Verilog实例代码

合集下载

verilog语法实例学习(1)

verilog语法实例学习(1)

verilog语法实例学习(1)本⽂档中通过verilog实例来学习verilog语法。

Verilog是⼀种硬件描述语⾔,它具有并发性和时序性。

并发性是指不同硬件模块的同时操作,时序性是指信号的赋值或操作在时钟的边沿进⾏。

由于作者本⾝也是⼀个初学者,所以尽量⽤简单明了的例⼦介绍Verilog语法。

Verilog代码中的注释和c++语⾔相同,分为短注释(//)和长注释(/* … */)。

短注释通常放在每⾏代码的后⾯或上⾯,⽤来注释这⾏代码的功能。

长注释⼀般在module的开始处,⽤来说明模块的功能。

⽐如下⾯四位全加器代码中的注释。

/*通过实例化全加器模块实现四位加法的功能。

输⼊:cin,进位x, y 被加数和加数s 和cout 进位*/module adder4(cin, x, y,s,cout);input cin;input [3:0] x;input [3:0] y;output [3:0] s;output cout;wire [3:1] c; //内部线⽹类型信号c,⽤来存储串⾏进位fulladd stage0(.cin(cin),.x(x[0]),.y(y[0]),.s(s[0]),.cout(c[1]));fulladd stage1(.cin(c[1]),.x(x[1]),.y(y[1]),.s(s[1]),.cout(c[2]));fulladd stage2(.cin(c[2]),.x(x[2]),.y(y[2]),.s(s[2]),.cout(c[3]));fulladd stage3(.cin(c[3]),.x(x[3]),.y(y[3]),.s(s[3]),.cout(cout));endmoduleVerilog中,电路⾥⾯的⼀个信号就代表⼀个特定类型的线⽹(net)或变量。

这⾥线⽹指的两个或更多电路结点的相互连接。

⼀个线⽹或变量的声明格式如下:type [range] signal_name{,signal_name};⽅括号中range(范围)是可选的,如果没有指定范围,默认情况下表⽰该信号是标量,是只有⼀位的单位信号。

verilog语言例化书写格式

verilog语言例化书写格式

verilog语言例化书写格式Verilog语言是一种硬件描述语言(HDL),在数字电路设计、逻辑仿真和综合等领域得到广泛应用。

在Verilog中,实例化是将模块实例化为实体的过程,通过实例化可以在设计中重复使用模块并连接各个模块之间的信号。

Verilog语言的例化书写格式如下:1. 定义模块首先,在设计中需要定义要实例化的模块。

模块定义包括模块名称、输入输出端口和内部信号。

例如,我们定义了一个名为"example_module"的模块,包含三个输入端口(A、B、C)和一个输出端口(D):```verilogmodule example_module(A, B, C, D);input A, B, C;output D;// internal logicendmodule```2. 实例化模块在设计中需要使用该模块时,可以进行实例化。

实例化的格式为:模块名称实例名称 ( .端口名称(信号名称), ... );例如,我们使用上述定义的"example_module"模块进行实例化,假设实例名称为"example_inst",连接的信号为A、B、C、D,实例化代码如下:```verilogexample_module example_inst(.A(signal_A),.B(signal_B),.C(signal_C),.D(signal_D));```在上述实例化代码中,通过"."符号将信号与端口进行连接。

例如,信号signal_A将与输入端口A连接起来。

3. 内部信号的连接在实例化模块时,还可以直接将内部信号连接到其他信号上。

例如,我们在实例化时,将一个内部信号internal_signal直接连接到另一个信号output_signal上:```verilogexample_module example_inst(.A(signal_A),.B(signal_B),.C(signal_C),.D(output_signal));assign internal_signal = output_signal;```通过上述的例化书写格式,我们可以在Verilog设计中有效地实例化模块,并连接各个模块之间的信号。

verilog模块例化实例

verilog模块例化实例

verilog模块例化实例以下是一个Verilog模块的实例化示例:假设有一个简单的4位加法器模块(add4), 输入包括两个4位数(a和b),输出为一个5位数(sum)。

