在碰撞过程中,如果没有动能损失,碰撞前与碰撞后总动能相等;如果有部分动能转化为内能,系统的总动能减小,系统的总动能是不可能增加的.
(4)由于碰撞(或爆炸)作用时间极短,因此作用过程中物体的位移很小,一般可忽略不计,可以认为,碰撞(或爆炸)后还从碰撞(或爆炸)前瞬间的位置以新的动量开始运动.
2.解题障碍
规律近似应用法破解碰撞、爆炸类问题.
在碰撞、爆炸类问题中,尽管系统受到的外力之和不为零,系统总动量不守恒,但由于内力远大于外力,仍近似认为系统的动量守恒.
动量守恒定律应用知识点的全部内容就为大家分享到这里,
更多精彩内容请持续关注。
相关链接
高二物理交变电流期末必背知识点归纳
物理高二级期末考试法拉第电磁感应定律必背知识点总结。
高二物理动量守恒定律课件
演示
课本实验
两小车在运动过程中,相互排斥的磁力 属于内力,整个系统的外力即重力和支持力 的和为零,所以系统动量守恒。
系统所受的外力有:重力、地面对木块支持力、 竖直墙对弹簧的支持力,三者之和不为零,所以系统 动量不守恒。
动量守恒定律
1 、内容:一个系统不受外力或者所受 外力之和为零,这个系统的总动量保 持不变。 ’ P= P 2、公式:
课堂练习2:
在光滑水平面上有甲、乙两小球,它们的 质量分别为1kg和4kg,甲球以10m/s的速度向左 运动,乙球以5m/s的速度向右运动,两球发生 正碰后,乙球以1m/s的速度继续向右运动。求: (1)甲球碰撞后的速度 (2)甲、乙两球各自受到的冲量
小 结
Hale Waihona Puke 项目 内容公式 动量守恒定律
系统不受外力或所受外力的合力为 零,这个系统的动量就保持不变。
应用对象 动量守恒 条件 特点
系统
研究的系统不受外力或合外力为零,或满 足系统所受外力远小于系统内力。
动量是矢量,式中动量的确定一 般取地球为参照物。
课堂练习1:
在滑冰场上静止着一个质量为 M=50 Kg 的 大 运 动 员 和 质 量 为m=25Kg的一个小运动员,他们相 互推一下 后,他们各自速度为多少?
m2v2 m1v1 m2v2 m1v1
3、守恒条件为:
a) F合=0(严格条件) b) F内 远大于F外(近似条件) c) 某方向上外力之和为零,在 这个方向上成立
动量守恒定律
4、适用对象:
A: 正碰、斜碰和任何形式的相互作用 B:由两个或者多个物体组成的系统 C:高速运动或低速运动 D:宏观物体或微观物体
高二物理第八章动量守恒定律知识点
高二物理第八章动量守恒定律知识点动量守恒定律和能量守恒定律以及角动量守恒定律一起成为现代物理学中的三大差不多守恒定律。
以下是第八章动量守恒定律知识点,请大伙儿认真学习。
定律说明一个系统不受外力或所受外力之和为零,那个系统的总动量保持不变,那个结论叫做动量守恒定律。
1.动量守恒定律是自然界中最重要最普遍的守恒定律之一,是一个实验规律,也可用牛顿第三定律结合动量定理推导出来。
2.相互间有作用力的物体系称为系统,系统内的物体能够是两个、三个或者更多,解决实际问题时要依照需要和求解问题的方便程度,合理地选择系统。
[1]定律特点矢量性动量是矢量。
动量守恒定律的方程是一个矢量方程。
通常规定正方向后,能确定方向的物理量一律将方向表示为+或-,物理量中只代入大小:不能确定方向的物理量能够用字母表示,若运算结果为+,则说明其方向与规定的正方向相同,若运算结果为-,则说明其方向与规定的正方向相反。
瞬时性动量是一个瞬时量,动量守恒定律指的是系统任一瞬时的动量和恒定。
因此,列出的动量守恒定律表达式m1v1+m2v2+=m1v1ˊ+m2v2ˊ+,其中v1,v2差不多上作用前同一时刻的瞬时速度,v1ˊ,v2ˊ差不多上作用后同一时刻的瞬时速度。
只要系统满足动量守恒定律的条件,在相互作用过程的任何一个瞬时,系统的总动量都守恒。
在具体问题中,可依照任何两个瞬时系统内各物体的动量,列出动量守恒表达式。
相对性物体的动量与参考系的选择有关。
通常,取地面为参考系,因此,作用前后的速度都必须相关于地面。
普适性它不仅适用于两个物体组成的系统,也适用于多个物体组成的系统;不仅适用于宏观物体组成的系统,也适用于微观粒子组成的系统。
适用性适用范畴动量守恒定律是自然界最普遍、最差不多的规律之一。
不仅适用于宏观物体的低速运动,也适用与微观物体的高速运动。
小到微观粒子,大到宇宙天体,不管内力是什么性质的力,只要满足守恒条件,动量守恒定律总是适用的。
适用条件1.系统不受外力或者所受合外力为零;2.系统所受合外力尽管不为零,但系统的内力远大于外力时,如碰撞、爆炸等现象中,系统的动量可看成近似守恒;3.系统总的来看不符合以上条件的任意一条,则系统的总动量不守恒。
高二物理动量守恒知识点
高二物理动量守恒知识点动量守恒是物理学科的重要学问点,高二学生需要学会把握相关内容,下面是学习啦我给大家带来的高二物理动量守恒学问点,希望对你有关怀。
高二物理动量守恒学问点1、动量:可以从两个侧面对动量进行定义或解释:①物体的质量跟其速度的乘积,叫做物体的动量。
②动量是物体机械运动的一种量度。
动量的表达式P=mv。
单位是。
动量是矢量,其方向就是瞬时速度的方向。
因为速度是相对的,所以动量也是相对的。
2、动量守恒定律:当系统不受外力作用或所受合外力为零,则系统的总动量守恒。
动量守恒定律根据实际状况有多种表达式,一般常用等号左右分别表示系统作用前后的总动量。
运用动量守恒定律要留意以下几个问题:①动量守恒定律一般是针对物体系的,对单个物体谈动量守恒没有意义。
②对于某些特定的问题, 例如碰撞、爆炸等,系统在一个特殊短的时间内,系统内部各物体相互作用力,远比它们所受到外界作用力大,就可以把这些物体看作一个所受合外力为零的系统处理, 在这一短临时间内遵循动量守恒定律。
③计算动量时要涉及速度,这时一个物体系内各物体的速度必需是相对于同一惯性参照系的,一般取地面为参照物。
④动量是矢量,因此"系统总动量'是指系统中全部物体动量的矢量和,而不是代数和。
⑤动量守恒定律也可以应用于分动量守恒的状况。
有时虽然系统所受合外力不等于零,但只要在某一方面上的合外力重量为零,那么在这个方向上系统总动量的重量是守恒的。
⑥动量守恒定律有广泛的应用范围。
只要系统不受外力或所受的合外力为零,那么系统内部各物体的相互作用,不管是万有引力、弹力、摩擦力,还是电力、磁力,动量守恒定律都适用。
系统内部各物体相互作用时,不管具有相同或相反的运动方向;在相互作用时不管是否直接接触;在相互作用后不管是粘在一起,还是分裂成碎块,动量守恒定律也都适用。
3、动量与动能、动量守恒定律与机械能守恒定律的比较。
动量与动能的比较:①动量是矢量, 动能是标量。
高二物理动量定理PPT课件
-
4
⑷动量定理的表达式是矢量式。在一维的情况下,各个矢 量必须以同一个规定的方向为正。
3. 利用动量定理解题的步骤:
⑴明确研究对象和研究过程。研究对象可以是一个物体,也可 以是质点组。如果研究过程中的各个阶段物体的受力情况不同, 要分别计算它们的冲量,并求它们的矢量和。
⑵进行受力分析。研究对象以外的物体施给研究对象的力为外 力。所有外力之和为合外力。研究对象内部的相互作用力不影 响系统的总动量,不包括在内。
( F – f ) ×t – f ×2 t = 0
得 f=F/3
f
Ff
t
2t
-
8
例4. 如图表示物体所受作用力随时间变化的图象, 若物体初速度为零,质量为m,求物体在t2 时刻的 末速度? 解: 从图中可知,物体所受冲量为F - t图线下面 包围的“面积”,
设末速度为v′,根据动量定理 Σ F ·Δt=Δp ,有
⑶规定正方向。由于力、冲量、速度、动量都是矢量,所以列
式前要先规定一个正方向,和这个方向一致的矢量为正,反之
为负。
-
5
⑷写出研究对象的初、末动量和合外力的冲量(或各个外力 的冲量的矢量和)。
例1 以初速度v0平抛一个质量为m的物体,t 秒内 物体的动量变化是多少?
