压电式加速度传感器及其应用备课讲稿
压电式加速度传感器的工作原理
压电式加速度传感器的工作原理
压电式加速度传感器是一种常用的传感器,用于测量物体的加速度。
它的工作原理基于压电效应,即某些晶体在受到压力时会产生电荷。
首先,压电式加速度传感器由一个压电晶体和电极组成。
当传感器受到加速度作用时,晶体会受到压力变形。
这种变形使得晶体内部的正负电荷分离,产生了一个电荷差。
电极会将这个电荷差收集起来,转化为电压信号。
接下来,电压信号会被放大和处理,然后传输到计算机或其他设备进行分析。
通过测量电压信号的大小,我们可以获得物体的加速度信息。
需要注意的是,压电式加速度传感器只能测量垂直于晶体压力方向的加速度。
如果需要测量多个方向的加速度,可以使用多个传感器,或者使用一些设计上更复杂的方式。
总结起来,压电式加速度传感器的工作原理是通过压电效应将加速度转化为电荷差,并将电荷差转化为电压信号,用于测量物体的加速度。
传感器课程设计--压电式加速度传感器的设计
课程设计说明书题目:压电式加速度传感器的设计学院(系):电气工程学院课程设计(论文)任务书院(系):电气工程学院基层教学单位:自动化仪表系说明:此表一式四份,学生、指导教师、基层教学单位、系部各一份。
目录示例目录第1章摘要 (1)第2章引言 (2)第3章电路仿真及准备作 (3)第4章压电式加速度传感器的参数设计及计算 (12)4.1 结构设计 (12)4.2 电容设计与计算 (12)4.3 其他参数的计算 (12)第5章误差分析 (13)第6章结论 (14)心得体会 (14)参考文献 (15)第一章摘要传感器是一门集合多种科学技术的科学,它利用各种原理如光电效应、压电效应,等等的原理,来根据被测物体的变化来反映待测量的变化的科学。
传感器是在现今科学领域中实现信息化的基础技术之一。
现代测量、控制与自动化技术的飞速发展,特别是电子信息科学的发展,极大地促进了现代传感器技术的发展。
传感器的使用也越来普遍,在当今社会里起到了很大的作用,与此同时传感器的技术要求也在不断提高,对传感器的设计,性能,功能提出了更高的要求,显而易见传感器在以后的社会发展中将会起到越来越重要的作用。
压电式传感器是基于压电效应的传感器。
压电效应是一种能实现机械能与电能相互转换的效应,当有力作用于压电元件上时,压电元件会产生电荷,传感器中利用电荷放大电路,将电荷的变化表现到电压的变化,从而来确定待测物体的运动状态。
经过一定转换电路来实现我们所需要的测量的输出。
压电式传感器的优点是频带宽、灵敏度高、信噪比高、结构简单、工作可靠和重量轻等。
缺点是某些压电材料需要防潮措施,而且输出的直流响应差,需要采用高输入阻抗电路或电荷放大器来克服这一缺陷。
第二章引言压电式传感器是基于压电效应的传感器,就要求必须将电荷的变化通过电路来表现出来,这就要求将电荷的变化转换成电路中电流的变化或者电压的变化,此时必须用到电荷放大电路来实现。
电荷放大电路是压电传感器的核心电路,它将电荷的变化转换电压的变化,从而实现了测量的意义,可以根据电压的变化来判断被测物体的变化或者运动状态。
压电式加速度传感器的工作原理
压电式加速度传感器的工作原理压电式加速度传感器是一种生物电及机械力学相结合的转换原理,它具有良好的分辨率,感应范围大,可测量低频到高频信号,耐用性高,噪声小,价格便宜等优点,是一种可以用来测量机械加速度的常用检测装置,广泛应用于工业类的检测以及科学研究等领域。
压电式加速度传感器的基本原理是由随着加速度的变化而变化的压电致电势提供动作力,从而产生与加速度成比例的压电致电势。
当加速度发生变化时,压电弹性介质和振子会发生位移,使压电弹簧内外的压电致电压有所变化,真正的压电致电势随加速度的大小变化而变化。
压电式加速度传感器的工作原理无非是电压变化与加速度变化的耦合,它是根据加速度变化而引起的振子两端点的位移在压电介质内发生应变时而产生的压电致电势的变化,来检测加速度变化的。
其实,压电式加速度传感器的工作原理与霍尔传感器的工作原理类似,也是将机械能转换成电能进行检测或控制。
压电式加速度传感器的工作原理主要包括:结构机构、振子位移压电致电势放大与模拟、脉冲滤波、模数转换等。
结构机构是压电式加速度传感器的基础,决定了检测精度和模块尺寸,一般由压电电感装置、振臂、支撑架构成,通过压电介质的有效屏蔽来实现负载的物理上的分割、连接及装置的耐压特性。
