信号与线性系统复习资料(绝对给力)
《信号与系统》综合复习资料
《信号与系统》综合复习资料《信号与系统》综合复习资料一、简答题1、dtt df t f t f x e t y t )()()()0()(+⋅=-其中x(0)是初始状态,为全响应,为激励,)()(t y t f 试回答该系统是否是线性的?2、已知描述LTI 连续系统的框图如图所示,请写出描述系统的微分方程。
∑∑∫∫---+)(t f )(t y 1223+3、若信号)(t f 的最高频率为20KHz ,则信号)3()2()(2t f t f t f+=的最高频率为___________KHz ;若对信号)(2t f 进行抽样,则奈奎斯特频率sf 为 ____________KHz 。
4、设系统的激励为()f t ,系统的零状态响应)(t yzs与激励之间的关系为:)()(t f t y zs-=,判断该系统是否是时不变的,并说明理由。
5、已知信号()⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=8sin 4cos 2ππk k k f ,判断该信号是否为周期信号,如果是,请求其周期,并说明理由。
6、已知()1k+1 , 0,1,20 , k f k else ==⎧⎨⎩,()21 , 0,1,2,30 , k f k else==⎧⎨⎩设()()()12f k f k fk =*,求()f k 。
7、设系统的激励为()f t ,系统的零状态响应)(t yzs与激励之间的关系为:)1(*)()(-=k f k f k y zs,判断该系统是否是线性的,并说明理由。
8、已知描述LTI 离散系统的框图如图所示,请写出描述系统的差分方程。
∑∑DD---+)(k f )(k y 1223+9、已知()f t 的频谱函数1,2/()0,2/rad sF j rad sωωω⎧≤⎪=⎨>⎪⎩,对(2)f t 进行均匀抽样的奈奎斯特抽样间隔NT 为:_______________s 。
10、若信号()f t 的最高频率为20KHz ,则信号(2)f t 的最高频率为___________KHz ;若对信号(2)f t 进行抽样,则奈奎斯特频率sf 为 ____________KHz 。
《信号与线性系统》总复习(2024级)
信号与线性系统总复习信号分析一、 信号的时域分析1、 常见信号①单位冲激函数:)(t δ定义:抽样性:②单位阶跃函数:)(t ε定义:阶跃与冲激的关系:③斜变函数:)()(t t t R ε=斜变与阶跃的关系:④指数函数:)(t e t εα-⑤门函数:)(t G τ⑥余弦函数:t 0cos ω ⑦正弦函数:t 0sin ω⑧冲激序列:∑∞-∞=-=n T nT t t )()(δδ)(t f )(k f ⎩⎨⎧=01)(t ε00<>t t ⎪⎩⎪⎨⎧==⎰∞∞-0)(1)(t dt t δδ0≠t ⎪⎩⎪⎨⎧==⎰∞-t d t dt t d t ττδεεδ)()()()()()0()()(t f t t f δδ⋅=⋅)0()()0()0()()()(f dt t f dt f t dt t f t ==⋅=⋅⎰⎰⎰∞∞-∞∞-∞∞-δδδ⎪⎩⎪⎨⎧==⎰∞-t d t R dt t dR t ττεε)()()()(2、 信号的运算:3、 信号的变换: 移位:反折:展缩:倍乘:4、 卷积:性质:延时特性:)()()(212211t t t f t t f t t f --=-*-微积分特性:二、 信号的频域分析(傅立叶变换分析法)1、 定义:2、 性质:设)()(11ωj F t f ↔;)()(22ωj F t f ↔;)()(ωj F t f ↔①线性:)()()()(22112211ωωj F a j F a t f a t f a +↔+ ②对称性:)(2)(ωπf jt F ↔ ③延时:0)()(0t j e j F t t f ωω±↔± ④移频:)()(00ωωωj j F e t f t j ↔±⑤尺度变换:)(1)(a j F a at f ω↔;)(1)(aj F e a b at f a bj ωω-↔-⑥奇偶特性:若)(t f 为实偶函数,则)(ωj F 也为实偶函数; 若)(t f 为实偶函数,则)(ωj F 也为实偶函数;⑦时域微分:)()()(ωωj F j dtt df ↔;)()()(ωωj F j dt t f d n nn ↔ )(0t t f ±)(t f -)(at f )(t af ∑∞-∞=-=*i i k fi f k f k f )()()()(2121⎰∞∞--=*τττd t f f t f t f )()()()(2121⎰∞∞--=dt e t f j F tj ωω)()(⎰∞∞-=ωωπωd e j F t f t j )(21)()()(21t f t f ±)()(21t f t f •⎰∞-*=td f dtt df ττ)()(21)(])([21t f d f t *=⎰∞-ττ)()(21t f t f *⑧时域积分:)(1)()0()(ωωωδπττj F j F d f t+↔⎰∞- ⑨频域微分:ωωd j dF t f jt )()()(↔-;n n nd j F d t f jt ωω)()()(↔-⑩频域积分:⎰∞-↔-ωΩΩδπd F t f jtt f )()(1)()0(⑾卷积定理:)()()()(2121ωωj F j F t f t f ↔*)()(21)()(2121ωωπj F j F t f t f *↔⋅3、 常见信号的傅立叶变换 1)(↔t δωωπδεj t 1)()(+↔ )]()([cos 000ωωδωωδπω++-↔t )]()([sin 000ωωδωωδπω--+↔j tωαεαj t e t +↔-1)(22sin )2()(τωτωττωττ=↔Sa t Gωj t 2)sgn(↔2222sin )2(01)(⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡↔⎪⎩⎪⎨⎧><-=τωτωττωττττSa t t t t f Tn nT t t n n T πΩΩωδΩωδΩδδΩ2)()()()(=-=↔-=∑∑∞-∞=∞-∞= 4、 周期信号的频谱①性质:离散性,谐波性,收敛性②级数绽开:③频谱:n A •与)(Ωωn =之间的关系图称频谱图; n A 与)(Ωωn =之间的关系图称为振幅频谱图; n ϕ与)(Ωωn =之间的关系图称为相位频谱图;时域 频域周期 离散 离散 周期 时域有限 频域无限 时域无限 频域有限5、 帕色伐尔定理[]⎰⎰∞∞-∞∞-=ωωπd j F dt t f 22)(21)(6、 抽样定理①频带有限信号②满意关系:m s f f 2≥∑∞=++=1)sin cos (2n n n t n b t n a a ΩΩ)(t f ∑∞=-+=10)cos(2n n n t n A a ΦΩ∑∞-∞=•=n tjn n e A Ω21∑∞-∞==n tjn nec Ω⎰+=Tt t n tdt n t f T b 11sin )(2Ωtdt n t f Ta Tt t n Ωcos )(211⎰+=⎰+-•=Tt t tjn n dtet f TA 11)(2Ω⎰+-=Tt t t jn n dte tf Tc 11)(1Ωnj n n e A A φ-•=nn A c •=2122nn n b a A +=nn n a b arctg=φ三、 信号的复频域分析(拉普拉斯变换分析法)1、 定义:2、 性质:①线性: )()()()(22112211s F a s F a t f a t f a +↔+ ②时移:0)()()(00st e s F t t t t f -↔--ε ③频移:)()(00s s F e t f t s -↔ ④尺度变换:)(1)(as F a at f ↔⑤时域微分:)0()0()0()()()1(21--------'--↔n n n n nn f f s f s s F s dtt f d ⑥时域积分:)(1)(s F sd f t↔⎰∞-ττ ⑦复频域微积分: ds s dF t tf )()(-↔;⎰∞↔s ds s F t f t )()(1⑧初、终值定理:)(lim )0(s sF f s ∞→+=;()(s F 为真分式))(lim )(0s sF f s →=∞⑨卷积定理:)()()()(2121s F s F t f t f ↔* )()(21)()(2121s F s F jt f t f *↔⋅π 3、 常见信号的拉氏变换、收敛区 1)(↔t δ,st 1)(↔ε ,as t e t -↔1)(εα, 1!+↔n n s n t , 22sin ωωω+↔s t ,⎰∞-=0)()(dte tf s F st ⎰∞+∞-=j j stds e s F jt f σσπ)(21)(22cos ωω+↔s st4、 反变换a.部分分式绽开法nn s s k s s ks s k s F -++-+-=2211)( )()()(2121t e k e k e k t f t s n t s t s n ε+++=b.