解:因为合外力就是重力,所以Δp = Ft = mgt
-
7
例3 水平面上一质量为m的物体,在水平恒力F
作用下,由静止开始做匀加速直线运动,经时间t 后
撤去外力,又经过时间2t 物体停下来,设物体所受
阻力为恒量,其大小为(
)
A.F B. F / 2 C. F / 3 D. F / 4
解:整个过程的受力如图所示,
高二物理动量定律知识点
高二物理动量定律知识点1. 动量的定义和计算方法动量是物体运动的特性,它是物体质量和速度的乘积。
动量的计算公式为:动量(p)= 质量(m) ×速度(v)。
单位是千克·米/秒(kg·m/s)。
2. 动量定律(牛顿第二定律的推广)动量定律指出,当一个外力作用于物体时,物体的动量将发生改变。
动量定律的数学表达式为:力(F) = 质量(m) ×加速度(a) = 质量(m) ×(速度变化率(Δv)/ 时间变化率(Δt))。
3. 动量守恒定律动量守恒定律指出,在一个系统内,当没有外力作用时,系统的总动量保持不变。
即物体间的相互作用引起的动量变化互相抵消,总动量守恒。
动量守恒定律一般适用于碰撞、爆炸等事件的分析。
4. 弹性碰撞和非弹性碰撞弹性碰撞指的是在碰撞过程中,物体之间相互作用力的峰值是瞬时的,碰撞后物体恢复到碰撞前的形状和动能状态。
非弹性碰撞则指在碰撞过程中存在能量损失,碰撞后物体可能会发生变形。
弹性碰撞和非弹性碰撞均遵循动量守恒定律。
5. 爆炸运动爆炸运动是一种自发的物体运动,物体在爆炸过程中释放出大量能量,使其产生推动力并改变运动状态。
在爆炸运动中,动量同样遵循守恒定律。
6. 力的冲量和动量定理冲量是力对时间的积分,它等于物体动量的变化量。
冲量的计算公式为:冲量(J)= 力(F) ×时间(Δt)。
动量定理指出,冲量等于物体动量的变化量,即冲量(J)= 动量的变化(Δp)。
7. 动量定律在实际生活中的应用动量定律在实际生活中有很广泛的应用。
例如,汽车碰撞事故中的安全设计会考虑到动量的变化,以使乘车人员获得更好的保护;火箭发射和船只运行中,动量定律用于设计推进系统;运动员的冲量和动量变化也决定着他们在比赛中的表现等等。
总结:高二物理动量定律是物理学中重要的基础知识之一。
通过学习动量的定义和计算方法,以及动量定律和动量守恒定律,我们可以更好地理解物体运动的规律。
第一章动量守恒定律+知识点清单 高二上学期物理人教版(2019)选择性必修第一册
新教材人教版高中物理选择性必修第一册第1章知识点清单目录第1章动量守恒定律1. 1 动量1. 2 动量定理1. 3 动量守恒定律1. 4 实验验证动量守恒定律1. 5 弹性碰撞和非弹性碰撞1. 6 反冲现象火箭第1章动量守恒定律1. 1 动量一、寻求碰撞中的不变量1. 一维碰撞:两个物体碰撞前沿同一直线运动,碰撞后仍沿同一直线运动,这种碰撞叫作一维碰撞。
2. 碰撞演示如图所示,A、B是用等长细线悬挂起来的等大小球,把小球A拉起来,使其悬线与竖直方向成一角度α,放开后A球运动到最低点时与B球发生碰撞,碰后B球的最大偏角为β。
(1)若m A=m B,碰后A球静止,B球偏角β=α,这说明A、B两球碰撞后交换了速度;(2)若m A>m B,碰后A、B两球都向右摆动;(3)若m A<m B,碰后A球反弹,B球向右摆动。
结论:以上现象说明A、B两球碰撞后,速度发生了变化,当A、B两球的质量关系不同时,速度变化的情况也不同。
3. 寻求碰撞中的不变量的几个关键点(1)在一维碰撞的情况下,与物体运动有关的量只有物体的质量和物体的速度,因此需测量物体的质量和速度。
(2)规定某一速度方向为正方向,如果速度方向与规定的正方向一致,取正值,相反则取负值。
,式中Δx为挡光片的宽度,Δt为遮光时间。
还可借助(3)光电门测速:利用公式v=ΔxΔt打点计时器、频闪照片或者利用平抛运动特点等测速。
(4)结论:物体碰撞前后质量与速度的乘积之和几乎是不变的。
二、动量1. 动量定义与定义式把质量和速度的乘积定义为物体的动量,其定义式为p=mv特点 瞬时性通常说物体的动量是物体在某一时刻或某一位置的动量,所以说动量具有瞬时性,是状态量 矢量性 动量具有方向,其方向与速度的方向相同相对性 因物体的速度与参考系的选取有关,故物体的动量也与参考系的选取有关2. 动量和动能的定量关系p=mv →v=p m E k =p 22m E k =12mv 2→v=√2E km p=√2mE k三、动量变化量的计算1. 动量的变化量是指在某段时间内物体末动量与初动量的矢量差,是矢量,其表达式Δp=p'-p 为矢量式,运算遵循平行四边形定则。
1.3动量守恒定律+教学设计2023-2024学年高二上学期物理人教版(2019)选择性必修第一册
课题 1.3 动量守恒定理课型新授课课时 2 主备人授课教师教材分析《动量守恒定律》是高中物理选择性必修一第1第三节的内容。
它是本章的重点,同时也是力学部分的重要内容。
动量守恒定律是自然界中最普遍最重要的基本规律之一。
它虽然可以由牛顿定律推导出来,但其适用范围要比牛顿定律广泛的多,不仅适用于宏观低速的物体,而且适用于微观高速运动的粒子,因此它在整个物理学中占有非常重要的地位。
学情分析学生在学习本节内容之前已经学习了动量和动量定理,有一定的知识储备,同时也具备一定的逻辑思维能力,能在熟悉的问题情境中应用常见的物理模型,但在新情境中则不行;学生已掌握科学探究的一般方法,但基于证据证明物理结论的能力有待提高。
教学目标与核心素养1.知道相互作用的两个物体的冲量及动量变化特点.2.理解系统、内力、外力的概念.3.知道动量守恒定律的内容及表达式,理解其守恒的条件.4.了解动量守恒定律的普遍意义,会用动量守恒定律解决实际问题.重点理解和基本掌握动量守恒定律。
难点对守恒条件的掌握。
教学内容及教师活动设计学生活动二次备课环节一:导入新课一、学习目标1.知道相互作用的两个物体的冲量及动量变化特点.2.理解系统、内力、外力的概念.3.知道动量守恒定律的内容及表达式,理解其守恒的条件.4.了解动量守恒定律的普遍意义,会用动量守恒定律解决实际问题.二、情景引入对于冰壶等物体的碰撞也是这样么?怎样证明这一结论?这是一个普遍的规律么?了解本节课学习目标引导学生研究生活中常见的两个物体的碰撞的情景,帮助学生建构物理模型。
