数字信号处理习题集(附答案)

合集下载

数字信号处理课后习题答案(全)1-7章

数字信号处理课后习题答案(全)1-7章

(5)y(n)=x2(n)
(6)y(n)=x(n2)
(7)y(n)=
n
(8)y(n)=x(n)sin(ωxn(m) )
m0
解: (1) 令输入为
输出为
x(n-n0)
y′(n)=x(n-n0)+2x(n-n0-1)+3x(n-n0-2) y(n-n0)=x(n-n0)+2x(n—n0—1)+3(n-n0-2)
所以 T[ax1(n)+bx2(n)]=aT[x1(n)]+bT[x2(n)]
第 1 章 时域离散信号和时域离散系统
(2) 令输入为
输出为
x(n-n0)
y′(n)=2x(n-n0)+3 y(n-n0)=2x(n-n0)+3=y′(n) 故该系统是非时变的。 由于
T[ax1(n)+bx2(n)]=2ax1(n)+2bx2(n)+3 T[ax1(n)]=2ax1(n)+3 T[bx2(n)]=2bx2(n)+3 T[ax1(n)+bx2(n)]≠aT[x1(n)]+bT[x2(n)] 故该系统是非线性系统。
=2x(n)+x(n-1)+ x(n-2)
将x(n)的表示式代入上式, 得到 1 y(n)=-2δ(n+2)-δ(n+1)-0.5δ(2n)+2δ(n-1)+δ(n-2)
+4.5δ(n-3)+2δ(n-4)+δ(n-5)
第 1 章 时域离散信号和时域离散系统
8. 设线性时不变系统的单位脉冲响应h(n)和输入x(n)分别有以下三种情况,
(3) 如果|x(n)|≤M, 则|y(n)|≤ nn0|x(k)|≤|2n0+1|M, 因 k nn0

数字信号处理习题集大题及答案

数字信号处理习题集大题及答案

1设序列x(n)={4,3,2,1} , 另一序列h(n) ={1,1,1,1},n=0,1,2,3 (1)试求线性卷积 y(n)=x(n)*h(n) (2)试求6点圆周卷积。

(3)试求8点圆周卷积。

解:1.y(n)=x(n)*h(n)={4,7,9,10,6,3,1}2.6点圆周卷积={5,7,9,10,6,3}3.8点圆周卷积={4,7,9,10,6,3,1,0}2二.数字序列 x(n)如图所示. 画出下列每个序列时域序列: (1) x(n-2); (2)x(3-n);(3)x[((n-1))6],(0≤n ≤5);(4)x[((-n-1))6],(0≤n ≤5);n12340.5x(3-n)x[((n-1))]n43210.5n12340.5x[((-n-1))6]3.已知一稳定的LTI 系统的H(z)为)21)(5.01()1(2)(111------=z z z z H试确定该系统H(z)的收敛域和脉冲响应h[n]。

解:0.52ReIm系统有两个极点,其收敛域可能有三种形式,|z|<0.5, 0.5<|z|<2, |z|>2 因为稳定,收敛域应包含单位圆,则系统收敛域为:0.5<|z|<211111213/25.013/4)21)(5.01()1(2)(--------=---=z z z z z z H)1(232)()5.0(34)(--+=n u n u n h n n4.设x(n)是一个10点的有限序列x (n )={ 2,3,1,4,-3,-1,1,1,0,6},不计算DFT ,试确定下列表达式的值。

(1) X(0), (2) X(5), (3)∑=9)(k k X ,(4)∑=-95/2)(k k j k X eπ解:(1) (2)(3)(4)5. x(n)和h(n)是如下给定的有限序列 x(n)={5, 2, 4, -1, 2}, h(n)={-3, 2, -1 }(1) 计算x(n)和h(n)的线性卷积y(n)= x(n)* h(n); (2) 计算x(n)和h(n)的6 点循环卷积y 1(n)= x(n)⑥h (n); (3) 计算x(n)和h(n)的8 点循环卷积y 2(n)= x(n)⑧h (n); 比较以上结果,有何结论? 解:(1)14][]0[190===∑=n Nn x X W 12][][]5[119180510-=-===⎩⎨⎧-=∑∑====奇偶奇数偶数n n n n n n x n x X n n W20]0[*10][][101]0[99===∑∑==x k X k X x k k 0]8[*10][][101]))210[((][]))[((2)10/2(92)10/2(9010)/2(===-⇔--=-=-∑∑x k X ek X ex k X e m n x k j k k j k m N k j N πππ5 2 4 -1 2-3 2 15 2 4 -1 210 4 8 -2 4-15 -6 -12 3 -6-15 4 -3 13 -4 3 2y(n)= x(n)* h(n)={-15,4,-3,13,-4,3,2}(2)5 2 4 -1 2-3 2 15 2 4 -1 210 4 8 -2 4-15 -6 -12 3 -6-15 4 -3 13 -4 3 22-13 4 -3 13 -4 3 2y1(n)= x(n)⑥h(n)= {-13,4,-3,13,-4,3}(3)因为8>(5+3-1),所以y3(n)= x(n)⑧h(n)={-15,4,-3,13,-4,3,2,0}y3(n)与y(n)非零部分相同。

数字信号处理习题集(附答案)1

数字信号处理习题集(附答案)1

1.如果一台通用机算计的速度为:平均每次复乘需100s μ,每次复加需20s μ,今用来计算N=1024点的DFT )]({n x 。

问直接运算需( )时间,用FFT 运算需要( )时间。

解:(1)直接运算:需复数乘法2N 次,复数加法)(1-N N 次。

直接运算所用计算时间1T 为s s N N N T 80864.12512580864020110021==⨯-+⨯=μ)((2)基2FFT 运算:需复数乘法N N2log 2次,复数加法N N 2log 次。