留数法∑==ni i s t f 1Re )(①单根i s 处的留数 Re [()()]i st i i s s s F s e s s ==-②p 重根i s 处的留数 111Re [()()](1)!i p st p i i s s p d s F s e s s p s-=-=-- 四、(离散)信号的Z 域分析1、 定义:∑∞-∞=-=K kzK F Z F )()(2、性质:① 线性线性:)()()()(22112211z F a z F a k f a k f a +↔+ ② 移序:单边z 变换∑-=--↔+1)()()(n k knnzk f zz F z n k f)()()(z F z n k n k f n -↔--ε双边z 变换)()(z F z n k f n ↔+ )()(z F z n k f n -↔-③ 尺度变换:)()(a zF k f a k ↔④ z 域微分特性:)()(z F dzdzk kf -↔⑤ 卷积定理:)()()()(2121z F z F k f k f ↔*)()(21)()(2121s F s F jt f t f *↔⋅π ⑥ 初、终值定理:)(lim )0(z F f z ∞→=)()1(lim )(1z F z f z -=∞→3、 常见序列的Z 变换 1)(↔k δ, 1)(-↔z zk ε , γγ-↔z zk , 2)1(-↔z zk4、 反Z 变换a. 长除法b. 部分分式法nn z B z B z B z B z z F γγγ-++-+-+= 22110)( nn z z B z zB z z B B z F γγγ-++-+-+= 22110)( )()()()(22110k B B B k B k f kn n k k εγγγδ++++=c. 留数法1()Re ni i f k s ==∑①单根i z 处的留数 1Re [()()]i k i i z z s F z z z z -==-②p 重根i z 处的留数 1111Re [()()](1)!i p k p i i z z p d s F z z z z p z--=-=--系统分析卷积+三大变换(时域、频域、复频域、Z 域)一、 系统的时域分析1、 描述:a. 连续系统--微分方程b. 离散系统—差分方程)()()()()()()()(0111101111t e b dt t de b dtt e d b dt t e d b t r a dt t dr a dt t r d a dt t r d m m m m m m n n n n n +++=++++------ )t )k e )()1()()()1()1()(01011k e b k e b m k e b k y a k y a n k y a n k y m n +++++=++++-+++-3、全响应的求解连续:离散:a. 零输入响应 )(t r zi 、)(k y zi 特征方程:特征根:零输入响应:代定常数C 由初始条件确定:)()()(t r t r t r zs zi +=)()()(k y k y k y zs zi +=00111=++++--a a c n n n λλλ 00111=++++--a a c n n n γγγ 0)())((21=---n λλλλλλ 0)())((21=---n γγγγγγ knn k k zi c c c k y γγγ+++= 221)(tn ttzi n ec ec ec t r λλλ+++= 2121)()1()1(),0(-n y y y )0()0(),0()1(-'n zi zi zi r r r nγγγ,,,21 n λλλ,,,21 ⎪⎪⎩⎪⎪⎨⎧+++=+++='+++=----1122111)1(221121)0()0()0(n n n n n n n n nc c c rc c c r c c c r λλλλλλ ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡'----n n n n n n n c c c rr r211121121)1(111)0()0()0(λλλλλλ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡'⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----)0()0()0(111)1(1112112121n n n n n n n rr r c c cλλλλλλnn ij A AA )(11=-b. 零状态响应 )(t r zs 、)(k y zs4、解的分解零输入响应+零状态响应 自然响应+受迫响应 暂态响应+稳态响应二、系统的频域分析 1、频域系统函数2、系统特性幅频特性:相频特性:3、信号通过线性系统不产生失真的条件时域:频域:三、系统的复频域分析法1、微分方程的拉氏变换分析法 利用拉氏变换的微分特性:)0()0()0()()()1(21--------'--↔n n n n nn f f s f s s F s dtt f d 把微分方程:011101)(a p a p a p b p b p b p H n n nm m +++++++=-- )(t h 011101)(a S a S a S b S b S b S H n n nm m +++++++=-- )(k h )()()(k e k h k y zs *=)()()(t e t h t r zs *=)()()(ωϕωωj e j H j H =)()()(ωωωj E j R j H zs =)(ωj H )(ωφ)()(0t t Ke t r -=0)(t j Ke j H ωω-=)()()()()()()()(0111101111t e b dt t de b dtt e d b dt t e d b t r a dt t dr a dt t r d a dt t r d m m m m m m n n n n n +++=++++------变为代数方程,其过程为: ①)()()0()0()0()()()1(21s P s R s r r s r s s R s dtt r d k k k k k k k k -=--'--↔------ )0()0()0()()1(21------++'+=k k k k r r s r s s P 是与初始条件有关的关于s 的k 次多项式②)()()0()0()0()()()1(21s Q s E s e e s e s s E s dtt e d l l l l l l l l -=--'--↔------ 0)0()0()0()()1(21=++'+=------l l l l e e s e s s Q因为)(t e 是有始信号:0)0()0()0()1(==='=----l e e e 所以:)()(s E s dtt e d l l l ↔ ③把以上结果代入微分方程得:)()()()()()()(01111111s R a s P a s sR a s P a s R s a s P s R s n n n n n n +-++-+-----)()()(01s E b s sE b s E s b m m +++=)()()()()(010111s E b s b s b s M s R a s a s a s m m n n n +++=-++++--)()()()()(s E s N s M s R s D =-其中:0111)(a s a s a s s D n n n ++++=--01)(b s b s b s N m m +++=)()()()(1111s P a s P a s P s M n n n +++=--)()()()()()()()(s R s R s D s M s E s D s N s R zi zs +=+= 可求得全响应:)()()(t r t r t r zs zi +=2、电路S 域模型等效法……3、系统函数与系统的稳定性011101)(a s a s a s b s b s b s H n n n m m +++++++=-- )())((2101n m m s s s b s b s b λλλ---+++= 若极点n λλλ 21,均在s 平面的左半平面,则系统稳定。
信号与系统_复习总结(完整资料).doc
【最新整理,下载后即可编辑】第一章知识要点重难点一第A章A1.1本章重难点总结知识点一1)知识点定义2)背景或地位3)性质、作用4)相关知识点链接5)常见错误分析操作说明:当专业课学习到冲刺阶段后,考生学习会及时转移到直接考查概率高、考查难度大的重难点,即需要考生掌握和应用的重点、难点。
按照学科的内在逻辑、顺序呈现,并表现在ppt中。
1.2冲刺练习题及解析第二章重难点1.信号的概念与分类按所具有的时间特性划分:确定信号和随机信号;连续信号和离散信号;周期信号和非周期信号;能量信号与功率信号;因果信号与反因果信号;正弦信号是最常用的周期信号,正弦信号组合后在任一对频率(或周期)的比值是有理分数时才是周期的。
其周期为各个周期的最小公倍数。