现在我们希望实例化这个模块来构建一个8位的加法器。

module add4 (input [3:0] a,input [3:0] b,output [4:0] sum);assign sum = a + b;endmodule现在,我们可以在一个顶层模块中实例化这个add4模块,并将其连接起来。

module top_module (input [7:0] a,input [7:0] b,output [8:0] sum);wire [3:0] a_part;wire [3:0] b_part;wire [4:0] sum_part;// 实例化add4模块,并将连接输入和输出add4 add4_1 (.a(a[3:0]), .b(b[3:0]), .sum(sum_part[3:0]));add4 add4_2 (.a(a[7:4]), .b(b[7:4]), .sum(sum_part[7:4]));// 连接add4模块的输出assign sum = {sum_part[7:4], sum_part[3:0]};endmodule在顶层模块中,我们首先定义了一些中间信号(a_part,b_part和sum_part),它们用于连接不同的add4模块。

然后,我们实例化了两个add4模块(add4_1和add4_2),并将它们的输入和输出连接起来。

最后,我们通过连接sum_part的高4位和低4位,得到了最终的8位和。

Verilog的135个经典设计实例

Verilog的135个经典设计实例

Verilog的135个经典设计实例1、立即数放大器:立即数放大器是一种用于将输入电平放大到更高电平的电路,它可以实现任意输入到输出的映射,并且可以在Verilog中使用。

立即数放大器的Verilog实现如下:module immedamp(in, out);input in;output out;reg [3:0] immed;assign out = immed[3];begincase (in)4'b0000: immed = 4'b1000;4'b0001: immed = 4'b1001;4'b0010: immed = 4'b1010;4'b0011: immed = 4'b1011;4'b0100: immed = 4'b1100;4'b0101: immed = 4'b1101;4'b0110: immed = 4'b1110;4'b0111: immed = 4'b1111;4'b1000: immed = 4'b1000;4'b1001: immed = 4'b1001;4'b1010: immed = 4'b1010;4'b1011: immed = 4'b1011;4'b1100: immed = 4'b1100;4'b1101: immed = 4'b1101;4'b1110: immed = 4'b1110;4'b1111: immed = 4'b1111;endcaseendendmodule2、多路复用器:多路复用器是一种用于将多个输入选择转换为单个输出的电路,它可以实现由多种方式选择的输出,并可以使用Verilog实现。

ahb协议verilog代码

ahb协议verilog代码

ahb协议verilog代码摘要:1.AHB 总线概述2.Verilog 代码介绍3.AHB 协议Verilog 代码实例4.代码分析与解释正文:一、AHB 总线概述AHB(Advanced High-performance Bus)总线是一种先进的高性能总线,主要用于连接处理器和外围设备。

AHB 总线具有高带宽、低延迟和热插拔等特点,广泛应用于嵌入式系统、SoC(System on Chip)设计等领域。

二、Verilog 代码介绍Verilog 是一种硬件描述语言(HDL),用于数字电路和系统级的设计、验证和仿真。

Verilog 代码主要由模块、声明、端口、实例等组成,具有简洁、易学的特点。

三、AHB 协议Verilog 代码实例以下是一个简单的AHB 协议Verilog 代码实例:```verilogmodule ahb_master (input wire clk,input wire rst_n,input wire start,output reg [31:0] data_out,input [31:0] data_in);reg [31:0] data_reg;reg state;always @(posedge clk or negedge rst_n) begin if (start && ~rst_n) beginstate <= 1"b0;end else if (~start && ~rst_n) begincase (state)1"b0: begindata_reg <= data_in;state <= 1"b1;end1"b1: begindata_out <= data_reg;state <= 1"b2;end1"b2: beginstate <= 1"b0;endendcaseendendassign data_out = (state == 1"b2)? data_reg : 32"b0;endmodule```四、代码分析与解释上述代码定义了一个名为ahb_master 的模块,其中包含输入信号clk、rst_n 和start,以及输出信号data_out。