用FFT 计算1024点DTF 所需计算时间2T 为s s N N N NT 7168.071680020log 100log 2222==⨯+⨯=μ2.N 点FFT 的运算量大约是( )。

解:N N2log 2次复乘和N N 2log 次复加 5.基2FFT 快速计算的原理是什么?它所需的复乘、复加次数各是多少?解:原理:利用knN W 的特性,将N 点序列分解为较短的序列,计算短序列的DFT ,最后再组合起来。

复乘次数:NN 2log 2,复加次数:N N 2log计算题:2.设某FIR 数字滤波器的冲激响应,,3)6()1(,1)7()0(====h h h h6)4()3(,5)5()2(====h h h h ,其他n 值时0)(=n h 。

试求)(ωj e H 的幅频响应和相频响应的表示式,并画出该滤波器流图的线性相位结构形式。

解: {}70,1,3,5,6,6,5,3,1)(≤≤=n n h ∑-=-=10)()(N n nj j e n h e H ωω⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛+=+++++++=---------------ωωωωωωωωωωωωωωωωωωω2121272323272525272727277654326533566531j j j j j j j j j j j j j j j j j j j e e e e e e e e e e e ee e e e e e e)(27)(27cos 225cos 623cos 102cos 12ωφωωωωωωj j e H e=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=- 所以)(ωj eH 的幅频响应为ωωωωωω2727cos 225cos 623cos 102cos 12)(j eH -⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛= )(ωj e H 的相频响应为ωωφ27)(-=13.用双线性变换法设计一个3阶Butterworth 数字带通滤波器,抽样频率Hz f s 720=,上下边带截止频率分别为Hz f 601=,Hz f 3002=。

数字信号处理习题与答案

数字信号处理习题与答案

==============================绪论==============================1. A/D 8bit 5V00000000 0V 00000001 20mV 00000010 40mV 00011101 29mV==================第一章 时域离散时间信号与系统==================1.①写出图示序列的表达式答:3)1.5δ(n 2)2δ(n 1)δ(n 2δ(n)1)δ(n x(n)-+---+++= ②用δ(n) 表示y (n )={2,7,19,28,29,15}2. ①求下列周期)54sin()8sin()4()51cos()3()54sin()2()8sin()1(n n n n n ππππ-②判断下面的序列是否是周期的; 若是周期的, 确定其周期。

(1)A是常数 8ππn 73Acos x(n)⎪⎪⎭⎫ ⎝⎛-= (2))81(j e )(π-=n n x 解: (1) 因为ω=73π, 所以314π2=ω, 这是有理数, 因此是周期序列, 周期T =14。

(2) 因为ω=81, 所以ωπ2=16π, 这是无理数, 因此是非周期序列。

③序列)Acos(nw x(n)0ϕ+=是周期序列的条件是是有理数2π/w 0。

3.加法乘法序列{2,3,2,1}与序列{2,3,5,2,1}相加为__{4,6,7,3,1}__,相乘为___{4,9,10,2} 。

移位翻转:①已知x(n)波形,画出x(-n)的波形图。

②尺度变换:已知x(n)波形,画出x(2n)及x(n/2)波形图。

卷积和:①h(n)*求x(n),其他02n 0n 3,h(n)其他03n 0n/2设x(n) 例、⎩⎨⎧≤≤-=⎩⎨⎧≤≤=}23,4,7,4,23{0,h(n)*答案:x(n)=②已知x (n )={1,2,4,3},h (n )={2,3,5}, 求y (n )=x (n )*h (n )x (m )={1,2,4,3},h (m )={2,3,5},则h (-m )={5,3,2}(Step1:翻转)解得y (n )={2,7,19,28,29,15}③(n)x *(n)x 3),求x(n)u(n u(n)x 2),2δ(n 1)3δ(n δ(n)2、已知x 2121=--=-+-+=}{1,4,6,5,2答案:x(n)=4. 如果输入信号为,求下述系统的输出信号。

数字信号处理课后习题答案(全)1-7章

数字信号处理课后习题答案(全)1-7章
因此系统是非线性系统。
第 1 章 时域离散信号和时域离散系统
(6) y(n)=x(n2)
令输入为
输出为
x(n-n0)
y′(n)=x((n-n0)2) y(n-n0)=x((n-n0)2)=y′(n) 故系统是非时变系统。 由于
T[ax1(n)+bx2(n)]=ax1(n2)+bx2(n2) =aT[x1(n)]+bT[x2(n)]
第 1 章 时域离散信号和时域离散系统
题4解图(一)
第 1 章 时域离散信号和时域离散系统
题4解图(二)
第 1 章 时域离散信号和时域离散系统
题4解图(三)
第 1 章 时域离散信号和时域离散系统
(4) 很容易证明: x(n)=x1(n)=xe(n)+xo(n)
上面等式说明实序列可以分解成偶对称序列和奇对称序列。 偶对称序列可 以用题中(2)的公式计算, 奇对称序列可以用题中(3)的公式计算。
(2) y(n)=x(n)+x(nN+1)k 0
(3) y(n)= x(k)
(4) y(n)=x(n-nn0)n0
(5) y(n)=ex(n)
k nn0
第 1 章 时域离散信号和时域离散系统
解:(1)只要N≥1, 该系统就是因果系统, 因为输出 只与n时刻的和n时刻以前的输入有关。
如果|x(n)|≤M, 则|y(n)|≤M, (2) 该系统是非因果系统, 因为n时间的输出还和n时间以 后((n+1)时间)的输入有关。如果|x(n)|≤M, 则 |y(n)|≤|x(n)|+|x(n+1)|≤2M,
=2x(n)+x(n-1)+ x(n-2)
将x(n)的表示式代入上式, 得到 1 y(n)=-2δ(n+2)-δ(n+1)-0.5δ(2n)+2δ(n-1)+δ(n-2)