①连续正弦信号一定是周期信号。
②两连续周期信号之和不一定是周期信号。
周期信号是功率信号。
除了具有无限能量及无限功率的信号外,时限的或,∞→t 0)(=t f 的非周期信号就是能量信号,当∞→t ,0)(≠t f 的非周期信号是功率信号。
1. 典型信号① 指数信号: ()at f t Ke =,a ∈R ② 正弦信号: ()sin()f t K t ωθ=+③ 复指数信号: ()st f t Ke =,s j σω=+ ④ 抽样信号:sin ()t Sa t t=奇异信号(1) 单位阶跃信号1()u t ={ 0t =是()u t 的跳变点。
(2) 单位冲激信号单位冲激信号的性质: (1)取样性 11()()(0)()()()f t t dt f t t f t dt f t δδ∞∞-∞-∞=-=⎰⎰相乘性质:()()(0)()f t t f t δδ=000()()()()f t t t f t t t δδ-=- (2)是偶函数 ()()t t δδ=- (3)比例性 ()1()at t aδδ=(4)微积分性质 d ()()d u t t tδ= ; ()d ()tu t δττ-∞=⎰(5)冲激偶()()(0)()(0)()f t t f t f t δδδ'''=-;()()d (0)f t t t f δ∞-∞''=-⎰ ()d ()tt t t δδ-∞'=⎰ ;()()t t δδ''-=- ()d 0t t δ∞-∞'=⎰带跳变点的分段信号的导数,必含有冲激函数,其跳变幅度就是冲激(0)t <(0)t >()1t dt δ∞-∞=⎰ ()0t δ=(当0t ≠时)函数的强度。
总复习(信号与线性系统必过知识点)
目录
• 信号与系统基本概念 • 线性时不变系统 • 信号的变换 • 系统的变换 • 信号与系统的应用
01 信号与系统基本概念
信号的描述与分类
信号的描述
信号是信息的载体,可以通过时间或空间的变化来传递信息 。信号的描述包括信号的幅度、频率、相位等特征。
信号的分类
拉普拉斯变换
拉普拉斯变换的定义
将一个信号从时域转换到复频域的过 程,通过将信号表示为无穷积分的形 式来实现。
拉普拉斯变换的性质
拉普拉斯变换的应用
在控制系统分析、电路分析等领域有 广泛应用,如系统稳定性分析、传递 函数求解等。
包括线性性、时移性、复频域平移性、 收敛性等。
Z变换
Z变换的定义
01
将一个序列信号从时域转换到复平面的过程,通过将信号表示
因果性
线性时不变系统的输出仅与当 前和过去的输入有关,而与未 来的输入无关。
稳定性
如果系统对所有非零输入信号 的响应最终都趋于零,则称该
系统是稳定的。
线性时不变系统的分析方法
01
02
03
频域分析法
通过傅里叶变换将时域信 号转换为频域信号,然后 分析系统的频率响应。
时域分析法
通过求解差分方程或常微 分方程来分析系统的动态 行为。
系统分析方法
系统分析是对系统进行建模、分析和综合的方法。常用的系统分析方法包括传递 函数分析、状态方程分析、根轨迹分析等。
02 线性时不变系统
线性时不变系统的性质
线性性
线性时不变系统对输入信号的 响应与输入信号的强度无关,
只与输入信号的形状有关。
时不变性
线性时不变系统的特性不随时 间变化,即系统对输入信号的 响应不会因为时间的推移而改 变。
信号与线性系统知识点总复习
信号与线性系统知识点总复习1.信号的基本概念信号是电子信息工程中的重要概念,简单来说就是随时间(或空间)变化的物理现象。
信号可以分为连续信号和离散信号两种。
连续信号可以用函数表示,离散信号可以用数列表示。
2.常见信号的分类常见的信号类型包括连续时间信号、离散时间信号、周期信号、非周期信号、奇函数信号、偶函数信号等。
不同类型的信号在数学表示和性质上有所差异。
3.连续时间信号的基本性质连续时间信号可以通过振幅、频率、相位等参数来描述。
它们具有线性性质、时移性、尺度变换性质和时间反转性质。
这些性质对于信号的分析和处理都是重要的基础。
4.离散时间信号的基本性质离散时间信号是在离散时间点上取值的信号,通常用数列表示。
离散时间信号具有线性性质、时移性、尺度变换性质和时间反转性质。
此外,离散时间信号还有抽样定理、离散时间傅立叶变换等重要概念。
5.线性系统的基本概念线性系统是输入和输出之间存在线性关系的系统,可以用线性常微分方程或差分方程表示。
线性系统具有叠加原理、时不变性、因果性等基本特性。
线性系统的频率响应是分析系统特性的重要工具。
6.线性时不变系统的冲激响应冲激响应是线性时不变系统的重要性质,它描述了系统对单位冲激输入的响应。
从冲激响应可以得到系统的频率响应、相位响应等信息。
7.线性时不变系统的频率响应频率响应描述了线性时不变系统对不同频率的输入信号的响应特性。
它可以通过线性时不变系统的冲激响应来计算,常用的方法有离散时间傅立叶变换、连续时间傅立叶变换、z变换等。
8.线性系统的稳定性分析稳定性是线性系统分析中的重要性质。
对于连续时间系统,稳定性可以通过系统的传递函数的极点位置来判断。
对于离散时间系统,稳定性可以通过系统的差分方程的极点位置来判断。
9.线性系统的频域分析频域分析是信号与系统分析中的重要方法,可以通过傅立叶变换、拉普拉斯变换和z变换等来将信号从时域转换到频域。
频域分析可以得到信号的频谱特性、频率响应等信息。
总复习(信号与线性系统必过知识点)
( t0,t0 +T )
2)指数函数集 ejnt n 0,1,2, ,
( t0,t0 +T )
3.2 周期信号的傅里叶级数展开
(1) f(t)为奇函数 正弦分量
(2) f(t)为偶函数 (3) f(t)为奇谐函数 (4) f(t)为偶谐函数
余弦分量+直流分量 奇次谐波 偶次谐波+直流分量
rzi (0 ), r 'zi (0 ), rz(in1) (0 )
4) 将初值带入rzi(t)的通解表达式,求出待定系数。
例1:已知某系统激励为零,初始值r(0)=2, r’(0)=1,r”(0)=0,描述系统的传
输算子为 解:
H(
p)
2p2 8p 3 ( p 1)( p 3)2
当激励e(t)=3 ε(t) ,初始状态保持不变时,响应 r2(t)=(8e-2t -7e-3t) ε(t)。
求:(1)激励e(t)=0,初始状态x1(0-)=1, x2(0-)=2时的响应 r3(t)=? (2)激励e(t)=2 ε(t),初始状态为零时的响应r4(t)=?
解:
当激励e(t)= ε(t) ,初始状态x1(0-)=1, x2(0-)=2时, 响应
2
2
2
例2:计算
4
(2 4t)(t 2)dt
1
解:4 (2 4t)(t 2)dt 1
4 1 (t 1)(t 2)dt 0
14
2
注意积 分区间
1. 2 信号的运算
1)折叠:y(t)=f (-t) 2)时移:y(t)=f (t-to) 3)倒相:y(t)=-f (t) 4)展缩:y(t)=f (at) 其中:a>0
《信号与线性系统》总复习(信息)#优选.
信号与线性系统总复习信号分析一、 信号的时域分析 1、 常见信号①单位冲激函数:)(t δ 定义:抽样性:②单位阶跃函数:)(t ε 定义:阶跃与冲激的关系:③斜变函数:)()(t t t R ε=斜变与阶跃的关系:④指数函数:)(t e tεα-)(t f )(k f ⎩⎨⎧=01)(t ε0<>t t ⎪⎩⎪⎨⎧==⎰∞∞-0)(1)(t dt t δδ0≠t ⎪⎩⎪⎨⎧==⎰∞-t d t dt t d t ττδεεδ)()()()()()0()()(t f t t f δδ⋅=⋅)0()()0()0()()()(f dt t f dt f t dt t f t ==⋅=⋅⎰⎰⎰∞∞-∞∞-∞∞-δδδ⎪⎩⎪⎨⎧==⎰∞-t d t R dt t dR t ττεε)()()()(⑤门函数:)(t G τ ⑥余弦函数:t 0cos ω ⑦正弦函数:t 0sin ω ⑧冲激序列:∑∞-∞=-=n T nT t t )()(δδ2、 信号的运算:3、 信号的变换: 移位:反折: 展缩: 倍乘:4、 卷积: 连续:离散:性质:(1)延时特性:连续:)()()(212211t t t f t t f t t f --=-*- 离散:112212()()()f k k f k k f k k k -*-=--(2)微积分特性:)(0t t f ±)(t f -)(at f )(t af ∑∞-∞=-=*i i k f i f k f k f )()()()(2121⎰∞∞--=*τττd t f f t f t f )()()()(2121)()(21t f t f ±)()(21t f t f •t t df )(121()[()]tdf t f d dt ττ-∞=*⎰)()(21t f t f *二、 信号的频域分析(傅立叶变换分析法) 1、 定义:2、 性质:设)()(11ωj F t f ↔;)()(22ωj F t f ↔;)()(ωj F t f ↔①线性:)()()()(22112211ωωj F a j F a t f a t f a +↔+ ②对称性:)(2)(ωπf jt F ↔③延时:0)()(0tj e j F t t f ωω±↔±④移频:)()(00ωωωj j F