2020年 九年级下册数学教案 湘教版名师测控考点精讲 (36)

合集下载

湘教版九年级数学下册教案全册

湘教版九年级数学下册教案全册

湘教版九年级数学下册教案全册-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN湘教版九年级数学下册教案1.1二次函数1.掌握二次函数的概念,能识别一个函数是不是二次函数;(重点)2.能根据实际情况建立二次函数模型,并确定自变量的取值范围.(难点)一、情境导入已知长方形窗户的周长为6米,窗户面积为y(平方米),窗户宽为x(米),你能写出y与x之间的函数关系式吗它是什么函数呢二、合作探究探究点一:二次函数的相关概念【类型一】二次函数的识别下列函数哪些是二次函数?(1)y=2-x2; (2)y=1x2-1;(3)y=2x(1+4x); (4)y=x2-(1+x)2.解析:(1)是二次函数;(2)是分式而不是整式,不符合二次函数的定义,故y=1x2-1不是二次函数;(3)把y=2x(1+4x)化简为y=8x2+2x,显然是二次函数;(4)y=x2-(1+x)2化简后变为y=-2x-1,它不是二次函数而是一个一次函数.解:二次函数有(1)和(3).方法总结:判定一个函数是否是二次函数常有三个标准:①所表示的函数关系式为整式;②所表示的函数关系式有唯一的自变量;③所含自变量的关系式中自变量最高次数为2,且函数关系式中二次项系数不等于0.变式训练:见《学练优》本课时练习“课堂达标训练”第1题【类型二】根据二次函数的定义求待定字母的值如果函数y=(k+2)xk2-2是y关于x的二次函数,则k的值为多少?解析:紧扣二次函数定义求解,注意易错点为忽视k+2≠0.解:根据题意知⎩⎪⎨⎪⎧k 2-2=2,k +2≠0,解得⎩⎪⎨⎪⎧k =±2,k ≠-2,∴k =2.方法总结:紧扣定义中的两个特征:①二次项系数不为零;②自变量最高次数为2.变式训练:见《学练优》本课时练习“课堂达标训练”第3题【类型三】 与二次函数系数有关的计算已知一个二次函数,当x =0时,y =0;当x =2时,y =12;当x =-1时,y =18.求这个二次函数中各项系数的和.解析:解:设二次函数的表达式为y =ax 2+bx+c (a ≠0).把x =0,y =0;x =2,y =12;x =-1,y =18分别代入函数表达式,得⎩⎨⎧c =0,4a +2b +c =12,a -b +c =18,解得⎩⎪⎨⎪⎧a =18,b =0,c =0.所以这个二次函数的表达式为y =18x 2.所以a +b +c =18+0+0=18,即这个二次函数中各项系数的和为18.方法总结:涉及有关二次函数表达式的问题,所设的表达式一般是二次函数表达式的一般形式y =ax 2+bx +c (a ≠0).解决这类问题要根据x ,y 的对应值,列出关于字母a ,b ,c 的方程(组),然后解方程(组),即可求得a ,b ,c 的值.探究点二:建立简单的二次函数模型一个正方形的边长是12cm ,若从中挖去一个长为2x cm ,宽为(x +1)cm 的小长方形.剩余部分的面积为y cm 2.(1)写出y 与x 之间的函数关系式,并指出y 是x 的什么函数?(2)当x 的值为2或4时,相应的剩余部分的面积是多少?解析:几何图形的面积一般需要画图分析,相关线段必须先用x 的代数式表示出来.如图所示.解:(1)y =122-2x (x +1),又∵2x ≤12,∴0<x ≤6,即y =-2x 2-2x +144(0<x ≤6),∴y 是x 的二次函数;(2)当x =2时,y =-2×22-2×2+144=132,当x =4时,y =-2×42-2×4+144=104,∴当x =2或4时,相应的剩余部分的面积分别为132cm 2或104cm 2.方法总结:二次函数是刻画现实世界变量之间关系的一种常见的数学模型.许多实际问题都可以通过分析题目中变量之间的关系,建立二次函数模型来解决.变式训练:见《学练优》本课时练习“课后巩固提升”第8题 三、板书设计本节课是从生活实际中引出二次函数模型,从而得出二次函数的定义及一般形式,会写简单变量之间的二次函数关系式,并能根据实际问题确定自变量的取值范围,使学生认识到数学来源于生活,又应用于生活实际之中.1.2 二次函数的图象与性质第1课时 二次函数y =ax 2(a >0)的图象与性质1.会用描点法画二次函数y =ax 2(a >0)的图象,理解抛物线的概念;(重点)2.掌握形如y =ax 2(a >0)的二次函数的图象和性质,并会应用其解决问题.(重点)一、情境导入自由落体公式h =12gt 2(g 为常量),h 与t 之间是什么关系呢它是什么函数它的图象是什么形状呢二、合作探究探究点一:二次函数y =ax 2(a >0)的图象已知y =(k +2)xk 2+k 是二次函数. (1)求k 的值;(2)画出函数的图象.解析:根据二次函数的定义,自变量x 的最高次数为2,且二次项系数不为0,这样能确定k 的值,从而确定表达式,画出图象.解:(1)∵y =(k +2)xk 2+k 为二次函数,∴⎩⎪⎨⎪⎧k 2+k =2,k +2≠0,解得k =1;(2)当k =1时,函数的表达式为y =3x 2,用描点法画出函数的图象.列表:x -1 -12 0 121 … y =3x23 34 0 343 … 描点:(-1,3),(-12,34),(0,0),(12,34),(1,3).连线:用光滑的曲线按x 的从小到大的顺序连接各点,图象如图所示.方法总结:列表时先取原点(0,0),然后在原点两侧对称地取四个点,由于函数y =ax 2(a ≠0)图象关于y 轴对称的两个点的横坐标互为相反数,纵坐标相等,所以先计算y 轴右侧的两个点的纵坐标,左侧对应写出即可.变式训练:见《学练优》本课时练习“课后巩固提升”第7题探究点二:二次函数y =ax 2(a >0)的性质已知点(-3,y 1),(1,y 2),(2,y 3)都在函数y =x 2的图象上,则y 1、y 2、y 3的大小关系是________.解析:方法一:把x =-3,1,2分别代入y =x 2中,得y 1=9,y 2=1,y 3=2,则y 1>y 3>y 2;方法二:如图,作出函数y =x 2的图象,把各点依次在函数图象上标出.由图象可知y 1>y 3>y 2;方法三:∵该图象的对称轴为y 轴,a >0,∴在对称轴的右边,y 随x 的增大而增大,而点(-3,y 1)关于y 轴的对称点为(3,y 3).又∵3>2>1,∴y 1>y 3>y 2.方法总结:比较二次函数中函数值的大小有三种方法:①直接把自变量的值代入解析式中,求出对应函数值进行比较;②图象法;③根据函数的增减性进行比较,但当要比较的几个点在对称轴的两侧时,可根据抛物线的对称轴找出某个点的对称点,转化到同侧后,然后利用性质进行比较.变式训练:见《学练优》本课时练习“课后巩固提升”第2题 探究点三:二次函数y =ax 2(a >0)的图象与性质的简单应用已知函数y =(m +2)xm 2+m -4是关于x 的二次函数. (1)求满足条件的m 的值;(2)m 为何值时,抛物线有最低点?求出这个最低点,这时当x 为何值时,y 随x 的增大而增大?解析:由二次函数的定义知:m 2+m -4=2且m +2≠0;抛物线有最低点,则抛物线开口向上,即m +2>0.解:(1)由题意得⎩⎪⎨⎪⎧m 2+m -4=2,m +2≠0,解得⎩⎪⎨⎪⎧m =2或m =-3,m ≠-2,∴当m =2或m =-3时,原函数为二次函数;(2)若抛物线有最低点,则抛物线开口向上,∴m +2>0,即m >-2,∴取m =2.∴这个最低点为抛物线的顶点,其坐标为(0,0).当x >0时,y 随x 的增大而增大.方法总结:二次函数必须满足自变量的最高次数是2且二次项的系数不为0;函数有最低点即开口向上.变式训练:见《学练优》本课时练习“课堂达标训练”第9题 三、板书设计教学过程中,强调学生自主探索和合作交流,在操作中探究二次函数y =ax 2(a >0)的图象与性质,培养学生动手、动脑、探究归纳问题的能力.第2课时 二次函数y =ax 2(a <0)的图象与性质1.会用描点法画二次函数y =ax 2(a <0)的图象;(重点)2.掌握形如y =ax 2(a <0)的二次函数的图象和性质,并会应用其解决问题.(重点)一、情境导入上节课我们学习了a >0时二次函数y =ax 2的图象和性质,那么当a <0时,二次函数y =ax 2的图象和性质又会有怎样的变化呢?二、合作探究探究点一:二次函数y =ax 2(a <0)的图象 【类型一】 二次函数y =ax 2(a <0)的图象在直角坐标系内,作出函数y =-12x 2的图象.解析:作函数的图象采用描点法,即“列表、描点、连线”三个步骤. 解:列表:x 0 1 2 … y =-12x 2 0 -12-2 …描点和连线:画出图象在y 轴右边的部分,利用对称性,画出图象在y 轴左边的部分,如图.方法总结:(1)列表应以0为中心,选取x >0的几个点求出对应的y 值;(2)描点要准;(3)画出y 轴右边的部分,利用对称性,可画出y 轴左边的部分,连线要用平滑的曲线,不能是折线.【类型二】 同一坐标系中两种不同图象的判断当ab >0时,抛物线y =ax 2与直线y =ax +b 在同一直角坐标系中的图象大致是( )解析:根据a、b的符号来确定.当a>0时,抛物线y=ax2的开口向上.∵ab>0,∴b>0.∴直线y=ax+b过第一、二、三象限;当a<0时,抛物线y=ax2的开口向下.∵ab>0,∴b<0.∴直线y=ax+b过第二、三、四象限.故选D.方法总结:本例综合考查了一次函数y=ax+b和二次函数y=ax2的图象和性质.因为在同一问题中相同字母的取值是相同的,所以应从各选项中两个函数图象所反映的a的符号是否一致入手进行分析.变式训练:见《学练优》本课时练习“课后巩固提升”第3题探究点二:二次函数y=ax2(a<0)的性质【类型一】二次函数y=ax2(a<0)的性质(2015·山西模拟)抛物线y=-4x2不具有的性质是()A.开口向上B.对称轴是y轴C.在对称轴的左侧,y随x的增大而增大D.最高点是原点解析:此题应从二次函数的基本形式入手,它符合y=ax2的基本形式,根据它的性质,进行解答.因为a=-4<0,所以图象开口向下,顶点坐标为(0,0),对称轴是y轴,最高点是原点.在对称轴的左侧,y随x的增大而增大,在对称轴的右侧,y随x的增大而减小.故选A.方法总结:抛物线y=ax2(a<0)的开口向下,顶点坐标为(0,0),对称轴为y轴.当x<0时,y随x的增大而增大,当x>0时,y随x的增大而减小.当x=0时,图象有最高点,y有最大值0.变式训练:见《学练优》本课时练习“课堂达标训练”第2题【类型二】二次函数y=ax2的开口方向、大小与系数a的关系如图,四个二次函数图象中,分别对应:①y=ax2;②y=bx2;③y=cx2;④y=dx2,则a、b、c、d的大小关系为()A.a>b>c>dB.a>b>d>cC.b>a>c>dD .b >a >d >c 答案:A方法总结:抛物线y =ax 2的开口大小由|a |确定,|a |越大,抛物线的开口越小;|a |越小,抛物线的开口越大.变式训练:见《学练优》本课时练习“课堂达标训练”第7题 探究点三:二次函数y =ax 2的图象与几何图形的综合应用已知二次函数y =ax 2(a ≠0)与直线y =2x -3相交于点A (1,b ),求: (1)a ,b 的值;(2)函数y =ax 2的图象的顶点M 的坐标及直线与抛物线的另一个交点B 的坐标; (3)△AMB 的面积.解析:直线与二次函数y =ax 2的图象交点坐标可利用方程求解,而求△AMB 的面积,一般应画出草图进行解答.解:(1)∵点A (1,b )是直线y =2x -3与二次函数y =ax 2的图象的交点,∴点A 的坐标满足二次函数和直线的关系式,∴⎩⎪⎨⎪⎧b =a ×12,b =2×1-3,∴⎩⎪⎨⎪⎧a =-1,b =-1; (2)由(1)知二次函数为y =-x 2,顶点M (即坐标原点)的坐标为(0,0). 由-x 2=2x -3,解得x 1=1,x 2=-3, ∴y 1=-1,y 2=-9,∴直线与二次函数的另一个交点B 的坐标为(-3,-9);(3)如图所示,作AC ⊥x 轴,BD ⊥x 轴,垂足分别为C 、D ,根据点的坐标的意义,可知MD =3,MC =1,CD =1+3=4,BD =9,AC =1,∴S △AMB =S 梯形ABDC -S △ACM -S △BDM =12×(1+9)×4-12×1×1-12×3×9=6.方法总结:解答此类题目,最好画出草图,利用数形结合,解答相关问题. 变式训练:见《学练优》本课时练习“课后巩固提升”第8题三、板书设计本节课仍然是从学生画图象着手,结合上节课y =ax 2(a >0)的图象和性质,从而得出y =ax 2(a <0)的图象和性质,进而得出y =ax 2(a ≠0)的图象和性质,培养学生动手、动脑、合作探究的学习习惯.第3课时 二次函数y =a (x -h )2的图象与性质1.会用描点法画出y =a (x -h )2的图象;2.掌握形如y =a (x -h )2的二次函数图象的性质,并会应用;(重点) 3.理解二次函数y =a (x -h )2与y =ax 2之间的联系.(难点)一、情境导入涵洞是指在公路工程建设中,为了使公路顺利通过水渠不妨碍交通,修筑于路面以下的排水孔道(过水通道),通过这种结构可以让水从公路的下面流过.如图建立直角坐标系,你能得到函数图象解析式吗?二、合作探究探究点一:二次函数y =a (x -h )2的图象与性质 【类型一】 y =a (x -h )2的顶点坐标已知抛物线y =a (x -h )2(a ≠0)的顶点坐标是(-2,0),且图象经过点(-4,2),求a ,h 的值.解:∵抛物线y =a (x -h )2(a ≠0)的顶点坐标为(-2,0),∴h =-2.又∵抛物线y =a (x +2)2经过点(-4,2),∴a (-4+2)2=2.∴a =12.方法总结:二次函数y =a (x -h )2的顶点坐标为(h ,0).变式训练:见《学练优》本课时练习“课堂达标训练”第2题 【类型二】 二次函数y =a (x -h )2图象的形状顶点为(-2,0),开口方向、形状与函数y =-12x 2的图象相同的抛物线的解析式为( )A .y =12(x -2)2B .y =12(x +2)2 C .y =-12(x +2)2 D .y =-12(x -2)2 解析:因为抛物线的顶点在x 轴上,所以可设该抛物线的解析式为y =a (x -h )2(a ≠0),而二次函数y =a (x -h )2(a ≠0)与y =-12x 2的图象相同,所以a =-12,而抛物线的顶点为(-2,0),所以h =-2,把a =-12,h =-2代入y =a (x -h )2得y =-12(x +2)2.故选C.方法总结:决定抛物线形状的是二次项的系数,二次项系数相同的抛物线的形状完全相同.变式训练:见《学练优》本课时练习“课后巩固提升”第1题【类型三】 二次函数y =a (x -h )2的增减性及最值对于二次函数y =9(x -1)2,下列结论正确的是( )A .y 随x 的增大而增大B .当x >0时,y 随x 的增大而增大C .当x =-1时,y 有最小值0D .当x >1时,y 随x 的增大而增大解析:因为a =9>0,所以抛物线开口向上,且h =1,顶点坐标为(1,0),所以当x >1时,y 随x 的增大而增大.故选D.变式训练:见《学练优》本课时练习“课堂达标训练”第3题探究点二:二次函数y =a (x -h )2图象的平移【类型一】 利用平移确定y =a (x -h )2的解析式抛物线y =ax 2向右平移3个单位后经过点(-1,4),求a 的值和平移后的函数关系式.解析:y =ax 2向右平移3个单位后的关系式可表示为y =a (x -3)2,把点(-1,4)的坐标代入即可求得a 的值.解:二次函数y =ax 2的图象向右平移3个单位后的二次函数关系式可表示为y =a (x -3)2,把x =-1,y =4代入,得4=a (-1-3)2,a =14,∴平移后二次函数关系式为y =14(x -3)2.方法总结:根据抛物线左右平移的规律,向右平移3个单位后,a 不变,括号内应“减去3”;若向左平移3个单位,括号内应“加上3”,即“左加右减”.变式训练:见《学练优》本课时练习“课堂达标训练”第6题 【类型二】 确定y =a (x -h )2与y =ax 2的关系向左或向右平移函数y =-12x 2的图象,能使得到的新的图象过点(-9,-8)吗?若能,请求出平移的方向和距离;若不能,请说明理由.解:能,理由如下:设平移后的函数为y =-12(x -h )2, 将x =-9,y =-8代入得-8=-12(-9-h )2, 所以h =-5或h =-13,所以平移后的函数为y =-12(x +5)2或y =-12(x +13)2. 即抛物线的顶点坐标为(-5,0)或(-13,0),所以应向左平移5或13个单位.变式训练:见《学练优》本课时练习“课后巩固提升”第6题探究点三:二次函数y =a (x -h )2与几何图形的综合把函数y =12x 2的图象向右平移4个单位后,其顶点为C ,并与直线y =x 分别相交于A 、B 两点(点A 在点B 的左边),求△ABC 的面积.解析:利用二次函数平移规律先确定平移后的抛物线解析式,确定C 点坐标,再解由所得到的二次函数解析式与y =x 组成的方程组,确定A 、B 两点坐标,最后求△ABC 的面积.解:平移后的函数为y =12(x -4)2,顶点C 的坐标为(4,0),OC =4. 解方程组⎩⎪⎨⎪⎧y =12(x -4)2,y =x ,得⎩⎪⎨⎪⎧x =2,y =2,或⎩⎪⎨⎪⎧x =8,y =8. ∵点A 在点B 的左边,∴A (2,2),B (8,8),∴S △ABC =S △OBC -S △OAC =12×4×8-12×4×2=12.方法总结:两个函数交点的横、纵坐标与两个解析式组成的方程组的解是一致的. 变式训练:见《学练优》本课时练习“课后巩固提升”第8题三、板书设计通过本节学习使学生认识到y =a (x -h )2的图象是由y =ax 2的图象左右平移得到的,初步认识到a ,h 对y =a (x -h )2位置的影响,a 的符号决定抛物线方向,|a |决定抛物线开口的大小,h 决定向左、向右平移,从中领会数形结合的数学思想.第4课时 二次函数y =a (x -h )2+k 的图象与性质1.会用描点法画出y =a (x -h )2+k 的图象;2.掌握形如y =a (x -h )2+k 的二次函数的图象与性质,并会应用;(重点)3.理解二次函数y =a (x -h )2+k 与y =ax 2之间的联系.(难点)一、情境导入前面我们是如何研究二次函数y =ax 2、y =a (x -h )2的图象与性质的?如何画出y =12(x -2)2+1的图象?二、合作探究探究点一:二次函数y =a (x -h )2+k 的图象与性质【类型一】 二次函数y =a (x -h )2+k 的图象已知y =12(x -3)2-2的部分图象如图所示,抛物线与x 轴交点的一个坐标是(1,0),则另一个交点的坐标是________.解析:由抛物线的对称性知,对称轴为x =3,一个交点坐标是(1,0),则另一个交点坐标是(5,0).解:(5,0)变式训练:见《学练优》本课时练习“课堂达标训练”第1题【类型二】 二次函数y =a (x -h )2+k 的性质试说明抛物线y =2(x -1)2与y =2(x -1)2+5的关系.解析:对抛物线的分析应从开口方向,顶点坐标,对称轴,增减性,及最大(小)值几个方面分析.解:相同点:(1)它们的形状相同,开口方向相同;(2)它们的对称轴相同,都是x =1.当x <1时都是左降,当x >1时都是右升;(3)它们都有最小值.不同点:(1)顶点坐标不同.y =2(x -1)2的顶点坐标是(1,0),y =2(x -1)2+5的顶点坐标是(1,5);(2)y =2(x -1)2的最小值是0,y =2(x -1)2+5的最小值是5.方法总结:对于y =a (x -h )2+k 类抛物线,a 决定开口方向;|a |决定开口大小;h 决定对称轴;k 决定最大(小)值的数值.变式训练:见《学练优》本课时练习“课堂达标训练”第5题探究点二:二次函数y =a (x -h )2+k 的图象的平移将抛物线y =13x 2向右平移2个单位,再向下平移1个单位,所得的抛物线是( ) A .y =13(x -2)2-1 B .y =13(x -2)2+1 C .y =13(x +2)2+1 D .y =13(x +2)2-1 解析:由“上加下减”的平移规律可知,将抛物线y =13x 2向下平移1个单位所得抛物线的解析式为y =13x 2-1;由“左加右减”的平移规律可知,将抛物线y =13x 2-1向右平移2个单位所得抛物线的解析式为y =13(x -2)2-1.故选A. 变式训练:见《学练优》本课时练习“课堂达标训练”第6题探究点三:二次函数y =a (x -h )2+k 的图象与几何图形的综合如图所示,在平面直角坐标系xOy 中,抛物线y =x 2向左平移1个单位,再向下平移4个单位,得到抛物线y =(x -h )2+k .所得抛物线与x 轴交于A ,B 两点(点A 在点B 的左边),与y 轴交于点C ,顶点为D .(1)求h ,k 的值;(2)判断△ACD 的形状,并说明理由.解析:(1)按照图象平移规律“左加右减,上加下减”可得到平移后的二次函数的解析式;(2)分别过点D 作x 轴和y 轴的垂线段DE ,DF ,再利用勾股定理,可说明△ACD 是直角三角形.解:(1)∵将抛物线y =x 2向左平移1个单位,再向下平移4个单位,得到抛物线y =(x +1)2-4,∴h =-1,k =-4;(2)△ACD 为直角三角形.理由如下:由(1)得y =(x +1)2-4.当y =0时,(x +1)2-4=0,x =-3或x =1,∴A (-3,0),B (1,0).当x =0时,y =(x +1)2-4=(0+1)2-4=-3,∴C点坐标为(0,-3).顶点坐标为D(-1,-4).作出抛物线的对称轴x=-1交x轴于点E,过D作DF⊥y轴于点F,如图所示.在Rt△AED中,AD2=22+42=20;在Rt△AOC中,AC2=32+32=18;在Rt△CFD中,CD2=12+12=2.∵AC2+CD2=AD2,∴△ACD是直角三角形.变式训练:见《学练优》本课时练习“课后巩固提升”第9题三、板书设计通过本节学习使学生掌握二次函数y=ax2,y=a(x-h)2,y=a(x-h)2+k图象的变化关系,从而体会由简单到复杂的认识规律.第5课时二次函数y=ax2+bx+c的图象与性质1.会用描点法画二次函数y=ax2+bx+c的图象;2.会用配方法或公式法求二次函数y=ax2+bx+c的顶点坐标与对称轴,并掌握其性质;(重点)3.二次函数性质的综合应用.(难点)一、情境导入火箭被竖直向上发射时,它的高度h(m)与时间t(s)的关系可以用h=-5t2+150t+10表示.经过多长时间火箭达到它的最高点?二、合作探究探究点一:化二次函数y=ax2+bx+c为y=a(x-h)2+k的形式把抛物线y=x2+bx+c的图象向右平移3个单位长度,再向下平移2个单位长度,所得图象的解析式为y=x2-3x+5,则()A.b=3,c=7 B.b=6,c=3C.b=-9,c=-5 D.b=-9,c=21解析:y =x 2-3x +5化为顶点式为y =(x -32)2+114.将y =(x -32)2+114向左平移3个单位长度,再向上平移2个单位长度,即为y =x 2+bx +c .则y =x 2+bx +c =(x +32)2+194,化简后得y =x 2+3x +7,即b =3,c =7.故选A.方法总结:二次函数由一般式化为顶点式,平移时遵循“左正右负,上正下负”,逆向推理则相反.变式训练:见《学练优》本课时练习“课后巩固提升” 第4题探究点二:二次函数y =ax 2+bx +c 的图象与性质【类型一】 二次函数与一次函数图象的综合在同一直角坐标系中,函数y =mx +m 和函数y =mx 2+2x +2(m 是常数,且m ≠0)的图象可能是( )解析:A 、B 中由函数y =mx +m 的图象可知m <0,即函数y =mx 2+2x +2开口方向朝下,对称轴为x =-b 2a =-22m =-1m>0,则对称轴应在y 轴右侧,故A 、B 选项错误;C 中由函数y =mx +m 的图象可知m >0,即函数y =mx 2+2x +2开口方向朝上,对称轴为x=-b 2a =-22m =-1m<0,则对称轴应在y 轴左侧,故C 选项错误;D 中由函数y =mx +m 的图象可知m <0,即函数y =mx 2+2x +2开口方向朝下,对称轴为x =-b 2a =-22m =-1m>0,则对称轴应在y 轴右侧,与图象相符,故D 选项正确.故选D.方法总结:熟记一次函数y =kx +b 在不同情况下所在的象限,以及熟练掌握二次函数y =ax 2+bx +c 的有关性质:开口方向、对称轴、顶点坐标等.【类型二】 二次函数y =ax 2+bx +c 的性质若点A (2,y 1),B (-3,y 2),C (-1,y 3)三点在抛物线y =x 2-4x -m 的图象上,则y 1、y 2、y 3的大小关系是( )A .y 1>y 2>y 3B .y 2>y 1>y 3C .y 2>y 3>y 1D .y 3>y 1>y 2解析:∵二次函数y =x 2-4x -m 中a =1>0,∴开口向上,对称轴为x =-b 2a=2.∵A (2,y 1)中x =2,∴y 1最小.又∵B (-3,y 2),C (-1,y 3)都在对称轴的左侧,而在对称轴的左侧,y 随x 的增大而减小,故y 2>y 3.∴y 2>y 3>y 1.故选C.方法总结:当二次项系数a >0时,在对称轴的左侧,y 随x 的增大而减小,在对称轴的右侧,y 随x 的增大而增大;a <0时,在对称轴的左侧,y 随x 的增大而增大,在对称轴的右侧,y 随x 的增大而减小.变式训练:见《学练优》本课时练习“课后巩固提升” 第3题 【类型三】 二次函数图象的位置与各项系数符号的关系已知抛物线y =ax 2+bx +c (a ≠0)经过点(-1,0),且顶点在第一象限.有下列四个结论:①a <0;②a +b +c >0;③-b 2a>0;④abc >0.其中正确的结论是________. 解析:由抛物线的开口方向向下可推出a <0,抛物线与y 轴的正半轴相交,可得出c >0,对称轴在y 轴的右侧,a ,b 异号,b >0,∴abc <0;∵对称轴在y 轴右侧,对称轴为-b 2a>0;由图象可知:当x =1时,y >0,∴a +b +c >0.∴①②③④都正确. 方法总结:二次函数y =ax 2+bx +c (a ≠0),a 的符号由抛物线开口方向决定;b 的符号由对称轴的位置及a 的符号决定;c 的符号由抛物线与y 轴交点的位置决定.变式训练:见《学练优》本课时练习“课后巩固提升”第5题【类型四】 二次函数y =ax 2+bx +c 的最值已知二次函数y =ax 2+4x +a -1的最小值为2,则a 的值为( )A .3B .-1C .4D .4或-1解析:∵二次函数y =ax 2+4x +a -1有最小值2,∴a >0,y 最小值=4ac -b 24a=4a (a -1)-424a=2,整理,得a 2-3a -4=0,解得a =-1或4.∵a >0,∴a =4.故选C. 方法总结:求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.变式训练:见《学练优》本课时练习“课后巩固提升”第1题探究点三:二次函数y =ax 2+bx +c 的图象与几何图形的综合应用如图,已知二次函数y =-12x 2+bx +c 的图象经过A (2,0)、B (0,-6)两点. (1)求这个二次函数的解析式;(2)设该二次函数图象的对称轴与x 轴交于点C ,连接BA 、BC ,求△ABC 的面积.解:(1)把A (2,0)、B (0,-6)代入y =-12x 2+bx +c 得⎩⎪⎨⎪⎧-2+2b +c =0,c =-6,解得⎩⎪⎨⎪⎧b =4,c =-6.∴这个二次函数的解析式为y =-12x 2+4x -6; (2)∵该抛物线对称轴为直线x =-42×(-12)=4, ∴点C 的坐标为(4,0),∴AC =OC -OA =4-2=2,∴S △ABC =12×AC ×OB =12×2×6=6. 变式训练:见《学练优》本课时练习“课堂达标训练”第9题三、板书设计本节课所学的二次函数y =ax 2+bx +c 的图象和性质可以看作是y =ax 2,y =a (x -h )2,y =a (x -h )2+k 的图象和性质的归纳与综合,让学生初步体会由简单到复杂,由特殊到一般的认识规律.*1.3 不共线三点确定二次函数的表达式1.通过对用待定系数法求二次函数解析式的探究,掌握求二次函数解析式的方法;(重点)2.会根据不同的条件,利用待定系数法求二次函数的解析式,在实际应用中体会二次函数作为一种数学模型的作用.(难点)一、情境导入某广场中心标志性建筑处有高低不同的各种喷泉,其中一支高度为1米的喷水管喷出的抛物线水柱最大高度为3米,此时喷水水平距离为12米.你能写出如图所示的平面直角坐标系中抛物线水柱的解析式吗?二、合作探究探究点一:不共线三点确定二次函数的表达式【类型一】 用一般式确定二次函数解析式已知二次函数的图象经过点(-1,-5),(0,-4)和(1,1).求这个二次函数的解析式.解析:由于题目给出的是抛物线上任意三点,可设一般式y =ax 2+bx +c (a ≠0). 解:设这个二次函数的解析式为y =ax 2+bx +c (a ≠0).依题意得⎩⎪⎨⎪⎧a -b +c =-5,c =-4,a +b +c =1,解得⎩⎪⎨⎪⎧a =2,b =3,c =-4.∴这个二次函数的解析式为y =2x 2+3x -4.方法总结:当题目给出函数图象上的任意三个点时,设一般式y =ax 2+bx +c ,转化成一个三元一次方程组,以求得a ,b ,c 的值.变式训练:见《学练优》本课时练习“课堂达标训练”第1题【类型二】 用顶点式确定二次函数解析式已知二次函数的图象顶点坐标是(-2,3),且过点(-1,5),求这个二次函数的解析式.解:设二次函数解析式为y =a (x -h )2+k ,∵图象顶点是(-2,3),∴h =-2,k =3,依题意得5=a (-1+2)2+3,解得a =2.∴二次函数的解析式为y =2(x +2)2+3=2x 2+8x +11.方法总结:若已知抛物线的顶点或对称轴、极值,则设y =a (x -h )2+k .顶点坐标为(h ,k ),对称轴为x =h ,最值为当x =h 时,y 最值=k .变式训练:见《学练优》本课时练习“课堂达标训练”第7题【类型三】 用交点式确定二次函数解析式已知抛物线与x 轴相交于点A (-1,0),B (1,0),且过点M (0,1),求此函数的解析式.解析:由于已知图象与x 轴的两个交点,所以可设y =a (x -x 1)(x -x 2)求解.解:因为点A (-1,0),B (1,0)是图象与x 轴的交点,所以设二次函数的解析式为y =a (x +1)(x -1).又因为抛物线过点M (0,1),所以1=a (0+1)(0-1),解得a =-1,所以所求抛物线的解析式为y =-(x +1)(x -1),即y =-x 2+1.方法总结:此题也可设y =a (x -h )2+k ,因为与x 轴交于(-1,0),(1,0),故对称轴为y 轴.变式训练:见《学练优》本课时练习“课堂达标训练”第6题探究点二:二次函数解析式的综合运用如图,抛物线y =x 2+bx +c 过点A (-4,-3),与y 轴交于点B ,对称轴是x =-3,请解答下列问题:(1)求抛物线的解析式;(2)若和x 轴平行的直线与抛物线交于C ,D 两点,点C 在对称轴左侧,且CD =8,求△BCD 的面积.解析:(1)把点A (-4,-3)代入y =x 2+bx +c 得16-4b +c =-3,根据对称轴是x =-3,求出b =6,即可得出答案;(2)根据CD ∥x 轴,得出点C 与点D 关于x =-3对称,根据点C 在对称轴左侧,且CD =8,求出点C 的横坐标和纵坐标,再根据点B 的坐标为(0,5),求出△BCD 中CD 边上的高,即可求出△BCD 的面积.解:(1)把点A (-4,-3)代入y =x 2+bx +c 得16-4b +c =-3,c -4b =-19.∵对称轴是x =-3,∴-b 2=-3,∴b =6,∴c =5,∴抛物线的解析式是y =x 2+6x +5; (2)∵CD ∥x 轴,∴点C 与点D 关于x =-3对称.∵点C 在对称轴左侧,且CD =8,∴点C 的横坐标为-7,∴点C 的纵坐标为(-7)2+6×(-7)+5=12.∵点B 的坐标为(0,5),∴△BCD 中CD 边上的高为12-5=7,∴△BCD 的面积=12×8×7=28. 方法总结:此题考查了待定系数法求二次函数的解析式,以及利用解析式分析二次函数的图象和性质,注意掌握数形结合思想与方程思想的应用.变式训练:见《学练优》本课时练习“课后巩固提升”第7题三、板书设计。