(完整word版)数字信号处理习题及答案

(完整word版)数字信号处理习题及答案

==============================绪论==============================1。

A/D 8bit 5V 00000000 0V 00000001 20mV 00000010 40mV 00011101 29mV==================第一章 时域离散时间信号与系统==================1。

①写出图示序列的表达式答:3)1.5δ(n 2)2δ(n 1)δ(n 2δ(n)1)δ(n x(n)-+---+++= ②用(n ) 表示y (n )={2,7,19,28,29,15}2. ①求下列周期)54sin()8sin()4()51cos()3()54sin()2()8sin()1(n n n n n ππππ-②判断下面的序列是否是周期的; 若是周期的, 确定其周期。

(1)A是常数 8ππn 73Acos x(n)⎪⎪⎭⎫ ⎝⎛-= (2))81(j e )(π-=n n x 解: (1) 因为ω=73π, 所以314π2=ω, 这是有理数, 因此是周期序列, 周期T =14。

(2) 因为ω=81, 所以ωπ2=16π, 这是无理数, 因此是非周期序列。

③序列)Acos(nw x(n)0ϕ+=是周期序列的条件是是有理数2π/w 0。

3.加法 乘法序列{2,3,2,1}与序列{2,3,5,2,1}相加为__{4,6,7,3,1}__,相乘为___{4,9,10,2} 。

移位翻转:①已知x(n)波形,画出x(—n )的波形图。

②尺度变换:已知x(n)波形,画出x (2n )及x(n/2)波形图.卷积和:①h(n)*求x(n),其他2n 0n 3,h(n)其他3n 0n/2设x(n) 例、⎩⎨⎧≤≤-=⎩⎨⎧≤≤=}23,4,7,4,23{0,h(n)*答案:x(n)=②已知x (n )={1,2,4,3},h (n )={2,3,5}, 求y (n )=x (n )*h (n )x (m )={1,2,4,3},h (m )={2,3,5},则h (—m )={5,3,2}(Step1:翻转)解得y (n )={2,7,19,28,29,15}③(n)x *(n)x 3),求x(n)u(n u(n)x 2),2δ(n 1)3δ(n δ(n)2、已知x 2121=--=-+-+=}{1,4,6,5,2答案:x(n)=4. 如果输入信号为,求下述系统的输出信号。

数字信号处理试题及答案

数字信号处理试题及答案

数字信号处理试题及答案一、选择题1. 数字信号处理中的离散傅里叶变换(DFT)是傅里叶变换的______。

A. 连续形式B. 离散形式C. 快速算法D. 近似计算答案:B2. 在数字信号处理中,若信号是周期的,则其傅里叶变换是______。

A. 周期的B. 非周期的C. 连续的D. 离散的答案:A二、填空题1. 数字信号处理中,______是将模拟信号转换为数字信号的过程。

答案:采样2. 快速傅里叶变换(FFT)是一种高效的______算法。

答案:DFT三、简答题1. 简述数字滤波器的基本原理。

答案:数字滤波器的基本原理是根据信号的频率特性,通过数学运算对信号进行滤波处理。

它通常包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器等类型,用于选择性地保留或抑制信号中的某些频率成分。

2. 解释什么是窗函数,并说明其在信号处理中的作用。

答案:窗函数是一种数学函数,用于对信号进行加权,以减少信号在离散化过程中的不连续性带来的影响。

在信号处理中,窗函数用于平滑信号的开始和结束部分,减少频谱泄露效应,提高频谱分析的准确性。

四、计算题1. 给定一个信号 x[n] = {1, 2, 3, 4},计算其 DFT X[k]。

答案:首先,根据 DFT 的定义,计算 X[k] 的每个分量:X[0] = 1 + 2 + 3 + 4 = 10X[1] = 1 - 2 + 3 - 4 = -2X[2] = 1 + 2 - 3 - 4 = -4X[3] = 1 - 2 - 3 + 4 = 0因此,X[k] = {10, -2, -4, 0}。

2. 已知一个低通滤波器的截止频率为0.3π rad/sample,设计一个简单的理想低通滤波器。

答案:理想低通滤波器的频率响应为:H(ω) = { 1, |ω| ≤ 0.3π{ 0, |ω| > 0.3π }五、论述题1. 论述数字信号处理在现代通信系统中的应用及其重要性。

答案:数字信号处理在现代通信系统中扮演着至关重要的角色。

数字信号处理课后习题答案(全)1-7章

数字信号处理课后习题答案(全)1-7章

x(n)=-δ(n+2)+δ(n-1)+2δ(n-3)
h(n)=2δ(n)+δ(n-1)+ δ(n-2)
由于
x(n)*δ(n)=x(n)
1
x(n)*Aδ(n-k)=Ax(n-k)
2

