随机数生成原理 实现方法 不同编程语言的随机数函数
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1-0:Microsoft VC++产生随机数的原理:
Srand ( )和Rand( )函数。它本质上是利用线性同余法,y=ax+b(mod m)。其中a,b,m都是常数。因此rand的产生决定于x,x被称为Seed。Seed需要程序中设定,一般情况下取系统时间作为种子。它产生的随机数之间的相关性很小,取值范围是0—32767(int),即双字节(16位数),若用unsigned int 双字节是65535,四字节是4294967295,一般可以满足要求。
1-1:线性同余法:
其中M是模数,A是乘数,C是增量,为初始值,当C=0时,称此算法为乘同余法;若C ≠0,则称算法为混合同余法,当C取不为零的适当数值时,有一些优点,但优点并不突出,故常取C=0。模M大小是发生器周期长短的主要标志,常见有M为素数,取A为M的原根,则周期T=M-1。例如:
a=1220703125
a=32719 (程序中用此组数)
a=16807
代码:
void main( )
{
const int n=100;
double a=32719,m=1,f[n+1],g[n],seed;
m=pow(2,31);
cout<<"设置m值为"< cout<<"输入种子"< cin>>seed; f[0]=seed; for(int i=1;i<=n;i++) //线性同余法生成随机数 { f[i]=fmod((a*f[i-1]),(m-1)); g[i-1]=f[i]/(m-1); cout.setf(ios::fixed);cout.precision(6); //设置输出精度 cout< } } 结果分析:统计数据的平均值为:0.485653 统计数据的方差为:0.320576 1-2:人字映射 递推公式 就是有名的混沌映射中的“人字映射”或称“帐篷映射”,它的非周期轨道点的分布密度函数:人字映射与线性同余法结合,可产生统计性质优良的均匀随机数。 for(int i=1;i<=n;i++) //线性同余法生成随机数 { f[i]=fmod((a*f[i-1]),m); if(f[i]<=m/2) //与人字映射结合生成随机数 { f[i]=2*f[i]; } else { f[i]=2*(m-f[i])+1; } 1-3:平方取中法——冯•诺伊曼 1946年前后,由冯•诺伊曼提出,他的办法是去前面的随机数的平方,并抽取中部的数字。例如要生成10位数字,而且先前的值是5772156649,平方后得到33317792380594909201,所以下一个数是7923805949。 for(j=1;j<=n;j++) { i[j]=i[j-1]*i[j-1]; i[j]=i[j]/pow(10,5); i[j]=fmod(i[j],pow(10,10)); g[j]=i[j]/pow(10,10); cout.setf(ios::fixed);cout.precision(6); //设置输出精度 cout< } 二:任意分布随机数的生成 利用(0,1)均匀分布的随机数可以产生任意分布的随机数。主要的方法有反函数法,舍选法,离散逼近法,极限近似法和随机变量函数法等。这里主要讨论了反函数法,当然对于具体分布函数可以采用不同的方法。 设随机变量X具有分布函数F(X),则对一个给定的分布函数值,X的值为 其中inv表示反函数。现假设r是(0,1)均匀分布的随机变量R的一个值,已知R的分布函数为 因此,如果r是R的一个值,则X具有概率 也就是说如果(r1,r2,...,rn)是R的一组值,则相应可得到的一组值 具有分布。从而,如果我们已知分布函数的反函数,我们就可以从(0,1)分布的均匀分布随机数得到所需分布的随机数了。 1-4:指数分布: 指数分布的分布函数为: x<0时,F(x)=0 ;,F(x)=1-exp 利用上面所述反函数法,可以求得: x= ln(1-y),这里不妨取常数为1. for(int j=0;j { i=rand()%100;//产生从0-32767的任意一个值 a[j]=double(i)/double(100); a[j]=-log(a[j]);// 常数大于0,这里取1 、、、、、、、 1-5:正态分布: 正态分布的概率密度是: 正态分布的分布函数是: 对于正态分布,利用反函数的方法来获取正态分布序列显然是很麻烦的,牵涉到很复杂的积分微分运算,同时为了方便,我们取,即标准正态分布。因此这里介绍了两种算法: 第一种: Box和Muller在1958年给出了由均匀分布的随机变量生成正态分布的随机变量的算法。设U1, U2是区间(0, 1)上均匀分布的随机变量,且相互独立。令 X1=sqrt(-2*log(U1)) * cos(2*PI*U2); X2=sqrt(-2*log(U1)) * sin(2*PI*U2); 那么X1, X2服从N(0,1)分布,且相互独立。 p=rand()%100;//产生从0-32767的任意一个值 b[j]=double(p)/double(100); a[j]=sqrt(-2*log(a[j]))*cos(2*3.1415926*b[j]); 第二种: 近似生成标准正态分布,独立同分布的多个随机变量和的分布趋近于正态分布,取k个均匀分布的(0,1)随机变量,,……,则它们的和近似服从正态分布。 实践中,取k=12,(因为D( )=1/12),则新的随机变量y=x1+x2+...+x12-6,可以求出数学期望E(y)=0,方差D(y)=12*1/12=1,因此可以近似描述标准正态分布 这几天再看数据结构和算法,中间遇到了生成不重复的随机数的问题 我先想到的一个算法是这样的: Generator(vector { srand(time(NULL)); vector int size = num; for(int i = 1; i <= num; ++i) { v.push_back(i); } for(int i = 0; i < num; ++i) { vector int n = rand() % (size--); it += n; vec.push_back(*it); v.erase(it); } } 但是由于vector删除效率很低,所以这个算法在10W的时候已经不可接受了,需要17秒左右,后来在网上看到有朋友提出了另一种算法,感觉不错,于是又测试了一下