湘教版九年级数学下册全期教案(全册)

湘教版九年级数学下册全期教案(全册)

第一章二次函数1.1 建立二次函数模型一、学生知识状况分析学生的知识技能基础:学生在之前已经学习过变量、自变量、因变量、函数等概念,对一次函数、反比例函数的相关知识如:各种变量、函数的一般形式、图像、增减性等知识有一定基础,相关应用也较常见,学生在学二次函数前具备了一定函数方面的基础知识、基本技能。

学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些解决实际问题活动,感受到了函数反映的是变化过程,并可通过列表、解析式、图像了解变化过程,对各种函数的表达方法的特点有所了解,获得了探究学习新函数知识的基础。

二、教学任务分析教学目标(一)知识与技能1.探索并归纳二次函数的定义.2.能够表示简单变量之间的二次函数关系.(二)过程与方法1.经历探索,分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系.2.让学生学习了二次函数的定义后,能够表示简单变量之间的二次函数关系.3. 能够利用尝试求值的方法解决实际问题.(三)情感态度与价值观1.从学生感兴趣的问题入手,能使学生积极参与数学学习活动,对数学有好奇心和求知欲.2.把数学问题和实际问题相联系,使学生初步体会数学与人类生活的密切联系及对人类历史发展的作用.3.通过学生之间互相交流合作,让学生学会与人合作,并能与他人交流思维的过程,培养大家的合作意识.教学重点:二次函数的概念教学难点:经历探索,分析和建立两个变量之间的二次函数关系的过程三、教学过程分析第一环节课前准备活动内容:引导学生复习函数的概念及已经学习过的几种函数:1.对“函数”这个词我们并不陌生,大家还记得我们学过哪些函数吗?我们学过那些关于函数的生活实际问题呢?2.函数的定义是怎样下的?3.让我们一起来回忆一下这些函数的一般形式。

活动目的:函数是对初中生来说是较抽象的概念,而且学生距离之前学习函数相关内容有较长时间间隔,这里有必要从学生已有的知识经验出发,学习新的内容,注重知识之间的联系,调动学生学习的积极性与主动性,也为接下来的学习作好铺垫。

新湘教版九年级下册数学全册教案(完整资料).doc

新湘教版九年级下册数学全册教案(完整资料).doc

【最新整理,下载后即可编辑】第1章二次函数1.1 二次函数【知识与技能】1.理解具体情景中二次函数的意义,理解二次函数的概念,掌握二次函数的一般形式.2.能够表示简单变量之间的二次函数关系式,并能根据实际问题确定自变量的取值范围.【过程与方法】经历探索,分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系.【情感态度】体会数学与实际生活的密切联系,学会与他人合作交流,培养合作意识.【教学重点】二次函数的概念.【教学难点】在实际问题中,会写简单变量之间的二次函数关系式教学过程.一、情境导入,初步认识1.教材P2“动脑筋”中的两个问题:矩形植物园的面积S(m 2)与相邻于围墙面的每一面墙的长度x(m)的关系式是S=-2x 2+100x,(0<x<50);电脑价格y (元)与平均降价率x 的关系式是y=6000x 2-12000x+6000,(0<x<1).它们有什么共同点?一般形式是y=ax 2+bx+c(a,b,c 为常数,a ≠0)这样的函数可以叫做什么函数?二次函数.2.对于实际问题中的二次函数,自变量的取值范围是否会有一些限制呢?有.二、思考探究,获取新知二次函数的概念及一般形式在上述学生回答后,教师给出二次函数的定义:一般地,形如y=ax 2+bx+c(a,b,c 是常数,a ≠0)的函数,叫做二次函数,其中x 是自变量,a,b,c 分别是函数解析式的二次项系数、一次项系数和常数项.注意:①二次函数中二次项系数不能为0.②在指出二次函数中各项系数时,要连同符号一起指出.三、典例精析,掌握新知例1 指出下列函数中哪些是二次函数.(1)y=(x-3)2-x 2 ;(2)y=2x(x-1);(3)y=32x-1;(4)y=22x ;(5)y=5-x 2+x.【分析】先化为一般形式,右边为整式,依照定义分析. 解:(2)(5)是二次函数,其余不是.【教学说明】判定一个函数是否为二次函数的思路:1.将函数化为一般形式.2.自变量的最高次数是2次.3.若二次项系数中有字母,二次项系数不能为0.例2 讲解教材P3例题.【教学说明】由实际问题确定二次函数关系式时,要注意自变量的取值范围.例3 已知函数y=(m 2-m)x 2+mx+(m+1)(m 是常数),当m 为何值时:(1)函数是一次函数;(2)函数是二次函数.【分析】判断函数类型,关键取决于其二次项系数和一次项系数能否为零,列出相应方程或不等式.解:(1)由200m m m ⎧-=⎨≠⎩ 得010m m ⎩=≠⎧⎨或 ,∴m=1.即当m=1时,函数y=(m 2-m)x 2+mx+(m+1)是一次函数.(2)由m 2-m ≠0得m ≠0且m ≠1,∴当m ≠0且m ≠1时,函数y=(m 2-m)x 2+mx+(m+1)是二次函数.【教学说明】学生自主完成,加深对二次函数概念的理解,并让学生会列二次函数的一些实际应用中的二次函数解析式.四、运用新知,深化理解1.下列函数中是二次函数的是( ) A.2123y x x =+- B.y=3x 3+2x 2 C.y=(x-2)2-x 3 D.212y x =-2.二次函数y=2x(x-1)的一次项系数是( )A.1B.-1C.2D.-23.若函数232(3)1k k y k x kx -+=-++ 是二次函数,则k 的值为( )A.0B.0或3C.3D.不确定4.若y=(a+2)x 2-3x+2是二次函数,则a 的取值范围是 .5.已知二次函数y=1-3x+5x 2,则二次项系数a= ,一次项系数b= ,常数项c= .6.某校九(1)班共有x 名学生,在毕业典礼上每两名同学都握一次手,共握手y 次,试写出y 与x 之间的函数关系式 ,它 (填“是”或“不是”)二次函数.7.如图,在边长为5的正方形中,挖去一个半径为x 的圆(圆心与正方形的中心重合),剩余部分的面积为y. (1)求y 关于x 的函数关系式;(2)试求自变量x 的取值范围;(3)求当圆的半径为2时,剩余部分的面积(π取3.14,结果精确到十分位).【答案】1.D 2.D 3.A 4.a ≠-2 5.5,-3,1 6.21122y x x =- 是 7.(1)y=25-πx 2=-πx 2+25.(2)0<x ≤52.(3)当x=2时,y=-4π+25≈-4×3.14+25=12.44≈12.4.即剩余部分的面积约为12.4.【教学说明】学生自主完成,加深对新知的理解,待学生完成上述作业后,教师指导.五、师生互动,课堂小结1.师生共同回顾二次函数的有关概念.2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?与同伴交流.【教学说明】教师引导学生回顾知识点,让学生大胆发言,进行知识提炼和知识归纳.1.教材P 4第1~3题.2.完成同步练习册中本课时的练习.本节课是从生活实际中引出二次函数模型,从而得出二次函数的定义及一般形式,会写简单变量之间的二次函数关系式,并能根据实际问题确定自变量的取值范围,使学生认识到数学来源于生活,又应用于生活实际之中.1.2 二次函数的图象与性质第1课时二次函数y=ax2(a>0)的图象与性质【知识与技能】1.会用描点法画函数y=ax2(a>0)的图象,并根据图象认识、理解和掌握其性质.2.体会数形结合的转化,能用y=ax2(a>0)的图象和性质解决简单的实际问题.【过程与方法】经历探索二次函数y=ax2(a>0)图象的作法和性质的过程,获得利用图象研究函数的经验,培养观察、思考、归纳的良好思维习惯.【情感态度】通过动手画图,同学之间交流讨论,达到对二次函数y=ax2(a >0)图象和性质的真正理解,从而产生对数学的兴趣,调动学生的积极性.【教学重点】1.会画y=ax2(a>0)的图象.2.理解,掌握图象的性质.【教学难点】二次函数图象及性质探究过程和方法的体会教学过程.一、情境导入,初步认识问题1请同学们回忆一下一次函数的图象、反比例函数的图象的特征是什么?二次函数图象是什么形状呢?问题2如何用描点法画一个函数图象呢?【教学说明】①略;②列表、描点、连线.二、思考探究,获取新知探究1画二次函数y=ax2(a>0)的图象.画二次函数y=ax2的图象.【教学说明】①要求同学们人人动手,按“列表、描点、连线”的步骤画图y=x2的图象,同学们画好后相互交流、展示,表扬画得比较规范的同学.②从列表和描点中,体会图象关于y轴对称的特征.③强调画抛物线的三个误区.误区一:用直线连结,而非光滑的曲线连结,不符合函数的变化规律和发展趋势.如图(1)就是y=x2的图象的错误画法.误区二:并非对称点,存在漏点现象,导致抛物线变形.如图(2)就是漏掉点(0,0)的y=x2的图象的错误画法.误区三:忽视自变量的取值范围,抛物线要求用平滑曲线连点的同时,还需要向两旁无限延伸,而并非到某些点停止.如图(3),就是到点(-2,4),(2,4)停住的y=x2图象的错误画法.探究2 y=ax2(a>0)图象的性质在同一坐标系中,画出y=x2,212y x =,y=2x 2的图象. 【教学说明】要求同学们独立完成图象,教师帮助引导,强调画图时注意每一个函数图象的对称性.动脑筋观察上述图象的特征(共同点),从而归纳二次函数y=ax2(a >0)的图象和性质.【教学说明】教师引导学生观察图象,从开口方向,对称轴,顶点,y 随x 的增大时的变化情况等几个方面让学生归纳,教师整理讲评、强调.y=ax 2(a >0)图象的性质1.图象开口向上.2.对称轴是y 轴,顶点是坐标原点,函数有最低点.3.当x >0时,y 随x 的增大而增大,简称右升;当x <0时,y 随x 的增大而减小,简称左降.三、典例精析,掌握新知例 已知函数24(2)k k y k x +-=+是关于x 的二次函数. (1)求k 的值.(2)k 为何值时,抛物线有最低点,最低点是什么?在此前提下,当x 在哪个范围内取值时,y 随x 的增大而增大?【分析】此题是考查二次函数y=ax 2的定义、图象与性质的,由二次函数定义列出关于k 的方程,进而求出k 的值,然后根据k+2>0,求出k 的取值范围,最后由y 随x 的增大而增大,求出x 的取值范围.解:(1)由已知得22042k k k +≠+-=⎧⎨⎩ ,解得k=2或k=-3.所以当k=2或k=-3时,函数24(2)k k y k x +-=+是关于x 的二次函数.(2)若抛物线有最低点,则抛物线开口向上,所以k+2>0.由(1)知k=2,最低点是(0,0),当x ≥0时,y 随x 的增大而增大.四、运用新知,深化理解1.(广东广州中考)下列函数中,当x >0时,y 值随x 值增大而减小的是( )A.y=x 2B.y=x-1C. 34y x =D.y=1x2.已知点(-1,y 1),(2,y 2),(-3,y 3)都在函数y=x 2的图象上,则( )A.y 1<y 2<y 3B.y 1<y 3<y 2C.y 3<y 2<y 1D.y 2<y 1<y 33.抛物线y=13x 2的开口向 ,顶点坐标为 ,对称轴为 ,当x=-2时,y= ;当y=3时,x= ,当x ≤0时,y 随x 的增大而 ;当x >0时,y 随x 的增大而 .4.如图,抛物线y=ax 2上的点B ,C 与x 轴上的点A (-5,0),D (3,0)构成平行四边形ABCD ,BC 与y 轴交于点E (0,6),求常数a的值.【教学说明】学生自主完成,加深对新知识的理解和掌握,当学生疑惑时,教师及时指导.,±3,减小,增大【答案】1.D 2.A 3.上,(0,0),y轴,434.解:依题意得:BC=AD=8,BC∥x轴,且抛物线y=ax2上的点B,C关于y轴对称,又∵BC与y轴交于点E(0,6),∴B点为(-4,6),C点为(4,6),将(4,6)代入y=ax2得:.a=38五、师生互动,课堂小结1.师生共同回顾二次函数y=ax2(a>0)图象的画法及其性质.2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?请与同伴交流.第1、2题.1.教材P72.完成同步练习册中本课时的练习.本节课是从学生画y=x2的图象,从而掌握二次函数y=ax2(a >0)图象的画法,再由图象观察、探究二次函数y=ax2(a>0)的性质,培养学生动手、动脑、探究归纳问题的能力.第2课时二次函数y=ax2(a<0)的图象与性质【知识与技能】1.会用描点法画函数y=ax2(a<0)的图象,并根据图象认识、理解和掌握其性质.2.体会数形结合的转化,能用y=ax2(a<0)的图象与性质解决简单的实际问题.【过程与方法】经历探索二次函数y=ax2(a<0)图象的作法和性质的过程,获得利用图象研究函数的经验,培养观察、思考、归纳的良好思维习惯.【情感态度】通过动手画图,同学之间交流讨论,达到对二次函数y=ax2(a≠0)图象和性质的真正理解,从而产生对数学的兴趣,调动学习的积极性.【教学重点】①会画y=ax2(a<0)的图象;②理解、掌握图象的性质.【教学难点】二次函数图象的性质及其探究过程和方法的体会.一、情境导入,初步认识1.在坐标系中画出y=12x2的图象,结合y=12x2的图象,谈谈二次函数y=ax2(a>0)的图象具有哪些性质?2.你能画出y=-12x2的图象吗?二、思考探究,获取新知探究1画y=ax2(a<0)的图象请同学们在上述坐标系中用“列表、描点、连线”的方法画出y=-12x2的图象.【教学说明】教师要求学生独立完成,强调画图过程中应注意的问题,同学们完成后相互交流,表扬图象画得“美观”的同学.问:从所画出的图象进行观察,y=12x2与y=-12x2有何关系?归纳:y=12x2与y=-12x2二者图象形状完全相同,只是开口方向不同,两图象关于y轴对称.(教师引导学生从理论上进行证明这一结论)探究2二次函数y=ax2(a<0)性质问:你能结合y=-12x2的图象,归纳出y=ax2(a<0)图象的性质吗?【教学说明】教师提示应从开口方向,对称轴,顶点位置,y随x的增大时的变化情况几个方面归纳,教师整理,强调y=ax2(a<0)图象的性质.1.开口向下.2.对称轴是y轴,顶点是坐标原点,函数有最高点.3.当x>0时,y随x的增大而减小,简称右降,当x<0时,y随x的增大而增大,简称左升.探究3二次函数y=ax2(a≠0)的图象及性质学生回答:【教学点评】一般地,抛物线y=ax2的对称轴是,顶点是,当a>0时抛物线的开口向,顶点是抛物线的最点,a越大,抛物线开口越;当a<0时,抛物线的开口向,顶点是抛物线的最点,a越大,抛物线开口越,总之,|a|越大,抛物线开口越.答案:y轴,(0,0),上,低,小,下,高,大,小三、典例精析,掌握新知例1 填空:①函数y=(-2x)2的图象是,顶点坐标是,对称轴是,开口方向是.②函数y=x2,y=1x2和y=-2x2的图象如图所示,2请指出三条抛物线的解析式.解:①抛物线,(0,0),y轴,向上;②根据抛物线y=ax2中,a的值的作用来判断,上面最外面x2,中间为y=x2,在x轴下方的为y=-2x2.的抛物线为y=12【教学说明】解析式需化为一般式,再根据图象特征解答,避免发生错误.抛物线y=ax2中,当a>0时,开口向上;当a<0时,开口向下,|a|越大,开口越小.例2 已知抛物线y=ax2经过点(1,-1),求y=-4时x的值.【分析】把点(1,-1)的坐标代入y=ax2,求得a的值,得到二次函数的表达式,再把y=-4代入已求得的表达式中,即可求得x的值.解:∵点(1,-1)在抛物线y=ax2上,-1=a·12,∴a=-1,∴抛物线为y=-x2.当y=-4时,有-4=-x2,∴x=±2.【教学说明】在求y=ax2的解析式时,往往只须一个条件代入即可求出a值.四、运用新知,深化理解1.下列关于抛物线y=x2和y=-x2的说法,错误的是()A.抛物线y=x2和y=-x2有共同的顶点和对称轴B.抛物线y=x2和y=-x2关于x轴对称C.抛物线y=x2和y=-x2的开口方向相反D.点(-2,4)在抛物线y=x2上,也在抛物线y=-x2上2.二次函数y=ax 2与一次函数y=-ax(a ≠0)在同一坐标系中的图象大致是( )3.二次函数226(1)m m y m x +-=-,当x <0时,y 随x 的增大而减小,则m= .4.已知点A (-1,y 1),B(1,y 2),C(a,y 3)都在函数y=x 2的图象上,且a >1,则y 1,y 2,y 3中最大的是 .5.已知函数y=ax 2经过点(1,2).①求a 的值;②当x <0时,y 的值随x 值的增大而变化的情况.【教学说明】学生自主完成,加深对新知的理解和掌握,当学生疑惑时,教师及时指导.【答案】1.D 2.B 3.2 4.y 35.①a=2 ②当x <0时,y 随x 的增大而减小五、师生互动,课堂小结这节课你学到了什么,还有哪些疑惑?在学生回答的基础上,教师点评:(1)y=ax 2(a<0)图象的性质;(2)y=ax 2(a ≠0)关系式的确定方法.1.教材P 10第1~2题.2.完成同步练习册中本课时的练习.本节课仍然是从学生画图象,结合上节课y=ax2(a>0)的图象和性质,从而得出y=ax2(a<0)的图象和性质,进而得出y=ax2(a ≠0)的图象和性质,培养学生动手、动脑、合作探究的学习习惯.第3课时二次函数y=a(x-h)2的图象与性质【知识与技能】1.能够画出y=a(x-h)2的图象,并能够理解它与y=ax2的图象的关系,理解a,h对二次函数图象的影响.2.能正确说出y=a(x-h)2的图象的开口方向、对称轴和顶点坐标.【过程与方法】经历探索二次函数y=a(x-h)2的图象的作法和性质的过程,进一步领会数形结合的思想.【情感态度】1.在小组活动中体会合作与交流的重要性.2.进一步丰富数学学习的成功体验,认识到数学是解决实际问题的重要工具,初步形成积极参与数学活动的意识.【教学重点】掌握y=a(x-h)2的图象及性质.【教学难点】理解y=a(x-h)2与y=ax2图象之间的位置关系,理解a,h对二次函数图象的影响.一、情境导入,初步认识1.在同一坐标系中画出y=12x2与y=12(x-1)2的图象,完成下表.2.二次函数y=12(x-1)2的图象与y=12x2的图象有什么关系?3.对于二次函数12(x-1)2,当x取何值时,y的值随x值的增大而增大?当x取何值时,y的值随x值的增大而减小?二、思考探究,获取新知归纳二次函数y=a(x-h)2的图象与性质并完成下表.三、典例精析,掌握新知例1 教材P 12例3. 【教学说明】二次函数y=ax 2与y=a(x-h)2是有关系的,即左、右平移时“左加右减”. 例如y=ax 2向左平移1个单位得到y=a(x+1)2,y=ax 2向右平移2个单位得到y=a(x-2)2的图象.例2 已知直线y=x+1与x 轴交于点A ,抛物线y=-2x 2平移后的顶点与点A 重合.①水平移后的抛物线l 的解析式;②若点B (x 1,y 1),C(x 2,y 2)在抛物线l 上,且-12<x 1<x 2,试比较y 1,y 2的大小. 解:①∵y=x+1,∴令y=0,则x=-1,∴A (-1,0),即抛物线l 的顶点坐标为(-1,0),又∵抛物线l是由抛物线y=-2x2平移得到的,∴抛物线l的解析式为y=-2(x+1)2.②由①可知,抛物线l的对称轴为x=-1,∵a=-2<0,∴当x>-1时,y随x的增大而减小,又-12<x1<x2,∴y1>y2.【教学说明】二次函数的增减性以对称轴为分界,画图象取点时以顶点为分界对称取点.四、运用新知,深化理解1.二次函数y=15(x-1)2的最小值是()A.-1B.1C.0D.没有最小值2.抛物线y=-3(x+1)2不经过的象限是()A.第一、二象限B.第二、四象限C.第三、四象限D.第二、三象限3.在反比例函数y=kx中,当x>0时,y随x的增大而增大,则二次函数y=k(x-1)2的图象大致是()4.(1)抛物线y=13x2向平移个单位得抛物线y=13(x+1)2;(2)抛物线向右平移2个单位得抛物线y=-2(x-2)2.5.(广东广州中考)已知抛物线y=a(x-h)2的对称轴为x=-2,且过点(1,-3).(1)求抛物线的解析式;(2)画出函数的大致图象;(3)从图象上观察,当x取何值时,y随x的增大而增大?当x 取何值时,函数有最大值(或最小值)?【教学说明】学生自主完成,教师巡视解疑.【答案】1.C 2.A 3.B 4.(1)左,1 (2)y=-2x2(x+2)2(2)略(3)当x<-2时,y随x增大5.解:(1)y=-13而增大;当x=-2时,y有最大值0.五、师生互动,课堂小结1.这节课你学到了什么?还有哪些疑惑?2.在学生回答的基础上,教师点评:(1)y=a(x-h)2的图象与性质;(2)y=a(x-h)2与y=ax2的图象的关系.第1、2题.1.教材P122.完成同步练习册中本课时的练习.通过本节学习使学生认识到y=a(x-h)2的图象是由y=ax2的图象左右平移得到的,初步认识到a,h对y=a(x-h)2位置的影响,a 的符号决定抛物线方向,|a|决定抛物线开口的大小,h决定向左右平移;从中领会数形结合的数学思想.第4课时二次函数y=a(x-h)2+k的图象与性质【知识与技能】1.会用描点法画二次函数y=a(x-h)2+k的图象.掌握y=a(x-h)2+k的图象和性质.2.掌握y=a(x-h)2+k与y=ax2的图象的位置关系.3.理解y=a(x-h)2+k,y=a(x-h)2,y=ax2+k及y=ax2的图象之间的平移转化.【过程与方法】经历探索二次函数y=a(x-h)2+k的图象的作法和性质的过程,进一步领会数形结合的思想,培养观察、分析、总结的能力. 【情感态度】1.在小组活动中进一步体会合作与交流的重要性.2.体验数学活动中充满着探索性,感受通过认识观察,归纳,类比可以获得数学猜想的乐趣.【教学重点】二次函数y=a(x-h)2+k的图象与性质.【教学难点】由二次函数y=a(x-h)2+k的图象的轴对称性列表、描点、连线.一、情境导入,初步认识复习回顾:同学们回顾一下:①y=ax2,y=a(x-h)2,(a≠0)的图象的开口方向、对称轴、顶点坐标,y随x的增减性分别是什么?②如何由y=ax2(a≠0)的图象平移得到y=a(x-h)2的图象?③猜想二次函数y=a(x-h)2+k的图象开口方向、对称轴、顶点坐标及y随x的增减性如何?二、思考探究,获取新知探究1y=a(x-h)2+k的图象和性质1.由老师提示列表,根据抛物线的轴对称性观察图象回答下列问题:(x+1)2-1图象的开口方向、对称轴、顶点坐标及y随①y=-12x的增减性如何?x2向左平移1个单位,再向下平移1个单②将抛物线y=-12位得抛物线y=-1(x+1)2-1.22.同学们讨论回答:①一般地,当h>0,k>0时,把抛物线y=ax2向右平移h个单位,再向上平移k个单位得抛物线y=a(x-h)2+k;平移的方向和距离由h,k的值来决定.②抛物线y=a(x-h)2+k的开口方向、对称轴、顶点坐标及y 随x的增减性如何?探究2二次函数y=a(x-h)2+k的应用【教学说明】二次函数y=a(x-h)2+k的图象是,对称轴是,顶点坐标是,当a>0时,开口向,当a<0时,开口向.答案:抛物线,直线x=h,(h,k),上,下三、典例精析,掌握新知例1 已知抛物线y=a(x-h)2+k,将它沿x轴向右平移3个单位后,又沿y轴向下平移2个单位,得到抛物线的解析式为y=-3(x+1)2-4,求原抛物线的解析式.【分析】平移过程中,前后抛物线的形状,大小不变,所以a=-3,平移时应抓住顶点的变化,根据平移规律可求出原抛物线顶点,从而得到原抛物线的解析式.解:抛物线y=-3(x+1)2-4的顶点坐标为(-1,-4),它是由原抛物线向右平移3个单位,向下平移2个单位而得到的,所以把现在的顶点向相反方向移动就得到原抛物线顶点坐标为(-4,-2).故原抛物线的解析式为y=-3(x+4)2-2.【教学说明】抛物线平移不改变形状及大小,所以a值不变,平移时抓住关键点:顶点的变化.例2 如图是某次运动会开幕式点燃火炬时的示意图,发射台OA的高度为2m,火炬的高度为12m,距发射台OA的水平距离为20m,在A处的发射装置向目标C发射一个火球点燃火炬,该火球运行的轨迹为抛物线形,当火球运动到距地面最大高度20m时,相应的水平距离为12m.请你判断该火球能否点燃目标C?并说明理由.【分析】建立适当直角坐标系,构建二次函数解析式,然后分析判断.解:该火球能点燃目标.如图,以OB所在直线为x轴,OA所在直线为y轴建立直角坐标系,则点(12,20)为抛物线顶点,设解析式为y=a(x-12)2+20,∵点(0,2)在图象上,∴144a+20=2,∴a=-18,∴y=-18(x-12)2+20.当x=20时,y=-18×(20-12)2+20=12,即抛物线过点(20,12),∴该火球能点燃目标.【教学说明】二次函数y=a(x-h)2+k的应用关键是构造出二次函数模型.四、运用新知,深化理解1.若抛物线y=-7(x+4)2-1平移得到y=-7x2,则必须()A.先向左平移4个单位,再向下平移1个单位B.先向右平移4个单位,再向上平移1个单位C.先向左平移1个单位,再向下平移4个单位D.先向右平移1个单位,再向上平移4个单位2.抛物线y=x2-4与x轴交于B,C两点,顶点为A,则△ABC 的周长为()A.45B.45+4C.12D.25+43.函数y=ax2-a与y=ax-a(a≠0)在同一坐标系中的图象可能是()4.二次函数y=-2x2+6的图象的对称轴是,顶点坐标是,当x 时,y随x的增大而增大.5.已知函数y=ax2+c的图象与函数y=-3x2-2的图象关于x轴对称,则a= ,c= .6.把抛物线y=(x-1)2沿y轴向上或向下平移,所得抛物线经过Q(3,0),求平移后抛物线的解析式.【教学说明】学生自主完成,加深对新知的理解,教师引导解疑.【答案】1.B 2.B 3.C 4.y轴,(0,6),<0 5.3,26.y=(x-1)2-4五、师生互动,课堂小结1.这节课你学到了什么,还有哪些疑惑?2.在学生回答的基础上,教师点评:①二次函数y=a(x-h)2+k的图象与性质;②如何由抛物线y=ax2平移得到抛物线y=a(x-h)2+k.【教学说明】教师应引导学生自主小结,加深理解掌握y=ax2与y=a(x-h)2+k二者图象的位置关系.1.教材P第1~3题.152.完成同步练习册中本课时的练习.掌握函数y=ax2,y=a(x-h)2,y=a(x-h)2+k图象的变化关系,从而体会由简单到复杂的认识规律.第5课时二次函数y=ax2+bx+c的图象与性质【知识与技能】1.会用描点法画二次函数y=ax2+bx+c的图象.2.会用配方法求抛物线y=ax2+bx+c的顶点坐标、开口方向、对称轴、y随x的增减性.3.能通过配方求出二次函数y=ax2+bx+c(a≠0)的最大或最小值;能利用二次函数的性质求实际问题中的最大值或最小值.【过程与方法】1.经历探索二次函数y=ax2+bx+c(a≠0)的图象的作法和性质的过程,体会建立二次函数y=ax2+bx+c(a≠0)对称轴和顶点坐标公式的必要性.2.在学习y=ax2+bx+c(a≠0)的性质的过程中,渗透转化(化归)的思想.【情感态度】进一步体会由特殊到一般的化归思想,形成积极参与数学活动的意识.【教学重点】①用配方法求y=ax2+bx+c的顶点坐标;②会用描点法画y=ax2+bx+c的图象并能说出图象的性质.【教学难点】能利用二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标公式,解决一些问题,能通过对称性画出二次函数y=ax2+bx+c(a ≠0)的图象.一、情境导入,初步认识请同学们完成下列问题.1.把二次函数y=-2x2+6x-1化成y=a(x-h)2+k的形式.2.写出二次函数y=-2x2+6x-1的开口方向,对称轴及顶点坐标.3.画y=-2x 2+6x-1的图象.4.抛物线y=-2x 2如何平移得到y=-2x 2+6x-1的图象.5.二次函数y=-2x 2+6x-1的y 随x 的增减性如何?【教学说明】上述问题教师应放手引导学生逐一完成,从而领会y=ax 2+bx+c 与y=a(x-h)2+k 的转化过程.二、思考探究,获取新知探究1 如何画y=ax 2+bx+c 图象,你可以归纳为哪几步? 学生回答、教师点评:一般分为三步:1.先用配方法求出y=ax 2+bx+c 的对称轴和顶点坐标.2.列表,描点,连线画出对称轴右边的部分图象.3.利用对称点,画出对称轴左边的部分图象.探究2 二次函数y=ax 2+bx+c 图象的性质有哪些?你能试着归纳吗?学生回答,教师点评:抛物线y=ax 2+bx+c=224()24b ac b a x a a -++ ,对称轴为x=-2b a,顶点坐标为(-2b a ,244ac b a -),当a >0时,若x >-2b a ,y 随x 增大而增大,若x <-2b a ,y 随x 的增大而减小;当a <0时,若x >-2b a ,y 随x 的增大而减小,若x<-2b a ,y 随x 的增大而增大.探究3 二次函数y=ax 2+bx+c 在什么情况下有最大值,什么情况下有最小值,如何确定?学生回答,教师点评:三、典例精析,掌握新知例1将下列二次函数写成顶点式y=a(x-h)2+k的形式,并写出其开口方向,顶点坐标,对称轴.x2-3x+21 ②y=-3x2-18x-22①y=14x2-3x+21解:①y=14(x2-12x)+21= 14(x2-12x+36-36)+21=14=1(x-6)2+12.4∴此抛物线的开口向上,顶点坐标为(6,12),对称轴是x=6.②y=-3x2-18x-22=-3(x2+6x)-22=-3(x2+6x+9-9)-22=-3(x+3)2+5.∴此抛物线的开口向下,顶点坐标为(-3,5),对称轴是x=-3.【教学说明】第②小题注意h值的符号,配方法是数学的一个重要方法,需多加练习,熟练掌握;抛物线的顶点坐标也可以根据公式直接求解.例2 用总长为60m的篱笆围成的矩形场地,矩形面积S随矩形一边长l的变化而变化,l是多少时,场地的面积S最大?①S与l有何函数关系?②举一例说明S随l的变化而变化?③怎样求S的最大值呢?解:S=l (30-l)=- l2+30l (0<l<30)=-( l2-30l)=-( l-15)2+225画出此函数的图象,如图.∴l=15时,场地的面积S最大(S的最大值为225)【教学说明】二次函数在几何方面的应用特别广泛,要注意自变量的取值范围的确定,同时所画的函数图象只能是抛物线的一部分.四、运用新知,深化理解1.(北京中考)抛物线y=x2-6x+5的顶点坐标为()A.(3,-4)B.(3,4)C.(-3,-4)D.(-3,4)2.(贵州贵阳中考)已知二次函数y=ax2+bx+c(a<0)的图象如图所示,当-5≤x≤0时,下列说法正确的是()A.有最小值5、最大值0B.有最小值-3、最大值6C.有最小值0、最大值6D.有最小值2、最大值63.如图,二次函数y=ax2+bx+c的图象开口向上,图象经过点(-1,2)和(1,0),且与y轴相交于负半轴.(1)给出四个结论:①a>0;②b>0;③c>0;④a+b+c=0.其中正确结论的序号是.(2)给出四个结论:①abc<0;②2a+b>0;③a+c=1;④a>1.其中正确结论的序号是.【教学说明】通过练习,巩固掌握y=ax2+bx+c的图象和性质.【答案】1.A 2.B 3.(1)①④(2)②③④五、师生互动,课堂小结1.这节课你学到了什么?还有哪些疑惑?2.在学生回答的基础上,教师点评:(1)用配方法求二次y=ax2+bx+c的顶点坐标、对称轴;(2)由y=ax2+bx+c的图象判断与a,b,c有关代数式的值的正负;(3)实际问题中自变量取值范围及函数最值.1.教材P15第1~3题.2.完成同步练习册中本课时的练习.y=ax2+bx+c的图象和性质可以看作是y=ax2,y=a(x-h)2+k,。