第 1 章 时域离散信号和时域离散系统
y(n)=x(n)*h(n)
=x(n)*[2δ(n)+δ(n-1)+ δ(n-2) 1 2
(5) 系统是因果系统, 因为系统的输出不取决于x(n)的未来值。 如果
|x(n)|≤M, 则|y(n)|=|ex(n)|≤e|x(n)|≤eM,
7. 设线性时不变系统的单位脉冲响应h(n)和输入序列x(n)如题7图所示,
要求画出y(n)输出的波形。
解: 解法(一)采用列表法。
y(n)=x(n)*h(n)=
0≤m≤3
-4≤m≤n
非零区间如下:
第 1 章 时域离散信号和时域离散系统
根据非零区间, 将n分成四种情况求解: ① n<0时, y(n)=0
② 0≤n≤3时, y(n)= ③ 4≤n≤7时, y(n)= ④ n>7时, y(n)=0
1=n+1
n
1=8-m n0
3
mn4
第 1 章 时域离散信号和时域离散系统
第 1 章 时域离散信号和时域离散系统
(3) 这是一个延时器, 延时器是线性非时变系统, 下面证明。 令输入为
输出为
x(n-n1)
y′(n)=x(n-n1-n0) y(n-n1)=x(n-n1-n0)=y′(n) 故延时器是非时变系统。 由于
T[ax1(n)+bx2(n)]=ax1(n-n0)+bx2(n-n0) =aT[x1(n)]+bT[x2(n)]

数字信号处理习题库选择题附加答案

数字信号处理习题库选择题附加答案

第1章选择题1.信号通常是时间的函数,数字信号的主要特征是:信号幅度取 ;时间取 。

( B )A.离散值;连续值B.离散值;离散值C.连续值;离散值D.连续值;连续值2.数字信号的特征是( B )A .时间离散、幅值连续B .时间离散、幅值量化C .时间连续、幅值量化D .时间连续、幅值连续3.下列序列中属周期序列的为( D )A .x(n) = δ(n)B .x(n) = u(n)C .x(n) = R 4(n)D .x(n) = 14.序列x(n)=sin ⎪⎭⎫ ⎝⎛n 311的周期为( D ) A .3 B .6 C .11 D .∞5. 离散时间序列x (n )=cos(n 73π-8π)的周期是 ( C ) A. 7 B. 14/3 C. 14 D. 非周期 6.以下序列中( D )的周期为5。

A .)853cos()(ππ+=n n x B. )853sin()(ππ+=n n x C. )852()(π+=n j e n x 7.下列四个离散信号中,是周期信号的是( C )。

A .sin100n B. n j e 2 C. n n ππ30sin cos + D. n j n j e e5431π- 8.以下序列中 D 的周期为5。

A.)853cos()(π+=n n x B.)3sin()(π+=n n x C.)852()(π+=n j e n x 9.离散时间序列x (n )=cos ⎪⎭⎫ ⎝⎛+353ππn 的周期是( C ) A.5 B.10/3 C.10 D.非周期10.离散时间序列x(n)=sin (5n 31π+)的周期是( D ) A.3 B.6 C.6π D.非周期11.序列x (n )=cos ⎪⎭⎫ ⎝⎛n 5π3的周期为( C ) A.3 B.5C.10D.∞ 12.下列关系正确的为( C )A .u(n)=∑=n k 0δ (n)B .u(n)=∑∞=0k δ (n)C .u(n)=∑-∞=n k δ (n-k) D .u(n)=∑∞-∞=k δ (n) 13.设系统的单位抽样响应为h(n),则系统因果的充要条件为( C )A .当n>0时,h(n)=0B .当n>0时,h(n)≠0C .当n<0时,h(n)=0D .当n<0时,h(n)≠014.下列系统(其中y(n)是输出序列,x(n)是输入序列)中______属于线性系统。

数字信号处理习题集大题与答案

数字信号处理习题集大题与答案

1设序列x(n)={4,3,2,1} , 另一序列h(n) ={1,1,1,1},n=0,1,2,3 (1)试求线性卷积 y(n)=x(n)*h(n) (2)试求6点圆周卷积。

(3)试求8点圆周卷积。

解:1.y(n)=x(n)*h(n)={4,7,9,10,6,3,1}2.6点圆周卷积={5,7,9,10,6,3}3.8点圆周卷积={4,7,9,10,6,3,1,0}2二.数字序列 x(n)如图所示. 画出下列每个序列时域序列: (1) x(n-2); (2)x(3-n); (3)x[((n-1))6],(0≤n ≤5); (4)x[((-n-1))6],(0≤n ≤5);n12340.543210-1-2-3x(3-n)x[((n-1))6]n54321043210.5n12340.5543210x[((-n-1))6]3.已知一稳定的LTI 系统的H(z)为)21)(5.01()1(2)(111------=z z z z H试确定该系统H(z)的收敛域和脉冲响应h[n]。

解:0.52ReIm系统有两个极点,其收敛域可能有三种形式,|z|<0.5, 0.5<|z|<2, |z|>2 因为稳定,收敛域应包含单位圆,则系统收敛域为:0.5<|z|<211111213/25.013/4)21)(5.01()1(2)(--------=---=z z z z z z H )1(232)()5.0(34)(--+=n u n u n h n n4.设x(n)是一个10点的有限序列x (n )={ 2,3,1,4,-3,-1,1,1,0,6},不计算DFT ,试确定下列表达式的值。