振子位移对压电电路的致电势有巨大的影响,因此在电路设计时,必须使得电路对周围环境变化有较高的敏感度,因此采用放大与模拟,以获得良好的灵敏度。
压电式加速度传感器的模拟输出通常是脉冲变化的,需要做滤波处理来使输出信号更加稳定,方便跟踪。
最后,将模拟信号做模数转换,使压电式加速度传感器的输出信号在计算机中能够进行处理。
有时,为了提高分辨率,也会使用DAC(数字可控二极管)放大电路来实现高精度的信号输出。
总之,压电式加速度传感器就是将加速度变化耦合到电压变化,从而实现对加速度变化的检测和测量。
特殊的结构机构、振子位移压电致电势放大、脉冲滤波以及模数转换等技术都是使它实现此目的的关键技能。
第6章压电式传感器原理及其应用
6.1 压电效应和压电材料 6.2 压电元件的常用结构 6.3 压电式传感器等效电路和测量电路 6.4 压电式传感器的应用
压电式传感器概述
压电式传感器的压电元件是利用压电材料制成的, 压电式传感器的压电元件是利用压电材料制成的, 它是一种电量型传感器。 它是一种电量型传感器。 工作原理:以某些电介质的压电效应为基础 以某些电介质的压电效应为基础, 工作原理 以某些电介质的压电效应为基础,在外力 作用下,电介质的表面就会产生电荷,有电压输出, 作用下,电介质的表面就会产生电荷,有电压输出, M 从而实现力—电信号转换 再通过检测电荷量( 电信号转换, 从而实现力 电信号转换,再通过检测电荷量(或 输出电压)的大小,即可测出作用力的大小。 输出电压)的大小,即可测出作用力的大小。 压电元件是一种典型的力敏感元件, 压电元件是一种典型的力敏感元件,可用来测量最 终可变换为力的各种物理量,如测量压力、应力、 终可变换为力的各种物理量,如测量压力、应力、 加速度等。由于压电元件具有体积小、重量轻、 加速度等。由于压电元Байду номын сангаас具有体积小、重量轻、结 构简单、可靠性高、频带宽、 构简单、可靠性高、频带宽、灵敏度和信噪比高等 优点,压电式传感器也随之得到了飞速发展。 优点,压电式传感器也随之得到了飞速发展。 在声学、力学、 在声学、力学、医学和航空航天等领域都得到了广 泛应用。其缺点是无静态输出, 泛应用。其缺点是无静态输出,要求有很高的输出 阻抗,需用低电容的低噪声电缆等。 阻抗,需用低电容的低噪声电缆等。
铜芯线充当内电极铜网屏蔽层作外电极管状pvdf高分子压电材料为绝缘层最外层是橡胶保护层为承压弹性元件当管状高分子压电材料受压时其内外表面产生电荷可达到测量的目的图620高分子压电电缆2高分子压电电缆的典型应用高分子压电电缆测速系统由两根高分子压电电缆相隔一段距离平行埋设于柏油公路的路面下50mm处如图621所示
传感器技术与应用第9章加速度传感器
F ma
图9-1 应变式加速度传感器结构示意图
9.1.2 应变式加速度传感器的测量原理
测量时,将传感器壳体与被测对象刚性连接,当被测物 体以加速度a运动时,质量块就受到一个与加速度方向相反 的惯性力作用,使悬臂梁变形。该变形被粘贴在悬臂梁上的 电阻应变片感受到,并随之产生应变,从而使应变片的阻值 发生变化。这个变化经过全桥差动测量电路转变成电桥不平 衡电压输出。并且这个不平衡电压Uo的大小与被测物体的运 动加速度a成正比。
ቤተ መጻሕፍቲ ባይዱ
图9-2 压电式加速度传感器结构示意图
9.2.2压电式加速度传感器的测量原理
测量时,把压电加速度传感器与被测物体刚性连接,当加 速度传感器和被测物体一起受到冲击振动时,由于弹簧的刚 度很大,而质量块的质量相对较小,可以认为质量块的惯性 很小。因此,质量块感受与传感器基座相同的振动。这样, 质量块m就有一惯性力F作用到压电元件上。由于压电效应, 便在压电元件上产生电荷q,其电荷量大小为
第9章 加速度传感器及其应用案例
9.1 应变式加速度传感器 9.2 压电式加速度传感器 9.3 电容式加速度传感器 9.4 差动变压器式加速度传感器 9.5 加速度测量显示系统案例
返回主目录
9.1 应变式加速度传感器
9.1.1 应变式加速度传感器的结构
压电式传感器及应用解读
23
压电元件的等效电路
压电元件等效为一个与电容相并联的电荷源,也 可以等效为一个与电容相串联的电压源,
47
休息一下!!