湘教版九年级下学期数学教案(全册)

湘教版九年级下学期数学教案(全册)

第1章二次函数1.1 二次函数【知识与技能】1.理解具体情景中二次函数的意义,理解二次函数的概念,掌握二次函数的一般形式.2.能够表示简单变量之间的二次函数关系式,并能根据实际问题确定自变量的取值范围.【过程与方法】经历探索,分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系.【情感态度】体会数学与实际生活的密切联系,学会与他人合作交流,培养合作意识.【教学重点】二次函数的概念.【教学难点】在实际问题中,会写简单变量之间的二次函数关系式教学过程.一、情境导入,初步认识1.教材P2“动脑筋”中的两个问题:矩形植物园的面积S(m2)与相邻于围墙面的每一面墙的长度x(m)的关系式是S=-2x2+100x,(0<x<50);电脑价格y(元)与平均降价率x的关系式是y=6000x2-12000x+6000,(0<x<1).它们有什么共同点?一般形式是y=ax2+bx+c(a,b,c为常数,a≠0)这样的函数可以叫做什么函数?二次函数.2.对于实际问题中的二次函数,自变量的取值范围是否会有一些限制呢?有.二、思考探究,获取新知二次函数的概念及一般形式在上述学生回答后,教师给出二次函数的定义:一般地,形如y=ax2+bx+c(a, b,c是常数,a≠0)的函数,叫做二次函数,其中x是自变量,a,b,c分别是函数解析式的二次项系数、一次项系数和常数项.注意:①二次函数中二次项系数不能为0.②在指出二次函数中各项系数时,要连同符号一起指出.三、典例精析,掌握新知例1 指出下列函数中哪些是二次函数.(1)y=(x-3)2-x 2 ;(2)y=2x(x-1);(3)y=32x-1;(4)y=22x ;(5)y=5-x 2+x. 【分析】先化为一般形式,右边为整式,依照定义分析.解:(2)(5)是二次函数,其余不是.【教学说明】判定一个函数是否为二次函数的思路:1.将函数化为一般形式.2.自变量的最高次数是2次.3.若二次项系数中有字母,二次项系数不能为0.例2 讲解教材P3例题.【教学说明】由实际问题确定二次函数关系式时,要注意自变量的取值范围.例3 已知函数y=(m 2-m)x 2+mx+(m+1)(m 是常数),当m 为何值时:(1)函数是一次函数;(2)函数是二次函数.【分析】判断函数类型,关键取决于其二次项系数和一次项系数能否为零,列出相应方程或不等式.解:(1)由200m m m ⎧-=⎨≠⎩得010m m ⎩=≠⎧⎨或 , ∴m=1.即当m=1时,函数y=(m 2-m)x 2+mx+(m+1)是一次函数.(2)由m 2-m ≠0得m ≠0且m ≠1,∴当m ≠0且m ≠1时,函数y=(m 2-m)x 2+mx+(m+1)是二次函数.【教学说明】学生自主完成,加深对二次函数概念的理解,并让学生会列二次函数的一些实际应用中的二次函数解析式.四、运用新知,深化理解1.下列函数中是二次函数的是( ) A. 2123y x x =+- B.y=3x 3+2x 2 C.y=(x-2)2-x 3 D.212y x = 2.二次函数y=2x(x-1)的一次项系数是( )A.1B.-1C.2D.-23.若函数232(3)1k k y k x kx -+=-++ 是二次函数,则k 的值为( )A.0B.0或3C.3D.不确定4.若y=(a+2)x 2-3x+2是二次函数,则a 的取值范围是 .5.已知二次函数y=1-3x+5x 2,则二次项系数a= ,一次项系数b= ,常数项c= .6.某校九(1)班共有x 名学生,在毕业典礼上每两名同学都握一次手,共握手y 次,试写出y 与x 之间的函数关系式 ,它 (填“是”或“不是”)二次函数.7.如图,在边长为5的正方形中,挖去一个半径为x 的圆(圆心与正方形的中心重合),剩余部分的面积为y.(1)求y 关于x 的函数关系式;(2)试求自变量x 的取值范围;(3)求当圆的半径为2时,剩余部分的面积(π取3.14,结果精确到十分位).【答案】1.D 2.D 3.A 4.a ≠-2 5.5,-3,1 6.21122y x x =- 是 7.(1)y=25-πx 2=-πx 2+25.(2)0<x ≤52.(3)当x=2时,y=-4π+25≈-4×3.14+25=12.44≈12.4.即剩余部分的面积约为12.4.【教学说明】学生自主完成,加深对新知的理解,待学生完成上述作业后,教师指导.五、师生互动,课堂小结1.师生共同回顾二次函数的有关概念.2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?与同伴交流.【教学说明】教师引导学生回顾知识点,让学生大胆发言,进行知识提炼和知识归纳.1.教材P 4第1~3题.2.完成同步练习册中本课时的练习.本节课是从生活实际中引出二次函数模型,从而得出二次函数的定义及一般形式,会写简单变量之间的二次函数关系式,并能根据实际问题确定自变量的取值范围,使学生认识到数学来源于生活,又应用于生活实际之中.1.2 二次函数的图象与性质第1课时二次函数y=ax2(a>0)的图象与性质【知识与技能】1.会用描点法画函数y=ax2(a>0)的图象,并根据图象认识、理解和掌握其性质.2.体会数形结合的转化,能用y=ax2(a>0)的图象和性质解决简单的实际问题.【过程与方法】经历探索二次函数y=ax2(a>0)图象的作法和性质的过程,获得利用图象研究函数的经验,培养观察、思考、归纳的良好思维习惯.【情感态度】通过动手画图,同学之间交流讨论,达到对二次函数y=ax2(a>0)图象和性质的真正理解,从而产生对数学的兴趣,调动学生的积极性.【教学重点】1.会画y=ax2(a>0)的图象.2.理解,掌握图象的性质.【教学难点】二次函数图象及性质探究过程和方法的体会教学过程.一、情境导入,初步认识问题1请同学们回忆一下一次函数的图象、反比例函数的图象的特征是什么?二次函数图象是什么形状呢?问题2如何用描点法画一个函数图象呢?【教学说明】①略;②列表、描点、连线.二、思考探究,获取新知探究1画二次函数y=ax2(a>0)的图象.画二次函数y=ax2的图象.【教学说明】①要求同学们人人动手,按“列表、描点、连线”的步骤画图y=x 2的图象,同学们画好后相互交流、展示,表扬画得比较规范的同学.②从列表和描点中,体会图象关于y 轴对称的特征.③强调画抛物线的三个误区.误区一:用直线连结,而非光滑的曲线连结,不符合函数的变化规律和发展趋势.如图(1)就是y=x 2的图象的错误画法.误区二:并非对称点,存在漏点现象,导致抛物线变形.如图(2)就是漏掉点(0,0)的y=x 2的图象的错误画法.误区三:忽视自变量的取值范围,抛物线要求用平滑曲线连点的同时,还需要向两旁无限延伸,而并非到某些点停止.如图(3),就是到点(-2,4),(2,4)停住的y=x 2图象的错误画法.探究2 y=ax 2(a >0)图象的性质在同一坐标系中,画出y=x 2,212y x,y=2x 2的图象. 【教学说明】要求同学们独立完成图象,教师帮助引导,强调画图时注意每一个函数图象的对称性.动脑筋观察上述图象的特征(共同点),从而归纳二次函数y=ax2(a >0)的图象和性质.【教学说明】教师引导学生观察图象,从开口方向,对称轴,顶点,y 随x 的增大时的变化情况等几个方面让学生归纳,教师整理讲评、强调.y=ax 2(a >0)图象的性质1.图象开口向上.2.对称轴是y 轴,顶点是坐标原点,函数有最低点.3.当x >0时,y 随x 的增大而增大,简称右升;当x <0时,y 随x 的增大而减小,简称左降.三、典例精析,掌握新知例 已知函数24(2)kk y k x +-=+是关于x 的二次函数.(1)求k 的值.(2)k 为何值时,抛物线有最低点,最低点是什么?在此前提下,当x 在哪个范围内取值时,y 随x 的增大而增大?【分析】此题是考查二次函数y=ax 2的定义、图象与性质的,由二次函数定义列出关于k 的方程,进而求出k 的值,然后根据k+2>0,求出k 的取值范围,最后由y 随x 的增大而增大,求出x 的取值范围. 解:(1)由已知得22042k k k +≠+-=⎧⎨⎩,解得k=2或k=-3. 所以当k=2或k=-3时,函数24(2)kk y k x +-=+是关于x 的二次函数.(2)若抛物线有最低点,则抛物线开口向上,所以k+2>0.由(1)知k=2,最低点是(0,0),当x≥0时,y随x的增大而增大.四、运用新知,深化理解1.(广东广州中考)下列函数中,当x>0时,y值随x值增大而减小的是()A.y=x2B.y=x-1C.34y xD.y=1x2.已知点(-1,y1),(2,y2),(-3,y3)都在函数y=x2的图象上,则()A.y1<y2<y3B.y1<y3<y2C.y3<y2<y1D.y2<y1<y33.抛物线y=13x2的开口向,顶点坐标为,对称轴为,当x=-2时,y= ;当y=3时,x= ,当x≤0时,y随x的增大而;当x>0时,y随x的增大而 .4.如图,抛物线y=ax2上的点B,C与x轴上的点A(-5,0),D(3,0)构成平行四边形ABCD,BC与y轴交于点E(0,6),求常数a的值.【教学说明】学生自主完成,加深对新知识的理解和掌握,当学生疑惑时,教师及时指导.【答案】1.D 2.A 3.上,(0,0),y轴,43,±3,减小,增大4.解:依题意得:BC=AD=8,BC∥x轴,且抛物线y=ax2上的点B,C关于y轴对称,又∵BC与y轴交于点E(0,6),∴B点为(-4,6),C点为(4,6),将(4,6)代入y=ax2得:a=3 8 .五、师生互动,课堂小结1.师生共同回顾二次函数y=ax2(a>0)图象的画法及其性质.2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?请与同伴交流.1.教材P7第1、2题.2.完成同步练习册中本课时的练习.本节课是从学生画y=x2的图象,从而掌握二次函数y=ax2(a>0)图象的画法,再由图象观察、探究二次函数y=ax2(a>0)的性质,培养学生动手、动脑、探究归纳问题的能力.第2课时二次函数y=ax2(a<0)的图象与性质【知识与技能】1.会用描点法画函数y=ax2(a<0)的图象,并根据图象认识、理解和掌握其性质.2.体会数形结合的转化,能用y=ax2(a<0)的图象与性质解决简单的实际问题.【过程与方法】经历探索二次函数y=ax2(a<0)图象的作法和性质的过程,获得利用图象研究函数的经验,培养观察、思考、归纳的良好思维习惯.【情感态度】通过动手画图,同学之间交流讨论,达到对二次函数y=ax2(a≠0)图象和性质的真正理解,从而产生对数学的兴趣,调动学习的积极性.【教学重点】①会画y=ax2(a<0)的图象;②理解、掌握图象的性质.【教学难点】二次函数图象的性质及其探究过程和方法的体会.一、情境导入,初步认识1.在坐标系中画出y=12x2的图象,结合y=12x2的图象,谈谈二次函数y=ax2(a>0)的图象具有哪些性质?2.你能画出y=-12x2的图象吗?二、思考探究,获取新知探究1画y=ax2(a<0)的图象请同学们在上述坐标系中用“列表、描点、连线”的方法画出y=-12x2的图象.【教学说明】教师要求学生独立完成,强调画图过程中应注意的问题,同学们完成后相互交流,表扬图象画得“美观”的同学.问:从所画出的图象进行观察,y=12x2与y=-12x2有何关系?归纳:y=12x2与y=-12x2二者图象形状完全相同,只是开口方向不同,两图象关于y轴对称.(教师引导学生从理论上进行证明这一结论)探究2二次函数y=ax2(a<0)性质问:你能结合y=-12x2的图象,归纳出y=ax2(a<0)图象的性质吗?【教学说明】教师提示应从开口方向,对称轴,顶点位置,y随x的增大时的变化情况几个方面归纳,教师整理,强调y=ax2(a<0)图象的性质.1.开口向下.2.对称轴是y轴,顶点是坐标原点,函数有最高点.3.当x>0时,y随x的增大而减小,简称右降,当x<0时,y随x的增大而增大,简称左升.探究3二次函数y=ax2(a≠0)的图象及性质学生回答:【教学点评】一般地,抛物线y=ax2的对称轴是,顶点是,当a>0时抛物线的开口向,顶点是抛物线的最点,a 越大,抛物线开口越;当a<0时,抛物线的开口向,顶点是抛物线的最点,a越大,抛物线开口越,总之,|a|越大,抛物线开口越 .答案:y轴,(0,0),上,低,小,下,高,大,小三、典例精析,掌握新知例1 填空:①函数y=(-2x)2的图象是,顶点坐标是,对称轴是,开口方向是 .②函数y=x2,y=12x2和y=-2x2的图象如图所示,请指出三条抛物线的解析式.解:①抛物线,(0,0),y轴,向上;②根据抛物线y=ax2中,a的值的作用来判断,上面最外面的抛物线为y=12x2,中间为y=x2,在x轴下方的为y=-2x2.【教学说明】解析式需化为一般式,再根据图象特征解答,避免发生错误.抛物线y=ax2中,当a>0时,开口向上;当a<0时,开口向下,|a|越大,开口越小.例2 已知抛物线y=ax2经过点(1,-1),求y=-4时x的值.【分析】把点(1,-1)的坐标代入y=ax2,求得a的值,得到二次函数的表达式,再把y=-4代入已求得的表达式中,即可求得x的值.解:∵点(1,-1)在抛物线y=ax2上,-1=a·12,∴a=-1,∴抛物线为y=-x2.当y=-4时,有-4=-x2,∴x=±2.【教学说明】在求y=ax2的解析式时,往往只须一个条件代入即可求出a 值.四、运用新知,深化理解1.下列关于抛物线y=x2和y=-x2的说法,错误的是()A.抛物线y=x2和y=-x2有共同的顶点和对称轴B.抛物线y=x2和y=-x2关于x轴对称C.抛物线y=x2和y=-x2的开口方向相反D.点(-2,4)在抛物线y=x2上,也在抛物线y=-x2上2.二次函数y=ax2与一次函数y=-ax(a≠0)在同一坐标系中的图象大致是()3.二次函数226(1)m m y m x +-=-,当x <0时,y 随x 的增大而减小,则m= . 4.已知点A (-1,y 1),B(1,y 2),C(a,y 3)都在函数y=x 2的图象上,且a >1,则y 1,y 2,y 3中最大的是 .5.已知函数y=ax 2经过点(1,2).①求a 的值;②当x <0时,y 的值随x 值的增大而变化的情况.【教学说明】学生自主完成,加深对新知的理解和掌握,当学生疑惑时,教师及时指导.【答案】1.D 2.B 3.2 4.y 35.①a=2 ②当x <0时,y 随x 的增大而减小 五、师生互动,课堂小结这节课你学到了什么,还有哪些疑惑?在学生回答的基础上,教师点评:(1)y=ax 2(a<0)图象的性质;(2)y=ax 2(a ≠0)关系式的确定方法.1.教材P 10第1~2题.2.完成同步练习册中本课时的练习.本节课仍然是从学生画图象,结合上节课y=ax 2(a >0)的图象和性质,从而得出y=ax 2(a <0)的图象和性质,进而得出y=ax 2(a ≠0)的图象和性质,培养学生动手、动脑、合作探究的学习习惯.第3课时二次函数y=a(x-h)2的图象与性质【知识与技能】1.能够画出y=a(x-h)2的图象,并能够理解它与y=ax2的图象的关系,理解a,h对二次函数图象的影响.2.能正确说出y=a(x-h)2的图象的开口方向、对称轴和顶点坐标.【过程与方法】经历探索二次函数y=a(x-h)2的图象的作法和性质的过程,进一步领会数形结合的思想.【情感态度】1.在小组活动中体会合作与交流的重要性.2.进一步丰富数学学习的成功体验,认识到数学是解决实际问题的重要工具,初步形成积极参与数学活动的意识.【教学重点】掌握y=a(x-h)2的图象及性质.【教学难点】理解y=a(x-h)2与y=ax2图象之间的位置关系,理解a,h对二次函数图象的影响.一、情境导入,初步认识1.在同一坐标系中画出y=12x2与y=12(x-1)2的图象,完成下表.2.二次函数y=12(x-1)2的图象与y=12x2的图象有什么关系?3.对于二次函数12(x-1)2,当x取何值时,y的值随x值的增大而增大?当x取何值时,y的值随x值的增大而减小?二、思考探究,获取新知归纳二次函数y=a(x-h)2的图象与性质并完成下表.三、典例精析,掌握新知例1 教材P12例3.【教学说明】二次函数y=ax2与y=a(x-h)2是有关系的,即左、右平移时“左加右减”. 例如y=ax2向左平移1个单位得到y=a(x+1)2,y=ax2向右平移2个单位得到y=a(x-2)2的图象.例2 已知直线y=x+1与x轴交于点A,抛物线y=-2x2平移后的顶点与点A重合.①水平移后的抛物线l的解析式;②若点B(x1,y1),C(x2,y2)在抛物线l上,且-12<x1<x2,试比较y1,y2的大小.解:①∵y=x+1,∴令y=0,则x=-1,∴A(-1,0),即抛物线l的顶点坐标为(-1,0),又∵抛物线l是由抛物线y=-2x2平移得到的,∴抛物线l的解析式为y=-2(x+1)2.②由①可知,抛物线l的对称轴为x=-1,∵a=-2<0,∴当x>-1时,y随x的增大而减小,又-12<x1<x2,∴y1>y2.【教学说明】二次函数的增减性以对称轴为分界,画图象取点时以顶点为分界对称取点.四、运用新知,深化理解1.二次函数y=15(x-1)2的最小值是()A.-1B.1C.0D.没有最小值2.抛物线y=-3(x+1)2不经过的象限是()A.第一、二象限B.第二、四象限C.第三、四象限D.第二、三象限3.在反比例函数y=kx中,当x>0时,y随x的增大而增大,则二次函数y=k(x-1)2的图象大致是()4.(1)抛物线y=13x2向平移个单位得抛物线y=13(x+1)2;(2)抛物线向右平移2个单位得抛物线y=-2(x-2)2.5.(广东广州中考)已知抛物线y=a(x-h)2的对称轴为x=-2,且过点(1,-3).(1)求抛物线的解析式;(2)画出函数的大致图象;(3)从图象上观察,当x取何值时,y随x的增大而增大?当x取何值时,函数有最大值(或最小值)?【教学说明】学生自主完成,教师巡视解疑.【答案】1.C 2.A 3.B 4.(1)左,1 (2)y=-2x25.解:(1)y=-13(x+2)2 (2)略(3)当x<-2时,y随x增大而增大;当x=-2时,y有最大值0.五、师生互动,课堂小结1.这节课你学到了什么?还有哪些疑惑?2.在学生回答的基础上,教师点评:(1)y=a(x-h)2的图象与性质;(2)y=a(x-h)2与y=ax2的图象的关系.1.教材P12第1、2题.2.完成同步练习册中本课时的练习.通过本节学习使学生认识到y=a(x-h)2的图象是由y=ax2的图象左右平移得到的,初步认识到a,h对y=a(x-h)2位置的影响,a的符号决定抛物线方向,|a|决定抛物线开口的大小,h决定向左右平移;从中领会数形结合的数学思想.第4课时二次函数y=a(x-h)2+k的图象与性质【知识与技能】1.会用描点法画二次函数y=a(x-h)2+k的图象.掌握y=a(x-h)2+k的图象和性质.2.掌握y=a(x-h)2+k与y=ax2的图象的位置关系.3.理解y=a(x-h)2+k,y=a(x-h)2,y=ax2+k及y=ax2的图象之间的平移转化.【过程与方法】经历探索二次函数y=a(x-h)2+k的图象的作法和性质的过程,进一步领会数形结合的思想,培养观察、分析、总结的能力.【情感态度】1.在小组活动中进一步体会合作与交流的重要性.2.体验数学活动中充满着探索性,感受通过认识观察,归纳,类比可以获得数学猜想的乐趣.【教学重点】二次函数y=a(x-h)2+k的图象与性质.【教学难点】由二次函数y=a(x-h)2+k的图象的轴对称性列表、描点、连线.一、情境导入,初步认识复习回顾:同学们回顾一下:①y=ax2,y=a(x-h)2,(a≠0)的图象的开口方向、对称轴、顶点坐标,y随x 的增减性分别是什么?②如何由y=ax2(a≠0)的图象平移得到y=a(x-h)2的图象?③猜想二次函数y=a(x-h)2+k的图象开口方向、对称轴、顶点坐标及y随x 的增减性如何?二、思考探究,获取新知探究1 y=a(x-h)2+k的图象和性质1.由老师提示列表,根据抛物线的轴对称性观察图象回答下列问题:①y=-12(x+1)2-1图象的开口方向、对称轴、顶点坐标及y随x的增减性如何?②将抛物线y=-12x2向左平移1个单位,再向下平移1个单位得抛物线y=-12(x+1)2-1.2.同学们讨论回答:①一般地,当h>0,k>0时,把抛物线y=ax2向右平移h个单位,再向上平移k个单位得抛物线y=a(x-h)2+k;平移的方向和距离由h,k的值来决定.②抛物线y=a(x-h)2+k的开口方向、对称轴、顶点坐标及y随x的增减性如何?探究2二次函数y=a(x-h)2+k的应用【教学说明】二次函数y=a(x-h)2+k的图象是,对称轴是,顶点坐标是,当a>0时,开口向,当a<0时,开口向.答案:抛物线,直线x=h,(h,k),上,下三、典例精析,掌握新知例1 已知抛物线y=a(x-h)2+k,将它沿x轴向右平移3个单位后,又沿y轴向下平移2个单位,得到抛物线的解析式为y=-3(x+1)2-4,求原抛物线的解析式.【分析】平移过程中,前后抛物线的形状,大小不变,所以a=-3,平移时应抓住顶点的变化,根据平移规律可求出原抛物线顶点,从而得到原抛物线的解析式.解:抛物线y=-3(x+1)2-4的顶点坐标为(-1,-4),它是由原抛物线向右平移3个单位,向下平移2个单位而得到的,所以把现在的顶点向相反方向移动就得到原抛物线顶点坐标为(-4,-2).故原抛物线的解析式为y=-3(x+4)2-2.【教学说明】抛物线平移不改变形状及大小,所以a值不变,平移时抓住关键点:顶点的变化.例2 如图是某次运动会开幕式点燃火炬时的示意图,发射台OA的高度为2m,火炬的高度为12m,距发射台OA的水平距离为20m,在A处的发射装置向目标C发射一个火球点燃火炬,该火球运行的轨迹为抛物线形,当火球运动到距地面最大高度20m时,相应的水平距离为12m.请你判断该火球能否点燃目标C?并说明理由.【分析】建立适当直角坐标系,构建二次函数解析式,然后分析判断.解:该火球能点燃目标.如图,以OB所在直线为x轴,OA所在直线为y轴建立直角坐标系,则点(12,20)为抛物线顶点,设解析式为y=a(x-12)2+20,∵点(0,2)在图象上,∴144a+20=2,∴a=-18,∴y=-18(x-12)2+20.当x=20时,y=-18×(20-12)2+20=12,即抛物线过点(20,12),∴该火球能点燃目标.【教学说明】二次函数y=a(x-h)2+k的应用关键是构造出二次函数模型.四、运用新知,深化理解1.若抛物线y=-7(x+4)2-1平移得到y=-7x2,则必须()A.先向左平移4个单位,再向下平移1个单位B.先向右平移4个单位,再向上平移1个单位C.先向左平移1个单位,再向下平移4个单位D.先向右平移1个单位,再向上平移4个单位2.抛物线y=x2-4与x轴交于B,C两点,顶点为A,则△ABC的周长为()A.45B.45+4C.12D.25+43.函数y=ax2-a与y=ax-a(a≠0)在同一坐标系中的图象可能是()4.二次函数y=-2x2+6的图象的对称轴是,顶点坐标是,当x 时,y随x的增大而增大.5.已知函数y=ax2+c的图象与函数y=-3x2-2的图象关于x轴对称,则a= ,c= .6.把抛物线y=(x-1)2沿y轴向上或向下平移,所得抛物线经过Q(3,0),求平移后抛物线的解析式.【教学说明】学生自主完成,加深对新知的理解,教师引导解疑.【答案】1.B 2.B 3.C 4.y轴,(0,6),<0 5.3,2 6.y=(x-1)2-4五、师生互动,课堂小结1.这节课你学到了什么,还有哪些疑惑?2.在学生回答的基础上,教师点评:①二次函数y=a(x-h)2+k的图象与性质;②如何由抛物线y=ax2平移得到抛物线y=a(x-h)2+k.【教学说明】教师应引导学生自主小结,加深理解掌握y=ax2与y=a(x-h)2+k 二者图象的位置关系.第1~3题.1.教材P152.完成同步练习册中本课时的练习.掌握函数y=ax2,y=a(x-h)2,y=a(x-h)2+k图象的变化关系,从而体会由简单到复杂的认识规律.第5课时二次函数y=ax2+bx+c的图象与性质【知识与技能】1.会用描点法画二次函数y=ax2+bx+c的图象.2.会用配方法求抛物线y=ax2+bx+c的顶点坐标、开口方向、对称轴、y随x 的增减性.3.能通过配方求出二次函数y=ax2+bx+c(a≠0)的最大或最小值;能利用二次函数的性质求实际问题中的最大值或最小值.【过程与方法】1.经历探索二次函数y=ax2+bx+c(a≠0)的图象的作法和性质的过程,体会建立二次函数y=ax2+bx+c(a≠0)对称轴和顶点坐标公式的必要性.2.在学习y=ax2+bx+c(a≠0)的性质的过程中,渗透转化(化归)的思想.【情感态度】进一步体会由特殊到一般的化归思想,形成积极参与数学活动的意识.【教学重点】①用配方法求y=ax2+bx+c的顶点坐标;②会用描点法画y=ax2+bx+c的图象并能说出图象的性质.【教学难点】能利用二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标公式,解决一些问题,能通过对称性画出二次函数y=ax2+bx+c(a≠0)的图象.一、情境导入,初步认识请同学们完成下列问题.1.把二次函数y=-2x2+6x-1化成y=a(x-h)2+k的形式.2.写出二次函数y=-2x2+6x-1的开口方向,对称轴及顶点坐标.3.画y=-2x2+6x-1的图象.4.抛物线y=-2x2如何平移得到y=-2x2+6x-1的图象.5.二次函数y=-2x2+6x-1的y随x的增减性如何?【教学说明】上述问题教师应放手引导学生逐一完成,从而领会y=ax2+bx+c与y=a(x-h)2+k 的转化过程.二、思考探究,获取新知探究1 如何画y=ax 2+bx+c 图象,你可以归纳为哪几步?学生回答、教师点评:一般分为三步:1.先用配方法求出y=ax 2+bx+c 的对称轴和顶点坐标.2.列表,描点,连线画出对称轴右边的部分图象.3.利用对称点,画出对称轴左边的部分图象.探究2 二次函数y=ax 2+bx+c 图象的性质有哪些?你能试着归纳吗? 学生回答,教师点评:抛物线y=ax 2+bx+c=224()24b ac b a x a a -++ ,对称轴为x=-2b a ,顶点坐标为(-2b a ,244ac b a -),当a >0时,若x >-2b a ,y 随x 增大而增大,若x <-2b a,y 随x 的增大而减小;当a <0时,若x >-2b a ,y 随x 的增大而减小,若x<-2b a ,y 随x 的增大而增大.探究3 二次函数y=ax 2+bx+c 在什么情况下有最大值,什么情况下有最小值,如何确定?学生回答,教师点评:三、典例精析,掌握新知例1将下列二次函数写成顶点式y=a(x-h)2+k的形式,并写出其开口方向,顶点坐标,对称轴.①y=14x2-3x+21 ②y=-3x2-18x-22解:①y=14x2-3x+21= 14(x2-12x)+21=14(x2-12x+36-36)+21=14(x-6)2+12.∴此抛物线的开口向上,顶点坐标为(6,12),对称轴是x=6.②y=-3x2-18x-22=-3(x2+6x)-22=-3(x2+6x+9-9)-22=-3(x+3)2+5.∴此抛物线的开口向下,顶点坐标为(-3,5),对称轴是x=-3.【教学说明】第②小题注意h值的符号,配方法是数学的一个重要方法,需多加练习,熟练掌握;抛物线的顶点坐标也可以根据公式直接求解.例2 用总长为60m的篱笆围成的矩形场地,矩形面积S随矩形一边长l的变化而变化,l是多少时,场地的面积S最大?①S与l有何函数关系?②举一例说明S随l的变化而变化?③怎样求S的最大值呢?解:S=l (30-l)=- l2+30l (0<l<30)=-( l2-30l)=-( l-15)2+225画出此函数的图象,如图.∴l=15时,场地的面积S最大(S的最大值为225)【教学说明】二次函数在几何方面的应用特别广泛,要注意自变量的取值范围的确定,同时所画的函数图象只能是抛物线的一部分.四、运用新知,深化理解1.(北京中考)抛物线y=x2-6x+5的顶点坐标为()A.(3,-4)B.(3,4)C.(-3,-4)D.(-3,4)2.(贵州贵阳中考)已知二次函数y=ax2+bx+c(a<0)的图象如图所示,当-5≤x≤0时,下列说法正确的是()A.有最小值5、最大值0B.有最小值-3、最大值6C.有最小值0、最大值6D.有最小值2、最大值63.如图,二次函数y=ax 2+bx+c的图象开口向上,图象经过点(-1,2)和(1,0),且与y轴相交于负半轴.(1)给出四个结论:①a>0;②b>0;③c>0;④a+b+c=0.其中正确结论的序号是 .(2)给出四个结论:①abc<0;②2a+b>0;③a+c=1;④a>1.其中正确结论的序号是 .【教学说明】通过练习,巩固掌握y=ax2+bx+c的图象和性质.【答案】1.A 2.B 3.(1)①④ (2)②③④五、师生互动,课堂小结1.这节课你学到了什么?还有哪些疑惑?2.在学生回答的基础上,教师点评:(1)用配方法求二次y=ax2+bx+c的顶点坐标、对称轴;(2)由y=ax2+bx+c的图象判断与a,b,c有关代数式的值的正负;(3)实际问题中自变量取值范围及函数最值.1.教材P15第1~3题.2.完成同步练习册中本课时的练习.y=ax2+bx+c的图象和性质可以看作是y=ax2,y=a(x-h)2+k,y=a(x-h)2+k的图。