(1) X(0), (2) X(5), (3)∑=9)(k k X,(4)∑=-95/2)(k k j k X eπ解:(1) (2)(3)(4)5. x(n)和h(n)是如下给定的有限序列 x(n)={5, 2, 4, -1, 2}, h(n)={-3, 2, -1 }(1) 计算x(n)和h(n)的线性卷积y(n)= x(n)* h(n); (2) 计算x(n)和h(n)的6 点循环卷积y 1(n)= x(n)⑥h (n); (3) 计算x(n)和h(n)的8 点循环卷积y 2(n)= x(n)⑧h (n); 比较以上结果,有何结论?14][]0[19===∑=n N n x X W 12][][]5[119180510-=-===⎩⎨⎧-=∑∑====奇偶奇数偶数n n n n n n x n x X n n W20]0[*10][][101]0[99===∑∑==x k X k X x k k 0]8[*10][][101]))210[((][]))[((2)10/2(92)10/2(9010)/2(===-⇔--=-=-∑∑x k X ek X ex k X e m n x k j k k j k m N k j N πππ解:(1)5 2 4 -1 2-3 2 15 2 4 -1 210 4 8 -2 4-15 -6 -12 3 -6-15 4 -3 13 -4 3 2y(n)= x(n)* h(n)={-15,4,-3,13,-4,3,2}(2)5 2 4 -1 2-3 2 15 2 4 -1 210 4 8 -2 4-15 -6 -12 3 -6-15 4 -3 13 -4 3 22-13 4 -3 13 -4 3 2y1(n)= x(n)⑥h(n)= {-13,4,-3,13,-4,3}(3)因为8>(5+3-1),所以y3(n)= x(n)⑧h(n)={-15,4,-3,13,-4,3,2,0}y3(n)与y(n)非零部分相同。

数字信号处理试题及答案

数字信号处理试题及答案

数字信号处理试题及答案1. 试题1.1 选择题1. 设x(n)为长度为N的实序列,其中0≤n≤N-1。

要将其进行离散傅立叶变换(DFT),DFT的结果为X(k),其中0≤k≤N-1。

以下哪个式子为正确的傅立叶变换公式?A. X(k) = ∑[x(n) * exp(-j2πkn/N)],0≤k≤N-1B. X(k) = ∑[x(n) * exp(-j2πnk/N)],0≤k≤N-1C. X(k) = ∑[x(n) * exp(-jπkn/N)],0≤k≤N-1D. X(k) = ∑[x(n) * exp(-jπnk/N)],0≤k≤N-12. 在基于FFT算法的离散傅立叶变换中,当序列长度N为2的整数幂时,计算复杂度为:A. O(N^2)B. O(NlogN)C. O(logN)D. O(N)3. 对于一个由N个采样值组成的序列,它的z变换被定义为下式:X(z) = ∑[x(n) * z^(-n)],其中n取0至N-1以下哪个选项正确表示该序列的z变换?A. X(z) = X(z)e^(-i2π/N)B. X(z) = X(z)e^(-iπ/N)C. X(z) = X(z^-1)e^(-i2π/N)D. X(z) = X(z^-1)e^(-iπ/N)1.2 简答题1. 请简要说明数字信号处理(DSP)的基本概念和应用领域。

2. 解释频率抽样定理(Nyquist定理)。

3. 在数字滤波器设计中,有两种常见的滤波器类型:FIR和IIR滤波器。

请解释它们的区别,并举例说明各自应用的情况。

2. 答案1.1 选择题答案1. B2. B3. D1.2 简答题答案1. 数字信号处理(DSP)是一种利用数字计算机或数字信号处理器对信号进行采样、量化、处理和重建的技术。

它可以应用于音频处理、图像处理、通信系统、雷达系统等领域。

DSP可以实现信号的滤波、变换、编码、解码、增强等功能。

2. 频率抽样定理(Nyquist定理)指出,为了正确地恢复一个连续时间信号,我们需要对其进行采样,并且采样频率要大于信号中最高频率的两倍。

数字信号处理习题答案

数字信号处理习题答案

冲响应, 即
14
第1章 时域离散信号与时域离散系统
h(n) 1[ (n) δ(n 1) δ(n 2) δ(n 3) δ(n 4)]
5
(2) 已知输入信号, 用卷积法求输出。 输出信号y(n)为 y(n) x(k)h(n k) k
表1.4.1表示了用列表法解卷积的过程。 计算时, 表
第1章 时域离散信号与时域离散系统
2. 给定信号:
2n+5
-4≤n≤-1
x(n)= 6
0≤n≤4
0
其它
(1) 画出x(n)序列的波形, 标上各序列值;
(2) 试用延迟的单位脉冲序列及其加权和表示x(n)序列;
(3) 令x1(n)=2x(n-2), 试画出x1(n)波形; (4) 令x2(n)=2x(n+2), 试画出x2(n)波形; (5) 令x3(n)=x(2-n), 试画出x3(n)波形。
n
n
x(n) 2 cos(0nT )
- n
(3)
0 2πf0 200π rad
T 1 2.5 ms fs
Xˆ a (
j )
1 T
X a ( j
k
jks )
2π T
[δ(
k
0
k s
)
δ(
0
ks )]
式中 s 2πfs 800π rad/s
22
第2章 时域离散信号和系统的频域分析
解: (1) x(n)序列的波形如题2解图(一)所示。 (2) x(n)=-3δ(n+4)-δ(n+3)+δ(n+2)+3δ(n+1)+6δ(n) +6δ(n-1)+6δ(n-2)+6δ(n-3)+6δ(n-4)

数字信号处理课后习题答案(全)1-7章

数字信号处理课后习题答案(全)1-7章

最后结果为 0
n<0或n>7
y(n)= n+1 0≤n≤3 8-n 4≤n≤7
y(n)的波形如题8解图(一)所示。 (2) y(n) =2R4(n)*[δ(n)-δ(n-2)]=2R4(n)-2R4(n-2)
=2[δ(n)+δ(n-1)-δ(n+4)-δ(n+5) y(n)的波形如题8解图(二)所示
因此系统是非线性系统。
第 1 章 时域离散信号和时域离散系统
(6) y(n)=x(n2)
令输入为
输出为
x(n-n0)
y′(n)=x((n-n0)2) y(n-n0)=x((n-n0)2)=y′(n) 故系统是非时变系统。 由于
T[ax1(n)+bx2(n)]=ax1(n2)+bx2(n2) =aT[x1(n)]+bT[x2(n)]
因此系统是非时变系统。
第 1 章 时域离散信号和时域离散系统
(5) y(n)=x2(n)
令输入为
输出为
x(n-n0)
y′(n)=x2(n-n0) y(n-n0)=x2(n-n0)=y′(n) 故系统是非时变系统。 由于
T[ax1(n)+bx2(n)]=[ax1(n)+bx2(n)]2 ≠aT[x1(n)]+bT[x2(n) =ax21(n)+bx22(n)
第 1 章 时域离散信号和时域离散系统
题4解图(一)
第 1 章 时域离散信号和时域离散系统
题4解图(二)
第 1 章 时域离散信号和时域离散系统
题4解图(三)
第 1 章 时域离散信号和时域离散系统
(4) 很容易证明: x(n)=x1(n)=xe(n)+xo(n)