verilog的15个经典设计实例

verilog的15个经典设计实例
module block(c,b,a,clk); output c,b; input clk,a; reg c,b; always @(posedge clk)
begin b=a; c=b; end endmodule
【例 5.11】模为 60 的 BCD 码加法计数器
module count60(qout,cout,data,load,cin,reset,clk);
【例 5.6】用 fork-join 并行块产生信号波形
`timescale 10ns/1ns module wave2; reg wave; parameter cycle=5; initial
fork wave=0;
#(cycle) wave=1; #(2*cycle) wave=0; #(3*cycle) wave=1; #(4*cycle) wave=0; #(5*cycle) wave=1; #(6*cycle) $finish; join initial $monitor($time,,,"wave=%b",wave); endmodule
else
out<=out+1;
end
endmodule
//同步复位 //计数
【例 3.3】4 位全加器的仿真程序
`timescale 1ns/1ns `include "adder4.v" module adder_tp; reg[3:0] a,b; reg cin; wire[3:0] sum; wire cout; integer i,j;
output[7:0] qout;
output cout;
input[7:0] data;
input load,cin,clk,reset;

verilog 类 实例

verilog 类 实例

verilog 类实例Verilog类是一种硬件描述语言,用于描述和设计数字电路。

它是一种基于事件驱动的语言,主要用于描述电子系统中的逻辑电路和时序电路。

本文将介绍Verilog类的基本概念和用法,以及如何使用Verilog类来实现数字电路设计。

我们来了解一下Verilog类的基本结构。

Verilog类由模块(module)、端口(port)、信号(signal)和过程块(always block)组成。

模块是Verilog类的最基本单位,用于封装和组织电路的功能。

端口是模块与外部环境之间的接口,用于输入和输出数据。

信号是数字电路中的数据流,用于表示电路内部的状态和数据。

过程块是Verilog类中的关键部分,用于描述电路的行为和逻辑。

在Verilog类中,我们可以使用各种语句和运算符来实现电路的功能。

例如,我们可以使用赋值语句(assign)来给信号赋值,使用条件语句(if-else)来实现逻辑判断,使用循环语句(for、while)来实现重复操作。

此外,Verilog类还支持多种逻辑运算符和算术运算符,如与(and)、或(or)、非(not)、加(add)、减(subtract)等。

Verilog类的一个重要应用是设计和实现各种数字逻辑电路,例如加法器、乘法器、寄存器、计数器等。

下面以一个简单的全加器为例来说明Verilog类的使用。

全加器是一种常用的组合逻辑电路,用于实现两个二进制数的相加操作。

它由两个半加器和一个或门组成。

每个半加器用于计算两个输入位的和(Sum)和进位(Carry),而或门用于将两个半加器的进位相加得到最终的进位。

以下是一个使用Verilog类实现的全加器的代码示例:```module FullAdder(input A, input B, input Cin, output Sum, output Cout);wire S1, C1, C2;HalfAdder HA1(.A(A), .B(B), .Sum(S1), .Carry(C1));HalfAdder HA2(.A(S1), .B(Cin), .Sum(Sum), .Carry(C2));or Gate(.A(C1), .B(C2), .Y(Cout));endmodulemodule HalfAdder(input A, input B, output Sum, output Carry);assign {Carry, Sum} = A + B;endmodule```在上述代码中,FullAdder模块是一个顶层模块,它实例化了两个HalfAdder模块和一个或门。