湘教版九年级数学-36位似

湘教版九年级数学-36位似

**位似教学目标1、知识与技能:了解位似图形及其有关概念,能够利用作位似图形等方法将一个图形放大或缩小。

2、过程与方法:学生经历将一个图形放大或缩小的方法,并且在学习和运用过程中发展数学应用意识。

3、情感态度与价值观:培养学生动手操作的良好习惯,以积极进取的思想探究数学学科知识,体会本节知识的实际应用价值和文化价值。

教学重点能够利用作位似图形等方法将一个图形放大或缩小。

教学难点位似图形的画法。

教学流程一、创设情境操作引入1、展示课件:两组图片,一是万里长城雄伟壮丽的画面,二是神州飞船首飞成功的邮票,演示两组图片的缩放过程。

(回顾相似多边形的有关概念和性质,为新课引入进行铺垫,同时渗透爱国主义教育,激发学生的学习兴趣和爱国热情)2、操作实验:指导全班同学动手操作、进行实验,每位同学拿出自备的两个相似图形纸片,位置任意摆放,连接对应点,观察对应点的连线是否经过一点。

同时请三位同学上黑板前台选取不同类型的相似图形(三角形、四边形、五边形)进行演示,供班级同学参考并猜想。

3、放映中国著名球星姚明扣篮雄姿的一组缩放照片,突出对应点所在的直线都经过同一个点,与学生的实验形成对比,引出课题。

二、自主活动实践感知1、建构新知:位似图形及其有关概念如果两个图形不仅是相似图形,而且每组对应点所在㚄直线都经过同一个点﬌那么这样的两个勾形叫做位似图幢,这个点叫做位似中廃,这时的相䬼比又称为位似比.2、让学生进一步操作,亲身感受位似图形与相似图形的联系与区别。

通蟇裂察、思考、交流、讨论店出如下结论:位似图形是一种特殊的相似图形,而相似囸形未寅都能构成位似关系。

(引导学生动手、动脑︌观察、思考,感悟知识的生成和变化)3练一练:例1 下列说法正确的是()A.两个图形如果是位似图形,那么这两个图形一定全等;B.两个图形如果是位似图形,那么这两个图形不一定相似;C.两个图形如果是相似图形,那么这两个图形一定位似;D.两个图形如果是位似图形,那么这两个图形一定相似。

新湘教版九年级下册数学全册教案

新湘教版九年级下册数学全册教案

新湘教版九年级下册数学全册教案(总160页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除第1章二次函数二次函数【知识与技能】1.理解具体情景中二次函数的意义,理解二次函数的概念,掌握二次函数的一般形式.2.能够表示简单变量之间的二次函数关系式,并能根据实际问题确定自变量的取值范围.【过程与方法】经历探索,分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系.【情感态度】体会数学与实际生活的密切联系,学会与他人合作交流,培养合作意识.【教学重点】二次函数的概念.【教学难点】在实际问题中,会写简单变量之间的二次函数关系式教学过程.一、情境导入,初步认识1.教材P2“动脑筋”中的两个问题:矩形植物园的面积S(m2)与相邻于围墙面的每一面墙的长度x(m)的关系式是S=-2x2+100x,(0<x<50);电脑价格y (元)与平均降价率x的关系式是y=6000x2-12000x+6000,(0<x<1).它们有什么共同点?一般形式是y=ax2+bx+c(a,b,c为常数,a≠0)这样的函数可以叫做什么函数?二次函数.2.对于实际问题中的二次函数,自变量的取值范围是否会有一些限制呢?有.二、思考探究,获取新知二次函数的概念及一般形式在上述学生回答后,教师给出二次函数的定义:一般地,形如y=ax2+bx+c(a,b,c 是常数,a ≠0)的函数,叫做二次函数,其中x 是自变量,a,b,c 分别是函数解析式的二次项系数、一次项系数和常数项.注意:①二次函数中二次项系数不能为0.②在指出二次函数中各项系数时,要连同符号一起指出.三、典例精析,掌握新知例1 指出下列函数中哪些是二次函数.(1)y=(x-3)2-x 2 ;(2)y=2x(x-1);(3)y=32x-1;(4)y=22x;(5)y=5-x 2+x. 【分析】先化为一般形式,右边为整式,依照定义分析.解:(2)(5)是二次函数,其余不是.【教学说明】判定一个函数是否为二次函数的思路:1.将函数化为一般形式.2.自变量的最高次数是2次.3.若二次项系数中有字母,二次项系数不能为0.例2 讲解教材P3例题.【教学说明】由实际问题确定二次函数关系式时,要注意自变量的取值范围. 例3 已知函数y=(m 2-m)x 2+mx+(m+1)(m 是常数),当m 为何值时:(1)函数是一次函数;(2)函数是二次函数.【分析】判断函数类型,关键取决于其二次项系数和一次项系数能否为零,列出相应方程或不等式. 解:(1)由200m m m ⎧-=⎨≠⎩ 得010m m ⎩=≠⎧⎨或 , ∴m=1.即当m=1时,函数y=(m 2-m)x 2+mx+(m+1)是一次函数.(2)由m 2-m ≠0得m ≠0且m ≠1,∴当m ≠0且m ≠1时,函数y=(m 2-m)x 2+mx+(m+1)是二次函数.【教学说明】学生自主完成,加深对二次函数概念的理解,并让学生会列二次函数的一些实际应用中的二次函数解析式.四、运用新知,深化理解1.下列函数中是二次函数的是( )A. 2123y x x =+- =3x 3+2x 2 =(x-2)2-x 3 D.212y x =- 2.二次函数y=2x(x-1)的一次项系数是( )3.若函数232(3)1k k y k x kx -+=-++ 是二次函数,则k 的值为( ) 或3 D.不确定4.若y=(a+2)x 2-3x+2是二次函数,则a 的取值范围是 .5.已知二次函数y=1-3x+5x 2,则二次项系数a= ,一次项系数b= ,常数项c= .6.某校九(1)班共有x 名学生,在毕业典礼上每两名同学都握一次手,共握手y 次,试写出y 与x 之间的函数关系式 ,它 (填“是”或“不是”)二次函数.7.如图,在边长为5的正方形中,挖去一个半径为x 的圆(圆心与正方形的中心重合),剩余部分的面积为y.(1)求y 关于x 的函数关系式;(2)试求自变量x 的取值范围;(3)求当圆的半径为2时,剩余部分的面积(π取,结果精确到十分位).【答案】 ≠-2 ,-3,1 6.21122y x x =- 是 7.(1)y=25-πx 2=-πx 2+25.(2)0<x ≤52.(3)当x=2时,y=-4π+25≈-4×+25=≈.即剩余部分的面积约为.【教学说明】学生自主完成,加深对新知的理解,待学生完成上述作业后,教师指导.五、师生互动,课堂小结1.师生共同回顾二次函数的有关概念.2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?与同伴交流.【教学说明】教师引导学生回顾知识点,让学生大胆发言,进行知识提炼和知识归纳.1.教材P第1~3题.42.完成同步练习册中本课时的练习.本节课是从生活实际中引出二次函数模型,从而得出二次函数的定义及一般形式,会写简单变量之间的二次函数关系式,并能根据实际问题确定自变量的取值范围,使学生认识到数学来源于生活,又应用于生活实际之中.二次函数的图象与性质第1课时二次函数y=ax2(a>0)的图象与性质【知识与技能】1.会用描点法画函数y=ax2(a>0)的图象,并根据图象认识、理解和掌握其性质.2.体会数形结合的转化,能用y=ax2(a>0)的图象和性质解决简单的实际问题.【过程与方法】经历探索二次函数y=ax2(a>0)图象的作法和性质的过程,获得利用图象研究函数的经验,培养观察、思考、归纳的良好思维习惯.【情感态度】通过动手画图,同学之间交流讨论,达到对二次函数y=ax2(a>0)图象和性质的真正理解,从而产生对数学的兴趣,调动学生的积极性.【教学重点】1.会画y=ax2(a>0)的图象.2.理解,掌握图象的性质.【教学难点】二次函数图象及性质探究过程和方法的体会教学过程.一、情境导入,初步认识问题1请同学们回忆一下一次函数的图象、反比例函数的图象的特征是什么二次函数图象是什么形状呢问题2如何用描点法画一个函数图象呢?【教学说明】①略;②列表、描点、连线.二、思考探究,获取新知探究1画二次函数y=ax2(a>0)的图象.画二次函数y=ax2的图象.【教学说明】①要求同学们人人动手,按“列表、描点、连线”的步骤画图y=x2的图象,同学们画好后相互交流、展示,表扬画得比较规范的同学.②从列表和描点中,体会图象关于y轴对称的特征.③强调画抛物线的三个误区.误区一:用直线连结,而非光滑的曲线连结,不符合函数的变化规律和发展趋势.如图(1)就是y=x 2的图象的错误画法.误区二:并非对称点,存在漏点现象,导致抛物线变形.如图(2)就是漏掉点(0,0)的y=x 2的图象的错误画法.误区三:忽视自变量的取值范围,抛物线要求用平滑曲线连点的同时,还需要向两旁无限延伸,而并非到某些点停止.如图(3),就是到点(-2,4),(2,4)停住的y=x 2图象的错误画法.探究2 y=ax 2(a >0)图象的性质在同一坐标系中,画出y=x 2,212y x =,y=2x 2的图象. 【教学说明】要求同学们独立完成图象,教师帮助引导,强调画图时注意每一个函数图象的对称性.动脑筋观察上述图象的特征(共同点),从而归纳二次函数y=ax2(a >0)的图象和性质.【教学说明】教师引导学生观察图象,从开口方向,对称轴,顶点,y 随x 的增大时的变化情况等几个方面让学生归纳,教师整理讲评、强调.y=ax 2(a >0)图象的性质1.图象开口向上.2.对称轴是y 轴,顶点是坐标原点,函数有最低点.3.当x >0时,y 随x 的增大而增大,简称右升;当x <0时,y 随x 的增大而减小,简称左降.三、典例精析,掌握新知例 已知函数24(2)k k y k x+-=+是关于x 的二次函数.(1)求k 的值.(2)k 为何值时,抛物线有最低点,最低点是什么在此前提下,当x 在哪个范围内取值时,y 随x 的增大而增大【分析】此题是考查二次函数y=ax 2的定义、图象与性质的,由二次函数定义列出关于k 的方程,进而求出k 的值,然后根据k+2>0,求出k 的取值范围,最后由y 随x 的增大而增大,求出x 的取值范围.解:(1)由已知得22042k k k +≠+-=⎧⎨⎩,解得k=2或k=-3. 所以当k=2或k=-3时,函数24(2)k k y k x +-=+是关于x 的二次函数.(2)若抛物线有最低点,则抛物线开口向上,所以k+2>0.由(1)知k=2,最低点是(0,0),当x ≥0时,y 随x 的增大而增大.四、运用新知,深化理解1.(广东广州中考)下列函数中,当x >0时,y 值随x 值增大而减小的是( )=x 2 =x-1 C. 34y x = =1x 2.已知点(-1,y 1),(2,y 2),(-3,y 3)都在函数y=x 2的图象上,则( )<y 2<y 3 <y 3<y 2 <y 2<y 1 <y 1<y 33.抛物线y=13x 2的开口向 ,顶点坐标为 ,对称轴为 ,当x=-2时,y= ;当y=3时,x= ,当x ≤0时,y 随x 的增大而 ;当x >0时,y 随x 的增大而 .4.如图,抛物线y=ax 2上的点B ,C 与x 轴上的点A (-5,0),D (3,0)构成平行四边形ABCD ,BC 与y 轴交于点E (0,6),求常数a 的值.【教学说明】学生自主完成,加深对新知识的理解和掌握,当学生疑惑时,教师及时指导.【答案】 3.上,(0,0),y 轴, 43,±3,减小,增大 4.解:依题意得:BC=AD=8,BC ∥x 轴,且抛物线y=ax 2上的点B ,C 关于y 轴对称,又∵BC 与y 轴交于点E (0,6),∴B 点为(-4,6),C 点为(4,6),将(4,6)代入y=ax 2得:a=38. 五、师生互动,课堂小结1.师生共同回顾二次函数y=ax 2(a >0)图象的画法及其性质.2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?请与同伴交流.第1、2题.1.教材P72.完成同步练习册中本课时的练习.本节课是从学生画y=x2的图象,从而掌握二次函数y=ax2(a>0)图象的画法,再由图象观察、探究二次函数y=ax2(a>0)的性质,培养学生动手、动脑、探究归纳问题的能力.第2课时二次函数y=ax2(a<0)的图象与性质【知识与技能】1.会用描点法画函数y=ax2(a<0)的图象,并根据图象认识、理解和掌握其性质.2.体会数形结合的转化,能用y=ax2(a<0)的图象与性质解决简单的实际问题.【过程与方法】经历探索二次函数y=ax2(a<0)图象的作法和性质的过程,获得利用图象研究函数的经验,培养观察、思考、归纳的良好思维习惯.【情感态度】通过动手画图,同学之间交流讨论,达到对二次函数y=ax2(a≠0)图象和性质的真正理解,从而产生对数学的兴趣,调动学习的积极性.【教学重点】①会画y=ax2(a<0)的图象;②理解、掌握图象的性质.【教学难点】二次函数图象的性质及其探究过程和方法的体会.一、情境导入,初步认识1.在坐标系中画出y=12x2的图象,结合y=12x2的图象,谈谈二次函数y=ax2(a>0)的图象具有哪些性质?2.你能画出y=-12x2的图象吗?二、思考探究,获取新知探究1画y=ax2(a<0)的图象请同学们在上述坐标系中用“列表、描点、连线”的方法画出y=-12x2的图象.【教学说明】教师要求学生独立完成,强调画图过程中应注意的问题,同学们完成后相互交流,表扬图象画得“美观”的同学.问:从所画出的图象进行观察,y=12x2与y=-12x2有何关系?归纳:y=12x2与y=-12x2二者图象形状完全相同,只是开口方向不同,两图象关于y轴对称.(教师引导学生从理论上进行证明这一结论)探究2二次函数y=ax2(a<0)性质问:你能结合y=-12x2的图象,归纳出y=ax2(a<0)图象的性质吗?【教学说明】教师提示应从开口方向,对称轴,顶点位置,y随x的增大时的变化情况几个方面归纳,教师整理,强调y=ax2(a<0)图象的性质.1.开口向下.2.对称轴是y轴,顶点是坐标原点,函数有最高点.3.当x>0时,y随x的增大而减小,简称右降,当x<0时,y随x的增大而增大,简称左升.探究3二次函数y=ax2(a≠0)的图象及性质学生回答:【教学点评】一般地,抛物线y=ax2的对称轴是,顶点是,当a>0时抛物线的开口向,顶点是抛物线的最点,a越大,抛物线开口越;当a<0时,抛物线的开口向,顶点是抛物线的最点,a越大,抛物线开口越,总之,|a|越大,抛物线开口越 .答案:y轴,(0,0),上,低,小,下,高,大,小三、典例精析,掌握新知例1 填空:①函数y=(-2x)2的图象是,顶点坐标是,对称轴是,开口方向是 .②函数y=x2,y=12x2和y=-2x2的图象如图所示,请指出三条抛物线的解析式.解:①抛物线,(0,0),y轴,向上;②根据抛物线y=ax2中,a的值的作用来判断,上面最外面的抛物线为y=12x2,中间为y=x2,在x轴下方的为y=-2x2.【教学说明】解析式需化为一般式,再根据图象特征解答,避免发生错误.抛物线y=ax2中,当a>0时,开口向上;当a<0时,开口向下,|a|越大,开口越小.例2 已知抛物线y=ax2经过点(1,-1),求y=-4时x的值.【分析】把点(1,-1)的坐标代入y=ax2,求得a的值,得到二次函数的表达式,再把y=-4代入已求得的表达式中,即可求得x的值.解:∵点(1,-1)在抛物线y=ax2上,-1=a·12,∴a=-1,∴抛物线为y=-x2.当y=-4时,有-4=-x2,∴x=±2.【教学说明】在求y=ax2的解析式时,往往只须一个条件代入即可求出a 值.四、运用新知,深化理解1.下列关于抛物线y=x2和y=-x2的说法,错误的是()A.抛物线y=x 2和y=-x 2有共同的顶点和对称轴B.抛物线y=x 2和y=-x 2关于x 轴对称C.抛物线y=x 2和y=-x 2的开口方向相反D.点(-2,4)在抛物线y=x 2上,也在抛物线y=-x 2上2.二次函数y=ax 2与一次函数y=-ax(a ≠0)在同一坐标系中的图象大致是( )3.二次函数226(1)m m y m x +-=-,当x <0时,y 随x 的增大而减小,则m= .4.已知点A (-1,y 1),B(1,y 2),C(a,y 3)都在函数y=x 2的图象上,且a >1,则y 1,y 2,y 3中最大的是 .5.已知函数y=ax 2经过点(1,2).①求a 的值;②当x <0时,y 的值随x 值的增大而变化的情况.【教学说明】学生自主完成,加深对新知的理解和掌握,当学生疑惑时,教师及时指导.【答案】5.①a=2 ②当x <0时,y 随x 的增大而减小 五、师生互动,课堂小结这节课你学到了什么,还有哪些疑惑?在学生回答的基础上,教师点评:(1)y=ax 2(a<0)图象的性质;(2)y=ax 2(a ≠0)关系式的确定方法.1.教材P 10第1~2题.2.完成同步练习册中本课时的练习.本节课仍然是从学生画图象,结合上节课y=ax 2(a >0)的图象和性质,从而得出y=ax 2(a <0)的图象和性质,进而得出y=ax 2(a ≠0)的图象和性质,培养学生动手、动脑、合作探究的学习习惯.第3课时二次函数y=a(x-h)2的图象与性质【知识与技能】1.能够画出y=a(x-h)2的图象,并能够理解它与y=ax2的图象的关系,理解a,h对二次函数图象的影响.2.能正确说出y=a(x-h)2的图象的开口方向、对称轴和顶点坐标.【过程与方法】经历探索二次函数y=a(x-h)2的图象的作法和性质的过程,进一步领会数形结合的思想.【情感态度】1.在小组活动中体会合作与交流的重要性.2.进一步丰富数学学习的成功体验,认识到数学是解决实际问题的重要工具,初步形成积极参与数学活动的意识.【教学重点】掌握y=a(x-h)2的图象及性质.【教学难点】理解y=a(x-h)2与y=ax2图象之间的位置关系,理解a,h对二次函数图象的影响.一、情境导入,初步认识1.在同一坐标系中画出y=12x2与y=12(x-1)2的图象,完成下表.2.二次函数y=12(x-1)2的图象与y=12x2的图象有什么关系?3.对于二次函数12(x-1)2,当x取何值时,y的值随x值的增大而增大当x取何值时,y的值随x值的增大而减小二、思考探究,获取新知归纳二次函数y=a(x-h)2的图象与性质并完成下表.三、典例精析,掌握新知例1 教材P12例3.【教学说明】二次函数y=ax2与y=a(x-h)2是有关系的,即左、右平移时“左加右减”. 例如y=ax2向左平移1个单位得到y=a(x+1)2,y=ax2向右平移2个单位得到y=a(x-2)2的图象.例2 已知直线y=x+1与x轴交于点A,抛物线y=-2x2平移后的顶点与点A重合.①水平移后的抛物线l的解析式;②若点B(x1,y1),C(x2,y2)在抛物线l上,且-12<x1<x2,试比较y1,y2的大小.解:①∵y=x+1,∴令y=0,则x=-1,∴A(-1,0),即抛物线l的顶点坐标为(-1,0),又∵抛物线l是由抛物线y=-2x2平移得到的,∴抛物线l的解析式为y=-2(x+1)2.②由①可知,抛物线l的对称轴为x=-1,∵a=-2<0,∴当x>-1时,y随x的增大而减小,又-12<x1<x2,∴y1>y2.【教学说明】二次函数的增减性以对称轴为分界,画图象取点时以顶点为分界对称取点.四、运用新知,深化理解1.二次函数y=15(x-1)2的最小值是()D.没有最小值2.抛物线y=-3(x+1)2不经过的象限是()A.第一、二象限B.第二、四象限C.第三、四象限D.第二、三象限3.在反比例函数y=kx中,当x>0时,y随x的增大而增大,则二次函数y=k(x-1)2的图象大致是()4.(1)抛物线y=13x2向平移个单位得抛物线y=13(x+1)2;(2)抛物线向右平移2个单位得抛物线y=-2(x-2)2.5.(广东广州中考)已知抛物线y=a(x-h)2的对称轴为x=-2,且过点(1,-3).(1)求抛物线的解析式;(2)画出函数的大致图象;(3)从图象上观察,当x取何值时,y随x的增大而增大当x取何值时,函数有最大值(或最小值)【教学说明】学生自主完成,教师巡视解疑.【答案】 4.(1)左,1 (2)y=-2x25.解:(1)y=-13(x+2)2 (2)略(3)当x<-2时,y随x增大而增大;当x=-2时,y有最大值0.五、师生互动,课堂小结1.这节课你学到了什么还有哪些疑惑2.在学生回答的基础上,教师点评:(1)y=a(x-h)2的图象与性质;(2)y=a(x-h)2与y=ax2的图象的关系.1.教材P12第1、2题.2.完成同步练习册中本课时的练习.通过本节学习使学生认识到y=a(x-h)2的图象是由y=ax2的图象左右平移得到的,初步认识到a,h对y=a(x-h)2位置的影响,a的符号决定抛物线方向,|a|决定抛物线开口的大小,h决定向左右平移;从中领会数形结合的数学思想.第4课时二次函数y=a(x-h)2+k的图象与性质【知识与技能】1.会用描点法画二次函数y=a(x-h)2+k的图象.掌握y=a(x-h)2+k的图象和性质.2.掌握y=a(x-h)2+k与y=ax2的图象的位置关系.3.理解y=a(x-h)2+k,y=a(x-h)2,y=ax2+k及y=ax2的图象之间的平移转化.【过程与方法】经历探索二次函数y=a(x-h)2+k的图象的作法和性质的过程,进一步领会数形结合的思想,培养观察、分析、总结的能力.【情感态度】1.在小组活动中进一步体会合作与交流的重要性.2.体验数学活动中充满着探索性,感受通过认识观察,归纳,类比可以获得数学猜想的乐趣.【教学重点】二次函数y=a(x-h)2+k的图象与性质.【教学难点】由二次函数y=a(x-h)2+k的图象的轴对称性列表、描点、连线.一、情境导入,初步认识复习回顾:同学们回顾一下:①y=ax2,y=a(x-h)2,(a≠0)的图象的开口方向、对称轴、顶点坐标,y随x 的增减性分别是什么?②如何由y=ax2(a≠0)的图象平移得到y=a(x-h)2的图象?③猜想二次函数y=a(x-h)2+k的图象开口方向、对称轴、顶点坐标及y随x 的增减性如何?二、思考探究,获取新知探究1 y=a(x-h)2+k的图象和性质1.由老师提示列表,根据抛物线的轴对称性观察图象回答下列问题:①y=-12(x+1)2-1图象的开口方向、对称轴、顶点坐标及y随x的增减性如何?②将抛物线y=-12x2向左平移1个单位,再向下平移1个单位得抛物线y=-12(x+1)2-1.2.同学们讨论回答:①一般地,当h>0,k>0时,把抛物线y=ax2向右平移h个单位,再向上平移k个单位得抛物线y=a(x-h)2+k;平移的方向和距离由h,k的值来决定.②抛物线y=a(x-h)2+k的开口方向、对称轴、顶点坐标及y随x的增减性如何?探究2二次函数y=a(x-h)2+k的应用【教学说明】二次函数y=a(x-h)2+k的图象是,对称轴是,顶点坐标是,当a>0时,开口向,当a<0时,开口向.答案:抛物线,直线x=h,(h,k),上,下三、典例精析,掌握新知例1 已知抛物线y=a(x-h)2+k,将它沿x轴向右平移3个单位后,又沿y轴向下平移2个单位,得到抛物线的解析式为y=-3(x+1)2-4,求原抛物线的解析式.【分析】平移过程中,前后抛物线的形状,大小不变,所以a=-3,平移时应抓住顶点的变化,根据平移规律可求出原抛物线顶点,从而得到原抛物线的解析式.解:抛物线y=-3(x+1)2-4的顶点坐标为(-1,-4),它是由原抛物线向右平移3个单位,向下平移2个单位而得到的,所以把现在的顶点向相反方向移动就得到原抛物线顶点坐标为(-4,-2).故原抛物线的解析式为y=-3(x+4)2-2.【教学说明】抛物线平移不改变形状及大小,所以a值不变,平移时抓住关键点:顶点的变化.例2 如图是某次运动会开幕式点燃火炬时的示意图,发射台OA的高度为2m,火炬的高度为12m,距发射台OA的水平距离为20m,在A处的发射装置向目标C发射一个火球点燃火炬,该火球运行的轨迹为抛物线形,当火球运动到距地面最大高度20m时,相应的水平距离为12m.请你判断该火球能否点燃目标C?并说明理由.【分析】建立适当直角坐标系,构建二次函数解析式,然后分析判断.解:该火球能点燃目标.如图,以OB所在直线为x轴,OA所在直线为y轴建立直角坐标系,则点(12,20)为抛物线顶点,设解析式为y=a(x-12)2+20,∵点(0,2)在图象上,∴144a+20=2,∴a=-18,∴y=-18(x-12)2+20.当x=20时,y=-18×(20-12)2+20=12,即抛物线过点(20,12),∴该火球能点燃目标.【教学说明】二次函数y=a(x-h)2+k的应用关键是构造出二次函数模型.四、运用新知,深化理解1.若抛物线y=-7(x+4)2-1平移得到y=-7x2,则必须()A.先向左平移4个单位,再向下平移1个单位B.先向右平移4个单位,再向上平移1个单位C.先向左平移1个单位,再向下平移4个单位D.先向右平移1个单位,再向上平移4个单位2.抛物线y=x2-4与x轴交于B,C两点,顶点为A,则△ABC的周长为()55+4 5+43.函数y=ax2-a与y=ax-a(a≠0)在同一坐标系中的图象可能是()4.二次函数y=-2x2+6的图象的对称轴是,顶点坐标是,当x 时,y随x的增大而增大.5.已知函数y=ax2+c的图象与函数y=-3x2-2的图象关于x轴对称,则a= ,c= .6.把抛物线y=(x-1)2沿y轴向上或向下平移,所得抛物线经过Q(3,0),求平移后抛物线的解析式.【教学说明】学生自主完成,加深对新知的理解,教师引导解疑.【答案】轴,(0,6),<0 ,2 =(x-1)2-4五、师生互动,课堂小结1.这节课你学到了什么,还有哪些疑惑?2.在学生回答的基础上,教师点评:①二次函数y=a(x-h)2+k的图象与性质;②如何由抛物线y=ax2平移得到抛物线y=a(x-h)2+k.【教学说明】教师应引导学生自主小结,加深理解掌握y=ax2与y=a(x-h)2+k二者图象的位置关系.1.教材P第1~3题.152.完成同步练习册中本课时的练习.掌握函数y=ax2,y=a(x-h)2,y=a(x-h)2+k图象的变化关系,从而体会由简单到复杂的认识规律.第5课时二次函数y=ax2+bx+c的图象与性质【知识与技能】1.会用描点法画二次函数y=ax2+bx+c的图象.2.会用配方法求抛物线y=ax2+bx+c的顶点坐标、开口方向、对称轴、y随x的增减性.3.能通过配方求出二次函数y=ax2+bx+c(a≠0)的最大或最小值;能利用二次函数的性质求实际问题中的最大值或最小值.【过程与方法】1.经历探索二次函数y=ax2+bx+c(a≠0)的图象的作法和性质的过程,体会建立二次函数y=ax2+bx+c(a≠0)对称轴和顶点坐标公式的必要性.2.在学习y=ax2+bx+c(a≠0)的性质的过程中,渗透转化(化归)的思想.【情感态度】进一步体会由特殊到一般的化归思想,形成积极参与数学活动的意识.【教学重点】①用配方法求y=ax2+bx+c的顶点坐标;②会用描点法画y=ax2+bx+c的图象并能说出图象的性质.【教学难点】能利用二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标公式,解决一些问题,能通过对称性画出二次函数y=ax2+bx+c(a≠0)的图象.一、情境导入,初步认识请同学们完成下列问题.1.把二次函数y=-2x2+6x-1化成y=a(x-h)2+k的形式.2.写出二次函数y=-2x2+6x-1的开口方向,对称轴及顶点坐标.3.画y=-2x2+6x-1的图象.4.抛物线y=-2x2如何平移得到y=-2x2+6x-1的图象.5.二次函数y=-2x2+6x-1的y随x的增减性如何?【教学说明】上述问题教师应放手引导学生逐一完成,从而领会y=ax2+bx+c与y=a(x-h)2+k的转化过程.二、思考探究,获取新知探究1如何画y=ax2+bx+c图象,你可以归纳为哪几步?学生回答、教师点评:一般分为三步:1.先用配方法求出y=ax 2+bx+c 的对称轴和顶点坐标.2.列表,描点,连线画出对称轴右边的部分图象.3.利用对称点,画出对称轴左边的部分图象.探究2 二次函数y=ax 2+bx+c 图象的性质有哪些你能试着归纳吗学生回答,教师点评:抛物线y=ax 2+bx+c=224()24b ac b a x a a -++ ,对称轴为x=-2b a ,顶点坐标为(-2b a ,244ac b a -),当a >0时,若x >-2b a ,y 随x 增大而增大,若x <-2b a ,y 随x 的增大而减小;当a <0时,若x >-2b a ,y 随x 的增大而减小,若x<-2b a,y 随x 的增大而增大. 探究3 二次函数y=ax 2+bx+c 在什么情况下有最大值,什么情况下有最小值,如何确定?学生回答,教师点评:三、典例精析,掌握新知例1 将下列二次函数写成顶点式y=a(x-h)2+k 的形式,并写出其开口方向,顶点坐标,对称轴.①y=14x 2-3x+21 ②y=-3x 2-18x-22 解:①y=14x 2-3x+21 = 14(x 2-12x)+21 =14(x 2-12x+36-36)+21 =14(x-6)2+12. ∴此抛物线的开口向上,顶点坐标为(6,12),对称轴是x=6.②y=-3x 2-18x-22=-3(x 2+6x)-22=-3(x 2+6x+9-9)-22=-3(x+3)2+5.∴此抛物线的开口向下,顶点坐标为(-3,5),对称轴是x=-3.【教学说明】第②小题注意h值的符号,配方法是数学的一个重要方法,需多加练习,熟练掌握;抛物线的顶点坐标也可以根据公式直接求解.例2 用总长为60m的篱笆围成的矩形场地,矩形面积S随矩形一边长l 的变化而变化,l是多少时,场地的面积S最大?①S与l有何函数关系?②举一例说明S随l的变化而变化?③怎样求S的最大值呢?解:S=l (30-l)=- l2+30l (0<l<30)=-( l2-30l)=-( l-15)2+225画出此函数的图象,如图.∴l=15时,场地的面积S最大(S的最大值为225)【教学说明】二次函数在几何方面的应用特别广泛,要注意自变量的取值范围的确定,同时所画的函数图象只能是抛物线的一部分.四、运用新知,深化理解1.(北京中考)抛物线y=x2-6x+5的顶点坐标为()A.(3,-4)B.(3,4)C.(-3,-4)D.(-3,4)2.(贵州贵阳中考)已知二次函数y=ax2+bx+c(a<0)的图象如图所示,当-5≤x≤0时,下列说法正确的是()A.有最小值5、最大值0B.有最小值-3、最大值6C.有最小值0、最大值6D.有最小值2、最大值63.如图,二次函数y=ax2+bx+c的图象开口向上,图象经过点(-1,2)和(1,0),且与y轴相交于负半轴.(1)给出四个结论:①a>0;②b>0;③c>0;④a+b+c=0.其中正确结论的序号是 .(2)给出四个结论:①abc<0;②2a+b>0;③a+c=1;④a>1.其中正确结论的序号是 .【教学说明】通过练习,巩固掌握y=ax2+bx+c的图象和性质.【答案】 3.(1)①④ (2)②③④五、师生互动,课堂小结1.这节课你学到了什么还有哪些疑惑2.在学生回答的基础上,教师点评:(1)用配方法求二次y=ax2+bx+c的顶点坐标、对称轴;(2)由y=ax2+bx+c的图象判断与a,b,c有关代数式的值的正负;(3)实际问题中自变量取值范围及函数最值.1.教材P15第1~3题.2.完成同步练习册中本课时的练习.y=ax2+bx+c的图象和性质可以看作是y=ax2,y=a(x-h)2+k,y=a(x-h)2+k的图象和性质的归纳与综合,让学生初步体会由简单到复杂,由特殊到一般的认识规律.。