e t f t j ↔±⑤尺度变换:)(1)(a j F a at f ω↔;)(1)(aj F e a b at f a bj ωω-↔-⑥奇偶特性:若)(t f 为实偶函数,则)(ωj F 也为实偶函数;若)(t f 为实偶函数,则)(ωj F 也为实偶函数;⑦时域微分:)()()(ωωj F j dtt df ↔; )()()(ωωj F j dtt f d nnn ↔ ⑧时域积分:)(1)()0()(ωωωδπττj F j F d f t+↔⎰∞- ⎰∞∞--=dte tf j F t j ωω)()(⎰∞∞-=ωωπωd e j F t f t j )(21)(⑨频域微分:ωωd j dF t f jt )()()(↔-;nn nd j F d t f jt ωω)()()(↔-⑩频域积分:⎰∞-↔-ωΩΩδπd F t f jtt f )()(1)()0(⑾卷积定理:)()()()(2121ωωj F j F t f t f ↔* )()(21)()(2121ωωπj F j F t f t f *↔⋅3、 常见信号的傅立叶变换 1)(↔t δωωπδεj t 1)()(+↔)]()([cos 000ωωδωωδπω++-↔t)]()([sin 000ωωδωωδπω--+↔j tωαεαj t e t +↔-1)(22sin )2()(τωτωττωττ=↔Sa t Gωj t 2)sgn(↔2222sin )2(01)(⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡↔⎪⎩⎪⎨⎧><-=τωτωττωττττSa t t t t fTn nT t t n n T πΩΩωδΩωδΩδδΩ2)()()()(=-=↔-=∑∑∞-∞=∞-∞=4、 周期信号的频谱①性质:离散性,谐波性,收敛性 ②级数展开:∑∞=++=1)sin cos (2n n n t n b t n a a ΩΩ)(t f ∑∞=-+=10)cos(2n n n t n A a ΦΩ∑∞-∞=•=n tjn n e A Ω21∑∞-∞==n t jn n e c Ω⎰+=Tt t n tdt n t f T b 11sin )(2Ωtdt n t f T a Tt t n Ωcos )(211⎰+=⎰+-•=Tt t tjn n dtet f TA 11)(2Ω⎰+-=Tt t t jn n dte tf Tc 11)(1Ωnj n n e A A φ-•=nn A c •=2122nn n b a A +=nn n a b arctg=φ③频谱:n A •与)(Ωωn =之间的关系图称频谱图; n A 与)(Ωωn =之间的关系图称为振幅频谱图; n ϕ与)(Ωωn =之间的关系图称为相位频谱图;信号时域特性和频域特性关系:时域 频域 周期 离散 离散 周期 时域有限 频域无限 时域无限 频域有限5、 帕色伐尔定理[]⎰⎰∞∞-∞∞-=ωωπd j F dt t f 22)(21)(6、 取样定理 ①频带有限信号 ②满足关系:m s f f 2≥三、 信号的复频域分析(拉普拉斯变换分析法) 1、 定义:⎰∞-=)()(dte tf s F st⎰∞+∞-=j j st dse s F jt f σσπ)(21)(2、 性质:①线性: )()()()(22112211s F a s F a t f a t f a +↔+②时移:0)()()(00st e s F t t t t f -↔--ε ③频移:)()(00s s F et f ts -↔④尺度变换:)(1)(asF a at f ↔⑤时域微分:)0()0()0()()()1(21--------'--↔n n n n nn f f s f s s F s dtt f d ⑥时域积分:)(1)(s F sd f t↔⎰∞-ττ ⑦复频域微积分: ds s dF t tf )()(-↔;⎰∞↔s ds s F t f t)()(1⑧初、终值定理:)(lim )0(s sF f s ∞→+=;()(s F 为真分式))(lim )(0s sF f s →=∞⑨卷积定理:)()()()(2121s F s F t f t f ↔* )()(21)()(2121s F s F jt f t f *↔⋅π3、 常见信号的拉氏变换1)(↔t δ,st 1)(↔ε,a s t e t-↔1)(εα,1!+↔n nsn t ,22sin ωωω+↔s t ,22cos ωω+↔s st4、 反变换(1).部分分式展开法n n s s k s s k s s k s F -++-+-= 2211)()()()(2121t e k e k e k t f t s n t s t s n ε+++=(2).留数法∑==ni i s t f 1Re )(①单根is 处的留数 Re [()()]i stii s s s F s e s s ==- ②p 重根i s 处的留数111Re [()()](1)!i p st pi i s s p d s F s e s s p s-=-=--四、(离散)信号的Z 域分析1、 定义:∑∞-∞=-=K kz K F Z F )()( 2、 性质:① 线性线性:)()()()(22112211z F a z F a k f a k f a +↔+ ② 移序: 单边z 变换∑-=--↔+1)()()(n k k nn z k f zz F z n k f)()()(z F z n k n k f n-↔--ε双边z 变换)()(z F z n k f n ↔+ )()(z F z n k f n-↔-③ 尺度变换:)()(az F k f a k ↔ ④z 域微分特性:)()(z F dzdz k kf -↔ ⑤ 卷积定理:)()()()(2121z F z F k f k f ↔*)()(21)()(2121s F s F jt f t f *↔⋅π⑥ 初、终值定理:)(lim )0(z F f z ∞→= 3、 常见序列的Z 变换1)(↔k δ ,1)(-↔z zk ε ,γγ-↔z zk,2)1(-↔z zk4、 反Z 变换 (1) 长除法 (2) 部分分式法nn z B z B z B z B z z F γγγ-++-+-+= 22110)( nn z z B z zB z z B B z F γγγ-++-+-+= 22110)()()()()(22110k B B B k B k f kn n k k εγγγδ++++= (3) 留数法1()Re nii f k s ==∑①单根iz 处的留数 1Re [()()]i k ii z z s F z z z z -==- ②p 重根i z 处的留数 1111Re [()()](1)!i p k p i i z z p d s F z z z z p z--=-=--系统分析卷积+三大变换(时域、频域、复频域、Z 域)一、 系统的时域分析 1、 描述:(1) 连续系统--微分方程(2) 离散系统—差分方程)()()()()()()()(0111101111t e b dt t de b dtt e d b dt t e d b t r a dt t dr a dt t r d a dt t r d m m m m m m n n n nn +++=++++------ )t )k e )()1()()()1()1()(01011k e b k e b m k e b k y a k y a n k y a n k y m n +++++=++++-+++-3、全响应的求解连续: 离散:(1) 零输入响应 )(t r zi 、)(k y zi 特征方程:特征根:零输入响应:代定常数C 由初始条件决定:)()()(t r t r t r zs zi +=)()()(k y k y k y zs zi +=00111=++++--a a c n n n λλλ 00111=++++--a a c n n n γγγ 0)())((21=---n λλλλλλ 0)())((21=---n γγγγγγ knn k k zi c c c k y γγγ+++= 221)(tn ttzi n ec ec e c t r λλλ+++= 2121)()1()1(),0(-n y y y )0()0(),0()1(-'n zi zi zi r r r nγγγ,,,21 nλλλ,,,21 ⎪⎪⎩⎪⎪⎨⎧+++=+++='+++=----1122111)1(221121)0()0()0(n n n n n n n n n c c c r c c c r c c c r λλλλλλ ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡'----n n n n n n n c c c rr r211121121)1(111)0()0()0(λλλλλλ(2) 零状态响应 )(t r zs 、)(k y zs4、解的分解零输入响应+零状态响应 自然响应+受迫响应 暂态响应+稳态响应二、系统的频域分析1、频域系统函数2、系统特性011101)(a p a p a p b p b p b p H n