48
30
8.3压电式传感器的应用 8.3.1 压电传感器的基本结构
在压电式传感器中,为了提高灵敏度,往往采用多片压电 晶片粘结在一起。其中最常用的是两片结构。由于压电元 件上的电荷是有极性的,因此接法有串联和并联两种 串联接法输出电压高,本身电容小,适用于以电压为输出 量及测量电路输入阻抗很高的场合;并联接法输出电荷大, 本身电容大,因此时间常数也大,适用于测量缓变信号, 并以电荷量作为输出的场合。
24
压电元件实际的等效电 路图
压电式传感器不能用于静态测量。压电元件只有 在交变力的作用下,电荷才能源源不断地产生, 可以供给测量回路以一定的电流,故只适用于动 态测量。
25
8.2.2 压电式传感器测 量电路
压电式传感器的内阻很高,要求与高输入阻抗的 前置放大电路配合,与一般的放大、检波、显示、 记录电路连接,防止电荷的迅速泄漏而使测量误 差减少。 压电式传感器的前置放大器的作用有两个:一是 把传感器的高阻抗输出变为低阻抗输出;二是把 传感器的微弱信号进行放大。
45
本章小结 某些电介质,当沿着一定方向对它施加压力时, 内部就产生极化现象,同时在它的两个表面上产 生相反的电荷;当外力去掉后,电介质又重新恢 复为不带电状态;当作用力方向改变时,电荷的 极性也随着改变;晶体受力所产生的电荷量与外 力的大小成正比,这种现象被称为压电效应。相 反,当在电介质极化方向施加电场, 这些电介质 也会产生变形,这种现象称为“逆压电效应” (电致伸缩效应)。 在自然界中大多数晶体具有压电效应, 但压电效 应十分微弱。应用于压电式传感器中的压电元件 材料一般有三类:石英晶体、经过极化处理的压 电陶瓷、高分子压电材料。
压电式加速度传感器的工作原理
压电式加速度传感器的工作原理
压电式加速度传感器是一种利用压电效应测量加速度的传感器。
它由一个压电晶体和质量块组成。
工作原理如下:
1. 当加速度传感器受到加速度作用时,质量块会受到力的作用而发生位移。
2. 位移的变化引起压电晶体的压电效应,从而在晶体上产生电荷。
3. 电荷由传感器输出接口传送到外部电路进行信号处理。
4. 根据电荷的大小,可以计算得到加速度的数值。
压电式加速度传感器的工作原理主要基于压电效应,即一些材料在受到力或压力作用时会产生电荷。
这种工作原理具有快速响应、高精度和宽工作频率范围等优点,因此常被应用于振动测量、机械设备监测、运动控制等领域。
实验三十七 压电加速度式传感器
实验三十七压电加速度式传感器
一、实验目的
了解压电加速度计的结构、原理和应用。
二、实验原理
压电式传感器是一种典型的有源传感器(发电型传感器)。
压电传感元件是力敏感元件,在压力、应力、加速度等外力作用下,在电介质表面产生电荷,从而实现非电量的电测。
三、实验所需部件
压电式传感器、电荷放大器(电压放大器)、低频振荡器、激振器、电压/频率表、示波器。
图(20)
四、实验步骤
1.观察了解压电式加速度传感器的结构:由PZT 双压电陶瓷晶片、惯性质量块、压簧、引出电极组装于塑料外壳中。
2.按图(20)接线,低频振荡器输出接“激振II ”端,开启电源,调节振动频率与振幅,用示波器观察低通滤波器输出波形。
3.当悬臂梁处于谐振状态时振幅最大,此时示波器所观察到的波形V P -P 也最大,由此可以得出结论:压电加速度传感器是一种对外力作用变化敏感的传感器。
五、注意事项
做此实验时,悬臂梁振动频率不能过低(1~3H Z),否则电荷放大器将无输出。
压电式传感器原理及应用精品PPT课件
(2)电荷放大器
压电式传感器另一种专用的前置放大器。 能将高内阻的电荷源转换为低内阻的电压源, 而且输出电压正比于输入电荷,因此,电荷放 大器同样也起着阻抗变换的作用,其输入阻抗 高达1010~1012Ω,输出阻抗小于100Ω。 使用电荷放大器突出的一个优点:在一定条件 下,传感器的灵敏度与电缆长度无关。