2020年春湘教版九年级数学下册教案3.3 第1课时 画几何体的三视图

2020年春湘教版九年级数学下册教案3.3 第1课时 画几何体的三视图

3.3 三视图第1课时 画几何体的三视图1.理解并掌握视图的概念,会判断简单几何体的三视图;2.会画圆柱、圆锥、球、棱柱的三视图.(重点)一、情境导入思考:在正午的太阳光下,一个物体在地面上的影子是一个圆,你能确定这个物体的形状吗?如图所示的几何体,在正午的太阳光下,在地面的影子分别是什么?它们的影子都是圆,这说明单凭在地上的影子,不可以确定物体的形状,即从一个方向看物体,不能确定物体的形状.二、合作探究探究点一:几何体的三视图的判断【类型一】简单几何体的三视图(2015·东海县模拟)其主视图不是中心对称图形的是( )解析:A.圆柱的主视图是长方形,是中心对称图形;B.圆锥的主视图是等腰三角形,不是中心对称图形;C.球的主视图是圆,是中心对称图形;D.正方体的主视图是正方形,是中心对称图形.故选B.方法总结:本题考查了简单几何体的三视图以及中心对称图形,先找出各个几何体的主视图,再根据中心对称图形的定义判断.变式训练:见《学练优》本课时练习“课堂达标训练” 第3题【类型二】组合体的三视图将两个大小完全相同的杯子(如图甲)叠放在一起(如图乙),则图乙中实物的俯视图是( )解析:根据三视图的概念,结合俯视图,观察该物体,看得见的画实线,看不见的画虚线.故选C.方法总结:正确理解主视图、左视图、俯视图的概念,充分发挥空间想象能力和动手操作能力.变式训练:见《学练优》本课时练习“课堂达标训练” 第2题探究点二:作几何体的三视图作出下面物体的三视图.解析:此物体下面是一个六棱柱,上面是一个圆柱体.解:如图:方法总结:三视图中,主视图与俯视图等长,主视图与左视图等高,俯视图与左视图等宽.变式训练:见《学练优》本课时练习“课后巩固提升”第9题三、板书设计本节课由正午太阳光下的物体的影子引入视图及三视图的概念,接着介绍三视图的画法,通过作图巩固三视图的概念.培养了学生动手、动脑和空间想象能力,增加学生对美学的了解,激发了他们的求知欲望,从而加强了学生的学习兴趣.。

湘教版九年级数学下册教案(全册)

湘教版九年级数学下册教案(全册)
最新湘教版九年级数学下册教案 (全册 )
九年级数学下册教案(全册)
教学计划
一、课程目标 (一)、本学段课程目标 知识技能 1.体验从具体情境中抽象出数学符号的过程,理解有理数、实数、代数式、方 程、不等式、函数;掌握必要的运算(包括估算)技能;探索具体问题中的数量 关系和变化规律,掌握用代数式、方程、不等式、函数进行表述的方法。 2.探索并掌握相交线、平行线、三角形、四边形和圆的基本性质与判定,掌握 基本的证明方法和基本的作图技能; 探索并理解平面图形的平移、 旋转、轴对称; 认识投影与视图; 3.体验数据收集、处理、分析和推断过程,理解抽样方法,体验用样本估计总 体的过程;进一步认识随机现象,能计算一些简单事件的概率。 数学思考 1.通过用代数式、方程、不等式、函数等表述数量关系的过程,体会模型的思 想,建立符号意识;在研究图形性质和运动、确定物体位置等过程中,进一步发 展空间观念;经历借助图形思考问题的过程,初步建立几何直观。 2.了解利用数据可以进行统计推断,发展建立数据分析观念;感受随机现象的 特点。 3.体会通过合情推理探索数学结论,运用演绎推理加以证明的过程,在多种形 式的数学活动中,发展合情推理与演绎推理的能力。 4.能独立思考,体会数学的基本思想和思维方式。 问题解决 1.初步学会在具体的情境中从数学的角度发现问题和提出问题,并综合运用数 学知识和方法等解决简单的实际问题,增强应用意识,提高实践能力。 2.经历从不同角度寻求分析问题和解决问题的方法的过程,体验解决问题方法 的多样性,掌握分析问题和解决问题的一些基本方法。 3.在与他人合作和交流过程中,能较好地理解他人的思考方法和结论。 4.能针对他人所提的问题进行反思,初步形成评价与反思的意识。 情感态度 1.积极参与数学活动,对数学有好奇心和求知欲。

新湘教版九年级下册数学全册教案(K12教育文档)

新湘教版九年级下册数学全册教案(K12教育文档)

(完整版)新湘教版九年级下册数学全册教案(word版可编辑修改)(完整版)新湘教版九年级下册数学全册教案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)新湘教版九年级下册数学全册教案(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)新湘教版九年级下册数学全册教案(word版可编辑修改)的全部内容。

(完整版)新湘教版九年级下册数学全册教案(word版可编辑修改)第1章二次函数1.1 二次函数【知识与技能】1。

理解具体情景中二次函数的意义,理解二次函数的概念,掌握二次函数的一般形式。

2。

能够表示简单变量之间的二次函数关系式,并能根据实际问题确定自变量的取值范围.【过程与方法】经历探索,分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系.【情感态度】体会数学与实际生活的密切联系,学会与他人合作交流,培养合作意识。

【教学重点】二次函数的概念.【教学难点】在实际问题中,会写简单变量之间的二次函数关系式教学过程.一、情境导入,初步认识1.教材P2“动脑筋”中的两个问题:矩形植物园的面积S(m2)与相邻于围墙面的每一面墙的长度x(m)的关系式是S=-2x2+100x,(0<x<50);电脑价格y(元)与平均降价率x的关系式是y=6000x2-12000x+6000,(0〈x〈1).它们有什么共同点?一般形式是y=ax2+bx+c(a,b,c为常数,a≠0)这样的函数可以叫做什么函数?二次函数.2.对于实际问题中的二次函数,自变量的取值范围是否会有一些限制呢?有.二、思考探究,获取新知二次函数的概念及一般形式在上述学生回答后,教师给出二次函数的定义:一般地,形如y=ax 2+bx+c (a , b ,c 是常数,a ≠0)的函数,叫做二次函数,其中x 是自变量,a,b,c 分别是函数解析式的二次项系数、一次项系数和常数项.注意:①二次函数中二次项系数不能为0。