n nm m +++++++=-- )(t h 011101)(a S a S a S b S b S b S H n n nm m +++++++=-- )(k h )()()(k e k h k y zs *=)()()(t e t h t r zs *=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡'⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----)0()0()0(111)1(1112112121n n n n n n n rr r c c cλλλλλλnnij A AA)(11=-)()()(ωϕωωj e j H j H =)()()(ωωωj E j R j H zs =幅频特性: 相频特性:3、信号通过线性系统不产生失真的条件时域:频域:三、系统的复频域分析法1、微分方程的拉氏变换分析法 利用拉氏变换的微分特性:)0()0()0()()()1(21--------'--↔n n n n nn f f s f s s F s dtt f d 把微分方程:变为代数方程,其过程为:①)()()0()0()0()()()1(21s P s R s r r s r s s R s dtt r d k kk k k k kk -=--'--↔------)0()0()0()()1(21------++'+=k k k k r r s r s s P是与初始条件有关的关于s 的k 次多项式②)(ωj H )(ωφ)()(0t t Ke t r -=0)(t j Ke j H ωω-=)()()()()()()()(0111101111t e b dt t de b dtt e d b dt t e d b t r a dt t dr a dt t r d a dt t r d m m m m m m n n n n n +++=++++------)()()0()0()0()()()1(21s Q s E s e e s e s s E s dtt e d l ll l l l ll -=--'--↔------0)0()0()0()()1(21=++'+=------l l l l e e s e s s Q因为)(t e 是有始信号:0)0()0()0()1(==='=----l e e e 所以:)()(s E s dtt e d l l l ↔③把以上结果代入微分方程得:)()()()()()()(01111111s R a s P a s sR a s P a s R s a s P s R s n n n n n n +-++-+----- )()()(01s E b s sE b s E s b m m +++=)()()()()(010111s E b s b s b s M s R a s a s a s m m n n n +++=-++++-- )()()()()(s E s N s M s R s D =-其中:0111)(a s a s a s s D n n n ++++=-- 01)(b s b s b s N m m +++=)()()()(1111s P a s P a s P s M n n n +++=-- )()()()()()()()(s R s R s D s M s E s D s N s R zi zs +=+=可求得全响应:2、电路S 域模型等效法3、系统函数与系统的稳定性011101)(a s a s a s b s b s b s H n n n m m +++++++=-- )())((2101n m m s s s b s b s b λλλ---+++= 若极点n λλλ 21,均在s 平面的左半平面,则系统稳定。
信号与线性系统分析复习题及答案
信号与线性系统复习题单项选择题。
1. 已知序列3()cos()5f k k π=为周期序列,其周期为 ( C ) A . 2 B. 5 C. 10 D. 122. 题2图所示()f t 的数学表达式为 ( B )图题2A .()10sin()[()(1)]f t t t t πεε=+- B. ()10sin()[()(1)]f t t t t πεε=-- C. ()10sin()[()(2)]f t t t t πεε=-- D. ()10sin()[()(2)]f t t t t πεε=+-3.已知sin()()()t f t t dt t πδ∞-∞=⎰,其值是 ( A )A .π B. 2π C. 3π D. 4π4.冲激函数()t δ的拉普拉斯变换为 ( A )A . 1 B. 2 C. 3 D. 45.为了使信号无失真传输,系统的频率响应函数应为 ( D ) A . ()djwt H jw e= B. ()djwt H jw e-= C. ()djwt H jw Ke= D. ()djwt H jw Ke-=6.已知序列1()()()3kf k k ε=,其z 变换为 ( B )A .13z z + B.13z z - C.14z z + D.14z z -7.离散因果系统的充分必要条件是 ( A ) A .0,0)(<=k k h B. 0,0)(>=k k h C. 0,0)(<<k k h D. 0,0)(>>k k h8.已知()f t 的傅里叶变换为()F jw ,则(3)f t +的傅里叶变换为 ( C ) A .()jwF jw e B. 2()j wF jw eC. 3()j wF jw eD. 4()j wF jw e9.已知)()(k k f kεα=,)2()(-=k k h δ,则()()f k h k *的值为( B ) A .)1(1--k k εαB. )2(2--k k εαC. )3(3--k k εαD. )4(4--k k εα10.连续时间系统的零输入响应的“零”是指( A ) A. 激励为零 B. 系统的初始状态为零 C. 系统的冲激响应为零 D. 系统的阶跃响应为零 11. 已知序列kjek f 3)(π=为周期序列,其周期为 ( )A . 2 B. 4 C. 6 D. 812. 题2图所示()f t 的数学表达式为 ( )A .)1()1()(--+=t t t f εε B.)1()1()(-++=t t t f εε C. )1()()(--=t t t f εε D. )1()()(-+=t t t f εε13.已知)2()(),1()(21-=-=t t f t t f εδ,则 12()()f t f t *的值是 ( ) A .)(t ε B. )1(-t ε C. )2(-t ε D. )3(-t ε14.已知ωωj j F =)(,则其对应的原函数为 ( ) A .)(t δ B. )('t δ C. )(''t δ D. )('''t δ15.连续因果系统的充分必要条件是 ( ) A . 0,0)(==t t h B. 0,0)(<=t t h C. 0,0)(>=t t h D. 0,0)(≠=t t h16.单位阶跃序列)(k ε的z 变换为 ( )A .1,1<+z z z B. 1,1>+z z z C. 1,1<-z z z D. 1,1>-z z z 17.已知系统函数ss H 1)(=,则其单位冲激响应()h t 为 ( )A .)(t ε B. )(t t ε C. )(2t t ε D. )(3t t ε18.已知()f t 的拉普拉斯变换为()F s ,则)5(t f 的拉普拉斯变换为 ( )tA .)5(s F B. )5(31s F C. )5(51s F D. )5(71s F 19.已知)2()(2-=-k k f k εα,)2()(-=k k h δ,则()()f k h k *的值为( )A .)1(1--k k εα B. )2(2--k k εαC. )3(3--k k εαD. )4(4--k k εα20.已知)(t f 的傅里叶变换为)(ωj F ,则)(jt F 的傅里叶变换为( ) A. )(ωπ-fB. )(ωπfC. )(2ωπ-fD. )(2ωπf21. 下列微分或差分方程所描述的系统是时变系统的是 ( ) A . )(2)()(2)(''t f t f t y t y -=+ B. )()(sin )('t f t ty t y =+ C. )()]([)(2't f t y t y =+ D. )()2()1()(k f k y k y k y =--+22. 已知)()(),()(21t t f t t t f εε==,则)()(21t f t f *的值是 ( ) A .)(1.02t t ε B. )(3.02t t ε C. )(5.02t t ε D. )(7.02t t ε23.符号函数)sgn(t 的频谱函数为 ( )A .ωj 1 B. ωj 2 C. ωj 3 D. ωj 424.连续系统是稳定系统的充分必要条件是 ( ) A . M dt t h ≤⎰∞∞-)( B. M dt t h ≥⎰∞∞-)(C.M dt t h ≤⎰∞∞-)( D.M dt t h ≥⎰∞∞-)(25.