(完整版)数字信号处理题库(附答案).doc

(完整版)数字信号处理题库(附答案).doc

数字信号处理复习题一、选择题1、某系统 y(n) g( n) x(n), g( n) 有界,则该系统(A )。

A. 因果稳定B.非因果稳定C.因果不稳定D. 非因果不稳定2、一个离散系统(D)。

A. 若因果必稳定B. 若稳定必因果C.因果与稳定有关D. 因果与稳定无关3、某系统 y(n) nx(n), 则该系统(A )。

A. 线性时变B. 线性非时变C. 非线性非时变D. 非线性时变 4.因果稳定系统的系统函数 H ( z) 的收敛域是( D)。

A. z 0.9B. z 1.1C. z1.1D.z 0.95. x 1 (n) 3sin(0.5 n) 的周期( A)。

A.4B.3C.2D.16.某系统的单位脉冲响应h(n) ( 1) nu(n), 则该系统(C )。

2A. 因果不稳定B.非因果稳定C.因果稳定D. 非因果不稳定7.某系统 y(n) x(n) 5 ,则该系统(B )。

A. 因果稳定B.非因果稳定C.因果不稳定D. 非因果不稳定8.序列 x(n) a n u( n 1), 在 X ( z) 的收敛域为( A)。

A. z aB. zaC.z a D. z a9.序列 x(n)(1) nu(n) ( 1)n u( n 1), 则 X (z) 的收敛域为( D )。

1 3 12 1 1 1B. zC. z zA. z3 2 D. 223 10.关于序列 x( n) 的 DTFT X (ej) ,下列说法正确的是(C )。

A. 非周期连续函数B.非周期离散函数C.周期连续函数,周期为 2D.周期离散函数,周期为211.以下序列中( D )的周期为 5。

A. x( n)cos( 3n)B. x(n)sin( 3 n)5 588C. x( n) e j ( 2n)x(n)j (2n) 58D. e 5812. x(n)ej (n)3 6,该序列是( A )。

A. 非周期序列B.周期 N6C.周期 N6D.周期N 213. ((4)) 4 ________ 。

数字信号处理习题集大题及答案

数字信号处理习题集大题及答案

文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持.1文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持.1设序列x(n)={4,3,2,1} , 另一序列h(n) ={1,1,1,1},n=0,1,2,3 (1)试求线性卷积 y(n)=x(n)*h(n) (2)试求6点圆周卷积。

(3)试求8点圆周卷积。

解:1.y(n)=x(n)*h(n)={4,7,9,10,6,3,1}2.6点圆周卷积={5,7,9,10,6,3} 3.8点圆周卷积={4,7,9,10,6,3,1,0} 2二.数字序列 x(n)如图所示. 画出下列每个序列时域序列: (1) x(n-2); (2)x(3-n); (3)x[((n-1))6],(0≤n ≤5);(4)x[((-n-1))6],(0≤n ≤5);3.已知一稳定的LTI 系统的H(z)为)21)(5.01()1(2)(111------=z z z z H试确定该系统H(z)的收敛域和脉冲响应h[n]。

解系统有两个极点,其收敛域可能有三种形式,|z|<0.5, 0.5<|z|<2, |z|>2 因为稳定,收敛域应包含单位圆,则系统收敛域为:0.5<|z|<24.设x(n)是一个10点的有限序列x (n )={ 2,3,1,4,-3,-1,1,1,0,6},不计算DFT ,试确定下列表达式的值。

(1) X(0), (2) X(5), (3) ∑=90)(k k X,(4)∑=-95/2)(k k j k X eπ解:(1) (2)(3) (4) 5. x(n)和h(n)是如下给定的有限序列 x(n)={5, 2, 4, -1, 2}, h(n)={-3, 2, -1 } (1) 计算x(n)和h(n)的线性卷积y(n)= x(n)* h(n);(2) 计算x(n)和h(n)的6 点循环卷积y 1(n)= x(n)⑥h (n); (3) 计算x(n)和h(n)的8 点循环卷积y 2(n)= x(n)⑧h (n); 比较以上结果,有何结论? 解:(1)y(n)= x(n)* h(n)={-15,4,-3,13,-4,3,2} (2)y 1(n)= x(n)⑥h (n)= {-13,4,-3,13,-4,3} (3)因为8>(5+3-1),所以y 3(n)= x(n)⑧h (n)={-15,4,-3,13,-4,3,2,0} y 3(n)与y(n)非零部分相同。

数字信号处理习题集(附答案)

数字信号处理习题集(附答案)

第一章数字信号处理概述简答题:1.在A/D变换之前和D/A变换之后都要让信号通过一个低通滤波器,它们分别起什么作用?答:在A/D变化之前为了限制信号的最高频率,使其满足当采样频率一定时,采样频率应大于等于信号最高频率2倍的条件。