返回
上一页
下一页
压电传感器与电荷放大器连接等效电路
K是放大器的开环增益,(-K)表示放大器的输出与输入反相, 若开环增益足够高,则放大器的输入端的电位接近“地”电位。
返回
上一页
下一页
充电电压接近等于放大器的输出电压
kQ
Q
Hale Waihona Puke U 0 U cfCa Cc Ci (1 k)C f
Cf
几点结论:
压电陶瓷片内束缚电荷与电极上吸附的自由电荷示意图
自由电荷与陶瓷片内的束缚电荷符合相反而数值相等, 它起着屏蔽和抵消陶瓷片内极化强度对外的作用, 因此陶瓷片对外不表现极性。
返回
上一页
下一页
压电陶瓷的正压电效应
压电陶瓷片上加上一个与极化反向平行的外力, 陶瓷片将产生压缩变形,原来吸附在极板上的 自由电荷,一部分被释放而出现放电现象。 当压力撤消后,陶瓷片恢复原状,片内的正、 负电荷之间的距离变大,极化强度也变大,因 此电极上又吸附部分自由电荷而出现充电现象。
返回
上一页
下一页
传感器的低频响应范围
如果被测物理量是缓慢变化的动态量,而测量回路的时间 常数又不大,则造成传感器灵敏度下降。因此为了扩大传 感器的低频响应范围,就必须尽量提高回路的时间常数。
但这不能靠增加测量回路的电容量来提高时间常数,因为 传感器的电压灵敏度与电容成反比的,切实可行的办法是 提高测量回路的电阻。由于传感器本身的绝缘电阻一般都 很大,所以测量回路的电阻主要取决于前置放大器的输入 电阻。放大器的输入电阻越大,测量回路的时间常数就越 大,传感器的低频响应也就越好。
压电式传感器 ppt课件
ppt课件
19
6.1 工作原理及压电材料
7) 石英晶体的上述特性与其内部分
y
子 结 构 有 关 。 图 6.1.3 是 一 个 单 元 组
体中构成石英晶体的硅离子和氧离子
在垂直于z轴的xy平面上的投影,等
x
效为一个正六边形排列。右图中紫色
代表硅离子Si4+,绿色代表氧离子O2-。
8) 当石英晶体未受外力作用时,正、负离子正好分 布在正六边形的顶角上,形成三个互成120°夹角的 电偶极矩P1、P2、P3。 如图6.1.3(a)所示。
ppt课件
11
6.1 工作原理及压电材料
相6 对5
介4
电 常
3
数2 ε1
居里点 t/℃
0
100 200 300 400 500 600
石英在高温下相对介电常数的温度特性
居里点温度
573°C
其介电常数和压电常数 的温度稳定性相当好, 在常温范围内这两个参 数几乎不随温度变化。
自振频率高,动态响应好,机械强度高,绝缘性能好, 迟滞小,重复性好,线性范围宽
• 具有体积小,重量轻,工作频带宽等特点, 因此在各种动 态力、 机械冲击与振动的测量, 以及声学、医学、力学、 宇航等方面都得到了非常广泛的应用。
ppt课件
2
6.1 工作原理及压电材料
一、 压电效应
压电式加速度传感器及其应用课件
新材料与新技术的应用
新材料研发
随着科技的进步,新型材料如碳 纳米管、石墨烯等被应用于压电 材料的制备,以提高传感器的灵 敏度和稳定性。
新加工技术
微纳米加工技术的进步使得传感 器尺寸微型化,提高了其响应速 度和测量精度。
提高测量范围与分辨率
测量范围拓展
通过改进结构设计,优化材料性能, 提高压电式加速度传感器的测量范围, 使其能够应对更广泛的加速度波动。
压电式加速度传感器特性
01
长期稳定性、耐腐蚀、抗疲劳,适用于桥梁健康监测。
应用原理
02
在桥梁的关键部位安装压电式加速度传感器,实时监测桥梁的
振动和变形情况,评估桥梁的健康状况。
优势与效果
03