已知函数)(t f 的象函数)5)(2()6()(+++=s s s s F ,则原函数)(t f 的初值为 ( )A . 0 B. 1 C. 2 D. 3 26.已知系统函数13)(+=s s H ,则该系统的单位冲激响应为 ( ) A .)(t e tε- B.)(2t e tε- C.)(3t e tε- D. )(4t e tε- 27.已知)2()(),1()(1-=-=-k k h k k f k δεα,则)()(k h k f *的值为 ( )A .)(k kεα B.)1(1--k k εα C.)2(2--k k εα D. )3(3--k k εα28. 系统的零输入响应是指( ) A.系统无激励信号 B. 系统的初始状态为零C. 系统的激励为零,仅由系统的初始状态引起的响应D. 系统的初始状态为零,仅由系统的激励引起的响应 29.偶函数的傅里叶级数展开式中 ( )A .只有正弦项 B.只有余弦项 C. 只有偶次谐波 D. 只有奇次谐波 10. 已知信号()f t 的波形,则)2(t f 的波形为 ( ) A .将()f t 以原点为基准,沿横轴压缩到原来的12B. 将()f t 以原点为基准,沿横轴展宽到原来的2倍C. 将()f t 以原点为基准,沿横轴压缩到原来的14D. 将()f t 以原点为基准,沿横轴展宽到原来的4倍 填空题1. 已知象函数223()(1)s F s s +=+,其原函数的初值(0)f +为___________________。
信号与系统复习资料
1.判断系统的线性及时不变特性。
y (t =[x (t ]2①判断系统是否具有线性特性若x 1(t →y 1(t =[x 1(t ]2x 2(t →y 2(t =[x 2(t ]2按系统的功能得到a 1x 1(t +a 2x 2(t →[a 1x 1(t +a 2x 2(t ]2=a 12[x 1(t ]2+2a 1a 2x 1(t x 2(t +a 22[x 2(t ]2 ≠a 1y 1(t +a 2y 2(t所以系统不具线性特性。
②判断系统是否具有时不变特性若x (t →y (t ,则按系统的功能得到x (t -τ →[x (t -τ]2=y (t -τ所以系统具有时不变特性。
综上所述,系统是非线性、时不变系统。
y (t =x (2t①判断系统是否具有线性特性若x 1(t →y 1(t =x 1(2tx 2(t →y 2(t =x 2(2t 按系统的功能得到a 1x 1(t +a 2x 2(t →a 1x 1(2t +a 2x 2(2t =a 1y 1(t +a 2y 2(t所以系统具有线性特性。
②判断系统是否具有时不变特性若x (t →y (t ,则按系统的功能得到x (t -τ →x (2t -τ ≠y (t -τ所以系统不具时不变特性。
综上所述,系统是线性、时变系统。
2.某LTI 系统的输入为e (t ,输出为r (t ,其微分方程表示为:d 2d dr (t +3r (t +2r (t =e (t +2e (t dt dt dt试求当e (t =e -t ,r (0=0,r '(0=3的完全解。
解:原方程的特征方程为:λ2+3λ+2=0,得λ=-1,λ=-2-t -2t故方程的齐次解为:r c (t =Ae +A e 12因e (t =e -t 可令特解为:r p (t =B 0te -t +B 1e -t 将其代入原方程可得,-t -t 3B 0te -t -3B 0te -t +B 0e -t +3Bte -3Bte =e -t 则有B 0=1,所以特解方程可11-t 表示为:r p (t =te -t +Be 1-t -t 完全解为 r (t =r c (t +r p (t =Ae +A 2e -2t +te -t +Be 11=(A e e +A 1+B 12e +t-t-2t-t其导数为 r '(t =-(A 1+B 1e -t -2A 2e -2t -te -t +e -t 代入初始条件得r (0=(A 1+B 1+A 2=0 r '(0=-(A 1+B 1-2A 2+1=3所以 (A 1+B 1=2,A 2=-2。
信号与系统复习资料
信 号 与 系 统 复 习 资 料一 填空1.如果一线性时不变系统的单位冲激响应为h(t),则该系统的阶跃响应g(t)为_________。
2.如果一线性时不变系统的输入为f(t),零状态响应为)(2)(0t t f t y f -=,则该系统的单位冲激响应h(t)为_________________。
3.如果一线性时不变系统的单位冲激响应)()(t t h ε=,则当该系统的输入信号)()(t t t f ε=时,其零状态响应为_________________。
4.傅里叶变换的时移性质是:当f(t)↔F(j ω),则f(t ±t 0)↔____________。
5.=--)]([)1(2t e dtd t tδ___________ 6.根据线性时不变系统的微分特性,若:)()(t y t f f −−→−系统则有:f ′(t)−−→−系统______。
7.卷积(1-2t)ε(t)*ε(t)等于________________。
8.信号f(n)=δ(n)+(21)nε(n)的Z 变换等于____________。
9.单位序列响应 h(n) 是指离散系统的激励为δ (n) 时,系统的 ____________。
10.线性性质包含两个内容:________,__________ 。
11.余弦信号)cos(0t ω的傅里叶变换为___________。
12.若)()()(21t f t f t f *=,则=)()1(t f________)(2t f *。
13.已知)()]([ωj F t f F =,则=-)52(t f ________。
14.已知15.011)(--=z Z F ,则=)(k f __________。
15.=⋅-)()3(t t εε________________。
16.离散系统稳定的z 域充要条件是系统函数H (z )的所有极点位于z 平面的__________。
信号与系统复习资料
时域积分
系统的方框图表示的积分器 s域微分 z域微分 主要应用:求反变换
初值与终值定理
对于因果序列 ,
基本的s变换对和z变换对
s反变换和z反变换的求解
当X(s) X(z)是有理的,首先用部分分式展开成低次分式之和,结合ROC求各低次分式的反变换的叠加等于x(t)x[n].
由定义式可以看出,X(z)是z的正幂和负幂的一个幂级数, 幂级数的系数就是序列x[n]的值. 可用长除法将X(z)展开为z的正幂和负幂的线性组合,展开时要考虑变换的收敛域(暂定不做考试要求)
分段法计算卷积和的步骤与卷积积分相似
利用卷积性质在某些情况下可以简化卷积计算。
因果LTI系统的数学模型
连续因果LTI系统线性常系数微分方程+初始松弛条件 离散因果LTI系统线性常系数差分方程+初始松弛条件
一个连续时间线性系统,满足因果性的充分必要条件是:对任何t0和任意的输入x(t),若t<t0,x(t)=0,则对应的输出y(t)在t<t0也必定为零.
采样定理
(在保持系统幅频特性不变的情况下,如何改变系统的极点,使之满足因果稳定的条件?由零极点图确定系统的幅频特性)
由零极点图对傅里叶变换进行几何求解
因果LTI系统的方框图表示
(直接型,级联型,并联型)
单边s变换和z变换
(s变换微分性质和z变换时间延迟性质的推导,具有非零初始条件的LTI系统零输入响应和零状态响应的求解)
一个具有有理系统函数的离散时间LTI系统,当且仅当它的系统函数ROC位于最外层极点的外边,且H(z)表示成z的多项式之比时其分子的阶次不能大于分母的阶次,该系统才是因果的。
当且仅当系统函数的ROC包含单位圆时,离散时间LTI系统稳定。
信号与系统复习资料总结
f (t)
+
∫
∫
+
y(t)
例图
解 选图中右端积分器的输出为中间变量x(t),则其输入 为x′(t),左端积分器的输入为x″(t), 如图所示。写出左端加 法器的输出
x" (t ) = − x ' (t ) − 3x (t ) + f (t ) x" (t ) + 5 x ' (t ) + 3x (t ) = f (t )
卷积图形计算
• 卷积积分图解(反转) f (t)
1
f2(t)=3/4t 1.5
2 O 4 t
O
2
t
f1(τ) 2 O 4 τ –2 O
f2(– τ) 1.5 τ
卷积图形计算
• 卷积积分图解(平移)
t=0 f2(t – τ) 1.5 –2 O τ
t<0
f2(t – τ) 1.5 t–2 t O τ
所以u1(t) f(t) u (t)对f(t)的传输算子为
2( p + 1) H ( p) = 2 p + 2p + 2
它代表的实际含义是
u (t ) + 2u (t ) + 2u1 (t ) = 2 f ' (t ) + 2 f (t )
" 1 ' 1
卷积计算方法
• 卷积最重要的用法:系统零状态响应y(t)=f(t)*h(t) • 时域计算方法,又分为
信号与系统复习重点
信号自变量的线性变换: 已知f(t) 图 形,求f(at-b)
• 按“平移-翻转-展缩”顺序。 • (a)平移:b>0,则先将f(t)沿t轴右移b个单位 得到f(t-b)波形。若b<0, 则将f(t)沿t轴左移b 个单位得到f(t-b)波形