此滤波器亦称为“抗混叠”滤波器.在D/A变换之后为了滤除高频延拓谱,以便把抽样保持的阶梯形输出波平滑化,故又称之为“平滑”滤波器.判断说明题:2.模拟信号也可以与数字信号一样在计算机上进行数字信号处理,自己要增加一道采样的工序就可以了。

( )答:错.需要增加采样和量化两道工序。

3.一个模拟信号处理系统总可以转换成功能相同的数字系统,然后基于数字信号处理理论,对信号进行等效的数字处理.( ) 答:受采样频率、有限字长效应的约束,与模拟信号处理系统完全等效的数字系统未必一定能找到。

因此数字信号处理系统的分析方法是先对抽样信号及系统进行分析,再考虑幅度量化及实现过程中有限字长所造成的影响。

故离散时间信号和系统理论是数字信号处理的理论基础.第二章 离散时间信号与系统分析基础一、连续时间信号取样与取样定理计算题:1.过滤限带的模拟数据时,常采用数字滤波器,如图所示,图中T 表示采样周期(假设T 足够小,足以防止混叠效应),把从)()(t y t x 到的整个系统等效为一个模拟滤波器.(a ) 如果kHz rad n h 101,8)(=π截止于,求整个系统的截止频率. (b)对于kHz T 201=,重复(a )的计算.解 (a )因为当0)(8=≥ωπωj e H rad 时,在数 — 模变换中)(1)(1)(Tj X Tj X Te Y a a j ωω=Ω=所以)(n h 得截止频率8πω=c 对应于模拟信号的角频率c Ω为8π=ΩT c因此 Hz Tf c c 6251612==Ω=π 由于最后一级的低通滤波器的截止频率为Tπ,因此对T8π没有影响,故整个系统的截止频率由)(ωj e H 决定,是625Hz 。

数字信号处理大题(含答案)

数字信号处理大题(含答案)

四、计算题(每小题10分,共40分)1.已知11257()252z X z zz----=-+,求出对应X(z)的各种可能的序列表达式。

解: X (z )有两个极点:z 1=0.5,z 2=2, 因为收敛域总是以极点为界,因此收敛域有三种情况: |z |<0.5,0.5<|z |<2,2<|z |。

对应三种不同的原序列。

-----------3分0.521()R e s[(),0.5]R es[(),2](57)(57)(0.5)(2)2(0.5)(2)2(0.5)(2)1[3()2](1)2nnz z n nx n F z F z z zz zz z z z z z u n ==+=----=--------=-⋅+-- ------------3分11()3()()2(1)2n nx n u n u n +=⋅--- ------------------------2分11 ()32()2n nx n u n +⎡⎤⎛⎫=⋅+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦------------------------2分2.用Z 变换法解下列差分方程:y (n )-0.9y (n -1)=0.05u (n ),n < 0时y (n )=0。

解:11111()0.9()0.0510.05()(10.9)(1)Y z Y z z zY z z z -----=-=-- ------------------------4分()110.050.05()R e s[(),0.9]R e s[(),1](0.9)0.10.1 0.50.90.5n n y n F z F z ++=+=+-=-⋅+ ------------------------3分n <0时, y (n )=0最后得到 y (n )=[-0.5 · (0.9)n +1+0.5]u (n ) ------------------------3分3.设计一个巴特沃斯低通滤波器, 要求其通带截止频率f p=12 kHz ,阻带截止频率f s=24 kHz ,f p 处最大衰减为3dB ,阻带最小衰减a s=15dB 。