动量定理给出了单个物体受力与动量变化量之间的关系接下来我们用动量定理分别研究两个相互作用的物体,看看是否会有新收获?一、相互作用的两个物体的动量改变二、动量守恒定律变化是绝对的,不变是相对的。
只有明确了引起变化的原因,才能进一步判断是否存在不变的可能性以及不变所需要的条件。
所以,在一个守恒的特殊模型基础上,为了不失一般性,赋予更加一般的条件,可以推得更加一般的结论(系统总动量变化的原因)。
高中物理必备知识点:动量守恒定律及其应用总结
高中物理必备知识点:动量守恒定律及其应用总结第二课时动量守恒定律及其应用第一关:基本关与高考前景基础知识一、动量守恒定律知识解释(1)内容:一个系统不受外力或者所受外力之和为零,这个系统的总动量保持不变.(2)数学表达式①p=p′.也就是说,系统相互作用前的总动量P等于相互作用后的总动量P',如果有两个相互作用的物体,通常写为:m1v1+m2v2=m1v1'+m2v2'② δp=p′-p=0。
即系统总动量的增量为零.③δp1=-δp2.也就是说,相互作用系统中的物体被分成两部分,其中一部分动量的增量等于另一部分动量的增量,且方向相反(3)动量守恒定律成立的条件内力不会改变系统的总动量,而外力可以改变系统的总动量。
在以下三种情况下,可以使用动量守恒定律:①系统不受外力或所受外力的矢量和为零.② 系统上的外力远小于系统的内力。
例如,在碰撞或爆炸的瞬间,外力可以忽略③系统某一方向不受外力或所受外力的矢量和为零,或外力远小于内力,则该方向动量守恒(分动量守恒).灵活的学习和应用1.如图所示,a、b两物体的质量ma>mb,中间用一段细绳相连并在一被压缩的弹簧,放在平板小车c上后,a、b、c均处于静止状态.若地面光滑,则在细绳被剪断后,a、b从c上未滑离之前,a、b在c上向相反方向滑动过程中()a、如果a、B和C之间的摩擦力相同,由a和B组成的系统的动量守恒,由a、B和C组成的系统的动量也守恒b.若a、b与c之间的摩擦力大小不相同,则a、b组成的系统动量不守恒,a、b、c组成的系统动量也不守恒c、如果a、B和c之间的摩擦力不同,由a和B组成的系统的动量不守恒,但由a、B和c组成的系统的动量守恒d.以上说法均不对分析:当两个物体a和B形成一个系统时,弹簧力是内力,a、B和C之间的摩擦力是外力。
当a、B和C之间的摩擦力相反时,由a和B组成的系统的合力为零,动量守恒;当a、B和C之间的摩擦力不相等时,由a和B组成的系统上的组合外力不为零,对于由a、B和C组成的系统,动量不守恒,因为弹簧的弹性力以及a和B和C之间的摩擦力都是内力,无论a和B之间的摩擦力,B和C是否相等,由a、B和C组成的系统的合力为零,动量守恒,因此选项a和C是正确的,选项B和D是错误的答案:ac注:(1)动量守恒的条件是系统不受外力或组合外力为零。
高二物理学习中的动量守恒定律说明
高二物理学习中的动量守恒定律说明动量守恒定律是物理学中的重要概念之一。
它指出,在一个系统内,所有相互作用的物体的总动量保持不变。
在高二物理学习中,动量守恒定律被广泛应用于解释各种物理现象和问题。
本文将通过几个实例来说明高二物理学习中动量守恒定律的应用。
1. 弹性碰撞的动量守恒在高二物理学习中,我们常常学习弹性碰撞的概念和计算方法。
当两个物体在碰撞过程中没有能量损失时,我们称之为弹性碰撞。
在弹性碰撞中,动量守恒定律成立。
即两个物体在碰撞前后的总动量保持不变。
举个例子,假设有两个相同质量的小球,一个小球以一定的速度向另一个小球靠近。
当两个小球碰撞后,它们会分开并且在碰撞前后总动量保持不变。
根据动量守恒定律,我们可以通过计算碰撞前后小球的质量和速度,来解决碰撞中涉及的问题。
2. 力的计算与动量守恒在高二物理学习中,我们学习了动量与力的关系。
动量守恒定律也可以应用于计算力的大小。
设想一个问题,一个小车以一定的速度与一个墙壁发生碰撞,小车碰撞后反弹回来并停止。
根据动量守恒定律,小车在碰撞前后的总动量保持不变,即小车对墙壁的冲击力与小车碰撞前后的速度有关。
通过测量小车碰撞前后的速度变化,我们可以计算出墙壁对小车施加的力的大小。
3. 动量守恒与车辆碰撞在日常生活中,车辆碰撞事故是一种常见的事件。
高二物理学习中,我们可以运用动量守恒定律来分析车辆碰撞的影响。
举个例子,假设有两辆车以不同的速度相向而行发生碰撞。
根据动量守恒定律,碰撞前后两车的总动量保持不变。
通过运用动量守恒定律,我们可以计算出碰撞后的车速,预测碰撞的影响和后果,并提供相应的应对策略。
4. 动量守恒与火箭推进原理在航天和航空工程领域,动量守恒定律也有重要应用。
火箭推进原理正是基于动量守恒定律的。
火箭的喷射流速度和喷射质量的乘积等于火箭获得的动量。
根据动量守恒定律,火箭喷射出去的燃料和气体的动量之和等于火箭本身获得的动量。
通过喷射燃料和气体来增加火箭的动量,从而推进火箭飞行。
高二物理动量守恒定律
碰撞,半空顿时出现一道天青色的闪光,地面变成了水红色、景物变成了天青色、天空变成了深黑色、四周发出了欢快的巨响……月光妹妹雪国仙境一样的玉牙受到震颤,但 精神感觉很爽!再看女武师J.特哈依琦妖女瘦长的嫩黄色细小瓜秧造型的胡须,此时正惨碎成草籽样的淡灰色飞丝,快速射向远方,女武师J.特哈依琦妖女惊嘶着全速地
后停止,从事帮现场测出,两 车相撞前,货车的行驶速度为
54km/h,撞后肉车的共同速度为18km/h。该段公路对轿车的 限速度 为100km/h,试判断轿车是否超速度 行驶
三、反冲运动与火箭
1、演示实验 (1)、气球的反冲运动 (2)、高压水枪产生反冲作用
2、火箭视频播放
3、迷你实验室 制作小火箭
A、B分别以速度 v1'和v2' 沿着原方向运动。
v1 v2
v1' v2'
A
B
F1 A B F2
A
B
对于A球: F1t m1v1' m1v1 对于B球: F2t m2v2' m2v2
由牛顿第三定律得:F1=-F2
所以有: m1v1 m2v2 m1v1' m2v2'
例题:质量为1000kg的轿车与质量为4000kg的货车迎面相撞 碰撞后两 车绞在一起,并沿货车行驶方向 运动一段路程