Verilog实例代码

Verilog实例代码

【例3.1】4位全加器module adder4(cout,sum,ina,inb,cin);output[3:0] sum;output cout;input[3:0] ina,inb;input cin;assign {cout,sum}=ina+inb+cin;endmodule【例3.2】4位计数器module count4(out,reset,clk);output[3:0] out;input reset,clk;reg[3:0] out;always @(posedge clk)beginif (reset) out<=0; //同步复位else out<=out+1; //计数endendmodule【例3.3】4位全加器的仿真程序`timescale 1ns/1ns`include "adder4.v"module adder_tp; //测试模块的名字reg[3:0] a,b; //测试输入信号定义为reg型reg cin;wire[3:0] sum; //测试输出信号定义为wire型wire cout;integer i,j;adder4 adder(sum,cout,a,b,cin); //调用测试对象always #5 cin=~cin; //设定cin的取值initialbegina=0;b=0;cin=0;for(i=1;i<16;i=i+1)#10 a=i; //设定a的取值endinitialbeginfor(j=1;j<16;j=j+1)#10 b=j; //设定b的取值endinitial//定义结果显示格式begin$monitor($time,,,"%d + %d + %b={%b,%d}",a,b,cin,cout,sum);#160 $finish;endendmodule【例3.4】4位计数器的仿真程序`timescale 1ns/1ns`include "count4.v"module coun4_tp;reg clk,reset; //测试输入信号定义为reg型wire[3:0] out; //测试输出信号定义为wire型parameter DELY=100;count4 mycount(out,reset,clk); //调用测试对象always #(DELY/2) clk = ~clk; //产生时钟波形initialbegin//激励信号定义clk =0; reset=0;#DELY reset=1;#DELY reset=0;#(DELY*20) $finish;end//定义结果显示格式initial $monitor($time,,,"clk=%d reset=%d out=%d", clk, reset,out); endmodule【例3.5】“与-或-非”门电路module AOI(A,B,C,D,F); //模块名为AOI(端口列表A,B,C,D,F) input A,B,C,D; //模块的输入端口为A,B,C,Doutput F; //模块的输出端口为Fwire A,B,C,D,F; //定义信号的数据类型assign F= ~((A&B)|(C&D)); //逻辑功能描述endmodule【例5.1】用case语句描述的4选1数据选择器module mux4_1(out,in0,in1,in2,in3,sel);output out;input in0,in1,in2,in3;input[1:0] sel;reg out;always @(in0 or in1 or in2 or in3 or sel) //敏感信号列表case(sel)2'b00: out=in0;2'b01: out=in1;2'b10: out=in2;2'b11: out=in3;default: out=2'bx;endcaseendmodule【例5.2】同步置数、同步清零的计数器module count(out,data,load,reset,clk);output[7:0] out;input[7:0] data;input load,clk,reset;reg[7:0] out;always @(posedge clk) //clk上升沿触发beginif (!reset) out = 8'h00; //同步清0,低电平有效else if (load) out = data; //同步预置else out = out + 1; //计数endendmodule【例5.3】用always过程语句描述的简单算术逻辑单元`define add 3'd0`define minus 3'd1`define band 3'd2`define bor 3'd3`define bnot 3'd4module alu(out,opcode,a,b);output[7:0] out;reg[7:0] out;input[2:0] opcode; //操作码input[7:0] a,b; //操作数always@(opcode or a or b) //电平敏感的always块begincase(opcode)`add: out = a+b; //加操作`minus: out = a-b; //减操作`band: out = a&b; //求与`bor: out = a|b; //求或`bnot: out=~a; //求反default: out=8'hx; //未收到指令时,输出任意态endcaseendendmodule【例5.4】用initial过程语句对测试变量A、B、C赋值`timescale 1ns/1nsmodule test;reg A,B,C;initialbeginA = 0;B = 1;C = 0;#50 A = 1; B = 0;#50 A = 0; C = 1;#50 B = 1;#50 B = 0; C = 0;#50 $finish ;endendmodule【例5.5】用begin-end串行块产生信号波形`timescale 10ns/1nsmodule wave1;reg wave;parameter