数字信号处理课后习题答案 全全全

数字信号处理课后习题答案   全全全
1 0.5
1
1 >
. . z
z
(3) , | | 0.5
1 0.5
1
1 <
. . z
z
(4)
, | | 0
1 0.5
1 (0.5 )
1
1 10
>
.
.
.
.
z
z
z
1.8 (1) ) , 0
1
( ) (1 2
1 3 3
3.014 2.91 1.755 0.3195
0.3318 0.9954 0.9954 0.3318
1 0.9658 0.5827 0.1060
z z z
z z z
z z z
z z z
. . .
. . .
. . .
. . .
. + .
=
= . . +
= . . . +
..
.
..
. π
2.13
0,1,2, , 1
( ) ( )
= .
=
k N
Y rk X k
..
2.14
Y(k) = X ((k)) R (k) k = 0,1, ,rN .1 N rN ..
2.15 (1) x(n) a R (n) N
= n y(n) b R (n) N
= n
(2) x(n) =δ (n) y(n) = Nδ (n)
2.16 ( )
1
1 a R N
a N
n
. N
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:15.625,0.0123rad,98.4rad/s
判断说明题:
7.一个信号序列,如果能做序列傅氏变换对它进行分析,也就能做DFT对它进行分析。()
解:错。如果序列是有限长的,就能做DFT对它进行分析。否则,频域采样将造成时域信号的混叠,产生失真。
简答题:
2.何谓最小相位系统?最小相位系统的系统函数 有何特点?
解:一个稳定的因果线性时不变系统,其系统函数可表示成有理方程式
,他的所有极点都应在单位圆内,即 。但零点可以位于Z平面的任何地方。有些应用中,需要约束一个系统,使它的逆系统 也是稳定因果的。这就需要 的零点也位于单位圆内,即 。一个稳定因果的滤波器,如果它的逆系统也是稳定因果的,则称这个系统是最小相位。等价的,我们有如下定义。
。因而,如果在 处有一个极点,则在其共轭倒数点 处必须有一个零点。
4.有一线性时不变系统,如下图所示,试写出该系统的频率响应、系统(转移)函数、差分方程和卷积关系表达式。
解:频率响应:
系统函数:
差分方程:
卷积关系:
第三章 离散傅立叶变换
一、离散傅立叶级数
计算题:
1.如果 是一个周期为N的周期序列,那么它也是周期为2N的周期序列。把 看作周期为N的周期序列有 (周期为N);把 看作周期为2N的周期序列有 (周期为2N);试用 表示 。
解:(1)
由序列傅氏变换公式
DTFT
可以得到
DTFT
(2) (共轭)
解:DTFT
2.计算下列各信号的傅里叶变换。
(a) (b)
(c) (d)
解:(a)
(b)
(c)
(d)
利用频率微分特性,可得
3.序列 的傅里叶变换为 ,求下列各序列的傅里叶变换。
(1) (2) (3)
解: (1)
(2)
(3)
4.序列 的傅里叶变换为 ,求下列各序列的傅里叶变换。
【定义】一个有理系统函数,如果它的零点和极点都位于单位圆内,则有最小相位。
一个最小相位系统可由它的傅里叶变换的幅值 唯一确定。从 求 的过程如下:给定 ,先求 ,它是 的函数。然后,用 替代 ,我们得到 。最后,最小相位系统由单位圆内的 的极、零点形成。
一个稳定因果系统总可以分解成一个最小相位系统和一个全通系统的乘积,即
判断说明题:
2.模拟信号也可以与数字信号一样在计算机上进行数字信号处理,自己要增加一道采样的工序就可以了。()
答:错。需要增加采样和量化两道工序。
3.一个模拟信号处理系统总可以转换成功能相同的数字系统,然后基于数字信号处理理论,对信号进行等效的数字处理。()
答:受采样频率、有限字长效应的约束,与模拟信号处理系统完全等效的数字系统未必一定能找到。因此数字信号处理系统的分析方法是先对抽样信号及系统进行分析,再考虑幅度量化及实现过程中有限字长所造成的影响。故离散时间信号和系统理论是数字信号处理的理论基础。
解:纯实数、偶对称
5.采样频率为 的数字系统中,系统函数表达式中 代表的物理意义是(延时一个采样周期T=1/F),其中时域数字序列 的序号 代表的样值实际位置是(nT=n/F); 的N点DFT 中,序号 代表的样值实际位置又是( )。
解:延时一个采样周期 , ,
6.用8kHz的抽样率对模拟语音信号抽样,为进行频谱分析,计算了512点的DFT。则频域抽样点之间的频率间隔 为8000/512,数字角频率间隔 为2pi/512和模拟角频率间隔 8000*0.0123。
(1) (2) (3)
解:(1)
(2)
(3)
5.令 和 表示一个序列及其傅立叶变换,利用 表示下面各序列的傅立叶变换。
(1)
(2)
解:(1)
(2)
6.设序列 傅立叶变换为 ,求下列序列的傅立叶变换。
(1) 为任意实整数
(2)
(3)
解:(1)
(2) n为偶数
0 n为奇数
(3)
7.计算下列各信号的傅立叶变换。
所以 得截止频率 对应于模拟信号的角频率 为
因此
由于最后一级的低通滤波器的截止频率为 ,因此对 没有影响,故整个系统的截止频率由 决定,是625Hz。
(b)采用同样的方法求得 ,整个系统的截止频率为
二、离散时间信号与求下列序列的傅里叶变换。
(1) (2) (共轭)
第二章 离散时间信号与系统分析基础
一、连续时间信号取样与取样定理
计算题:
1.过滤限带的模拟数据时,常采用数字滤波器,如图所示,图中T表示采样周期(假设T足够小,足以防止混叠效应),把从 的整个系统等效为一个模拟滤波器。
(a)如果 ,求整个系统的截止频率。
(b)对于 ,重复(a)的计算。
解 (a)因为当 ,在数 — 模变换中
解:
对后一项令 ,则
所以
二、离散傅立叶变换定义
填空题
2.某DFT的表达式是 ,则变换后数字频域上相邻两个频率样点之间的间隔是()。
解:
3.某序列DFT的表达式是 ,由此可看出,该序列的时域长度是(),变换后数字频域上相邻两个频率样点之间隔是()。
解:N
4.如果希望某信号序列的离散谱是实偶的,那么该时域序列应满足条件(纯实数、偶对称)。
(1)
(2)
(3)
【解】(1)
(2)假定 和 的变换分别为 和 ,则
所以
(3)
8.求下列序列的时域离散傅里叶变换
, ,
解:
三、离散时间系统系统函数
填空题:
1.设 是线性相位FIR系统,已知 中的3个零点分别为1,0.8,1+j,该系统阶数至少为()。
解:由线性相位系统零点的特性可知, 的零点可单独出现, 的零点需成对出现, 的零点需4个1组,所以系统至少为7阶。
完成这个因式分解的过程如下:首先,把 的所有单位圆外的零点映射到它在单位圆内的共轭倒数点,这样形成的系统函数 是最小相位的。然后,选择全通滤波器 ,把与之对应的 中的零点映射回单位圆外。
3.何谓全通系统?全通系统的系统函数 有何特点?
解:一个稳定的因果全通系统,其系统函数 对应的傅里叶变换幅值 ,该单位幅值的约束条件要求一个有理系统函数方程式的零极点必须呈共轭倒数对出现,即
第一章 数字信号处理概述
简答题:
1.在A/D变换之前和D/A变换之后都要让信号通过一个低通滤波器,它们分别起什么作用?
答:在A/D变化之前为了限制信号的最高频率,使其满足当采样频率一定时,采样频率应大于等于信号最高频率2倍的条件。此滤波器亦称为“抗混叠”滤波器。
在D/A变换之后为了滤除高频延拓谱,以便把抽样保持的阶梯形输出波平滑化,故又称之为“平滑”滤波器。
相关文档
最新文档