信号与系统复习资料题(标准答案全)
信号与系统复习资料题(标准答案全)1、若系统的输⼊f (t)、输出y (t) 满⾜()3()4t y t e ft -=,则系统为线性的(线性的、⾮线性的)、时变的(时变的、时不变)、稳定的(稳定的、⾮稳定的)。
2、⾮周期、连续时间信号具有连续、⾮周期频谱;周期、连续时间信号具有离散、⾮周期频谱;⾮周期、离散时间信号具有连续、周期频谱;周期、离散时间信号具有离散、周期频谱。
3、信号f(t)的占有频带为0-10KHz,被均匀采样后,能恢复原信号的最⼤采样周期为 5×10-5 s . 4、 )100()(2t Sa t f =是能量信号(功率信号、能量信号、既⾮功率亦⾮能量信号)。
5、 ()2cos()f t t =+是功率信号(功率信号、能量信号、既⾮功率亦⾮能量信号)。
6、连续信号f(t)=sint 的周期T 0= 2π ,若对f(t)以fs=1Hz 进⾏取样,所得离散序列f(k)=sin(k) ,该离散序列是周期序列?否。
7、周期信号2sin(/2)()j n tn n f t e n ππ+∞=-∞=∑,此信号的周期为 1s 、直流分量为 2/π、频率为5Hz 的谐波分量的幅值为 2/5 。
8、 f (t) 的周期为0.1s 、傅⽴叶级数系数**03355532F F F F F j --=====、其余为0。
试写出此信号的时域表达式f (t) = 5 + 6 cos ( 60 π t ) - 4 sin (100 π t ) 。
9、 f (k) 为周期N=5的实数序列,若其傅⽴叶级数系数()205=F ()52511,πjeF -+=()54512πjeF -+=、则F 5 (3 )= ()54512πjeF +=- 、F 5 (4 )= ()52511πj eF +=- 、F 5 (5 )= 2 ;f(k) =())1.7254cos(62.052)9.3552cos(62.152525140525?-?+?-?+=∑=k k e n F n k jn πππ10、离散序列f(k) = e j 0.3k 的周期N 不存在。
931信号与线性系统复习提纲
931信号与线性系统复习提纲一、课程考试内容(一)信号与系统的基本概念1. 内容提要:信号的分类和运算,奇异函数性质。
系统的分类和描述,线性时不变系统的性质。
2.基本要求(1)了解信号的分类,熟悉连续信号与离散信号、功率信号与能量信号、周期信号的概念。
(2)掌握信号的反转、时移、尺度变换,掌握冲激函数和阶跃函数、单位样值序列和阶跃序列的性质。
(3)掌握线性系统和时不变系统的判断方法。
(二)连续系统的时域分析1. 内容提要零输入响应和零状态响应、阶跃响应和冲激响应。
卷积积分及其性质;响应的时域求解。
相关函数与卷积的联系与区别。
系统响应的固有分量与强迫分量、稳态分量与暂态分量的概念。
2.基本要求(1)熟悉零输入响应与零状态响应、固有响应与强迫响应、稳态响应与暂态响应的概念,掌握冲激响应的求解方法。
(2)掌握卷积积分及其性质,掌握系统响应的时域求解方法。
(3)了解相关函数与卷积的联系与区别。
(三)离散系统的时域分析1. 内容提要:差分与差分方程;系统的单位序列响应与响应阶跃响应;卷积和及其性质。
系统的零输入响应、零状态响应和全响应。
反卷积的概念。
2.基本要求(1)熟悉差分和差分方程的概念。
了解差分方程的经典解法。
(2)掌握单位序列响应与阶跃响应的求解方法。
(3)掌握卷积和及其性质;掌握系统响应的时域求解方法。
(4)了解反卷积。
(四)系统的频域分析1. 内容提要信号的正交分解。
周期信号分解为傅里叶级数,周期信号的频谱及其特点,周期信号的功率。
傅里叶变换与逆变换,奇异函数和周期函数的傅里叶变换,傅里叶变换的性质。
信号的能量和频带宽度的概念。
响应的频域分析方法。
频率响应与正弦稳态响应。
线性系统无失真传输的条件。
取样定理,奈奎斯特取样频率和取样间隔。
吉布斯现象。
离散信号DFS、DTFT、DFS的定义和特点。
圆周反转、时移、卷积的概念。
2.基本要求(1)了解信号正交分解的过程。
熟悉周期信号的傅里叶级数展开。
掌握周期信号的频谱及其特点、周期信号的功率。
信号与线性系统复习
2Sa(2t )
典型例题
1、利用时域与频域对称性,求下面傅立叶变换的原函数: F1(w)=δ(w-w0)
2、连续时间信号f(t)的占有频带为0~10KHz,经均匀采样后, 构成一离散时间信号。为保证恢复原信号f(t),则采样周期的 值最大不能超过( )。 A:5×10-5s; B:10-5s; C:10-4s ; D:10-3s; 3、某信号的频谱是周期离散谱,则对应的时域信号应是( )。 A:离散的周期信号; B:连续的非周期信号 C:离散的非周期信号; D:连续的周期信号
1 1 y zs (t ) ( e t e 2t e 3t )u (t ) 2 2
,求系统的系统函数。
求:(1)写出该系统的微分方程; (2)求该系统的冲激响应并判断该系统的稳定性; 3t (3)若 y(t ) e u(t ), y(0 ) 1,y(0 ) 2 ,试求其零输入响 应和零状态响应。
); D: -3
3、描述系统的方程为Y(t)=x(t)sin6t,试判断该系统是
否是线性、时不变和因果的。
4、序列x(n)=Acos(3πk)的周期是( )。 A:不存在 B:2/3 C:2 D:1
5、有一离散时间系统,输入和输出的关系是 y(k ) f (k ) f (k 3), 则该系统是( )。 A:记忆系统 B:可逆系统 C:非因果系统 D:线性系统
z z ,其收敛域为 0.5 z 2 z 0.5 z 2
,则
所对应的原序列是( )。 k k A:(0.5k 2k ) (k ) B:(2 0.5 ) (k 1) C:0.5k (k ) 2k (k 1) D:0.5k (k ) 2k (k 1)
Ch2 连续系统的时域分析
信号与系统总复习精品PPT课件
4.7-2 例4.7-3,例4.8-1 例4.8-3 例4.8-4
第五章 连续系统的S域分析
• 要求掌握的内容 1、掌握拉氏变换定义和收敛域 2、掌握拉普拉斯变换的性质,并能熟练应用 3、熟悉求拉普拉斯逆变换的方法; 4. 掌握系统函数及其求解方法 5、熟悉卷积的主要性质 • 典型题目 例5.1-1例5.1-2 例5.1-3,例5.2-1例5.2-2 例5.2-3 例5.2-4 例5.2-5 例5.3-3 例5.3-4 例5.3-6,例5.4-1 例5.4-2
信号与线性系统
总复习
内容回顾
• 1、信号分析
时域:信号分解为冲激信号的线性组合
连续信号 频域:信号分解为不同频率正弦信号的线性组合
复频域:信号分解为不同频率复指数的线性组合
信
号
抽
分
样
析
时域:信号分解为脉冲序列的线性组合
离散信号 频域:不作要求
z域:信号分解为不同频率复指数的线性组合
• 2、系统分析
7.3-2 例7.3-3 例7.4-1 例7.4-2 例7.4-3
第八章 系统的状态变量分析
• 要求掌握的内容 1. 熟悉状态变量、状态方程等状态变量描述法中的基本概念 2. 掌握从一般的输入输出方程以及实际的电路中建立状态方程和输出方
信号与系统复习提纲
信号与线性系统复习提纲第一章 信号与系统1.信号、系统的基本概念2.信号的分类,表示方法(表达式或波形)连续与离散;周期与非周期;实与复信号;能量信号与功率信号 3.信号的基本运算:加、乘、反转和平移、尺度变换。
图解时应注意仅对变量t 作变换,且结果可由值域的非零区间验证。
4.阶跃函数和冲激函数极限形式的定义;关系;冲激的Dirac 定义 阶跃函数和冲激函数的微积分关系 冲激函数的取样性质(注意积分区间))()0()()(t f t t f δδ⋅=⋅;⎰∞∞-=⋅)0()()(f dt t t f δ)()()()(111t t t f t t t f -⋅=-⋅δδ;⎰∞∞-=-⋅)()()(11t f dt t t t f δ5.系统的描述方法数学模型的建立:微分或差分方程系统的时域框图,基本单元:乘法器,加法器,积分器(连),延时单元(离) 由时域框图列方程的步骤。
6.系统的性质线性:齐次性和可加性;分解特性、零状态线性、零输入线性。