跳出界外,急速将瘦长的嫩黄色细小瓜秧造型的胡;酒水发布网 https:/// 酒水发布网;须复原,但已无力再战,只好落荒而逃。地狱老妖和天堂女巫的幽灵终于 被壮妞公主装进法瓶抛回地球,月光妹妹也把最后一个校精耍弄的的不见了踪影,战场上留下了满地的奇物法器和钱财珠宝……月光妹妹正要收拾遍地的宝贝,忽然听四声怪 响!四个怪物忽然从四个不同的方向钻了出来……只见女科长O.雯娃姑婆和另外四个校精怪突然齐声怪叫着组成了一个巨大的画笔锤爪神!这个巨大的画笔锤爪神,身长三 百多米,体重五十多万吨。最奇的是这个怪物长着十分时尚的锤爪!这巨神有着淡灰色螃蟹造型的身躯和墨灰色细小谷穗一样的皮毛,头上是暗黑色镜子形态的鬃毛,长着深 黄色烟囱造型的黑豹疾宁额头,前半身是纯灰色竹竿造型的怪鳞,后半身是时尚的羽毛。这巨神长着水红色烟囱一般的脑袋和金橙色古树造型的脖子,有着鲜红色蛋糕模样的 脸和纯红色扫帚一般的眉毛,配着暗橙色锅铲形态的鼻子。有着浓黑色奖章模样的眼睛,和亮黄色布帘造型的耳朵,一张浓黑色棕绳造型的嘴唇,怪叫时露出浅橙色花灯一般 的牙齿,变态的纯灰色肉串一样的舌头很是恐怖,墨灰色菱角一样的下巴非常离奇。这巨神有着活似钉子一般的肩胛和美如柴刀形态的翅膀,这巨神古怪的浅灰色水母一样的 胸脯闪着冷光,酷似秤砣形态的屁股更让人猜想。这巨神有着如同樱桃造型的腿和橙白色草根一般的爪子……短粗的暗黑色土堆一样的五条尾巴极为怪异,鹅黄色鸭蛋一般的 狼牙棉麻肚子有种野蛮的霸气。浅灰色廊柱形态的脚趾甲更为绝奇。这个巨神喘息时有种暗橙色台灯一样的气味,乱叫时会发出淡红色蘑菇模样的声音。这个巨神头上墨蓝色 海蜇形态的犄角真的十分罕见,脖子上极似蜘蛛形态的铃铛浮动的脑袋确实非常神气和飘然。月光妹妹笑道:“就这点本事也想混过去!我让你们见识一下什么是雪峰!什么 是女孩!什么是雪峰女孩!”月光妹妹一边说着一边和壮扭公主组成了一个巨大的柴刀木鳞魔!这个巨大的柴刀木鳞魔,身长三百多米,体重五十多万吨。最奇的是这个怪物 长着十分明丽的木鳞!这巨魔有着土黄色磨盘模样的身躯和纯黄色细小扫帚般的皮毛,头上是米黄色娃娃一样的鬃毛,长着青远山色红薯模样的
高中物理动量守恒定律知识点总结
高中物理动量守恒定律知识点(一)一、动量守恒定律1、动量守恒定律的条件:系统所受的总冲量为零(不受力、所受外力的矢量和为零或外力的作用远小于系统内物体间的相互作用力),即系统所受外力的矢量和为零。
(碰撞、爆炸、反冲)注意:内力的冲量对系统动量是否守恒没有影响,但可改变系统内物体的动量。
内力的冲量是系统内物体间动量传递的原因,而外力的冲量是改变系统总动量的原因。
2、动量守恒定律的表达式m1v1+m2v2=m1v1/+m2v2/(规定正方向)△p1=—△p2/3、某一方向动量守恒的条件:系统所受外力矢量和不为零,但在某一方向上的力为零,则系统在这个方向上的动量守恒。
必须注意区别总动量守恒与某一方向动量守恒。
二、碰撞1、完全非弹性碰撞:获得共同速度,动能损失最多动量守恒。
2、弹性碰撞:动量守恒,碰撞前后动能相等。
特例1:A、B两物体发生弹性碰撞,设碰前A初速度为v0,B静止,则碰后速度,vB=.特例2:对于一维弹性碰撞,若两个物体质量相等,则碰撞后两个物体互换速度(即碰后A的速度等于碰前B的速度,碰后B的速度等于碰前A的速度)3、一般碰撞:有完整的压缩阶段,只有部分恢复阶段,动量守恒,动能减小。
4、人船模型——两个原来静止的物体(人和船)发生相互作用时,不受其它外力,对这两个物体组成的系统来说,动量守恒,且任一时刻的总动量均为零,由动量守恒定律,有mv=MV(注意:几何关系)高中物理动量守恒定律知识点(二)冲量与动量(物体的受力与动量的变化)1.动量:p=mv {p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同}3.冲量:I=Ft {I:冲量(N?s),F:恒力(N),t:力的作用时间(s),方向由F决定}4.动量定理:I=Δp或Ft=mvt–mvo {Δp:动量变化Δp=mvt–mvo,是矢量式}5.动量守恒定律:p前总=p后总或p=p’′也可以是m1v1+m2v2=m1v1′+m2v2′6.弹性碰撞:Δp=0;ΔEk=0 {即系统的动量和动能均守恒}7.非弹性碰撞Δp=0;0<ΔEK<ΔEKm {ΔEK:损失的动能,EKm:损失的最大动能}8.完全非弹性碰撞Δp=0;ΔEK=ΔEKm {碰后连在一起成一整体}9.物体m1以v1初速度与静止的物体m2发生弹性正碰:v1′=(m1-m2)v1/(m1+m2) v2′=2m1v1/(m1+m2)10.由9得的推论-----等质量弹性正碰时二者交换速度(动能守恒、动量守恒)11.子弹m水平速度vo射入静止置于水平光滑地面的长木块M,并嵌入其中一起运动时的机械能损失E损=mvo2/2-(M+m)vt2/2=fs相对 {vt:共同速度,f:阻力,s相对子弹相对长木块的位移}高中物理学习方法要重视实验物理学是一门以实验为基础的科学,许多物理概念、物理规律都是从自然现象的实验中总结出来的。
【高中物理】动量守恒定律+课件+高二上学期物理人教版(2019)选择性必修第一册
解:以v方向为正方向
mv = m1v1 + (m - m1 )v2
m1
m2
解出
v2
=
mv m1v1 m m1
v1为负值,分母为正值,则 v2为正值,即剩余部分沿原方向运动
总结提升
用动量守恒定律解题的步骤
速滑接力比赛
斯诺克比赛
正负电子对撞实验
宇宙大爆炸
冰壶比赛
第 11 页
生活场景 的应用
原子核裂变反应
如图,一个木箱原来静止在光滑水平面上,木 箱内粗糙的底板上放着一个小木块。木箱和小 木块都具有一定的质量。现使木箱获得一个向 右的初速度v0,则( )
A.小木块和木箱最终都将静止 B.小木块最终将相对木箱静止,二者一起向右运动 C.小木块在木箱内壁将始终来回往复碰撞,而木箱一直向右运动 D.如果小木块与木箱的左壁碰撞后相对木箱静止,则二者将一起 向左运动
第一章 动量守恒定律
1.3 动量守恒定律
一、动量守恒定律——理论推导:动量定理
m2
m1
m2 m1
m2
m1
F2
A
B
F1
A
B
F2Δt m2v2 m2v
F1Δt m1v1 m1v
F1 F2
m1v1 - m1v1 - (m2v2 - m2v2 )