新湘教版九年级下册数学全册教案

新湘教版九年级下册数学全册教案

第1章二次函数1.1 二次函数【知识与技能】1.理解具体情景中二次函数的意义,理解二次函数的概念,掌握二次函数的一般形式.2.能够表示简单变量之间的二次函数关系式,并能根据实际问题确定自变量的取值范围.【过程与方法】经历探索,分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系.【情感态度】体会数学与实际生活的密切联系,学会与他人合作交流,培养合作意识. 【教学重点】二次函数的概念.【教学难点】在实际问题中,会写简单变量之间的二次函数关系式教学过程.一、情境导入,初步认识1.教材P2“动脑筋”中的两个问题:矩形植物园的面积S(m2)与相邻于围墙面的每一面墙的长度x(m)的关系式是S=-2x2+100x,(0<x<50);电脑价格y(元)与平均降价率x的关系式是y=6000x2-12000x+6000,(0<x<1).它们有什么共同点?一般形式是y=ax2+bx+c(a,b,c为常数,a≠0)这样的函数可以叫做什么函数?二次函数.2.对于实际问题中的二次函数,自变量的取值范围是否会有一些限制呢?有.二、思考探究,获取新知二次函数的概念及一般形式在上述学生回答后,教师给出二次函数的定义:一般地,形如y=ax 2+bx+c(a, b,c 是常数,a ≠0)的函数,叫做二次函数,其中x 是自变量,a,b,c 分别是函数解析式的二次项系数、一次项系数和常数项.注意:①二次函数中二次项系数不能为0.②在指出二次函数中各项系数时,要连同符号一起指出.三、典例精析,掌握新知例1 指出下列函数中哪些是二次函数.(1)y=(x-3)2-x 2 ;(2)y=2x(x-1);(3)y=32x-1;(4)y=22x;(5)y=5-x 2+x. 【分析】先化为一般形式,右边为整式,依照定义分析.解:(2)(5)是二次函数,其余不是.【教学说明】判定一个函数是否为二次函数的思路:1.将函数化为一般形式.2.自变量的最高次数是2次.3.若二次项系数中有字母,二次项系数不能为0.例2 讲解教材P3例题.【教学说明】由实际问题确定二次函数关系式时,要注意自变量的取值范围. 例3 已知函数y=(m 2-m)x 2+mx+(m+1)(m 是常数),当m 为何值时:(1)函数是一次函数;(2)函数是二次函数.【分析】判断函数类型,关键取决于其二次项系数和一次项系数能否为零,列出相应方程或不等式.解:(1)由200m m m ⎧-=⎨≠⎩ 得010m m ⎩=≠⎧⎨或 , ∴m=1.即当m=1时,函数y=(m 2-m)x 2+mx+(m+1)是一次函数.(2)由m 2-m ≠0得m ≠0且m ≠1,∴当m ≠0且m ≠1时,函数y=(m 2-m)x 2+mx+(m+1)是二次函数.【教学说明】学生自主完成,加深对二次函数概念的理解,并让学生会列二次函数的一些实际应用中的二次函数解析式.四、运用新知,深化理解1.下列函数中是二次函数的是( )A. 2123y x x =+- B.y=3x 3+2x 2 C.y=(x-2)2-x 3 D.212y x =- 2.二次函数y=2x(x-1)的一次项系数是( )A.1B.-1C.2D.-23.若函数232(3)1k k y k x kx -+=-++ 是二次函数,则k 的值为( )A.0B.0或3C.3D.不确定4.若y=(a+2)x 2-3x+2是二次函数,则a 的取值范围是 .5.已知二次函数y=1-3x+5x 2,则二次项系数a= ,一次项系数b= ,常数项c= .6.某校九(1)班共有x 名学生,在毕业典礼上每两名同学都握一次手,共握手y 次,试写出y 与x 之间的函数关系式 ,它 (填“是”或“不是”)二次函数.7.如图,在边长为5的正方形中,挖去一个半径为x 的圆(圆心与正方形的中心重合),剩余部分的面积为y.(1)求y 关于x 的函数关系式;(2)试求自变量x 的取值范围;(3)求当圆的半径为2时,剩余部分的面积(π取3.14,结果精确到十分位).【答案】1.D 2.D 3.A 4.a ≠-2 5.5,-3,1 6.21122y x x =- 是 7.(1)y=25-πx 2=-πx 2+25.(2)0<x ≤52.(3)当x=2时,y=-4π+25≈-4×3.14+25=12.44≈12.4.即剩余部分的面积约为12.4.【教学说明】学生自主完成,加深对新知的理解,待学生完成上述作业后,教师指导.五、师生互动,课堂小结1.师生共同回顾二次函数的有关概念.2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?与同伴交流.【教学说明】教师引导学生回顾知识点,让学生大胆发言,进行知识提炼和知识归纳.第1~3题.1.教材P42.完成同步练习册中本课时的练习.本节课是从生活实际中引出二次函数模型,从而得出二次函数的定义及一般形式,会写简单变量之间的二次函数关系式,并能根据实际问题确定自变量的取值范围,使学生认识到数学来源于生活,又应用于生活实际之中.1.2 二次函数的图象与性质第1课时二次函数y=ax2(a>0)的图象与性质【知识与技能】1.会用描点法画函数y=ax2(a>0)的图象,并根据图象认识、理解和掌握其性质.2.体会数形结合的转化,能用y=ax2(a>0)的图象和性质解决简单的实际问题.【过程与方法】经历探索二次函数y=ax2(a>0)图象的作法和性质的过程,获得利用图象研究函数的经验,培养观察、思考、归纳的良好思维习惯.【情感态度】通过动手画图,同学之间交流讨论,达到对二次函数y=ax2(a>0)图象和性质的真正理解,从而产生对数学的兴趣,调动学生的积极性.【教学重点】1.会画y=ax2(a>0)的图象.2.理解,掌握图象的性质.【教学难点】二次函数图象及性质探究过程和方法的体会教学过程.一、情境导入,初步认识问题1请同学们回忆一下一次函数的图象、反比例函数的图象的特征是什么?二次函数图象是什么形状呢?问题2如何用描点法画一个函数图象呢?【教学说明】①略;②列表、描点、连线.二、思考探究,获取新知探究1画二次函数y=ax2(a>0)的图象.画二次函数y=ax2的图象.【教学说明】①要求同学们人人动手,按“列表、描点、连线”的步骤画图y=x2的图象,同学们画好后相互交流、展示,表扬画得比较规范的同学.②从列表和描点中,体会图象关于y轴对称的特征.③强调画抛物线的三个误区.误区一:用直线连结,而非光滑的曲线连结,不符合函数的变化规律和发展趋势.如图(1)就是y=x2的图象的错误画法.误区二:并非对称点,存在漏点现象,导致抛物线变形.如图(2)就是漏掉点(0,0)的y=x2的图象的错误画法.误区三:忽视自变量的取值范围,抛物线要求用平滑曲线连点的同时,还需要向两旁无限延伸,而并非到某些点停止.如图(3),就是到点(-2,4),(2,4)停住的y=x2图象的错误画法.探究2 y=ax 2(a >0)图象的性质在同一坐标系中,画出y=x 2, 212y x =,y=2x 2的图象.【教学说明】要求同学们独立完成图象,教师帮助引导,强调画图时注意每一个函数图象的对称性.动脑筋观察上述图象的特征(共同点),从而归纳二次函数y=ax2(a >0)的图象和性质.【教学说明】教师引导学生观察图象,从开口方向,对称轴,顶点,y 随x 的增大时的变化情况等几个方面让学生归纳,教师整理讲评、强调.y=ax 2(a >0)图象的性质1.图象开口向上.2.对称轴是y 轴,顶点是坐标原点,函数有最低点.3.当x >0时,y 随x 的增大而增大,简称右升;当x <0时,y 随x 的增大而减小,简称左降.三、典例精析,掌握新知例 已知函数24(2)kk y k x +-=+是关于x 的二次函数.(1)求k 的值.(2)k 为何值时,抛物线有最低点,最低点是什么?在此前提下,当x 在哪个范围内取值时,y 随x 的增大而增大?【分析】此题是考查二次函数y=ax 2的定义、图象与性质的,由二次函数定义列出关于k 的方程,进而求出k 的值,然后根据k+2>0,求出k 的取值范围,最后由y 随x 的增大而增大,求出x 的取值范围. 解:(1)由已知得22042k k k +≠+-=⎧⎨⎩ ,解得k=2或k=-3. 所以当k=2或k=-3时,函数24(2)k k y k x +-=+是关于x 的二次函数.(2)若抛物线有最低点,则抛物线开口向上,所以k+2>0.由(1)知k=2,最低点是(0,0),当x ≥0时,y 随x 的增大而增大.四、运用新知,深化理解1.(广东广州中考)下列函数中,当x>0时,y值随x值增大而减小的是()A.y=x2B.y=x-1C.34y xD.y=1x2.已知点(-1,y1),(2,y2),(-3,y3)都在函数y=x2的图象上,则()A.y1<y2<y3B.y1<y3<y2C.y3<y2<y1D.y2<y1<y33.抛物线y=13x2的开口向,顶点坐标为,对称轴为,当x=-2时,y= ;当y=3时,x= ,当x≤0时,y随x的增大而;当x>0时,y随x的增大而 .4.如图,抛物线y=ax2上的点B,C与x轴上的点A(-5,0),D(3,0)构成平行四边形ABCD,BC与y轴交于点E(0,6),求常数a的值.【教学说明】学生自主完成,加深对新知识的理解和掌握,当学生疑惑时,教师及时指导.【答案】1.D 2.A 3.上,(0,0),y轴,43,±3,减小,增大4.解:依题意得:BC=AD=8,BC∥x轴,且抛物线y=ax2上的点B,C关于y 轴对称,又∵BC与y轴交于点E(0,6),∴B点为(-4,6),C点为(4,6),将(4,6)代入y=ax2得:a=38.五、师生互动,课堂小结1.师生共同回顾二次函数y=ax2(a>0)图象的画法及其性质.2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?请与同伴交流.1.教材P7第1、2题.2.完成同步练习册中本课时的练习.本节课是从学生画y=x2的图象,从而掌握二次函数y=ax2(a>0)图象的画法,再由图象观察、探究二次函数y=ax2(a>0)的性质,培养学生动手、动脑、探究归纳问题的能力.第2课时二次函数y=ax2(a<0)的图象与性质【知识与技能】1.会用描点法画函数y=ax2(a<0)的图象,并根据图象认识、理解和掌握其性质.2.体会数形结合的转化,能用y=ax2(a<0)的图象与性质解决简单的实际问题.【过程与方法】经历探索二次函数y=ax2(a<0)图象的作法和性质的过程,获得利用图象研究函数的经验,培养观察、思考、归纳的良好思维习惯.【情感态度】通过动手画图,同学之间交流讨论,达到对二次函数y=ax2(a≠0)图象和性质的真正理解,从而产生对数学的兴趣,调动学习的积极性.【教学重点】①会画y=ax2(a<0)的图象;②理解、掌握图象的性质.【教学难点】二次函数图象的性质及其探究过程和方法的体会.一、情境导入,初步认识1.在坐标系中画出y=12x2的图象,结合y=12x2的图象,谈谈二次函数y=ax2(a>0)的图象具有哪些性质?2.你能画出y=-12x2的图象吗?二、思考探究,获取新知探究1画y=ax2(a<0)的图象请同学们在上述坐标系中用“列表、描点、连线”的方法画出y=-12x2的图象.【教学说明】教师要求学生独立完成,强调画图过程中应注意的问题,同学们完成后相互交流,表扬图象画得“美观”的同学.问:从所画出的图象进行观察,y=12x2与y=-12x2有何关系?归纳:y=12x2与y=-12x2二者图象形状完全相同,只是开口方向不同,两图象关于y轴对称.(教师引导学生从理论上进行证明这一结论)探究2二次函数y=ax2(a<0)性质问:你能结合y=-12x2的图象,归纳出y=ax2(a<0)图象的性质吗?【教学说明】教师提示应从开口方向,对称轴,顶点位置,y随x的增大时的变化情况几个方面归纳,教师整理,强调y=ax2(a<0)图象的性质.1.开口向下.2.对称轴是y轴,顶点是坐标原点,函数有最高点.3.当x>0时,y随x的增大而减小,简称右降,当x<0时,y随x的增大而增大,简称左升.探究3二次函数y=ax2(a≠0)的图象及性质学生回答:【教学点评】一般地,抛物线y=ax2的对称轴是,顶点是,当a>0时抛物线的开口向,顶点是抛物线的最点,a 越大,抛物线开口越;当a<0时,抛物线的开口向,顶点是抛物线的最点,a越大,抛物线开口越,总之,|a|越大,抛物线开口越 .答案:y轴,(0,0),上,低,小,下,高,大,小三、典例精析,掌握新知例1 填空:①函数y=(-2x)2的图象是,顶点坐标是,对称轴是,开口方向是 .②函数y=x2,y=12x2和y=-2x2的图象如图所示,请指出三条抛物线的解析式.解:①抛物线,(0,0),y轴,向上;②根据抛物线y=ax2中,a的值的作用来判断,上面最外面的抛物线为y=12x2,中间为y=x2,在x轴下方的为y=-2x2.【教学说明】解析式需化为一般式,再根据图象特征解答,避免发生错误.抛物线y=ax2中,当a>0时,开口向上;当a<0时,开口向下,|a|越大,开口越小.例2 已知抛物线y=ax2经过点(1,-1),求y=-4时x的值.【分析】把点(1,-1)的坐标代入y=ax2,求得a的值,得到二次函数的表达式,再把y=-4代入已求得的表达式中,即可求得x的值.解:∵点(1,-1)在抛物线y=ax2上,-1=a·12,∴a=-1,∴抛物线为y=-x2.当y=-4时,有-4=-x2,∴x=±2.【教学说明】在求y=ax2的解析式时,往往只须一个条件代入即可求出a 值.四、运用新知,深化理解1.下列关于抛物线y=x2和y=-x2的说法,错误的是()A.抛物线y=x 2和y=-x 2有共同的顶点和对称轴B.抛物线y=x 2和y=-x 2关于x 轴对称C.抛物线y=x 2和y=-x 2的开口方向相反D.点(-2,4)在抛物线y=x 2上,也在抛物线y=-x 2上2.二次函数y=ax 2与一次函数y=-ax(a ≠0)在同一坐标系中的图象大致是( )3.二次函数226(1)m m y m x+-=-,当x <0时,y 随x 的增大而减小,则m= .4.已知点A (-1,y 1),B(1,y 2),C(a,y 3)都在函数y=x 2的图象上,且a >1,则y 1,y 2,y 3中最大的是 .5.已知函数y=ax 2经过点(1,2).①求a 的值;②当x <0时,y 的值随x 值的增大而变化的情况.【教学说明】学生自主完成,加深对新知的理解和掌握,当学生疑惑时,教师及时指导.【答案】1.D 2.B 3.2 4.y 35.①a=2 ②当x <0时,y 随x 的增大而减小 五、师生互动,课堂小结这节课你学到了什么,还有哪些疑惑?在学生回答的基础上,教师点评:(1)y=ax 2(a<0)图象的性质;(2)y=ax 2(a ≠0)关系式的确定方法.1.教材P 10第1~2题.2.完成同步练习册中本课时的练习.本节课仍然是从学生画图象,结合上节课y=ax 2(a >0)的图象和性质,从而得出y=ax 2(a <0)的图象和性质,进而得出y=ax 2(a ≠0)的图象和性质,培养学生动手、动脑、合作探究的学习习惯.第3课时二次函数y=a(x-h)2的图象与性质【知识与技能】1.能够画出y=a(x-h)2的图象,并能够理解它与y=ax2的图象的关系,理解a,h对二次函数图象的影响.2.能正确说出y=a(x-h)2的图象的开口方向、对称轴和顶点坐标.【过程与方法】经历探索二次函数y=a(x-h)2的图象的作法和性质的过程,进一步领会数形结合的思想.【情感态度】1.在小组活动中体会合作与交流的重要性.2.进一步丰富数学学习的成功体验,认识到数学是解决实际问题的重要工具,初步形成积极参与数学活动的意识.【教学重点】掌握y=a(x-h)2的图象及性质.【教学难点】理解y=a(x-h)2与y=ax2图象之间的位置关系,理解a,h对二次函数图象的影响.一、情境导入,初步认识1.在同一坐标系中画出y=12x2与y=12(x-1)2的图象,完成下表.2.二次函数y=12(x-1)2的图象与y=12x2的图象有什么关系?3.对于二次函数12(x-1)2,当x取何值时,y的值随x值的增大而增大?当x取何值时,y的值随x值的增大而减小?二、思考探究,获取新知归纳二次函数y=a(x-h)2的图象与性质并完成下表.三、典例精析,掌握新知例1 教材P12例3.【教学说明】二次函数y=ax2与y=a(x-h)2是有关系的,即左、右平移时“左加右减”. 例如y=ax2向左平移1个单位得到y=a(x+1)2,y=ax2向右平移2个单位得到y=a(x-2)2的图象.例2 已知直线y=x+1与x轴交于点A,抛物线y=-2x2平移后的顶点与点A 重合.①水平移后的抛物线l的解析式;②若点B(x1,y1),C(x2,y2)在抛物线l上,且-12<x1<x2,试比较y1,y2的大小.解:①∵y=x+1,∴令y=0,则x=-1,∴A(-1,0),即抛物线l的顶点坐标为(-1,0),又∵抛物线l是由抛物线y=-2x2平移得到的,∴抛物线l的解析式为y=-2(x+1)2.②由①可知,抛物线l的对称轴为x=-1,∵a=-2<0,∴当x>-1时,y随x的增大而减小,又-12<x1<x2,∴y1>y2.【教学说明】二次函数的增减性以对称轴为分界,画图象取点时以顶点为分界对称取点.四、运用新知,深化理解1.二次函数y=15(x-1)2的最小值是()A.-1B.1C.0D.没有最小值2.抛物线y=-3(x+1)2不经过的象限是()A.第一、二象限B.第二、四象限C.第三、四象限D.第二、三象限3.在反比例函数y=kx中,当x>0时,y随x的增大而增大,则二次函数y=k(x-1)2的图象大致是()4.(1)抛物线y=13x2向平移个单位得抛物线y=13(x+1)2;(2)抛物线向右平移2个单位得抛物线y=-2(x-2)2.5.(广东广州中考)已知抛物线y=a(x-h)2的对称轴为x=-2,且过点(1,-3).(1)求抛物线的解析式;(2)画出函数的大致图象;(3)从图象上观察,当x取何值时,y随x的增大而增大?当x取何值时,函数有最大值(或最小值)?【教学说明】学生自主完成,教师巡视解疑.【答案】1.C 2.A 3.B 4.(1)左,1 (2)y=-2x25.解:(1)y=-13(x+2)2 (2)略(3)当x<-2时,y随x增大而增大;当x=-2时,y有最大值0.五、师生互动,课堂小结1.这节课你学到了什么?还有哪些疑惑?2.在学生回答的基础上,教师点评:(1)y=a(x-h)2的图象与性质;(2)y=a(x-h)2与y=ax2的图象的关系.1.教材P12第1、2题.2.完成同步练习册中本课时的练习.通过本节学习使学生认识到y=a(x-h)2的图象是由y=ax2的图象左右平移得到的,初步认识到a,h对y=a(x-h)2位置的影响,a的符号决定抛物线方向,|a|决定抛物线开口的大小,h决定向左右平移;从中领会数形结合的数学思想.第4课时二次函数y=a(x-h)2+k的图象与性质【知识与技能】1.会用描点法画二次函数y=a(x-h)2+k的图象.掌握y=a(x-h)2+k的图象和性质.2.掌握y=a(x-h)2+k与y=ax2的图象的位置关系.3.理解y=a(x-h)2+k,y=a(x-h)2,y=ax2+k及y=ax2的图象之间的平移转化. 【过程与方法】经历探索二次函数y=a(x-h)2+k的图象的作法和性质的过程,进一步领会数形结合的思想,培养观察、分析、总结的能力.【情感态度】1.在小组活动中进一步体会合作与交流的重要性.2.体验数学活动中充满着探索性,感受通过认识观察,归纳,类比可以获得数学猜想的乐趣.【教学重点】二次函数y=a(x-h)2+k的图象与性质.【教学难点】由二次函数y=a(x-h)2+k的图象的轴对称性列表、描点、连线.一、情境导入,初步认识复习回顾:同学们回顾一下:①y=ax2,y=a(x-h)2,(a≠0)的图象的开口方向、对称轴、顶点坐标,y随x的增减性分别是什么?②如何由y=ax2(a≠0)的图象平移得到y=a(x-h)2的图象?③猜想二次函数y=a(x-h)2+k的图象开口方向、对称轴、顶点坐标及y随x 的增减性如何?二、思考探究,获取新知探究1 y=a(x-h)2+k的图象和性质1.由老师提示列表,根据抛物线的轴对称性观察图象回答下列问题:①y=-12(x+1)2-1图象的开口方向、对称轴、顶点坐标及y随x的增减性如何?②将抛物线y=-12x2向左平移1个单位,再向下平移1个单位得抛物线y=-12(x+1)2-1.2.同学们讨论回答:①一般地,当h>0,k>0时,把抛物线y=ax2向右平移h个单位,再向上平移k个单位得抛物线y=a(x-h)2+k;平移的方向和距离由h,k的值来决定.②抛物线y=a(x-h)2+k的开口方向、对称轴、顶点坐标及y随x的增减性如何?探究2二次函数y=a(x-h)2+k的应用【教学说明】二次函数y=a(x-h)2+k的图象是,对称轴是,顶点坐标是,当a>0时,开口向,当a<0时,开口向.答案:抛物线,直线x=h,(h,k),上,下三、典例精析,掌握新知例1 已知抛物线y=a(x-h)2+k,将它沿x轴向右平移3个单位后,又沿y轴向下平移2个单位,得到抛物线的解析式为y=-3(x+1)2-4,求原抛物线的解析式.【分析】平移过程中,前后抛物线的形状,大小不变,所以a=-3,平移时应抓住顶点的变化,根据平移规律可求出原抛物线顶点,从而得到原抛物线的解析式.解:抛物线y=-3(x+1)2-4的顶点坐标为(-1,-4),它是由原抛物线向右平移3个单位,向下平移2个单位而得到的,所以把现在的顶点向相反方向移动就得到原抛物线顶点坐标为(-4,-2).故原抛物线的解析式为y=-3(x+4)2-2.【教学说明】抛物线平移不改变形状及大小,所以a值不变,平移时抓住关键点:顶点的变化.例2 如图是某次运动会开幕式点燃火炬时的示意图,发射台OA的高度为2m,火炬的高度为12m,距发射台OA的水平距离为20m,在A处的发射装置向目标C发射一个火球点燃火炬,该火球运行的轨迹为抛物线形,当火球运动到距地面最大高度20m时,相应的水平距离为12m.请你判断该火球能否点燃目标C?并说明理由.【分析】建立适当直角坐标系,构建二次函数解析式,然后分析判断.解:该火球能点燃目标.如图,以OB所在直线为x轴,OA所在直线为y轴建立直角坐标系,则点(12,20)为抛物线顶点,设解析式为y=a(x-12)2+20,∵点(0,2)在图象上,∴144a+20=2,∴a=-18,∴y=-18(x-12)2+20.当x=20时,y=-18×(20-12)2+20=12,即抛物线过点(20,12),∴该火球能点燃目标.【教学说明】二次函数y=a(x-h)2+k的应用关键是构造出二次函数模型.四、运用新知,深化理解1.若抛物线y=-7(x+4)2-1平移得到y=-7x2,则必须()A.先向左平移4个单位,再向下平移1个单位B.先向右平移4个单位,再向上平移1个单位C.先向左平移1个单位,再向下平移4个单位D.先向右平移1个单位,再向上平移4个单位2.抛物线y=x2-4与x轴交于B,C两点,顶点为A,则△ABC的周长为()+43.函数y=ax2-a与y=ax-a(a≠0)在同一坐标系中的图象可能是()4.二次函数y=-2x2+6的图象的对称轴是,顶点坐标是,当x 时,y随x的增大而增大.5.已知函数y=ax2+c的图象与函数y=-3x2-2的图象关于x轴对称,则a= ,c= .6.把抛物线y=(x-1)2沿y轴向上或向下平移,所得抛物线经过Q(3,0),求平移后抛物线的解析式.【教学说明】学生自主完成,加深对新知的理解,教师引导解疑.【答案】1.B 2.B 3.C 4.y轴,(0,6),<0 5.3,2 6.y=(x-1)2-4五、师生互动,课堂小结1.这节课你学到了什么,还有哪些疑惑?2.在学生回答的基础上,教师点评:①二次函数y=a(x-h)2+k的图象与性质;②如何由抛物线y=ax2平移得到抛物线y=a(x-h)2+k.【教学说明】教师应引导学生自主小结,加深理解掌握y=ax2与y=a(x-h)2+k 二者图象的位置关系.第1~3题.1.教材P152.完成同步练习册中本课时的练习.掌握函数y=ax2,y=a(x-h)2,y=a(x-h)2+k图象的变化关系,从而体会由简单到复杂的认识规律.第5课时二次函数y=ax2+bx+c的图象与性质【知识与技能】1.会用描点法画二次函数y=ax2+bx+c的图象.2.会用配方法求抛物线y=ax2+bx+c的顶点坐标、开口方向、对称轴、y随x 的增减性.3.能通过配方求出二次函数y=ax2+bx+c(a≠0)的最大或最小值;能利用二次函数的性质求实际问题中的最大值或最小值.【过程与方法】1.经历探索二次函数y=ax2+bx+c(a≠0)的图象的作法和性质的过程,体会建立二次函数y=ax2+bx+c(a≠0)对称轴和顶点坐标公式的必要性.2.在学习y=ax2+bx+c(a≠0)的性质的过程中,渗透转化(化归)的思想. 【情感态度】进一步体会由特殊到一般的化归思想,形成积极参与数学活动的意识. 【教学重点】①用配方法求y=ax2+bx+c的顶点坐标;②会用描点法画y=ax2+bx+c的图象并能说出图象的性质.【教学难点】能利用二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标公式,解决一些问题,能通过对称性画出二次函数y=ax2+bx+c(a≠0)的图象.一、情境导入,初步认识请同学们完成下列问题.1.把二次函数y=-2x2+6x-1化成y=a(x-h)2+k的形式.2.写出二次函数y=-2x2+6x-1的开口方向,对称轴及顶点坐标.3.画y=-2x 2+6x-1的图象.4.抛物线y=-2x 2如何平移得到y=-2x 2+6x-1的图象.5.二次函数y=-2x 2+6x-1的y 随x 的增减性如何?【教学说明】上述问题教师应放手引导学生逐一完成,从而领会y=ax 2+bx+c 与y=a(x-h)2+k 的转化过程.二、思考探究,获取新知探究1 如何画y=ax 2+bx+c 图象,你可以归纳为哪几步?学生回答、教师点评:一般分为三步:1.先用配方法求出y=ax 2+bx+c 的对称轴和顶点坐标.2.列表,描点,连线画出对称轴右边的部分图象.3.利用对称点,画出对称轴左边的部分图象.探究2 二次函数y=ax 2+bx+c 图象的性质有哪些?你能试着归纳吗? 学生回答,教师点评:抛物线y=ax 2+bx+c=224()24b ac b a x a a -++ ,对称轴为x=-2b a ,顶点坐标为(-2b a ,244ac b a -),当a >0时,若x >-2b a ,y 随x 增大而增大,若x <-2b a ,y 随x 的增大而减小;当a <0时,若x >-2b a ,y 随x 的增大而减小,若x<-2b a,y 随x 的增大而增大. 探究3 二次函数y=ax 2+bx+c 在什么情况下有最大值,什么情况下有最小值,如何确定?学生回答,教师点评:三、典例精析,掌握新知例1 将下列二次函数写成顶点式y=a(x-h)2+k 的形式,并写出其开口方向,顶点坐标,对称轴.①y=14x2-3x+21 ②y=-3x2-18x-22解:①y=14x2-3x+21=14(x2-12x)+21=14(x2-12x+36-36)+21=14(x-6)2+12.∴此抛物线的开口向上,顶点坐标为(6,12),对称轴是x=6.②y=-3x2-18x-22=-3(x2+6x)-22=-3(x2+6x+9-9)-22=-3(x+3)2+5.∴此抛物线的开口向下,顶点坐标为(-3,5),对称轴是x=-3.【教学说明】第②小题注意h值的符号,配方法是数学的一个重要方法,需多加练习,熟练掌握;抛物线的顶点坐标也可以根据公式直接求解.例2 用总长为60m的篱笆围成的矩形场地,矩形面积S随矩形一边长l的变化而变化,l是多少时,场地的面积S最大?①S与l有何函数关系?②举一例说明S随l的变化而变化?③怎样求S的最大值呢?解:S=l (30-l)=- l2+30l (0<l<30)=-( l2-30l)=-( l-15)2+225画出此函数的图象,如图.∴l=15时,场地的面积S最大(S的最大值为225)【教学说明】二次函数在几何方面的应用特别广泛,要注意自变量的取值范围的确定,同时所画的函数图象只能是抛物线的一部分.四、运用新知,深化理解1.(北京中考)抛物线y=x2-6x+5的顶点坐标为()A.(3,-4)B.(3,4)C.(-3,-4)D.(-3,4)2.(贵州贵阳中考)已知二次函数y=ax2+bx+c(a<0)的图象如图所示,当-5≤x≤0时,下列说法正确的是()A.有最小值5、最大值0B.有最小值-3、最大值6C.有最小值0、最大值6D.有最小值2、最大值63.如图,二次函数y=ax2+bx+c的图象开口向上,图象经过点(-1,2)和(1,0),且与y轴相交于负半轴.(1)给出四个结论:①a>0;②b>0;③c>0;④a+b+c=0.其中正确结论的序号是 .(2)给出四个结论:①abc<0;②2a+b>0;③a+c=1;④a>1.其中正确结论的序号是 .【教学说明】通过练习,巩固掌握y=ax2+bx+c的图象和性质. 【答案】1.A 2.B 3.(1)①④ (2)②③④五、师生互动,课堂小结1.这节课你学到了什么?还有哪些疑惑?2.在学生回答的基础上,教师点评:(1)用配方法求二次y=ax2+bx+c的顶点坐标、对称轴;(2)由y=ax2+bx+c的图象判断与a,b,c有关代数式的值的正负;(3)实际问题中自变量取值范围及函数最值.1.教材P15第1~3题.2.完成同步练习册中本课时的练习.。

湘教版九年级下册数学教案5篇

湘教版九年级下册数学教案5篇

湘教版九年级下册数学教案5篇湘教版九年级下册数学教案篇1配方法的灵活运用了解配方法的概念,掌握运用配方法解一元二次方程的步骤.通过复习上一节课的解题方法,给出配方法的概念,然后运用配方法解决一些具体题目.重点讲清配方法的解题步骤.难点对于用配方法解二次项系数为1的一元二次方程,通常把常数项移到方程右边后,两边加上的常数是一次项系数一半的平方;对于二次项系数不为1的一元二次方程,要先化二次项系数为1,再用配方法求解.一、复习引入(学生活动)解下列方程:(1)x2-4x+7=0 (2)2x2-8x+1=0老师点评:我们上一节课,已经学习了如何解左边不含有x的完全平方形式的一元二次方程以及不可以直接开方降次解方程的转化问题,那么这两道题也可以用上面的方法进行解题.解:略. (2)与(1)有何关联二、探索新知讨论:配方法解一元二次方程的一般步骤:(1)先将已知方程化为一般形式;(2)化二次项系数为1;(3)常数项移到右边;(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;(5)变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±;如果q 0,方程无实根.例1 解下列方程:(1)2x2+1=3x (2)3x2-6x+4=0 (3)(1+x)2+2(1+x)-4=0分析:我们已经介绍了配方法,因此,我们解这些方程就可以用配方法来完成,即配一个含有x的完全平方式.解:略.三、巩固练习教材第9页练习2.(3)(4)(5)(6).四、课堂小结本节课应掌握:1.配方法的概念及用配方法解一元二次方程的步骤.2.配方法是解一元二次方程的通法,它的重要性,不仅仅表现在一元二次方程的解法中,也可通过配方,利用非负数的性质判断代数式的正负性.在今后学习二次函数,到高中学习二次曲线时,还将经常用到.五、作业布置教材第17页复习巩固3.(3)(4).补充:(1)已知x2+y2+z2-2x+4y-6z+14=0,求x+y+z的值.(2) 求证:无论x,y取任何实数,多项式x2+y2-2x-4y+16的值总是正数. 湘教版九年级下册数学教案篇2圆经历圆的概念的形成过程,理解圆、弧、弦等与圆有关的概念,了解等圆、等弧的概念.重点经历形成圆的概念的过程,理解圆及其有关概念.难点理解圆的概念的形成过程和圆的集合性定义.活动1 创设情境,引出课题1.多媒体展示生活中常见的给我们以圆的形象的物体.2.提出问题:我们看到的物体给我们什么样的形象活动2 动手操作,形成概念在没有圆规的情况下,让学生用铅笔和细线画一个圆.教师巡视,展示学生的作品,提出问题:我们画的圆的位置和大小一样吗画的圆的位置和大小分别由什么决定教师强调指出:位置由固定的一个端点决定,大小由固定端点到铅笔尖的细线的长度决定.1.从以上圆的形成过程,总结概念:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点所形成的图形叫做圆.固定的端点O叫做圆心,线段OA叫做半径.以点O为圆心的圆,记作“⊙O”,读作“圆O”.2.小组讨论下面的两个问题:问题1:圆上各点到定点(圆心O)的距离有什么规律问题2:到定点的距离等于定长的点又有什么特点3.小组代表发言,教师点评总结,形成新概念.(1)圆上各点到定点(圆心O)的距离都等于定长(半径r);(2)到定点的距离等于定长的点都在同一个圆上.因此,我们可以得到圆的新概念:圆心为O,半径为r的圆可以看成是所有到定点O的距离等于定长r的点的集合.(一个图形看成是满足条件的点的集合,必须符合两点:在图形上的每个点,都满足这个条件;满足这个条件的每个点,都在这个图形上.)活动3 学以致用,巩固概念1.教材第81页练习第1题.2.教材第80页例1.多媒体展示例1,引导学生分析要证明四个点在同一圆上,实际是要证明到定点的距离等于定长,即四个点到O的距离相等.活动4 自学教材,辨析概念1.自学教材第80页例1后面的内容,判断下列问题正确与否:(1)直径是弦,弦是直径;半圆是弧,弧是半圆.(2)圆上任意两点间的线段叫做弧.(3)在同圆中,半径相等,直径是半径的2倍.(4)长度相等的两条弧是等弧.(教师强调:长度相等的弧不一定是等弧,等弧必须是在同圆或等圆中的弧.)(5)大于半圆的弧是劣弧,小于半圆的弧是优弧.2.指出图中所有的弦和弧.活动5 达标检测,反馈新知教材第81页练习第2,3题.活动6 课堂小结,作业布置课堂小结1.圆、弦、弧、等圆、等弧的概念.要特别注意“直径和弦”“弧和半圆”以及“同圆、等圆”这些概念的区别和联系.等圆和等弧的概念是建立在“能够完全重合”这一前提条件下的,它将作为今后判断两圆或两弧相等的依据.2.证明几点在同一圆上的方法.3.集合思想.作业布置1.以定点O为圆心,作半径等于2厘米的圆.2.如图,在Rt△ABC和Rt△ABD中,∠C=90°,∠D=90°,点O是AB的中点.求证:A,B,C,D四个点在以点O为圆心的同一圆上.答案:1.略;2.证明OA=OB=OC=OD即可.湘教版九年级下册数学教案篇3二次根式的乘除法教学目标1、使学生掌握二次根式的除法运算法则,会用它进行简单的二次根式的除法运算。