能够及时发现桥梁的结构损伤和异常振动,为桥梁的维护和加
固提供科学依据。
地震监测
压电式加速度传感器特性
高灵敏度、宽动态范围、可靠性高,适用于地震监测。
分辨率提升
采用信号放大、噪声抑制等手段,提 高传感器的分辨率,使其能够检测到 更小的加速度变化。
温度补偿与交叉灵敏度抑制
温度补偿技术
为消除温度对传感器性能的影响,采 用温度补偿技术,如热敏电阻、温度 传感器等,实时监测并修正温度变化 对测量结果的影响。
交叉灵敏度抑制
通过改进传感器结构和材料组合,降 低交叉灵敏度,提高传感器在多轴方 向上的测量精度。
03 压电式加速度传 感器的应用
在振动测量中的应用
压电式加速度传感器由于其高灵敏度、低噪声、抗干扰能力强等特点,在振动测量 领域中得到了广泛应用。
在振动测量中,压电式加速度传感器通常被用来测量结构的振动速度、位移和加速 度等参数,以评估结构的动态特性和稳定性。
压电式加速度传感器
压电式加速度传感器(1)压电式加速度计的结构和安装压电式加速度传感器又称压电加速度计。
它也属于惯性式传感器。
它是利用某些物质如石英晶体的压电效应,在加速度计受振时,质量块加在压电元件上的力也随之变化。
当被测振动频率远低于加速度计的固有频率时,则力的变化与被测加速度成正比。
由于压电式传感器的输出电信号是微弱的电荷,而且传感器本身有很大内阻,故输出能量甚微,这给后接电路带来一定困难。
为此,通常把传感器信号先输到高输入阻抗的前置放大器。
经过阻抗变换以后,方可用于一般的放大、检测电路将信号输给指示 仪表或记录器。
目前,制造厂家已有把压电式加速度传感器与前置放大器集成在一起的产品,不仅方便了使用,而且也大大降低了成本。
常用的压电式加速度计的结构形式如图所示。
S 是弹簧,M 是质块,B 是基座,P 是压电元件R 是夹持环。
图1a 是中央安 装压缩型,压电元件—质量块—弹簧系统装在圆形中心支柱上,支柱与基座连接。
这种结构有高的共振频率。
然而基座B 与测试对 象连接时,如果基座B 有变形则将直接影响拾振器输出。
此外,测试对象和环境温度变化将影响压电元件,并使预紧力发生变化, 易引起温度漂移。
图1c 为三角剪切形,压电元件由夹持环将其夹牢在三角形中心柱上。
加速度计感受轴向振动时,压电元件承 受切应力。
这种结构对底座变形和温度变化有极好的隔离作用,有较高的共振频率和良好的线性。
图1b 为环形剪切型,结构简单,能做成极小型、高共振频率的加速度计,环形质量块粘到装在中心支柱上的环形压电元件上。
由于粘结剂会随温度增高而变 软,因此最高工作温度受到限制。
加速度计的使用上限频率取决于幅频曲线中的共振频率图(图2)。
一般小阻尼(z<=0.1)的加速度计,上限频率若取为共振频率的 1/3,便可保证幅(a)中心安装压缩型 (b)环形剪切型 (c) 三角剪切型图1 压电式加速度计图2 压电式加速度计的幅频特性曲线值误差低于1dB(即12%);若取为共振频率的1/5,则可保证幅值误差小于0.5dB(即6%),相移小于30。
压电式传感器的应用
2. 6100系列压电加速度计
压电加速度计是以压电晶体做敏感件。体积 小、重量轻、输出信号大,固有频率高,可用于 测量振动、冲击等信号。其外形见下图主要性能 指标见表6-4。
3. HZ-9508型测振表 HZ-9508型测振表是用于旋转机械进行振动测量、
简易故障诊断的一种便携式数字显示测振表,用YD型压 电式加速度传感器作为表头。它除了可测量一般机械振 动产生的加速度、速度、位 移等参数外,还具有测量 齿轮、轴承故障产生的高频 加速度值的功能,并具有低 电压监测功能。其外形结构 如右图所示。
主要参数如下:
1)测量范围: 位移: 1~1999μm(峰—峰值);速度: 0.1~ 199.9mm/S(有效值); 加速度: 0.1~199.9m/S2(峰值);高频加速度: 0.1~199.9 m/S2(峰值); 精度:测量值的±5%(允许±2误差); 2)频率范围: 位移:10Hz~1000Hz;速度:10Hz~1000Hz;加 速度:10Hz~1000Hz;高频加速度:1KHz~ 15KHz;
传感器与检测技术
压电式传感器的应用
压电式传感器可用于力、压力、速度、加速度、 振动等许多非电量的测量,可做成力传感器、压力传 感器、振动传感器等等。 1.1 5100系列压电式力传感器
航天702所所研制生产的5100系列力传感器,是 一种利用石英晶体的纵向压电效应,将“力”转换成 “电荷”并通过二次仪表转换成电压的压电式力传感 器。它具有气密性好、硬度高、刚度大、动态响应快 等优点。目前,5110、5112、5114和5115力传感器已 组成各种锤头(钢、铝、尼龙、橡胶)型测力锤,可 以测量动态力、准静态力和冲击力。
3)显示:三位半液晶显示 4)保持功能:当按住保持键时,显示振动值停止 变动
5-4 压电式传感器的应用
当膜片 5 受到压力 P 作用后,则在压电晶片上产生电荷。在一个压电片
上所产生的电荷 q 为
q=d11F=d11SP
式中 F——作用于压电片上的力;
(5-42)
d11——压电系数; P ——压强,P=F/S;
S ——膜片的有效面积。
测压传感器的输入量为压力 P,如果传感器只由一个压电晶片组成,则 根据灵敏度的定义有:
第五章习题
5.7 .分析压电式加速度计的频率响应特性。若测量电路的总电容 C= 1 000 pF,总电阻 R= 500 MΩ,传感器机械系统固有频率 f0=30 kHz,相对阻尼 系数ξ=0.5,求幅值误差小于 2 %时,其使用的频率范围 。
5.8.用石英晶体加速度计测量机器的振动,已知加速度计的灵敏度为 5 pC/g (g为重力加速度,g=9.8 m/s2),电荷放大器灵敏度为 50 mV/pC,当机 器达到最大加速度时,相应输出幅值电压为2V。试计算机器的振动加速 度。
1
0
1
0
2 2
2
0
2
(5-35) (5-36)
§5-4 压电式传感器的应用
相频特性
arctan
2
0
压电式加速度传感器的工作原理
压电式加速度传感器的工作原理压电式加速度传感器是一种基于压电效应原理的常用传感器,它可以将物体的加速度(即力的作用下物体的运动变化)转换为电信号,用以进行自动测量、控制和研究。
本文旨在介绍压电式加速度传感器的原理,以及其在工程领域的实际应用。
压电式加速度传感器的基本原理是凭借压电效应,结合加速度传感器的特性,将物体所受的加速度转换为电信号。
压电效应源于压电材料的结构弹性,即当使用力对其施加时,压电材料会由其原始形状变形,并产生压电势和压电电位。
当被施加的力与单位面积上的物体表面法线方向一致时,压电势的增加会导致压电电位的增加,而当被施加的力与单位面积上的物体表面法线方向相反时,压电势的增加会导致压电电位的减少(即负压电效应)。
因此,压电设备可以检测物体在x,y,z方向的加速度,并以此变换为电信号,供技术人员进行后续处理和分析。
压电式加速度传感器可以广泛应用于航空航天领域、汽车领域、机械制造领域、橡胶和塑料领域等多个工程领域。
在航空航天领域,由于压电式传感器具有久坚耐用的特点,能够耐受高温高压的环境,因此可以大量应用于火箭、航天器结构性能检测以及空间实验控制中。
在汽车领域,压电式加速度传感器可以用于汽车内部和外部的实时控制,辅以先进的信息技术,可以实现对车辆前后悬挂系统、制动系统和刹车系统的先进控制,并可有效提高汽车性能和可靠性。