m1v1 + m2v2 m1v1 + m2v2
(多选)如图,光滑的水平面上有一质量为M=4kg的长木板,长木板 的左端放置一质量m=1 kg的小物块,木板与物块间的动摩擦因数 μ=0.2,现使木板与物块以相等的速率 v₀= 1m/s 分别向左、向右运 动,两者相对静止时物块恰好滑到木板的右端,g 取10m/s².则下
高二物理(人教版)精品讲义—动量守恒定律
高二物理(人教版)精品讲义—动量守恒定律课程标准课标解读1.通过动量定理和牛顿第三定律推导出动量守恒定律,以此明确内在联系,加深对动量守恒定律的理解。
2.通过实际应用,掌握应用动量守恒定律解决实际问题的方法。
3.通过阅读材料,了解动量守恒定律的普遍适用性和牛顿运动定律适用范围的局限性。
1.理解系统、内力、外力的概念2.知道动量守恒定律的内容及表达式,理解其守恒的条件.3.会用动量守恒定律解决实际问题.知识点01系统、内力与外力1.系统:相互作用的两个或多个物体组成一个力学系统.2.内力:系统中,物体间的相互作用力.3.外力:系统外部物体对系统内物体的作用力.知识点02动量守恒定律1.内容:如果一个系统不受外力,或者所受外力的矢量和为零,这个系统的总动量保持不变.2.表达式:对两个物体组成的系统,常写成:p1+p2=p1′+p2′或m1v1+m2v2=m1v1′+m2v2′.3.成立条件(1)系统不受外力作用.(2)系统受外力作用,但合外力为零.4.动量守恒定律的普适性动量守恒定律是一个独立的实验规律,它适用于目前为止物理学研究的一切领域.【即学即练1】下列情况中系统动量守恒的是()①小车停在光滑水平面上,人在车上走动时,对人与车组成的系统②子弹水平射入放在光滑水平面上的木块中,对子弹与木块组成的系统③子弹射入紧靠墙角的木块中,对子弹与木块组成的系统④气球下用轻绳吊一重物一起加速上升时,绳子突然断开后的一小段时间内,对气球与重物组成的系统A.只有①B.①和②C.①和③D.①和③④【答案】B【解析】①小车停在光滑水平面上,人在车上走动时,对人与车组成的系统,系统受到的合外力为零,系统动量守恒;②子弹水平射入放在光滑水平面上的木块中,对子弹与木块组成的系统,系统所受到的合外力为零,系统动量守恒;③子弹射入紧靠墙角的木块中,子弹与木块组成的系统受墙的作用力,系统所受到的合外力不为零,系统动量不守恒;④气球下用轻绳吊一重物一起加速上升时,绳子突然断开后的一小段时间内,对气球与重物组成的系统,所受到的合外力不为零,系统动量不守恒.综上可知,B正确,A、C、D错误.【即学即练2】(多选)如图所示,在光滑水平地面上有A、B两个木块,A、B之间用一轻弹簧连接.A靠在墙壁上,用力F向左推B使两木块之间的弹簧压缩并处于静止状态.若突然撤去力F,则下列说法中正确的是()A.木块A离开墙壁前,A、B和弹簧组成的系统动量守恒,机械能也守恒B.木块A离开墙壁前,A、B和弹簧组成的系统动量不守恒,但机械能守恒C.木块A离开墙壁后,A、B和弹簧组成的系统动量守恒,机械能也守恒D.木块A离开墙壁后,A、B和弹簧组成的系统动量不守恒,但机械能守恒【答案】BC【解析】若突然撤去力F,木块A离开墙壁前,墙壁对木块A有作用力,所以A、B和弹簧组成的系统动量不守恒,但由于A没有离开墙壁,墙壁对木块A不做功,所以A、B和弹簧组成的系统机械能守恒,选项A错误,选项B正确;木块A离开墙壁后,A、B和弹簧组成的系统所受合外力为零,所以系统动量守恒且机械能守恒,选项C正确,选项D错误.【即学即练3】如图所示,大气球质量为100kg,载有质量为50kg的人,静止在空气中距地面20m高的地方,气球下方悬一根质量可忽略不计的绳子,此人想从气球上沿绳慢慢下滑至地面,为了安全到达地面,则这绳长至少应为(可以把人看做质点)()A.10mB.30mC.40mD.60m【答案】B【解析】人与气球组成的系统动量守恒,设人的速度为v1,气球的速度为v2,运动时间为t.以人与气球组成的系统为研究对象,以向下为正方向,由动量守恒得:m1v1-m2v2=0,则m1-m2=0,代入数据:50×-100×=0,得s气球=s人=×20m=10m,则绳子长度L=s气球+s人=10m+20m=30m,即绳子至少30m长,故选B.考法01对动量守恒定律的理解1.研究对象相互作用的物体组成的系统.2.动量守恒定律的成立条件(1)系统不受外力或所受合外力为零.(2)系统受外力作用,合外力也不为零,但合外力远远小于内力.此时动量近似守恒.(3)系统所受到的合外力不为零,但在某一方向上合外力为零,则系统在该方向上动量守恒.3.动量守恒定律的几个性质(1)矢量性.公式中的v1、v2、v1′和v2′都是矢量,只有它们在同一直线上,并先选定正方向,确定各速度的正、负(表示方向)后,才能用代数方法运算.(2)相对性.速度具有相对性,公式中的v1、v2、v1′和v2′应是相对同一参考系的速度,一般取相对地面的速度.(3)同时性.相互作用前的总动量,这个“前”是指相互作用前的某一时刻,v1、v2均是此时刻的瞬时速度;同理,v1′、v2′应是相互作用后的同一时刻的瞬时速度.【典例1】(多选)如图所示,在光滑水平面上有一辆小车,小车A端与滑块C间夹了一压缩轻质弹簧(未拴接在一起),用两手分别控制小车A端和滑块C处于静止状态,释放后C会离开弹簧向B端冲去,并跟B端油泥粘在一起,忽略一切摩擦,对A、B、C组成的系统,下面说法中正确的是()A.先放开右手,再放开左手后,系统动量不守恒B.先放开左手,再放开右手,A、B、C的总动量向左C.两手同时放开后,C与油泥粘在一起时,车立即停止运动D.无论先放哪只手,C与油泥粘在一起时,车都立即停止运动【答案】BC【解析】先放开右手,再放开左手后,系统在水平方向不受外力作用,系统的动量守恒,故A 错误.先放开左手,后放开右手,放开右手时,小车已经有向左的速度,系统的动量不为零,所以A、B、C的总动量向左,故B正确.两手同时放开后,系统的总动量为零,C与油泥粘在一起时,根据动量守恒可知车立即停止运动,故C正确.先放开左手,后放开右手,此后A、B、C的总动量向左,C与油泥粘在一起时,车向左运动;先放开右手,后放开左手,此后A、B、C的总动量向右,C与油泥粘在一起时,车向右运动,故D错误.