新湘教版九年级下册数学全册教案课程

新湘教版九年级下册数学全册教案课程

第1章二次函数1.1 二次函数【知识与技能】1.理解具体情景中二次函数的意义,理解二次函数的概念,掌握二次函数的一般形式.2.能够表示简单变量之间的二次函数关系式,并能根据实际问题确定自变量的取值范围.【过程与方法】经历探索,分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系.【情感态度】体会数学与实际生活的密切联系,学会与他人合作交流,培养合作意识.【教学重点】二次函数的概念.【教学难点】在实际问题中,会写简单变量之间的二次函数关系式教学过程.一、情境导入,初步认识1.教材P2“动脑筋”中的两个问题:矩形植物园的面积S(m2)与相邻于围墙面的每一面墙的长度x(m)的关系式是S=-2x2+100x,(0<x<50);电脑价格y(元)与平均降价率x的关系式是y=6000x2-12000x+6000,(0<x<1).它们有什么共同点?一般形式是y=ax2+bx+c(a,b,c为常数,a≠0)这样的函数可以叫做什么函数?二次函数.2.对于实际问题中的二次函数,自变量的取值范围是否会有一些限制呢?有.二、思考探究,获取新知二次函数的概念及一般形式在上述学生回答后,教师给出二次函数的定义:一般地,形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数,叫做二次函数,其中x是自变量,a,b,c分别是函数解析式的二次项系数、一次项系数和常数项.注意:①二次函数中二次项系数不能为0.②在指出二次函数中各项系数时,要连同符号一起指出.三、典例精析,掌握新知例1 指出下列函数中哪些是二次函数.(1)y=(x-3)2-x 2;(2)y=2x(x-1);(3)y=32x-1;(4)y=22x;(5)y=5-x 2+x. 【分析】先化为一般形式,右边为整式,依照定义分析. 解:(2)(5)是二次函数,其余不是.【教学说明】判定一个函数是否为二次函数的思路: 1.将函数化为一般形式. 2.自变量的最高次数是2次.3.若二次项系数中有字母,二次项系数不能为0. 例2 讲解教材P3例题.【教学说明】由实际问题确定二次函数关系式时,要注意自变量的取值范围. 例3 已知函数y=(m 2-m)x 2+mx+(m+1)(m 是常数),当m 为何值时: (1)函数是一次函数; (2)函数是二次函数.【分析】判断函数类型,关键取决于其二次项系数和一次项系数能否为零,列出相应方程或不等式.解:(1)由200m m m ⎧-=⎨≠⎩得010m m ⎩=≠⎧⎨或 ,∴m=1.即当m=1时,函数y=(m 2-m)x 2+mx+(m+1)是一次函数. (2)由m 2-m ≠0得m ≠0且m ≠1,∴当m ≠0且m ≠1时,函数y=(m 2-m)x 2+mx+(m+1)是二次函数.【教学说明】学生自主完成,加深对二次函数概念的理解,并让学生会列二次函数的一些实际应用中的二次函数解析式.四、运用新知,深化理解1.下列函数中是二次函数的是( ) A. 2123y x x =+- B.y=3x 3+2x 2 C.y=(x-2)2-x 3D.21y = 2.二次函数y=2x(x-1)的一次项系数是( ) A.1 B.-1 C.2 D.-2 3.若函数232(3)1k k y k xkx -+=-++ 是二次函数,则k 的值为( )A.0B.0或3C.3D.不确定4.若y=(a+2)x 2-3x+2是二次函数,则a 的取值范围是 .5.已知二次函数y=1-3x+5x 2,则二次项系数a= ,一次项系数b= ,常数项c= .6.某校九(1)班共有x 名学生,在毕业典礼上每两名同学都握一次手,共握手y 次,试写出y 与x 之间的函数关系式 ,它 (填“是”或“不是”)二次函数.7.如图,在边长为5的正方形中,挖去一个半径为x 的圆(圆心与正方形的中心重合),剩余部分的面积为y.(1)求y 关于x 的函数关系式; (2)试求自变量x 的取值范围;(3)求当圆的半径为2时,剩余部分的面积(π取3.14,结果精确到十分位). 【答案】1.D 2.D 3.A 4.a ≠-2 5.5,-3,1 6.21122y x x =- 是 7.(1)y=25-πx 2=-πx 2+25. (2)0<x ≤52.(3)当x=2时,y=-4π+25≈-4×3.14+25=12.44≈12.4. 即剩余部分的面积约为12.4.【教学说明】学生自主完成,加深对新知的理解,待学生完成上述作业后,教师指导. 五、师生互动,课堂小结1.师生共同回顾二次函数的有关概念.2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?与同伴交流.【教学说明】教师引导学生回顾知识点,让学生大胆发言,进行知识提炼和知识归纳. 1.教材P 4第1~3题.2.完成同步练习册中本课时的练习.本节课是从生活实际中引出二次函数模型,从而得出二次函数的定义及一般形式,会写简单变量之间的二次函数关系式,并能根据实际问题确定自变量的取值范围,使学生认识到数学来源于生活,又应用于生活实际之中.1.2 二次函数的图象与性质第1课时二次函数y=ax2(a>0)的图象与性质【知识与技能】1.会用描点法画函数y=ax2(a>0)的图象,并根据图象认识、理解和掌握其性质.2.体会数形结合的转化,能用y=ax2(a>0)的图象和性质解决简单的实际问题.【过程与方法】经历探索二次函数y=ax2(a>0)图象的作法和性质的过程,获得利用图象研究函数的经验,培养观察、思考、归纳的良好思维习惯.【情感态度】通过动手画图,同学之间交流讨论,达到对二次函数y=ax2(a>0)图象和性质的真正理解,从而产生对数学的兴趣,调动学生的积极性.【教学重点】1.会画y=ax2(a>0)的图象.2.理解,掌握图象的性质.【教学难点】二次函数图象及性质探究过程和方法的体会教学过程.一、情境导入,初步认识问题1请同学们回忆一下一次函数的图象、反比例函数的图象的特征是什么?二次函数图象是什么形状呢?问题2如何用描点法画一个函数图象呢?【教学说明】①略;②列表、描点、连线.二、思考探究,获取新知探究1画二次函数y=ax2(a>0)的图象.画二次函数y=ax2的图象.【教学说明】①要求同学们人人动手,按“列表、描点、连线”的步骤画图y=x2的图象,同学们画好后相互交流、展示,表扬画得比较规范的同学.②从列表和描点中,体会图象关于y轴对称的特征.③强调画抛物线的三个误区.误区一:用直线连结,而非光滑的曲线连结,不符合函数的变化规律和发展趋势. 如图(1)就是y=x 2的图象的错误画法.误区二:并非对称点,存在漏点现象,导致抛物线变形. 如图(2)就是漏掉点(0,0)的y=x 2的图象的错误画法.误区三:忽视自变量的取值范围,抛物线要求用平滑曲线连点的同时,还需要向两旁无限延伸,而并非到某些点停止.如图(3),就是到点(-2,4),(2,4)停住的y=x 2图象的错误画法.探究2 y=ax 2(a >0)图象的性质在同一坐标系中,画出y=x 2, 212y x =,y=2x 2的图象. 【教学说明】要求同学们独立完成图象,教师帮助引导,强调画图时注意每一个函数图象的对称性.动脑筋观察上述图象的特征(共同点),从而归纳二次函数y=ax2(a >0)的图象和性质.【教学说明】教师引导学生观察图象,从开口方向,对称轴,顶点,y 随x 的增大时的变化情况等几个方面让学生归纳,教师整理讲评、强调.y=ax 2(a >0)图象的性质 1.图象开口向上.2.对称轴是y 轴,顶点是坐标原点,函数有最低点.3.当x >0时,y 随x 的增大而增大,简称右升;当x <0时,y 随x 的增大而减小,简称左降.三、典例精析,掌握新知 例 已知函数24(2)k k y k x +-=+是关于x 的二次函数.(1)求k 的值.(2)k 为何值时,抛物线有最低点,最低点是什么?在此前提下,当x 在哪个范围内取值时,y 随x 的增大而增大?【分析】此题是考查二次函数y=ax 2的定义、图象与性质的,由二次函数定义列出关于k 的方程,进而求出k 的值,然后根据k+2>0,求出k 的取值范围,最后由y 随x 的增大而增大,求出x 的取值范围.解:(1)由已知得22042k k k +≠+-=⎧⎨⎩ ,解得k=2或k=-3. 所以当k=2或k=-3时,函数24(2)kk y k x +-=+是关于x 的二次函数.(2)若抛物线有最低点,则抛物线开口向上,所以k+2>0.由(1)知k=2,最低点是(0,0),当x ≥0时,y 随x 的增大而增大. 四、运用新知,深化理解1.(广东广州中考)下列函数中,当x >0时,y 值随x 值增大而减小的是( ) A.y=x 2B.y=x-1C. 34y xD.y=1x2.已知点(-1,y 1),(2,y 2),(-3,y 3)都在函数y=x 2的图象上,则( ) A.y 1<y 2<y 3 B.y 1<y 3<y 2 C.y 3<y 2<y 1 D.y 2<y 1<y 33.抛物线y=13x 2的开口向 ,顶点坐标为 ,对称轴为 ,当x=-2时,y= ;当y=3时,x= ,当x ≤0时,y 随x 的增大而 ;当x >0时,y 随x 的增大而 .4.如图,抛物线y=ax 2上的点B ,C 与x 轴上的点A (-5,0),D (3,0)构成平行四边形ABCD ,BC 与y 轴交于点E (0,6),求常数a 的值.【教学说明】学生自主完成,加深对新知识的理解和掌握,当学生疑惑时,教师及时指导.【答案】1.D 2.A 3.上,(0,0),y 轴, 43,±3,减小,增大4.解:依题意得:BC=AD=8,BC ∥x 轴,且抛物线y=ax 2上的点B ,C 关于y 轴对称,又∵BC 与y 轴交于点E (0,6),∴B 点为(-4,6),C 点为(4,6),将(4,6)代入y=ax 2得:a=38.五、师生互动,课堂小结1.师生共同回顾二次函数y=ax 2(a >0)图象的画法及其性质.2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?请与同伴交流. 1.教材P 7第1、2题.2.完成同步练习册中本课时的练习.本节课是从学生画y=x 2的图象,从而掌握二次函数y=ax 2(a >0)图象的画法,再由图象观察、探究二次函数y=ax 2(a >0)的性质,培养学生动手、动脑、探究归纳问题的能力.第2课时二次函数y=ax2(a<0)的图象与性质【知识与技能】1.会用描点法画函数y=ax2(a<0)的图象,并根据图象认识、理解和掌握其性质.2.体会数形结合的转化,能用y=ax2(a<0)的图象与性质解决简单的实际问题.【过程与方法】经历探索二次函数y=ax2(a<0)图象的作法和性质的过程,获得利用图象研究函数的经验,培养观察、思考、归纳的良好思维习惯.【情感态度】通过动手画图,同学之间交流讨论,达到对二次函数y=ax2(a≠0)图象和性质的真正理解,从而产生对数学的兴趣,调动学习的积极性.【教学重点】①会画y=ax2(a<0)的图象;②理解、掌握图象的性质.【教学难点】二次函数图象的性质及其探究过程和方法的体会.一、情境导入,初步认识1.在坐标系中画出y=12x2的图象,结合y=12x2的图象,谈谈二次函数y=ax2(a>0)的图象具有哪些性质?2.你能画出y=-12x2的图象吗?二、思考探究,获取新知探究1画y=ax2(a<0)的图象请同学们在上述坐标系中用“列表、描点、连线”的方法画出y=-12x2的图象.【教学说明】教师要求学生独立完成,强调画图过程中应注意的问题,同学们完成后相互交流,表扬图象画得“美观”的同学.问:从所画出的图象进行观察,y=12x2与y=-12x2有何关系?归纳:y=12x2与y=-12x2二者图象形状完全相同,只是开口方向不同,两图象关于y轴对称.(教师引导学生从理论上进行证明这一结论)探究2 二次函数y=ax 2(a <0)性质问:你能结合y=-12x 2的图象,归纳出y=ax 2(a <0)图象的性质吗?【教学说明】教师提示应从开口方向,对称轴,顶点位置,y 随x 的增大时的变化情况几个方面归纳,教师整理,强调y=ax 2(a<0)图象的性质.1.开口向下.2.对称轴是y 轴,顶点是坐标原点,函数有最高点.3.当x >0时,y 随x 的增大而减小,简称右降,当x <0时,y 随x 的增大而增大,简称左升.探究3 二次函数y=ax 2(a ≠0)的图象及性质 学生回答:【教学点评】一般地,抛物线y=ax 2的对称轴是 ,顶点是 ,当a >0时抛物线的开口向 ,顶点是抛物线的最 点,a 越大,抛物线开口越 ;当a <0时,抛物线的开口向 ,顶点是抛物线的最 点,a 越大,抛物线开口越 ,总之,|a|越大,抛物线开口越 .答案:y 轴,(0,0),上,低,小,下,高,大,小 三、典例精析,掌握新知例1 填空:①函数2的图象是 ,顶点坐标是 ,对称轴是 ,开口方向是 .②函数y=x 2,y=12x 2和y=-2x 2请指出三条抛物线的解析式.解:①抛物线,(0,0),y 轴,向上;②根据抛物线y=ax 2中,a 的值的作用来判断,上面最外面的抛物线为y=12x 2,中间为y=x 2,在x 轴下方的为y=-2x 2.【教学说明】解析式需化为一般式,再根据图象特征解答,避免发生错误.抛物线y=ax 2中,当a >0时,开口向上;当a <0时,开口向下,|a|越大,开口越小.例2 已知抛物线y=ax 2经过点(1,-1),求y=-4时x 的值.【分析】把点(1,-1)的坐标代入y=ax 2,求得a 的值,得到二次函数的表达式,再把y=-4代入已求得的表达式中,即可求得x 的值.解:∵点(1,-1)在抛物线y=ax2上,-1=a·12,∴a=-1,∴抛物线为y=-x2.当y=-4时,有-4=-x2,∴x=±2.【教学说明】在求y=ax2的解析式时,往往只须一个条件代入即可求出a值.四、运用新知,深化理解1.下列关于抛物线y=x2和y=-x2的说法,错误的是()A.抛物线y=x2和y=-x2有共同的顶点和对称轴B.抛物线y=x2和y=-x2关于x轴对称C.抛物线y=x2和y=-x2的开口方向相反D.点(-2,4)在抛物线y=x2上,也在抛物线y=-x2上2.二次函数y=ax2与一次函数y=-ax(a≠0)在同一坐标系中的图象大致是()3.二次函数226(1)m my m x+-=-,当x<0时,y随x的增大而减小,则m= .4.已知点A(-1,y1),B(1,y2),C(a,y3)都在函数y=x2的图象上,且a>1,则y1,y2,y3中最大的是 .5.已知函数y=ax2经过点(1,2).①求a的值;②当x<0时,y的值随x值的增大而变化的情况.【教学说明】学生自主完成,加深对新知的理解和掌握,当学生疑惑时,教师及时指导.【答案】1.D 2.B 3.2 4.y35.①a=2 ②当x<0时,y随x的增大而减小五、师生互动,课堂小结这节课你学到了什么,还有哪些疑惑?在学生回答的基础上,教师点评:(1)y=ax2(a<0)图象的性质;(2)y=ax2(a≠0)关系式的确定方法.1.教材P10第1~2题.2.完成同步练习册中本课时的练习.本节课仍然是从学生画图象,结合上节课y=ax2(a>0)的图象和性质,从而得出y=ax2(a <0)的图象和性质,进而得出y=ax2(a≠0)的图象和性质,培养学生动手、动脑、合作探究的学习习惯.第3课时二次函数y=a(x-h)2的图象与性质【知识与技能】1.能够画出y=a(x-h)2的图象,并能够理解它与y=ax2的图象的关系,理解a,h对二次函数图象的影响.2.能正确说出y=a(x-h)2的图象的开口方向、对称轴和顶点坐标.【过程与方法】经历探索二次函数y=a(x-h)2的图象的作法和性质的过程,进一步领会数形结合的思想.【情感态度】1.在小组活动中体会合作与交流的重要性.2.进一步丰富数学学习的成功体验,认识到数学是解决实际问题的重要工具,初步形成积极参与数学活动的意识.【教学重点】掌握y=a(x-h)2的图象及性质.【教学难点】理解y=a(x-h)2与y=ax2图象之间的位置关系,理解a,h对二次函数图象的影响.一、情境导入,初步认识1.在同一坐标系中画出y=12x2与y=12(x-1)2的图象,完成下表.2.二次函数y=12(x-1)2的图象与y=12x2的图象有什么关系?3.对于二次函数12(x-1)2,当x取何值时,y的值随x值的增大而增大?当x取何值时,y的值随x值的增大而减小?二、思考探究,获取新知归纳二次函数y=a(x-h)2的图象与性质并完成下表.三、典例精析,掌握新知例1 教材P12例3.【教学说明】二次函数y=ax2与y=a(x-h)2是有关系的,即左、右平移时“左加右减”. 例如y=ax2向左平移1个单位得到y=a(x+1)2,y=ax2向右平移2个单位得到y=a(x-2)2的图象.例2 已知直线y=x+1与x轴交于点A,抛物线y=-2x2平移后的顶点与点A重合.①水平移后的抛物线l的解析式;②若点B(x1,y1),C(x2,y2)在抛物线l上,且-12<x1<x2,试比较y1,y2的大小.解:①∵y=x+1,∴令y=0,则x=-1,∴A(-1,0),即抛物线l的顶点坐标为(-1,0),又∵抛物线l是由抛物线y=-2x2平移得到的,∴抛物线l的解析式为y=-2(x+1)2.②由①可知,抛物线l的对称轴为x=-1,∵a=-2<0,∴当x>-1时,y随x的增大而减小,又-12<x1<x2,∴y1>y2.【教学说明】二次函数的增减性以对称轴为分界,画图象取点时以顶点为分界对称取点.四、运用新知,深化理解1.二次函数y=15(x-1)2的最小值是()A.-1B.1C.0D.没有最小值2.抛物线y=-3(x+1)2不经过的象限是()A.第一、二象限B.第二、四象限C.第三、四象限D.第二、三象限3.在反比例函数y=kx中,当x>0时,y随x的增大而增大,则二次函数y=k(x-1)2的图象大致是()4.(1)抛物线y=13x2向平移个单位得抛物线y=13(x+1)2;(2)抛物线向右平移2个单位得抛物线y=-2(x-2)2.5.(广东广州中考)已知抛物线y=a(x-h)2的对称轴为x=-2,且过点(1,-3).(1)求抛物线的解析式;(2)画出函数的大致图象;(3)从图象上观察,当x取何值时,y随x的增大而增大?当x取何值时,函数有最大值(或最小值)?【教学说明】学生自主完成,教师巡视解疑.【答案】1.C 2.A 3.B 4.(1)左,1 (2)y=-2x25.解:(1)y=-13(x+2)2 (2)略(3)当x<-2时,y随x增大而增大;当x=-2时,y有最大值0.五、师生互动,课堂小结1.这节课你学到了什么?还有哪些疑惑?2.在学生回答的基础上,教师点评:(1)y=a(x-h)2的图象与性质;(2)y=a(x-h)2与y=ax2的图象的关系.1.教材P第1、2题.122.完成同步练习册中本课时的练习.通过本节学习使学生认识到y=a(x-h)2的图象是由y=ax2的图象左右平移得到的,初步认识到a,h对y=a(x-h)2位置的影响,a的符号决定抛物线方向,|a|决定抛物线开口的大小,h决定向左右平移;从中领会数形结合的数学思想.第4课时二次函数y=a(x-h)2+k的图象与性质【知识与技能】1.会用描点法画二次函数y=a(x-h)2+k的图象.掌握y=a(x-h)2+k的图象和性质.2.掌握y=a(x-h)2+k与y=ax2的图象的位置关系.3.理解y=a(x-h)2+k,y=a(x-h)2,y=ax2+k及y=ax2的图象之间的平移转化.【过程与方法】经历探索二次函数y=a(x-h)2+k的图象的作法和性质的过程,进一步领会数形结合的思想,培养观察、分析、总结的能力.【情感态度】1.在小组活动中进一步体会合作与交流的重要性.2.体验数学活动中充满着探索性,感受通过认识观察,归纳,类比可以获得数学猜想的乐趣.【教学重点】二次函数y=a(x-h)2+k的图象与性质.【教学难点】由二次函数y=a(x-h)2+k的图象的轴对称性列表、描点、连线.一、情境导入,初步认识复习回顾:同学们回顾一下:①y=ax2,y=a(x-h)2,(a≠0)的图象的开口方向、对称轴、顶点坐标,y随x的增减性分别是什么?②如何由y=ax2(a≠0)的图象平移得到y=a(x-h)2的图象?③猜想二次函数y=a(x-h)2+k的图象开口方向、对称轴、顶点坐标及y随x的增减性如何?二、思考探究,获取新知探究1 y=a(x-h)2+k的图象和性质1.由老师提示列表,根据抛物线的轴对称性观察图象回答下列问题:(x+1)2-1图象的开口方向、对称轴、顶点坐标及y随x的增减性如何?①y=-12x2向左平移1个单位,再向下平移1个单位得抛物线②将抛物线y=-12y=-1(x+1)2-1.22.同学们讨论回答:①一般地,当h>0,k>0时,把抛物线y=ax2向右平移h个单位,再向上平移k个单位得抛物线y=a(x-h)2+k;平移的方向和距离由h,k的值来决定.②抛物线y=a(x-h)2+k的开口方向、对称轴、顶点坐标及y随x的增减性如何?探究2二次函数y=a(x-h)2+k的应用【教学说明】二次函数y=a(x-h)2+k的图象是,对称轴是,顶点坐标是,当a>0时,开口向,当a<0时,开口向.答案:抛物线,直线x=h,(h,k),上,下三、典例精析,掌握新知例1 已知抛物线y=a(x-h)2+k,将它沿x轴向右平移3个单位后,又沿y轴向下平移2个单位,得到抛物线的解析式为y=-3(x+1)2-4,求原抛物线的解析式.【分析】平移过程中,前后抛物线的形状,大小不变,所以a=-3,平移时应抓住顶点的变化,根据平移规律可求出原抛物线顶点,从而得到原抛物线的解析式.解:抛物线y=-3(x+1)2-4的顶点坐标为(-1,-4),它是由原抛物线向右平移3个单位,向下平移2个单位而得到的,所以把现在的顶点向相反方向移动就得到原抛物线顶点坐标为(-4,-2).故原抛物线的解析式为y=-3(x+4)2-2.【教学说明】抛物线平移不改变形状及大小,所以a值不变,平移时抓住关键点:顶点的变化.例2 如图是某次运动会开幕式点燃火炬时的示意图,发射台OA的高度为2m,火炬的高度为12m,距发射台OA的水平距离为20m,在A处的发射装置向目标C发射一个火球点燃火炬,该火球运行的轨迹为抛物线形,当火球运动到距地面最大高度20m时,相应的水平距离为12m.请你判断该火球能否点燃目标C?并说明理由.【分析】建立适当直角坐标系,构建二次函数解析式,然后分析判断.解:该火球能点燃目标.如图,以OB所在直线为x轴,OA所在直线为y轴建立直角坐标系,则点(12,20)为抛物线顶点,设解析式为y=a(x-12)2+20,∵点(0,2)在图象上,∴144a+20=2,∴a=-18 ,∴y=-18(x-12)2+20.当x=20时,y=-18×(20-12)2+20=12,即抛物线过点(20,12),∴该火球能点燃目标.【教学说明】二次函数y=a(x-h)2+k的应用关键是构造出二次函数模型.四、运用新知,深化理解1.若抛物线y=-7(x+4)2-1平移得到y=-7x2,则必须()A.先向左平移4个单位,再向下平移1个单位B.先向右平移4个单位,再向上平移1个单位C.先向左平移1个单位,再向下平移4个单位D.先向右平移1个单位,再向上平移4个单位2.抛物线y=x2-4与x轴交于B,C两点,顶点为A,则△ABC的周长为()A.43.函数y=ax2-a与y=ax-a(a≠0)在同一坐标系中的图象可能是()4.二次函数y=-2x2+6的图象的对称轴是,顶点坐标是,当x 时,y随x的增大而增大.5.已知函数y=ax2+c的图象与函数y=-3x2-2的图象关于x轴对称,则a= ,c= .6.把抛物线y=(x-1)2沿y轴向上或向下平移,所得抛物线经过Q(3,0),求平移后抛物线的解析式.【教学说明】学生自主完成,加深对新知的理解,教师引导解疑.【答案】1.B 2.B 3.C 4.y轴,(0,6),<0 5.3,2 6.y=(x-1)2-4五、师生互动,课堂小结1.这节课你学到了什么,还有哪些疑惑?2.在学生回答的基础上,教师点评:①二次函数y=a(x-h)2+k的图象与性质;②如何由抛物线y=ax2平移得到抛物线y=a(x-h)2+k.【教学说明】教师应引导学生自主小结,加深理解掌握y=ax2与y=a(x-h)2+k二者图象的位置关系.1.教材P第1~3题.152.完成同步练习册中本课时的练习.掌握函数y=ax2,y=a(x-h)2,y=a(x-h)2+k图象的变化关系,从而体会由简单到复杂的认识规律.第5课时二次函数y=ax2+bx+c的图象与性质【知识与技能】1.会用描点法画二次函数y=ax2+bx+c的图象.2.会用配方法求抛物线y=ax2+bx+c的顶点坐标、开口方向、对称轴、y随x的增减性.3.能通过配方求出二次函数y=ax2+bx+c(a≠0)的最大或最小值;能利用二次函数的性质求实际问题中的最大值或最小值.【过程与方法】1.经历探索二次函数y=ax2+bx+c(a≠0)的图象的作法和性质的过程,体会建立二次函数y=ax2+bx+c(a≠0)对称轴和顶点坐标公式的必要性.2.在学习y=ax2+bx+c(a≠0)的性质的过程中,渗透转化(化归)的思想.【情感态度】进一步体会由特殊到一般的化归思想,形成积极参与数学活动的意识.【教学重点】①用配方法求y=ax2+bx+c的顶点坐标;②会用描点法画y=ax2+bx+c的图象并能说出图象的性质.【教学难点】能利用二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标公式,解决一些问题,能通过对称性画出二次函数y=ax2+bx+c(a≠0)的图象.一、情境导入,初步认识请同学们完成下列问题.1.把二次函数y=-2x2+6x-1化成y=a(x-h)2+k的形式.2.写出二次函数y=-2x2+6x-1的开口方向,对称轴及顶点坐标.3.画y=-2x2+6x-1的图象.4.抛物线y=-2x2如何平移得到y=-2x2+6x-1的图象.5.二次函数y=-2x 2+6x-1的y 随x 的增减性如何?【教学说明】上述问题教师应放手引导学生逐一完成,从而领会y=ax 2+bx+c 与y=a(x-h)2+k 的转化过程.二、思考探究,获取新知探究1 如何画y=ax 2+bx+c 图象,你可以归纳为哪几步?学生回答、教师点评:一般分为三步:1.先用配方法求出y=ax 2+bx+c 的对称轴和顶点坐标.2.列表,描点,连线画出对称轴右边的部分图象.3.利用对称点,画出对称轴左边的部分图象.探究2 二次函数y=ax 2+bx+c 图象的性质有哪些?你能试着归纳吗?学生回答,教师点评:抛物线y=ax 2+bx+c=224()24b ac b a x a a -++ ,对称轴为x=-2b a ,顶点坐标为(-2b a ,244ac b a -),当a >0时,若x >-2b a ,y 随x 增大而增大,若x <-2b a ,y 随x 的增大而减小;当a <0时,若x >-2b a ,y 随x 的增大而减小,若x<-2b a,y 随x 的增大而增大. 探究3 二次函数y=ax 2+bx+c 在什么情况下有最大值,什么情况下有最小值,如何确定?学生回答,教师点评:三、典例精析,掌握新知例1 将下列二次函数写成顶点式y=a(x-h)2+k 的形式,并写出其开口方向,顶点坐标,对称轴.①y=14x 2-3x+21 ②y=-3x 2-18x-22解:①y=14x 2-3x+21 = 14(x 2-12x)+21 =14(x 2-12x+36-36)+21=1(x-6)2+12.4∴此抛物线的开口向上,顶点坐标为(6,12),对称轴是x=6.②y=-3x2-18x-22=-3(x2+6x)-22=-3(x2+6x+9-9)-22=-3(x+3)2+5.∴此抛物线的开口向下,顶点坐标为(-3,5),对称轴是x=-3.【教学说明】第②小题注意h值的符号,配方法是数学的一个重要方法,需多加练习,熟练掌握;抛物线的顶点坐标也可以根据公式直接求解.例2 用总长为60m的篱笆围成的矩形场地,矩形面积S随矩形一边长l的变化而变化,l是多少时,场地的面积S最大?①S与l有何函数关系?②举一例说明S随l的变化而变化?③怎样求S的最大值呢?解:S=l (30-l)=- l2+30l (0<l<30)=-( l2-30l)=-( l-15)2+225画出此函数的图象,如图.∴l=15时,场地的面积S最大(S的最大值为225)【教学说明】二次函数在几何方面的应用特别广泛,要注意自变量的取值范围的确定,同时所画的函数图象只能是抛物线的一部分.四、运用新知,深化理解1.(北京中考)抛物线y=x2-6x+5的顶点坐标为()A.(3,-4)B.(3,4)C.(-3,-4)D.(-3,4)2.(贵州贵阳中考)已知二次函数y=ax2+bx+c(a<0)的图象如图所示,当-5≤x≤0时,下列说法正确的是()A.有最小值5、最大值0B.有最小值-3、最大值6C.有最小值0、最大值6D.有最小值2、最大值63.如图,二次函数y=ax2+bx+c的图象开口向上,图象经过点(-1,2)和(1,0),且与y轴相交于负半轴.(1)给出四个结论:①a>0;②b>0;③c>0;④a+b+c=0.其中正确结论的序号是 .(2)给出四个结论:①abc<0;②2a+b>0;③a+c=1;④a>1.其中正确结论的序号是 .【教学说明】通过练习,巩固掌握y=ax2+bx+c的图象和性质.【答案】1.A 2.B 3.(1)①④ (2)②③④五、师生互动,课堂小结1.这节课你学到了什么?还有哪些疑惑?2.在学生回答的基础上,教师点评:(1)用配方法求二次y=ax2+bx+c的顶点坐标、对称轴;(2)由y=ax2+bx+c的图象判断与a,b,c有关代数式的值的正负;(3)实际问题中自变量取值范围及函数最值.第1~3题.1.教材P152.完成同步练习册中本课时的练习.y=ax2+bx+c的图象和性质可以看作是y=ax2,y=a(x-h)2+k,y=a(x-h)2+k的图象和性质的归纳与综合,让学生初步体会由简单到复杂,由特殊到一般的认识规律.*1.3 不共线三点确定二次函数的表达式【知识与技能】1.掌握用待定系数法列方程组求二次函数解析式.2.由已知条件的特点,灵活选择二次函数的三种形式,合适地设置函数解析式,可使计算过程简便.【过程与方法】通过例题讲解使学生初步掌握,用待定系数法求二次函数的解析式.【情感态度】通过本节教学,激发学生探究问题,解决问题的能力.【教学重点】用待定系数法求二次函数的解析式.。