时不变性:常参量LTI 系统的数学模型:线性常系数微分(差分)方程(以后都针对LTI 系统) LTI 系统零状态响应的微积分特性因果性、稳定性(可结合第7章极点分布判定)1. 微分方程的经典解法:齐次解+特解(代入初始条件求系数) 自由响应、强迫响应、瞬态响应、稳态响应的概念0—~0+初值(由初始状态求初始条件):目的,方法(冲激函数系数平衡法)全响应=零输入响应+零状态响应;注意应用LTI 系统零状态响应的微积分特性 特别说明:特解由激励在t>0时或t>=0+的形式确定2. 冲激响应)(t h定义,求解(经典法),注意应用LTI 系统零状态响应的微积分特性阶跃响应)(t g 与)(t h 的关系3. 卷积积分定义及物理意义激励)(t f 、零状态响应)(t y f 、冲激响应)(t h 之间关系)()()(t h t f t y f *= 卷积的图示解法(了解)函数与冲激函数的卷积(与乘积不同))()()(t f t t f =*δ;)()()(11t t f t t t f -=-*δ 卷积的微分与积分复合系统冲激响应的求解(了解)1.离散系统的响应差分方程的迭代法求解差分方程的经典法求解:齐次解+特解(代入初始条件求系数)全响应=零输入响应+ 零状态响应初始状态(是)()2(),1(N y y y ---Λ),而初始条件(指的是)1()1(),0(-N y y y Λ) 2.单位序列响应)(k h)(k δ的定义,)(k h 的定义,求解(经典法); 若方程右侧是激励及其移位序列时,注意应用线性时不变性质求解 阶跃响应)(k g 与)(k h 的关系 3. 卷积和定义及物理意义激励)(k f 、零状态响应)(k y f 、冲激响应)(k h 之间关系)()()(k h k f k y f *=卷积和的作图解 )(k f 与)(k δ的卷积和)()()(k f k k f =*δ;)()()(11k k f k k k f -=-*δ结合前面卷积积分和卷积和,知道零状态响应除经典解法外的另一方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
f (t )
n
Fn e jnt
信 号 特 点
信号 f (t ) f (t )
f (t ) f (t )
T f (t ) f (t ) 2 T f (t ) f (t ) 2
频率成分 只含直流和余弦分量 只含正弦分量
只含奇次谐波分量
def
f (t ) dt
2
功率信号 P <∞
E=∞
直流、 周期信号
1 P lim T T
▲
©南昌航空大学电子信息工程
T 2 T 2 ■
f (t ) dt
第 3页
2
(二) 典型信号
阶跃、冲激和冲激偶信号
冲激信号
定义 奇偶性 抽样性 尺度性
t
( )d (t )
z
终值
f () lim sF ( s )
s 0
f () lim( z 1) F ( z )
z 1
对称
F ( jt ) 2f ()
©南昌航空大学电子信息工程
▲ ■ 第 14 页
例10:已知理想低通滤波器的系统函数为
H ( j) 2u( ) u( )e j 3
整个z复平面, 即: 0≤ |z| ≤ ∞
■
©南昌航空大学电子信息工程学院电子工程系
第 10 页
例4: 解:
判断系统 y(t ) x(t ) x(2t 1) 的线性、时变性 和因果性。
① 系统中激励含二次项,该系统为非线性系统。 ② 方程中激励存在展缩变换; 该系统为时变系统。 ③ y(0) x(0) x(3) ,即输出与现在及未来激励有 关,该系统为非因果系统。
▲ ■ 第 15 页
f () 不存在 2s 5 F ( s) 即 f () ( s 1)(s 3) 极点P=1在S平面右侧
信号与系统 电子教案 例11: 已知因果信号f(t)对应的拉氏变换为 F(s)=(2s+5)/(s2 +2s-3) 则f (0+)= , f (∞)= 2s 5 2 解: f (0) lim sF ( s) lim s 2 s s
3、s与z变换的关系
s变换收敛域
z = e s T=re jθ
z变换收敛域
因果信号 双边信号
时限信号
边界右侧,即:> 0 带状区, 即: 1< < 2
整个S复平面, 即: > -∞
圆外,即: |z| >a
圆内,即: |z| <a
反因果信号 边界左侧,即:< 0
环状区, 即: a< |z| < b
1 1 (n) (at) (t ) n a a
(n)
f (k ) (k k0 ) f (k0 )
©南昌航空大学电子信息工程
▲ ■ 第 4页
(三) 系统特性 1.线性系统
①激励(含初始状态) 系统微分 ②响应(输出) 方程中 ③及其导数或积分 只能是一次项 而不能是它们的 ①绝对值 ②三角与指数函数 ③更不能含常数项
π f (t ) 1 5 cos( 1t 0.15 π) cos( 21t ) 4
a
三角形式傅里叶级数的系数
An A1
A0 2 1
A0 1
A2 1
0 0
2 0.25π
2.24
A2
单边频谱图
1
A1 5 2.24 1 0.15π
双边频谱图
O
1
相乘性 f (t ) (t t0 ) f (t0 ) (t t0 )
f (t ) (t t0 )dt f (t0 )
f (t ) (t t0 )dt f (t0 )
(at)
1 (t ) a
1 (at ) 2 (t ) a
L[ (t ) (t 2)] 1 e2 s
Re[s]
1 e 2 s [ (t 4n)] [ (t ) (t 2)] 1 e4 s n 0
n 0
---时域卷积性质
f (t ) L1[ F ( s)] [ (t 4n)] [ (t ) (t 2)]
① 系统中激励含二次项,该系统为非线性系统。 ② 方程中激励存在展缩变换; 该系统为时变系统。 ③ y(0) x(0) x(3) ,即输出与现在及未来激励有 关,该系统为非因果系统。
©南昌航空大学电子信息工程
▲
■
第 6页
信号与系统
电子教案
二、信号的三大变换
(一)傅里叶变换
1、傅里叶级数
f (t ) a0 an cosn0t bn sinn0t
(t )
(k )
©南昌航空大学电子信息工程学院电子工程系
■
第 13 页
5.三大变换性质对比
f (t t0 ) F ( j )e
移位
j t 0
f (t t0 ) e st 0 F (s)
a t
双边 单边
k
f (k m) z m F ( z)
z
m k m k f (k ) z 1
s 2s 3
;
例12:
已知 f (k ) (k ) (2)k (k ) ,求 f (0) 与 f ()
z z 2z 2 z 解:F ( z) z 1 z 2 ( z 1)(z 2)
2z 2 z f (0) lim F ( z ) lim 2 z z ( z 1)(z 2) ( z 1) 2z 1 1 f () lim F ( z ) lim z 1 z 1 ( z 2) z 3
信号与系统 总复习
主讲: 熊文华
南昌航空大学电子信息工程 ©
南昌航空大学电子信息工程
▲
■
第 1页
复习内容
Part1 信号、系统基础 Part2 信号的三大变换 Part3 系统分析
(含信号与系统的应用)
©南昌航空大学电子信息工程
▲
■
第 2页
一、信号、系统基础
(一) 信号特性
1、正弦信号的周期性
f
( n)
(t ) s F (s)
n
k f (k ) z
d F ( z) dz
f1 () f 2 () F1 () F2 ()
f (t ) f (t ) 使频谱展宽为原来的2倍
f (0 ) lim sF ( s )
s
f (0) lim F ( z )
f (t )e
尺度
j 0 t
F j ( 0 ) f (t )e
F (s a)
1 f (at) F ( ) a a
1 s f (at) F ( ) a a
z a f (k ) F ( ) a
微分 卷积
初、
f (t ) ( j) F ( j)
( n) n
©南昌航空大学电子信息工程
▲
■
第 11 页
π 例5:已知 f (t ) 1 sin 1t 2 cos 1t cos( 21t ), 4 请画出其幅度谱和相位谱。 解: a cos t b sin t a 2 b 2 cos( t ), arctg b
2 1
©南昌航空大学电子信息工程
▲
■
第 12 页
信号与系统
电子教案
4、常用信号变换
序号 1 2
3
f (t)
F(jω)
1
F(S)
1 1 s
f (k)
F(z)
(t )
(t )
0
sin 0t
cos 0t
s2 2 s s2 2
4
1, z 0 1 z ( ) , z 1 (k ) (k ) j z 1 z k , z a sa ( ) a (k ) g (t ) za 2 z a k (k 1) z a , z a s z ( z cos0 ) cos(0t ) [ ( 0 ) ( 0 )] s 2 2 cos(0 k ) z 2 2 z cos 1 0 0
2 1
©南昌航空大学电子信息工程
▲
■
第 9页
信号与系统
电子教案
(二)拉氏变换和z变换
s = ζ+jω
1.单边拉氏变换 F ( s) f (t )e st dt 0 2.z变换
F ( z ) f (k ) z
k 0 k
F ( z)
k
f ( k ) z k
离散性、谐波性、收敛性
▲ ■
©南昌航空大学电子信息工程
第 8页
π 例5:已知 f (t ) 1 sin 1t 2 cos 1t cos( 21t ), 4 请画出其幅度谱和相位谱。 解: a cos t b sin t a 2 b 2 cos( t ), arctg b
极点z 1 - 2,收敛域不含单位圆 f () 不存在! 、 , 即 f ()
©南昌航空大学电子信息工程学院电子工程系
■
第 16 页
1 例 13: 已知 F ( s ) 1 e 2s , 求F(s)的单边拉氏逆变换。
解: F(s)不是有理分式,不能展开为部分分式。
( e 2 s) 1 ( e 2 s) 1 F ( s) 2 s 2 s ( e )( e ) 1 e 4 s 1 1 1 1 L[ (t nT )] (t 4n) sT Re[s] 0 4 s 1 e 1 e n 0 n 0