考法02动量守恒定律简单的应用1.动量守恒定律不同表现形式的表达式的含义(1)p=p′:系统相互作用前总动量p等于相互作用后总动量p′.(2)Δp1=-Δp2:相互作用的两个物体组成的系统,一个物体的动量变化量与另一个物体的动量变化量大小相等、方向相反.(3)Δp=0:系统总动量增量为零.(4)m1v1+m2v2=m1v1′+m2v2′:相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和.2.应用动量守恒定律的解题步骤(1)确定相互作用的系统为研究对象;(2)分析研究对象所受的外力;(3)判断系统是否符合动量守恒条件;(4)规定正方向,确定初、末状态动量的正、负号;(5)根据动量守恒定律列式求解.【典例2】如图所示,光滑水平面上有甲、乙两辆车,甲车上面有发射装置,甲车连同发射装置质量M1=2kg,车上另有一个质量为m=1kg的小球,甲车静止在水平面上,乙车总质量M2=4kg,以v0=7m/s的速度向甲车运动,甲车为了不和乙车相撞,向乙车水平发射小球m (乙上有接收装置使小球最终停在乙车上),则甲车相对地面发射小球的最小水平速度是()A.6m/sB.9m/sC.12m/sD.8m/s【答案】D【解析】设甲车相对地面发射小球的最小水平速度大小为v.以乙车初速度的方向为正方向,小球与甲车组成的系统动量守恒,可得:M1v1-mv=0.小球与乙车组成的系统动量守恒,可得:M2v0-mv=(M2+m)v2,此时两车恰好不会相撞,满足:v1=v2,联立并代入数据解得:v=8m/s,故D正确,A、B、C错误题组A基础过关练一、单选题1.如图所示,一平板车停在光滑的水平面上,某同学站在小车上,若他设计下列操作方案,最终能使平板车持续地向右驶去的是()A.该同学在图示位置用大锤连续敲打车的左端B.只要从平板车的一端走到另一端即可C.在车上装个电风扇,不停地向左吹风D.他站在车的右端将大锤丢到车的左端【答案】C【解析】A.把人和车看成整体,用大锤连续敲打车的左端,根据动量守恒定律可以知道,系统的总动量为零,车不会持续地向右驶去,故A错误;B.人从平板车的一端走到另一端的过程中,系统水平方向不受外力,动量守恒,系统总动量为零,车不会持续地向右驶去,故B错误;C.电风扇向左吹风,电风扇会受到一个向右的反作用力,从而使平板车持续地向右驶去,故C正确;D.站在车的右端将大锤丢到车的左端的过程中,系统水平方向不受外力,动量守恒,系统总动量为零,车不会持续地向右驶去,故D错误。
高二物理动量守恒定律的应用PPT课件
例2、质量为50kg的小车静止在光滑水平面上,质 量为30kg 的小孩以4m/s的水平速度跳上小车的尾 部,他又继续跑到车头,以2m/s的水平速度(相对 于地)跳下,小孩跳下后,小车的速度多大?
解:动量守恒定律跟过程的细节无关 ,
对整个过程 ,以小孩的运动速度为正方向
由动量守恒定律 mv0 = (m+ M)V V= 5/3m/s
由能量守恒定律 1/2 mv0 2 = 1/2 (m+ M) V2 + μmg(L+s)
解得:s=16/9m>L=1m
能返回到A点
由动量守恒定律 mv0 = - mv2+ MV2= 5
由能量守恒定律 1/2 mv0 2 = 1/2 mv22+ 1/2 MV22 + 2μmgL 解得:V2=2.55m/s (向右) v2=0.1m/s (向左)
v1=a1t v2=v0-a2t
当v1=v2时 解得A、B两者距离最近时所用时间
t=0.25s s1=a1t2 s2=v0t-a2t2
△s=s1+d-s2
将t=0.25s代入,解得A、B间的最小距离
△smin=0.075m
m2 v0
m1 d
练习. 如图所示,一质量为M =0.98kg的木块静止在 光滑的水平轨道上,水平轨道右端连接有半径为 R=0.1m的竖直固定光滑圆弧形轨道。一颗质量为 m=20g的子弹以速度v0=200m/s的水平速度射入木块, 并嵌入其中。(g取10m/s2)求:
解:画出运动示意图如图示
由动量守恒定律(m+M)V=mv
V=1m/s
由能量守恒定律 μmg L = 1/2 ×mv2 - 1/2 ×(m+M)V2
高二物理第九章知识点总结
高二物理第九章知识点总结高二物理第九章主要涵盖了动量守恒定律、力学解题方法、碰撞、运动学中的力学解题应用等内容。
以下是对这些知识点的总结。
一、动量守恒定律动量守恒定律是物理学中的基本定律之一,它表明在一个封闭系统中,当外力为零时,系统内各个物体的动量之和保持不变。
动量守恒定律可以表示为:系统的总动量在时间上保持不变。
动量守恒定律常用于解决弹性碰撞和完全非弹性碰撞问题。
在弹性碰撞中,碰撞物体之间的动量守恒使得物体在碰撞前后的总动量相等。
而在完全非弹性碰撞中,碰撞后物体粘连在一起,动量守恒使得物体在碰撞前后的总动量保持不变。
二、力学解题方法在物理解题过程中,我们需要运用力学解题方法。
力学解题方法分为两个步骤:首先,通过整理题目中的已知条件和未知量,建立问题的数学模型;其次,利用物理定律、公式和方法进行数学计算,求解未知量。
当解决实际问题时,我们需要根据实际情况选择合适的力学解题方法。
例如,对于平抛运动问题,我们需要将运动过程分解为竖直方向和水平方向两个运动,分别使用运动学公式求解。
三、碰撞碰撞是物体之间直接接触或产生作用力的现象。
根据碰撞的性质和碰撞过程中动量守恒的情况,碰撞可以分为弹性碰撞和非弹性碰撞两种类型。
弹性碰撞是指碰撞物体在碰撞过程中动能守恒的碰撞。
弹性碰撞中,物体在碰撞前后的速度和动量都发生变化,但总动能保持不变。
非弹性碰撞是指碰撞物体在碰撞过程中动能不守恒的碰撞。
在非弹性碰撞过程中,物体粘连在一起,使得总动量保持不变。
四、运动学中的力学解题应用在运动学中,我们可以运用力学解题方法解决各种运动问题。
常见的运动学问题包括自由落体、斜抛运动、匀速直线运动等。
在解决这些问题时,我们需要根据题目提供的已知条件和未知量,利用运动学公式进行计算。
例如,对于自由落体问题,我们可以使用自由落体运动的加速度公式和位移公式来计算物体的下落时间和落地速度等。
总之,高二物理第九章的知识点主要包括动量守恒定律、力学解题方法、碰撞和运动学中的力学解题应用。