新湘教版九年级下册数学全册教案课程

新湘教版九年级下册数学全册教案课程

第1章 二次函数 1.1 二次函数【知识与技能】1.理解具体情景中二次函数的意义,理解二次函数的概念,掌握二次函数的一般形式.2.能够表示简单变量之间的二次函数关系式,并能根据实际问题确定自变量的取值范围. 【过程与方法】经历探索,分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系.【情感态度】体会数学与实际生活的密切联系,学会与他人合作交流,培养合作意识. 【教学重点】二次函数的概念. 【教学难点】在实际问题中,会写简单变量之间的二次函数关系式教学过程. 一、情境导入,初步认识1.教材P2“动脑筋”中的两个问题:矩形植物园的面积S(m 2)与相邻于围墙面的每一面墙的长度x(m)的关系式是S=-2x 2+100x,(0<x<50);电脑价格y (元)与平均降价率x 的关系式是y=6000x 2-12000x+6000,(0<x<1).它们有什么共同点?一般形式是y=ax 2+bx+c(a,b,c 为常数,a ≠0)这样的函数可以叫做什么函数?二次函数.2.对于实际问题中的二次函数,自变量的取值范围是否会有一些限制呢?有. 二、思考探究,获取新知 二次函数的概念及一般形式在上述学生回答后,教师给出二次函数的定义:一般地,形如y=ax 2+bx+c(a,b,c 是常数,a ≠0)的函数,叫做二次函数,其中x 是自变量,a,b,c 分别是函数解析式的二次项系数、一次项系数和常数项.注意:①二次函数中二次项系数不能为0.②在指出二次函数中各项系数时,要连同符号一起指出. 三、典例精析,掌握新知例1 指出下列函数中哪些是二次函数.(1)y=(x-3)2-x 2;(2)y=2x(x-1);(3)y=32x-1;(4)y=22x;(5)y=5-x 2+x. 【分析】先化为一般形式,右边为整式,依照定义分析. 解:(2)(5)是二次函数,其余不是.【教学说明】判定一个函数是否为二次函数的思路: 1.将函数化为一般形式. 2.自变量的最高次数是2次.3.若二次项系数中有字母,二次项系数不能为0. 例2 讲解教材P3例题.【教学说明】由实际问题确定二次函数关系式时,要注意自变量的取值范围. 例3 已知函数y=(m 2-m)x 2+mx+(m+1)(m 是常数),当m 为何值时: (1)函数是一次函数; (2)函数是二次函数.【分析】判断函数类型,关键取决于其二次项系数和一次项系数能否为零,列出相应方程或不等式.解:(1)由200m m m ⎧-=⎨≠⎩ 得010m m ⎩=≠⎧⎨或 ,∴m=1.即当m=1时,函数y=(m 2-m)x 2+mx+(m+1)是一次函数. (2)由m 2-m ≠0得m ≠0且m ≠1,∴当m ≠0且m ≠1时,函数y=(m 2-m)x 2+mx+(m+1)是二次函数.【教学说明】学生自主完成,加深对二次函数概念的理解,并让学生会列二次函数的一些实际应用中的二次函数解析式.四、运用新知,深化理解1.下列函数中是二次函数的是( ) A. 2123y x x =+- B.y=3x 3+2x 2 C.y=(x-2)2-x 3D.212y x =- 2.二次函数y=2x(x-1)的一次项系数是( ) A.1 B.-1 C.2 D.-2 3.若函数232(3)1k k y k xkx -+=-++ 是二次函数,则k 的值为( )A.0B.0或3C.3D.不确定4.若y=(a+2)x 2-3x+2是二次函数,则a 的取值范围是 .5.已知二次函数y=1-3x+5x 2,则二次项系数a= ,一次项系数b= ,常数项c= .6.某校九(1)班共有x 名学生,在毕业典礼上每两名同学都握一次手,共握手y 次,试写出y 与x 之间的函数关系式 ,它 (填“是”或“不是”)二次函数.7.如图,在边长为5的正方形中,挖去一个半径为x 的圆(圆心与正方形的中心重合),剩余部分的面积为y. (1)求y 关于x 的函数关系式; (2)试求自变量x 的取值范围;(3)求当圆的半径为2时,剩余部分的面积(π取3.14,结果精确到十分位). 【答案】1.D 2.D 3.A 4.a ≠-2 5.5,-3,1 6.21122y x x =- 是 7.(1)y=25-πx 2=-πx 2+25. (2)0<x ≤52.(3)当x=2时,y=-4π+25≈-4×3.14+25=12.44≈12.4. 即剩余部分的面积约为12.4.【教学说明】学生自主完成,加深对新知的理解,待学生完成上述作业后,教师指导. 五、师生互动,课堂小结1.师生共同回顾二次函数的有关概念.2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?与同伴交流.【教学说明】教师引导学生回顾知识点,让学生大胆发言,进行知识提炼和知识归纳. 1.教材P 4第1~3题.2.完成同步练习册中本课时的练习.本节课是从生活实际中引出二次函数模型,从而得出二次函数的定义及一般形式,会写简单变量之间的二次函数关系式,并能根据实际问题确定自变量的取值范围,使学生认识到数学来源于生活,又应用于生活实际之中.1.2 二次函数的图象与性质第1课时 二次函数y=ax 2(a >0)的图象与性质【知识与技能】1.会用描点法画函数y=ax2(a >0)的图象,并根据图象认识、理解和掌握其性质.2.体会数形结合的转化,能用y=ax2(a >0)的图象和性质解决简单的实际问题. 【过程与方法】经历探索二次函数y=ax 2(a >0)图象的作法和性质的过程,获得利用图象研究函数的经验,培养观察、思考、归纳的良好思维习惯. 【情感态度】通过动手画图,同学之间交流讨论,达到对二次函数y=ax 2(a >0)图象和性质的真正理解,从而产生对数学的兴趣,调动学生的积极性. 【教学重点】1.会画y=ax 2(a >0)的图象. 2.理解,掌握图象的性质.【教学难点】二次函数图象及性质探究过程和方法的体会教学过程.一、情境导入,初步认识问题1 请同学们回忆一下一次函数的图象、反比例函数的图象的特征是什么?二次函数图象是什么形状呢? 问题2 如何用描点法画一个函数图象呢? 【教学说明】 ①略;②列表、描点、连线. 二、思考探究,获取新知探究1 画二次函数y=ax 2(a >0)的图象. 画二次函数y=ax 2的图象.【教学说明】①要求同学们人人动手,按“列表、描点、连线”的步骤画图y=x 2的图象,同学们画好后相互交流、展示,表扬画得比较规范的同学.②从列表和描点中,体会图象关于y 轴对称的特征. ③强调画抛物线的三个误区.误区一:用直线连结,而非光滑的曲线连结,不符合函数的变化规律和发展趋势. 如图(1)就是y=x 2的图象的错误画法.误区二:并非对称点,存在漏点现象,导致抛物线变形. 如图(2)就是漏掉点(0,0)的y=x 2的图象的错误画法.误区三:忽视自变量的取值范围,抛物线要求用平滑曲线连点的同时,还需要向两旁无限延伸,而并非到某些点停止.如图(3),就是到点(-2,4),(2,4)停住的y=x 2图象的错误画法. 探究2 y=ax 2(a >0)图象的性质在同一坐标系中,画出y=x 2, 212y x =,y=2x 2的图象. 【教学说明】要求同学们独立完成图象,教师帮助引导,强调画图时注意每一个函数图象的对称性.动脑筋观察上述图象的特征(共同点),从而归纳二次函数y=ax2(a >0)的图象和性质.【教学说明】教师引导学生观察图象,从开口方向,对称轴,顶点,y 随x 的增大时的变化情况等几个方面让学生归纳,教师整理讲评、强调.y=ax 2(a >0)图象的性质 1.图象开口向上.2.对称轴是y 轴,顶点是坐标原点,函数有最低点.3.当x >0时,y 随x 的增大而增大,简称右升;当x <0时,y 随x 的增大而减小,简称左降. 三、典例精析,掌握新知 例 已知函数24(2)k k y k x+-=+是关于x 的二次函数.(1)求k 的值.(2)k 为何值时,抛物线有最低点,最低点是什么?在此前提下,当x 在哪个范围内取值时,y 随x 的增大而增大? 【分析】此题是考查二次函数y=ax 2的定义、图象与性质的,由二次函数定义列出关于k 的方程,进而求出k 的值,然后根据k+2>0,求出k 的取值范围,最后由y 随x 的增大而增大,求出x 的取值范围.解:(1)由已知得22042k k k +≠+-=⎧⎨⎩ ,解得k=2或k=-3. 所以当k=2或k=-3时,函数24(2)kk y k x +-=+是关于x 的二次函数.(2)若抛物线有最低点,则抛物线开口向上,所以k+2>0.由(1)知k=2,最低点是(0,0),当x ≥0时,y 随x 的增大而增大. 四、运用新知,深化理解1.(广东广州中考)下列函数中,当x >0时,y 值随x 值增大而减小的是( ) A.y=x 2B.y=x-1C. 34y x =D.y=1x2.已知点(-1,y 1),(2,y 2),(-3,y 3)都在函数y=x 2的图象上,则( ) A.y 1<y 2<y 3 B.y 1<y 3<y 2 C.y 3<y 2<y 1 D.y 2<y 1<y 3 3.抛物线y=13x 2的开口向 ,顶点坐标为 ,对称轴为 ,当x=-2时,y= ;当y=3时,x= ,当x ≤0时,y 随x 的增大而 ;当x >0时,y 随x 的增大而 .4.如图,抛物线y=ax 2上的点B ,C 与x 轴上的点A (-5,0),D (3,0)构成平行四边形ABCD ,BC 与y 轴交于点E (0,6),求常数a 的值.【教学说明】学生自主完成,加深对新知识的理解和掌握,当学生疑惑时,教师及时指导. 【答案】1.D 2.A 3.上,(0,0),y 轴,43,±3,减小,增大 4.解:依题意得:BC=AD=8,BC ∥x 轴,且抛物线y=ax 2上的点B ,C 关于y 轴对称,又∵BC 与y 轴交于点E (0,6),∴B 点为(-4,6),C 点为(4,6),将(4,6)代入y=ax 2得:a=38. 五、师生互动,课堂小结1.师生共同回顾二次函数y=ax 2(a >0)图象的画法及其性质.2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?请与同伴交流. 1.教材P 7第1、2题.2.完成同步练习册中本课时的练习.本节课是从学生画y=x 2的图象,从而掌握二次函数y=ax 2(a >0)图象的画法,再由图象观察、探究二次函数y=ax 2(a >0)的性质,培养学生动手、动脑、探究归纳问题的能力.第2课时二次函数y=ax2(a<0)的图象与性质【知识与技能】1.会用描点法画函数y=ax2(a<0)的图象,并根据图象认识、理解和掌握其性质.2.体会数形结合的转化,能用y=ax2(a<0)的图象与性质解决简单的实际问题.【过程与方法】经历探索二次函数y=ax2(a<0)图象的作法和性质的过程,获得利用图象研究函数的经验,培养观察、思考、归纳的良好思维习惯.【情感态度】通过动手画图,同学之间交流讨论,达到对二次函数y=ax2(a≠0)图象和性质的真正理解,从而产生对数学的兴趣,调动学习的积极性.【教学重点】①会画y=ax2(a<0)的图象;②理解、掌握图象的性质.【教学难点】二次函数图象的性质及其探究过程和方法的体会.一、情境导入,初步认识1.在坐标系中画出y=12x2的图象,结合y=12x2的图象,谈谈二次函数y=ax2(a>0)的图象具有哪些性质?2.你能画出y=-12x2的图象吗?二、思考探究,获取新知探究1画y=ax2(a<0)的图象请同学们在上述坐标系中用“列表、描点、连线”的方法画出y=-12x2的图象.【教学说明】教师要求学生独立完成,强调画图过程中应注意的问题,同学们完成后相互交流,表扬图象画得“美观”的同学.问:从所画出的图象进行观察,y=12x2与y=-12x2有何关系?归纳:y=12x2与y=-12x2二者图象形状完全相同,只是开口方向不同,两图象关于y轴对称.(教师引导学生从理论上进行证明这一结论)探究2二次函数y=ax2(a<0)性质问:你能结合y=-12x2的图象,归纳出y=ax2(a<0)图象的性质吗?【教学说明】教师提示应从开口方向,对称轴,顶点位置,y随x的增大时的变化情况几个方面归纳,教师整理,强调y=ax2(a<0)图象的性质.1.开口向下.2.对称轴是y轴,顶点是坐标原点,函数有最高点.3.当x >0时,y 随x 的增大而减小,简称右降,当x <0时,y 随x 的增大而增大,简称左升. 探究3 二次函数y=ax 2(a ≠0)的图象及性质 学生回答:【教学点评】一般地,抛物线y=ax 2的对称轴是 ,顶点是 ,当a >0时抛物线的开口向 ,顶点是抛物线的最 点,a 越大,抛物线开口越 ;当a <0时,抛物线的开口向 ,顶点是抛物线的最 点,a 越大,抛物线开口越 ,总之,|a|越大,抛物线开口越 .答案:y 轴,(0,0),上,低,小,下,高,大,小 三、典例精析,掌握新知例1 填空:①函数2的图象是 ,顶点坐标是,对称轴是 ,开口方向是 .②函数y=x 2,y=12x 2和y=-2x 2的图象如图所示, 请指出三条抛物线的解析式.解:①抛物线,(0,0),y 轴,向上;②根据抛物线y=ax 2中,a 的值的作用来判断,上面最外面的抛物线为y=2x 2,中间为y=x 2,在x 轴下方的为y=-2x 2.【教学说明】解析式需化为一般式,再根据图象特征解答,避免发生错误.抛物线y=ax 2中,当a >0时,开口向上;当a <0时,开口向下,|a|越大,开口越小.例2 已知抛物线y=ax 2经过点(1,-1),求y=-4时x 的值.【分析】把点(1,-1)的坐标代入y=ax 2,求得a 的值,得到二次函数的表达式,再把y=-4代入已求得的表达式中,即可求得x 的值.解:∵点(1,-1)在抛物线y=ax 2上,-1=a ·12,∴a=-1,∴抛物线为y=-x 2.当y=-4时,有-4=-x 2,∴x=±2. 【教学说明】在求y=ax 2的解析式时,往往只须一个条件代入即可求出a 值. 四、运用新知,深化理解1.下列关于抛物线y=x 2和y=-x 2的说法,错误的是( ) A.抛物线y=x 2和y=-x 2有共同的顶点和对称轴 B.抛物线y=x 2和y=-x 2关于x 轴对称 C.抛物线y=x 2和y=-x 2的开口方向相反D.点(-2,4)在抛物线y=x 2上,也在抛物线y=-x 2上2.二次函数y=ax 2与一次函数y=-ax(a ≠0)在同一坐标系中的图象大致是( ) 3.二次函数226(1)m m y m x +-=-,当x <0时,y 随x 的增大而减小,则m= .4.已知点A(-1,y1),B(1,y2),C(a,y3)都在函数y=x2的图象上,且a>1,则y1,y2,y3中最大的是 .5.已知函数y=ax2经过点(1,2).①求a的值;②当x<0时,y的值随x值的增大而变化的情况.【教学说明】学生自主完成,加深对新知的理解和掌握,当学生疑惑时,教师及时指导.【答案】1.D 2.B 3.2 4.y35.①a=2 ②当x<0时,y随x的增大而减小五、师生互动,课堂小结这节课你学到了什么,还有哪些疑惑?在学生回答的基础上,教师点评:(1)y=ax2(a<0)图象的性质;(2)y=ax2(a ≠0)关系式的确定方法.1.教材P10第1~2题.2.完成同步练习册中本课时的练习.本节课仍然是从学生画图象,结合上节课y=ax2(a>0)的图象和性质,从而得出y=ax2(a<0)的图象和性质,进而得出y=ax2(a≠0)的图象和性质,培养学生动手、动脑、合作探究的学习习惯.第3课时二次函数y=a(x-h)2的图象与性质【知识与技能】1.能够画出y=a(x-h)2的图象,并能够理解它与y=ax2的图象的关系,理解a,h对二次函数图象的影响.2.能正确说出y=a(x-h)2的图象的开口方向、对称轴和顶点坐标.【过程与方法】经历探索二次函数y=a(x-h)2的图象的作法和性质的过程,进一步领会数形结合的思想.【情感态度】1.在小组活动中体会合作与交流的重要性.2.进一步丰富数学学习的成功体验,认识到数学是解决实际问题的重要工具,初步形成积极参与数学活动的意识. 【教学重点】掌握y=a(x-h)2的图象及性质.【教学难点】理解y=a(x-h)2与y=ax2图象之间的位置关系,理解a,h对二次函数图象的影响.一、情境导入,初步认识1.在同一坐标系中画出y=12x2与y=12(x-1)2的图象,完成下表.2.二次函数y=12(x-1)2的图象与y=12x2的图象有什么关系?3.对于二次函数12(x-1)2,当x取何值时,y的值随x值的增大而增大?当x取何值时,y的值随x值的增大而减小?二、思考探究,获取新知归纳二次函数y=a(x-h)2的图象与性质并完成下表.三、典例精析,掌握新知例1 教材P12例3.【教学说明】二次函数y=ax2与y=a(x-h)2是有关系的,即左、右平移时“左加右减”. 例如y=ax2向左平移1个单位得到y=a(x+1)2,y=ax2向右平移2个单位得到y=a(x-2)2的图象.例2 已知直线y=x+1与x轴交于点A,抛物线y=-2x2平移后的顶点与点A重合.①水平移后的抛物线l的解析式;②若点B(x1,y1),C(x2,y2)在抛物线l上,且-12<x1<x2,试比较y1,y2的大小.解:①∵y=x+1,∴令y=0,则x=-1,∴A(-1,0),即抛物线l的顶点坐标为(-1,0),又∵抛物线l是由抛物线y=-2x2平移得到的,∴抛物线l的解析式为y=-2(x+1)2.②由①可知,抛物线l的对称轴为x=-1,∵a=-2<0,∴当x>-1时,y随x的增大而减小,又-12<x1<x2,∴y1>y2.【教学说明】二次函数的增减性以对称轴为分界,画图象取点时以顶点为分界对称取点.四、运用新知,深化理解1.二次函数y=15(x-1)2的最小值是()A.-1B.1C.0D.没有最小值2.抛物线y=-3(x+1)2不经过的象限是()A.第一、二象限B.第二、四象限C.第三、四象限D.第二、三象限3.在反比例函数y=kx中,当x>0时,y随x的增大而增大,则二次函数y=k(x-1)2的图象大致是()4.(1)抛物线y=13x2向平移个单位得抛物线y=13(x+1)2;(2)抛物线向右平移2个单位得抛物线y=-2(x-2)2.5.(广东广州中考)已知抛物线y=a(x-h)2的对称轴为x=-2,且过点(1,-3).(1)求抛物线的解析式;(2)画出函数的大致图象;(3)从图象上观察,当x取何值时,y随x的增大而增大?当x取何值时,函数有最大值(或最小值)?【教学说明】学生自主完成,教师巡视解疑.【答案】1.C 2.A 3.B 4.(1)左,1 (2)y=-2x25.解:(1)y=-13(x+2)2 (2)略(3)当x<-2时,y随x增大而增大;当x=-2时,y有最大值0.五、师生互动,课堂小结1.这节课你学到了什么?还有哪些疑惑?2.在学生回答的基础上,教师点评:(1)y=a(x-h)2的图象与性质;(2)y=a(x-h)2与y=ax2的图象的关系.1.教材P12第1、2题.2.完成同步练习册中本课时的练习.通过本节学习使学生认识到y=a(x-h)2的图象是由y=ax2的图象左右平移得到的,初步认识到a,h对y=a(x-h)2位置的影响,a的符号决定抛物线方向,|a|决定抛物线开口的大小,h决定向左右平移;从中领会数形结合的数学思想.第4课时二次函数y=a(x-h)2+k的图象与性质【知识与技能】1.会用描点法画二次函数y=a(x-h)2+k的图象.掌握y=a(x-h)2+k的图象和性质.2.掌握y=a(x-h)2+k与y=ax2的图象的位置关系.3.理解y=a(x-h)2+k,y=a(x-h)2,y=ax2+k及y=ax2的图象之间的平移转化.【过程与方法】经历探索二次函数y=a(x-h)2+k的图象的作法和性质的过程,进一步领会数形结合的思想,培养观察、分析、总结的能力.【情感态度】1.在小组活动中进一步体会合作与交流的重要性.2.体验数学活动中充满着探索性,感受通过认识观察,归纳,类比可以获得数学猜想的乐趣.【教学重点】二次函数y=a(x-h)2+k的图象与性质.【教学难点】由二次函数y=a(x-h)2+k的图象的轴对称性列表、描点、连线.一、情境导入,初步认识复习回顾:同学们回顾一下:①y=ax2,y=a(x-h)2,(a≠0)的图象的开口方向、对称轴、顶点坐标,y随x的增减性分别是什么?②如何由y=ax2(a≠0)的图象平移得到y=a(x-h)2的图象?③猜想二次函数y=a(x-h)2+k的图象开口方向、对称轴、顶点坐标及y随x的增减性如何?二、思考探究,获取新知探究1 y=a(x-h)2+k的图象和性质1.由老师提示列表,根据抛物线的轴对称性观察图象回答下列问题:①y=-12(x+1)2-1图象的开口方向、对称轴、顶点坐标及y随x的增减性如何?②将抛物线y=-12x2向左平移1个单位,再向下平移1个单位得抛物线y=-12(x+1)2-1.2.同学们讨论回答:①一般地,当h>0,k>0时,把抛物线y=ax2向右平移h个单位,再向上平移k个单位得抛物线y=a(x-h)2+k;平移的方向和距离由h,k的值来决定.②抛物线y=a(x-h)2+k的开口方向、对称轴、顶点坐标及y随x的增减性如何?探究2二次函数y=a(x-h)2+k的应用【教学说明】二次函数y=a(x-h)2+k的图象是,对称轴是,顶点坐标是,当a>0时,开口向,当a<0时,开口向.答案:抛物线,直线x=h,(h,k),上,下三、典例精析,掌握新知例1 已知抛物线y=a(x-h)2+k,将它沿x轴向右平移3个单位后,又沿y轴向下平移2个单位,得到抛物线的解析式为y=-3(x+1)2-4,求原抛物线的解析式.【分析】平移过程中,前后抛物线的形状,大小不变,所以a=-3,平移时应抓住顶点的变化,根据平移规律可求出原抛物线顶点,从而得到原抛物线的解析式.解:抛物线y=-3(x+1)2-4的顶点坐标为(-1,-4),它是由原抛物线向右平移3个单位,向下平移2个单位而得到的,所以把现在的顶点向相反方向移动就得到原抛物线顶点坐标为(-4,-2).故原抛物线的解析式为y=-3(x+4)2-2.【教学说明】抛物线平移不改变形状及大小,所以a值不变,平移时抓住关键点:顶点的变化.例2 如图是某次运动会开幕式点燃火炬时的示意图,发射台OA的高度为2m,火炬的高度为12m,距发射台OA的水平距离为20m,在A处的发射装置向目标C发射一个火球点燃火炬,该火球运行的轨迹为抛物线形,当火球运动到距地面最大高度20m时,相应的水平距离为12m.请你判断该火球能否点燃目标C?并说明理由.【分析】建立适当直角坐标系,构建二次函数解析式,然后分析判断.解:该火球能点燃目标.如图,以OB所在直线为x轴,OA所在直线为y轴建立直角坐标系,则点(12,20)为抛物线顶点,设解析式为y=a(x-12)2+20,∵点(0,2)在图象上,∴144a+20=2,∴a=-18,∴y=-18(x-12)2+20.当x=20时,y=-18×(20-12)2+20=12,即抛物线过点(20,12),∴该火球能点燃目标.【教学说明】二次函数y=a(x-h)2+k的应用关键是构造出二次函数模型.四、运用新知,深化理解1.若抛物线y=-7(x+4)2-1平移得到y=-7x2,则必须()A.先向左平移4个单位,再向下平移1个单位B.先向右平移4个单位,再向上平移1个单位C.先向左平移1个单位,再向下平移4个单位D.先向右平移1个单位,再向上平移4个单位2.抛物线y=x2-4与x轴交于B,C两点,顶点为A,则△ABC的周长为()3.函数y=ax2-a与y=ax-a(a≠0)在同一坐标系中的图象可能是()4.二次函数y=-2x2+6的图象的对称轴是,顶点坐标是,当x 时,y随x的增大而增大.5.已知函数y=ax2+c的图象与函数y=-3x2-2的图象关于x轴对称,则a= ,c= .6.把抛物线y=(x-1)2沿y轴向上或向下平移,所得抛物线经过Q(3,0),求平移后抛物线的解析式.【教学说明】学生自主完成,加深对新知的理解,教师引导解疑.【答案】1.B 2.B 3.C 4.y轴,(0,6),<0 5.3,2 6.y=(x-1)2-4五、师生互动,课堂小结1.这节课你学到了什么,还有哪些疑惑?2.在学生回答的基础上,教师点评:①二次函数y=a(x-h)2+k的图象与性质;②如何由抛物线y=ax2平移得到抛物线y=a(x-h)2+k.【教学说明】教师应引导学生自主小结,加深理解掌握y=ax2与y=a(x-h)2+k二者图象的位置关系.1.教材P15第1~3题.2.完成同步练习册中本课时的练习.掌握函数y=ax2,y=a(x-h)2,y=a(x-h)2+k图象的变化关系,从而体会由简单到复杂的认识规律.第5课时二次函数y=ax2+bx+c的图象与性质【知识与技能】1.会用描点法画二次函数y=ax2+bx+c的图象.2.会用配方法求抛物线y=ax2+bx+c的顶点坐标、开口方向、对称轴、y随x的增减性.3.能通过配方求出二次函数y=ax2+bx+c(a≠0)的最大或最小值;能利用二次函数的性质求实际问题中的最大值或最小值.【过程与方法】1.经历探索二次函数y=ax2+bx+c(a≠0)的图象的作法和性质的过程,体会建立二次函数y=ax2+bx+c(a≠0)对称轴和顶点坐标公式的必要性.2.在学习y=ax2+bx+c(a≠0)的性质的过程中,渗透转化(化归)的思想.【情感态度】进一步体会由特殊到一般的化归思想,形成积极参与数学活动的意识. 【教学重点】①用配方法求y=ax2+bx+c 的顶点坐标;②会用描点法画y=ax2+bx+c 的图象并能说出图象的性质. 【教学难点】能利用二次函数y=ax 2+bx+c(a ≠0)的对称轴和顶点坐标公式,解决一些问题,能通过对称性画出二次函数y=ax 2+bx+c(a ≠0)的图象.一、情境导入,初步认识 请同学们完成下列问题.1.把二次函数y=-2x 2+6x-1化成y=a(x-h)2+k 的形式.2.写出二次函数y=-2x 2+6x-1的开口方向,对称轴及顶点坐标.3.画y=-2x 2+6x-1的图象.4.抛物线y=-2x 2如何平移得到y=-2x 2+6x-1的图象. 5.二次函数y=-2x 2+6x-1的y 随x 的增减性如何?【教学说明】上述问题教师应放手引导学生逐一完成,从而领会y=ax 2+bx+c 与y=a(x-h)2+k 的转化过程. 二、思考探究,获取新知探究1 如何画y=ax 2+bx+c 图象,你可以归纳为哪几步? 学生回答、教师点评: 一般分为三步:1.先用配方法求出y=ax 2+bx+c 的对称轴和顶点坐标. 2.列表,描点,连线画出对称轴右边的部分图象. 3.利用对称点,画出对称轴左边的部分图象.探究2 二次函数y=ax 2+bx+c 图象的性质有哪些?你能试着归纳吗? 学生回答,教师点评:抛物线y=ax 2+bx+c=224()24b ac b a x a a -++ ,对称轴为x=-2b a ,顶点坐标为(-2b a,244ac b a -),当a >0时,若x >-2b a ,y 随x 增大而增大,若x <-2b a ,y 随x 的增大而减小;当a <0时,若x >-2ba ,y 随x 的增大而减小,若x<-2b a,y 随x 的增大而增大. 探究3 二次函数y=ax 2+bx+c 在什么情况下有最大值,什么情况下有最小值,如何确定? 学生回答,教师点评: 三、典例精析,掌握新知例1将下列二次函数写成顶点式y=a(x-h)2+k的形式,并写出其开口方向,顶点坐标,对称轴.①y=14x2-3x+21 ②y=-3x2-18x-22解:①y=14x2-3x+21=14(x2-12x)+21=14(x2-12x+36-36)+21=14(x-6)2+12.∴此抛物线的开口向上,顶点坐标为(6,12),对称轴是x=6.②y=-3x2-18x-22=-3(x2+6x)-22=-3(x2+6x+9-9)-22=-3(x+3)2+5.∴此抛物线的开口向下,顶点坐标为(-3,5),对称轴是x=-3.【教学说明】第②小题注意h值的符号,配方法是数学的一个重要方法,需多加练习,熟练掌握;抛物线的顶点坐标也可以根据公式直接求解.例2 用总长为60m的篱笆围成的矩形场地,矩形面积S随矩形一边长l的变化而变化,l是多少时,场地的面积S最大?①S与l有何函数关系?②举一例说明S随l的变化而变化?③怎样求S的最大值呢?解:S=l (30-l)=- l2+30l (0<l<30)=-( l2-30l)=-( l-15)2+225画出此函数的图象,如图.∴l=15时,场地的面积S最大(S的最大值为225)【教学说明】二次函数在几何方面的应用特别广泛,要注意自变量的取值范围的确定,同时所画的函数图象只能是抛物线的一部分.四、运用新知,深化理解1.(北京中考)抛物线y=x2-6x+5的顶点坐标为()A.(3,-4)B.(3,4)C.(-3,-4)D.(-3,4)2.(贵州贵阳中考)已知二次函数y=ax2+bx+c(a<0)的图象如图所示,当-5≤x≤0时,下列说法正确的是()A.有最小值5、最大值0B.有最小值-3、最大值6C.有最小值0、最大值6D.有最小值2、最大值63.如图,二次函数y=ax2+bx+c的图象开口向上,图象经过点(-1,2)和(1,0),且与y轴相交于负半轴.(1)给出四个结论:①a>0;②b>0;③c>0;④a+b+c=0.其中正确结论的序号是 .(2)给出四个结论:①abc<0;②2a+b>0;③a+c=1;④a>1.其中正确结论的序号是 .【教学说明】通过练习,巩固掌握y=ax2+bx+c的图象和性质.【答案】1.A 2.B 3.(1)①④ (2)②③④五、师生互动,课堂小结1.这节课你学到了什么?还有哪些疑惑?2.在学生回答的基础上,教师点评:(1)用配方法求二次y=ax2+bx+c的顶点坐标、对称轴;(2)由y=ax2+bx+c的图象判断与a,b,c有关代数式的值的正负;(3)实际问题中自变量取值范围及函数最值.1.教材P15第1~3题.2.完成同步练习册中本课时的练习.y=ax2+bx+c的图象和性质可以看作是y=ax2,y=a(x-h)2+k,y=a(x-h)2+k的图象和性质的归纳与综合,让学生初步体会由简单到复杂,由特殊到一般的认识规律.*1.3 不共线三点确定二次函数的表达式【知识与技能】1.掌握用待定系数法列方程组求二次函数解析式.2.由已知条件的特点,灵活选择二次函数的三种形式,合适地设置函数解析式,可使计算过程简便.【过程与方法】通过例题讲解使学生初步掌握,用待定系数法求二次函数的解析式.【情感态度】通过本节教学,激发学生探究问题,解决问题的能力.【教学重点】用待定系数法求二次函数的解析式.【教学难点】。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:用画树状图法求概率
【学习目标】
1.会用画树状图法列举试验的所有结果.
2.掌握用树状图求简单事件的概率.
【学习重点】
用树状图求概率.
【学习难点】
如何正确画出树状图.
情景导入 生成问题
旧知回顾:
1.用列表法求解:
(德州中考)经过某十字路口的汽车,可能直行,也可能左转或者右转,如果这三种可能性大小相同,则经过这个十字路口的两辆汽车一辆左转,一辆右转的概率是( C )
A .47
B .49
C .29
D .19
2.若同时投掷三枚硬币,统计三枚向上的所有情况,你会用什么方法列举?
答:画树状图法.
自学互研 生成能力
知识模块 用树状图法求概率
为什么用树状图法列举事件所有结果?
答:为了不重不漏地列出所有可能的结果,除了列表法,我们还可以借助树状图法,对于需要三步列举的事件通常采用树状图法.
【例1】 (东营中考)2015年“五一”期间,小明与小亮两家准备从东营港、黄河入海口、龙悦湖中选择一景点游玩,小明与小亮通过抽签方式确定景点,则两家抽到同一景点的概率是( A )
A .13
B .16
C .19
D .14
【变例1】 连续抛掷一枚均匀的硬币三次,每次都正面朝上的概率是( D )
A .13
B .23
C .29
D .18
【变例2】 用写有0、1、2的三张卡片排成三位数是偶数的概率为( A )
A .34
B .23
C .12
D .13
【变例3】 (襄阳中考)襄阳市辖区内旅游景点较多,李老师和刚初中毕业的儿子准备到古隆中、水镜庄、黄家湾三个景点去游玩,如果他们各自在这三个景点中任选一个作为游玩的第一站(每个景点被选为第一站的可能性
相同),那么他们都选择古隆中为第一站的概率是__19
__. 【例2】 A ,B ,C ,D 四人做相互传花球游戏,第一次A 传给其他三人中的任一人,第二次由拿到花球的人再传给其他三人中的任一人,第三次由拿到花球的人再传给其他三人中的任一人.请用树状图法求第三次花球传回A 的概率.
解:画树状图如下:
第一次
第二次第三次
共有27种等可能的情况,传回A 的情况数有6种,所以P(第三次花球传回A)=627=29
,故第三次花球传回A 的概率为29
. 【变例1】 (济宁中考)甲、乙、丙三人站成一排合影留念,则甲、乙二人相邻的概率是__23
__. 【变例2】 (绍兴中考)箱子中装有4个只有颜色不同的球,其中2个白球,2个红球.4个人依次从箱子中任
意摸出一个球,不放回,则第二个人摸出红球且第三个人摸出白球的概率是__13
__. 交流展示 生成新知
1.将阅读教材时“生成的问题”和通过“自学互研”得出的结论展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.
2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.
知识模块 用树状图法求概率
检测反馈 达成目标
见光盘
课后反思 查漏补缺
1.收获:________________________________________________________________________
2.存在困惑:________________________________________________________________________。

相关文档
最新文档