此外,压电式加速度传感器还可以应用于橡胶和塑料等材料的研制,能够检测其在应变状态下的性能,有效避免技术失误和质量问题。
压电式加速度传感器技术在工程领域具有广泛的应用前景,是发展自动检测技术和机械设备的重要工具。
传感器的性能、可靠性和精度普遍有待提高,未来可以研究带有适应功能的复合式压电式结构,以提升传感器的灵敏度,并发展出具有更高可靠性的压电式加速度传感器。
综上所述,压电式加速度传感器是一种基于压电效应原理的重要传感器,可以将物体所受的加速度转换为电信号,广泛应用于航空航天领域、汽车领域、机械制造领域、橡胶和塑料领域等多个工程领域,是发展自动检测技术和机械设备的重要工具,未来将有望发展出具有更高可靠性的压电式加速度传感器。
压电式加速度传感器(最新整理)
压电式加速度传感器摘要:本文介绍了压电式加速度传感器的结构和工作原理,推导了传感器的数学模型,并分析了测量电路,压电传感器的产生零漂现象的各种原因,并针对这些原因提出相应的解决措施。
关键词:压电式;加速度传感器;零漂1 引言现代工业和自动化生产过程中,非电物理量的测量和控制技术会涉及大量的动态测试问题。
所谓动态测试是指量的瞬时值以及它随时间而变化的值的确定,即被测量为变量的连续测量过程。
它以动态信号为特征,研究了测试系统的动态特性问题,而动态测试中振动和冲击的精确测量尤其重要。
振动与冲击测量的核心是传感器,常用压电加速度传感器来获取冲击和振动信号。
压电式传感器是基于某些介质材料的压电效应,当材料受力作用而变形时,其表面会有电荷产生,从而实现非电量测量。
压电式传感器具有体积小,质量轻,工作频带宽等特点,因此在各种动态力、机械冲击与振动的测量以及声学、医学、力学、体育、制造业、军事、航空航天等领域都得到了非常广泛的应用。
加速度传感器作为测量物体运动状态的一种重要的传感器,加速度传感器主要分为压阻式、电容式、应变式、压电式、振弦式、挠性摆式、液浮摆式等类型。
压电式加速度传感器是以压电材料为转换元件,将加速度输入转化成与之成正比的电荷或电压输出的装置,具有结构简单、重量轻、体积小、耐高温、固有频率高、输出线性好、测量的动态范围大、安装简单的特点。
2工作原理压电式加速度传感器又称为压电加速度计,它也属于惯性式传感器。
它是典型的有源传感器。
利用某些物质如石英晶体、人造压电陶瓷的压电效应,在加速度计受振时,质量块加在压电元件上的力也随之变化。
压电敏感元件是力敏元件,在外力作用下,压电敏感元件的表面上产生电荷,从而实现非电量电测量的目的。
压电加速度传感器的原理框图如图1所示,原理如图2所示。
图1 加速度传感器的组成框图支座图2 压电加速度传感器原理图实际测量时,将图中的支座与待测物刚性地固定在一起。
当待测物运动时,支座与待测物以同一加速度运动,压电元件受到质量块与加速度相反方向的惯性力的作用,在晶体的两个表面上产生交变电荷(电压)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
压电式加速度传感器
及其应用
压电式加速度传感器及其应用
压电式加速度传感器原理
压电式加速度传感器又称压电加速度计。
它也属于惯性式传感器。
它是利用某些物质如石英晶体的压电效应,在加速度计受振时,质量块加在压电元件上的力也随之变化。
当被测振动频率远低于加速度计的固有频率时,则力的变化与被测加速度成正比。
由于压电式传感器的输出电信号是微弱的电荷,而且传感器本身有很大内
阻,故输出能量甚微,这给后接电路带来一定困难。
为此,通常把传感器信号
先输到高输入阻抗的前置放大器。
经过阻抗变换以后,方可用于一般的放大、
检测电路将信号输给指示仪表或记录器。
常用的压电式加速度计的结构形式如图所示,是由预压弹簧,质量块,基座,压电元件和外壳组成。