第一章 动量守恒定律 章末知识点梳理-高二上学期物理人教版(2019)选择性必修第一册
人教版(2019)物理选修第一册第一章 动量守恒定律 章末知识点梳理1.1动量学案一、碰撞中的不变量是质量与速度的乘积之和二、动量1、定义:物体的质量与速度的乘积,即p =mv 。
2、单位:动量的国际制单位是千克米每秒,符号是kg ·m/s 。
3、方向:动量是矢量,它的方向与速度的方向相同。
三、动量的变化量1、定义:物体在某段时间内末动量与初动量的矢量差(也是矢量),p p p ∆'=- (矢量式)。
2、动量始终保持在一条直线上时的矢量运算:选定一个正方向,动量、动量的变化量用带正、负号的数值表示,从而将矢量运算简化为代数运算(此时的正、负号仅表示方向,不表示大小)。
三.动量的性质(1)瞬时性:通常说物体的动量是物体在某一时刻或某一位置的动量,动量的大小可用p =mv 表示.(2)矢量性:动量的方向与物体的瞬时速度的方向相同.(3)相对性:因物体的速度与参考系的选取有关,故物体的动量也与参考系的选取有关.2.动量的变化量:是矢量,其表达式Δp =p 2-p 1为矢量式,运算遵循平行四边形定则,当p 2、p 1在同一条直线上时,可规定正方向,将矢量运算转化为代数运算.3.动量和动量变化量的比较4.动量和速度区别:速度描述物体运动的快慢和方向,动量在描述物体运动方面更进一步,更能体现运动物体的作用效果。
联系:动量和速度都是描述物体运动状态的物理量,都是矢量,动量的方向与速度的方向相同。
5.动量和动能的比较1.2 动量定理一.冲量二.动量定理(1)内容:物体在一个过程始末的动量变化量等于它在这个过程中所受力的冲量。
(2)表达式:()mv mv F t t ''-=-或p p I '-=。
三.冲量的性质(1)过程量:冲量描述的是力的作用对时间的积累效应,取决于力和时间这两个因素,所以求冲量时一定要明确所求的是哪一个力在哪一段时间内的冲量.(2)矢量性:冲量的方向与力的方向相同,与相应时间内物体动量变化量的方向相同.2.动量的变化量:是矢量,其表达式Δp =p 2-p 1为矢量式,运算遵循平行四边形定则,当p 2、p 1在同一条直线上时,可规定正方向,将矢量运算转化为代数运算.要点2 动量定理的理解(1)动量定理的表达式mv ′-mv =F ·Δt 是矢量式,等号包含了大小相等、方向相同两方面的含义.(2)动量定理反映了合外力的冲量是动量变化的原因.(3)公式中的F 是物体所受的合外力,若合外力是变力,则F 应是合外力在作用时间内的平均值. 动量定理的应用(1)定性分析有关现象:①物体的动量变化量一定时,力的作用时间越短,力就越大;力的作用时间越长,力就越小.①作用力一定时,力的作用时间越长,动量变化量越大;力的作用时间越短,动量变化量越小.(2)定量计算有关物理量动量定理p ′-p =I 中,动量变化Δp 与合力的冲量大小相等,方向相同,据此有:①应用I =Δp 求变力的冲量.①应用Δp =F Δt 求恒力作用下曲线运动中物体动量的变化.①应用动量定理可以计算某一过程中的平均作用力,通常多用于计算持续作用的变力的平均大小.1.3动量守恒定律学案一、动量守恒定律1.系统、内力和外力(1)系统:两个或两个以上的物体组成的研究对象称为一个力学系统,简称系统.(2)内力:系统中物体间的作用力称为内力.(3)外力:系统以外的物体施加给系统内物体的力称为外力.2.动量守恒定律内容 如果一个系统不受外力,或者所受外力的矢量和为零,这个系统的总动量保持不变.这就是动量守恒定律.二、动量守恒定律1、内容如果一个系统不受外力或者所受外力的矢量和为零,这个系统的总动量保持不变。
高中物理选修3-5动量守恒定律知识点总结
高中物理选修3-5动量守恒定律知识点总结动量守恒定律是物理课本选修3-5的内容,高中学生需要掌握重点知识点,下面小编给大家带来高中物理动量守恒定律知识点,希望对你有帮助。
高中物理动量守恒定律知识点 1. 动量守恒定律:研究的对象是两个或两个以上物体组成的系统,而满足动量守恒的物理过程常常是物体间相互作用的短暂时间内发生的。
2. 动量守恒定律的条件:(1)理想守恒:系统不受外力或所受外力合力为零(不管物体间是否相互作用),此时合外力冲量为零,故系统动量守恒。
当系统存在相互作用的内力时,由牛顿第三定律得知,相互作用的内力产生的冲量,大小相等,方向相反,使得系统内相互作用的物体动量改变量大小相等,方向相反,系统总动量保持不变。
即内力只能改变系统内各物体的动量,而不能改变整个系统的总动量。
(2)近似守恒:当外力为有限量,且作用时间极短,外力的冲量近似为零,或者说外力的冲量比内力冲量小得多,可以近似认为动量守恒。
(3)单方向守恒:如果系统所受外力的矢量和不为零,而外力在某方向上分力的和为零,则系统在该方向上动量守恒。
3. 动量守恒定律应用中需注意:(1)矢量性:表达式m1v1+m2v2=中守恒式两边不仅大小相等,且方向相同,等式两边的总动量是系统内所有物体动量的矢量和。
在一维情况下,先规定正方向,再确定各已知量的正负,代入公式求解。
(2)系统性:即动量守恒是某系统内各物体的总动量保持不变。
(3)同时性:等式两边分别对应两个确定状态,每一状态下各物体的动量是同时的。
(4)相对性:表达式中的动量必须相对同一参照物(通常取地球为参照物).4. 碰撞过程是指物体间发生相互作用的时间很短,相互作用过程中的相互作用力很大,所以通常可认为发生碰撞的物体系统动量守恒。
按碰撞前后物体的动量是否在一条直线上,有正碰和斜碰之分,中学物理只研究正碰的情况;碰撞问题按性质分为三类。
(1)弹性碰撞碰撞结束后,形变全部消失,碰撞前后系统的总动量相等,总动能不变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:16、3动量守恒定律(二)
学习目标:
(一)知识与技能
掌握运用动量守恒定律的一般步骤
(二)过程与方法
知道运用动量守恒定律解决问题应注意的问题,并知道运用动量守恒定律解决有关问题的优点。
(三)情感、态度与价值观
学会用动量守恒定律分析解决碰撞、爆炸等物体相互作用的问题,培养思维能力。
重点:运用动量守恒定律的一般步骤
难点:动量守恒定律的应用.