图中为环形剪切型,结构简单,能做成极小型、高共振频率的加速度计,环形质量块粘到装在中心支柱上的环形压电元件上。
由于粘结剂会随温度增高而变软,因此最高工作温度受到限制。
、压电式加速度传感器构成元件
三、压电式加速度传感器幅频特性
限频率取决于幅频曲线中的共振频率图(图1)。
一般小阻尼(z<=0.1)的加速度计,上限频率若取为共振频率的1/3,便可保证幅值误差低于1dB (即12%); 若取为共振频率的1/5,则可保证幅值误差小于0.5dB (即6%),相移小于
30。
但共振频率与加速度计的固定状况有关,加速度计出厂时给出的幅频曲线是在刚性连接的固定情况下得到的。
实际使用的固定方法往往难于达到刚性连接,因而共振频率和使用上限频率都会有所下降。
四、压电式加速度传感器的灵敏度
压电式加速度计的灵敏度压电加速度计属发电型传感器,可把它看成电压
源或电荷源,故灵敏度有电压灵敏度和电荷灵敏度两种表示方法。
前者是加速度计输出电压(mV)与所承受加速度之比;后者是加速度计输出电荷与所承受加速度之比。
加速度单位为m/s2,但在振动测量中往往用标准重力加速度g作单位,1g= 9.80665m/s 2对给定的压电材料而言,灵敏度随质量块的增大或压电元件的增多而增大。
一般来说,加速度计尺寸越大,其固有频率越低。
因此选用加速度计时应当权衡灵敏度和结构尺寸、附加质量的影响和频率响应特性之间的利弊。
压电晶体加速度计的横向灵敏度表示它对横向振动的敏感程度,横向灵敏度常以主灵敏度(即加速度计的电压灵敏度或电荷灵敏度)的百分比表示。
一般在壳体上用小红点标出最小横向灵敏度方向,一个优良的加速度计的横向灵敏度应小于主灵敏度的3%。
因此,压电式加速度计在测试时具有明显的方向性。
五、压电式加速度传感器误差形成因素分析
压电加速度计的前置放大器压电元件受力后产生的电荷量极其微弱,这电荷使压电元件边界和接在边界上的导体充电到电压U=q/Ca (这里Ca是加速度
计的内电容)。
要测定这样微弱的电荷(或电压)的关键是防止导线、测量电路和加速度计本身的电荷泄漏。
换句话讲,压电加速度计所用的前置放大器应具有极高的输入阻抗,把泄漏减少到测量准确度所要求的限度以内,压电式传感器的前置放大器有:电压放大器和电荷放大器。
所用电压放大器就是高输入阻抗的比例放大器。
其电路比较简单,但输出受连接电缆对地电容的影响,适用于一般振动测量。
电荷放大器以电容作负反馈,使用中基本不受电缆电容的
影响。
在电荷放大器中,通常用高质量的元、器件,输入阻抗高,但价格也比较贵。
从压电式传感器的力学模型看,它具有低通”特性,原可测量极低频的振动。
但实际上由于低频尤其小振幅振动时,加速度值小,传感器的灵敏度有限,因此输出的信号将很微弱,信噪比很低;另外电荷的泄漏,积分电路的漂
移(用于测振动速度和位移)、器件的噪声都是不可避免的,所以实际低频端也出现截止频率”约为0.1〜1Hz左右。
六、压电式加速度传感器的实际应用
目前最新IBM Thinkpad手提电脑里就内置了加速度传感器,能够动态的监测出笔记本在使用中的振动,并根据这些振动数据,系统会智能的选择关闭硬盘还是让其继续运行,这样可以最大程度的保护由于振动,比如颠簸的工作环境,或者不小心摔了电脑做造成的硬盘损害,最大程度的保护里面的数据。
另外一个用处就是目前用的数码相机和摄像机里,也有加速度传感器,用来检测拍摄时候的手部的振动,并根据这些振动,自动调节相机的聚焦。
概括起来,加速度传感器可应用在控制,手柄振动和摇晃,仪器仪表,汽车制动启动检测,地震检测,报警系统,玩具,结构物、环境监视,工程测振、地质勘探、铁路、桥梁、大坝的振动测试与分析;鼠标,高层建筑结构动态特性和安全保卫振动侦察上。