知识链接:
1、写出动量守恒定律的内容。
2、动量守恒定律的条件有哪些?
学法指导:
1、仔细看书把书本中的知识点掌握到位
2、做各种类型的习题,在做题中强化知识
学习过程:
1、阅读课本p10第二段,用牛顿定律自己推导出动量守恒定律的表达式,写出详细过程。
2、动量守恒定律的普适性
从现代物理学的理论高度来认识,动量守恒定律是物理学中最基本的普适原理之一。
(另一个最基本的普适原理就是能量守恒定律。
)从科学实践的角度来看,迄今为止,人们尚未发现动量守恒定律有任何例外。
相反,每当在实验中观察到似乎是违反动量守恒定律的现象时,物理学家们就会提出新的假设来补救,最后总是以有新的发现而胜利告终。
例如静止的原子核发生β衰变放出电子时,按动量守恒,反冲核应该沿电子的反方向运动。
但云室照片显示,两者径迹不在一条直线上。
为解释这一反常现象,1930年泡利提出了中微子假说。
由于中微子既不带电又几乎无质量,在实验中极难测量,直到1956年人们才首次证明了中微子的存在。
(2000年高考综合题23 ②就是根据这一历史事实设计的)。
又如人们发现,两个运动着的带电粒子在电磁相互作用下动量似乎也是不守恒的。
这时物理学家把动量的概念推广到了电磁场,把电磁场的动量也考虑进去,总动量就又守恒了。
3、例1、见教材11页。
分析题意,分析物理情景,规范答题过程,详细过程见教材
(总结动量守恒定律解决问题的思路)
4、例2:质量为M的小船以速度v0行驶,船上有两个质量皆为m的小孩a和b,分别静止站在船头和船尾.现在小孩a沿水平方向以速率v(相对于静止水面)向前跃入水中,然后小孩b沿水平方向以同一速率v(相对于静止水面)向后跃入水中.求小孩b跃出后小船的速度.
5、例3、如图所示,甲车的质量是2 kg,静止在光滑水平面上,上表面光滑,右端放一个质量为1 kg的小物体.乙车质量为4 kg,以5 m/s的速度向左运动,与甲车碰撞以后甲车获得8 m/s的速度,物体滑到乙车上.若乙车足够长,上表面与物体的动摩擦因数为0.2,则物体在乙车上表面滑行多长时间相对乙车静止?(g取10 m/s2)
6、例4、在静止的湖面上有一质量M=100kg的小船,船上站立质量m=50kg的人,船长L=6m,最初人和船静止.当人从船头走到船尾(如图),船后退多大距离?(忽略水的阻力)
7、动量守恒定律的注意点:
⑴矢量性:动量守恒定律的数学表达式是个矢量关系式.对于我们常见作用前后物体的运动方向都在同一直线上的问题,可选取一个正方向,凡与正方向相同的矢量均取正值,反之为负,这样即可将矢量运算简化为代数运算.
⑵同时性:动量守恒指系统在任一瞬间的动量恒定。
等号左边是作用前系统内各物体动量在同一时刻的矢量和,等号右边是作用后系统内各物体动量在另一同时刻的矢量和.不是同一时刻的动量不能相加.
⑶相对性:表达式中各物体的速度(动量)必须是相对于同一惯性参考系而言的,一般均以地面为参考系.若题设条件中各速度不是同一参考系的速度,就必须经过适当转换,使其成为同一参考系的速度值.
⑷系统性:解题时,选择的对象是满足条件的系统,不是其中一个物体,初、末两个状态研究对象必须一致。
⑸广泛性:动量守恒定律具有广泛的适用范围,不论物体间的相互作用力性质如何;不论系统内部物体的个数;不论它们是否互相接触;不论相互作用后物体间是粘合还是分裂,只要系统所受合外力为零,动量守恒定律都适用。
动量守恒定律既适用于低速运动的宏观物体,也适用于高速运动的微观粒子间的相互作用,大到天体,小到基本粒子间的相互作用都遵守动量守恒定律。
8、课堂小结:
达标训练:
(C )1、如图所示,位于光滑水平桌面上的小滑块A 和B 都可视作质点,质量相等。
B 与轻质弹簧相连。
设B 静止,A 以某一初速度向B 运动并与弹簧发生碰撞。
在整个碰撞过程中,弹簧具有的最大弹性势能等于( )
A. A 的初动能
B. A 的初动能的1/2
C. A 的初动能的1/3
D. A 的初动能的1/4
(B )2、 A 、B 两球在光滑水平面上相向运动,两球相碰后有一球停止运动,则下述说法中正确的是 ( )
A .若碰后,A 球速度为0,则碰前A 的动量一定大于
B 的动量
B .若碰后,A 球速度为0,则碰前A 的动量一定小于B 的动量
C .若碰后,B 球速度为0,则碰前A 的动量一定大于B 的动量
D .若碰后,B 球速度为0,则碰前A 的动量一定小于B 的动量
(B )3、一辆小车在光滑的水平上匀速行使,在下列各种情况中,小车速度仍保持不变的是( )
A .从车的上空竖直掉落车内一个小钢球
B .从车厢底部的缝隙里不断地漏出砂子
C .从车上同时向前和向后以相同的对地速率扔出质量相等的两物体
D. 从车上同时向前和向后以相同的对车速率扔出质量相等的两物体
(B )4、 下列关于动量守恒的论述正确的是 ( )
A .某物体沿着斜面下滑,物体的动量守恒
B .系统在某方向上所受的合外力为零,则系统在该方向上动量守恒
C .如果系统内部有相互作用的摩擦力,系统的机械能必然减少,系统的动量也不再守恒
D .系统虽然受到几个较大的外力,但合外力为零,系统的动量仍然守恒
(B )5、如图所示,A 、B 两物体的质量比m A ∶m B =3∶2,它们原来静止在平板车C 上,A 、B 间有一根被压缩了的弹簧,A 、B 与平板车上表面间动摩擦因数相同,地面光滑.当弹簧突然释放后,则有
A .A 、
B 系统动量守恒 B .A 、B 、
C 系统动量守恒
C .小车向左运动
D.小车向右运动
(B)6、 A、B两球在光滑水平面上沿同一直线、同一方向运动,A球的动量是5kg﹒m/s,B 球的动量是7kg﹒m/s,当A球追上B球时发生碰撞,则碰撞后A、B两球的动量可能值是() A.6kg﹒m/s、6kg﹒m/s B.4kg﹒m/s、8kg﹒m/s
C.-2kg﹒m/s、14kg﹒m/s D.-3kg﹒m/s、15kg﹒m/s
学后反思:。