cycle=10;initialbeginwave=0;#(cycle/2) wave=1;#(cycle/2) wave=0;#(cycle/2) wave=1;#(cycle/2) wave=0;#(cycle/2) wave=1;#(cycle/2) $finish ;endinitial $monitor($time,,,"wave=%b",wave); endmodule【例5.6】用fork-join并行块产生信号波形`timescale 10ns/1nsmodule wave2;reg wave;parameter cycle=5;initialforkwave=0;#(cycle) wave=1;#(2*cycle) wave=0;#(3*cycle) wave=1;#(4*cycle) wave=0;#(5*cycle) wave=1;#(6*cycle) $finish;joininitial $monitor($time,,,"wave=%b",wave); endmodule【例5.7】持续赋值方式定义的2选1多路选择器module MUX21_1(out,a,b,sel);input a,b,sel;output out;assign out=(sel==0)?a:b;//持续赋值,如果sel为0,则out=a ;否则out=b endmodule【例5.8】阻塞赋值方式定义的2选1多路选择器module MUX21_2(out,a,b,sel);input a,b,sel;output out;reg out;always@(a or b or sel)beginif(sel==0) out=a; //阻塞赋值else out=b;endendmodule【例5.9】非阻塞赋值module non_block(c,b,a,clk);output c,b;input clk,a;reg c,b;always @(posedge clk)beginb<=a;c<=b;endendmodule【例5.10】阻塞赋值module block(c,b,a,clk);output c,b;input clk,a;reg c,b;always @(posedge clk)beginb=a;c=b;endendmodule【例5.11】模为60的BCD码加法计数器module count60(qout,cout,data,load,cin,reset,clk);output[7:0] qout;output cout;input[7:0] data;input load,cin,clk,reset;reg[7:0] qout;always @(posedge clk) //clk上升沿时刻计数if (reset) qout<=0; //同步复位else if(load) qout<=data; //同步置数else if(cin)beginif(qout[3:0]==9) //低位是否为9,是则beginqout[3:0]<=0; //回0,并判断高位是否为5if (qout[7:4]==5) qout[7:4]<=0;elseqout[7:4]<=qout[7:4]+1; //高位不为5,则加1endelse//低位不为9,则加1qout[3:0]<=qout[3:0]+1;endendassign cout=((qout==8'h59)&cin)?1:0; //产生进位输出信号endmodule【例5.12】BCD码—七段数码管显示译码器module decode4_7(decodeout,indec);output[6:0] decodeout;input[3:0] indec;reg[6:0] decodeout;alwaysbegincase(indec) //用case语句进行译码4'd0:decodeout=7'b1111110;4'd1:decodeout=7'b0110000;4'd2:decodeout=7'b1101101;4'd3:decodeout=7'b1111001;4'd4:decodeout=7'b0110011;4'd5:decodeout=7'b1011011;4'd6:decodeout=7'b1011111;4'd7:decodeout=7'b1110000;4'd8:decodeout=7'b1111111;4'd9:decodeout=7'b1111011;default: decodeout=7'bx;endcaseend【例5.13】用casez描述的数据选择器module mux_casez(out,a,b,c,d,select); output out;input a,b,c,d;input[3:0] select;reg out;always @(select or a or b or c or d) begincasez(select)4'b???1: out = a;4'b??1?: out = b;4'b?1??: out = c;4'b1???: out = d;endcaseendendmodule【例5.14】隐含锁存器举例module buried_ff(c,b,a);output c;input b,a;reg c;always @(a or b)beginif((b==1)&&(a==1)) c=a&b;endendmodule【例5.15】用for语句描述的七人投票表决器module voter7(pass,vote);output pass;input[6:0] vote;reg[2:0] sum;integer i;reg pass;always @(vote)beginsum=0;for(i=0;i<=6;i=i+1) //for语句if(vote[i]) sum=sum+1;if(sum[2]) pass=1; //若超过4人赞成,则pass=1else pass=0;endendmodule【例5.16】用for语句实现2个8位数相乘module mult_for(outcome,a,b);parameter size=8;input[size:1] a,b; //两个操作数output[2*size:1] outcome; //结果reg[2*size:1] outcome;integer i;always @(a or b)beginoutcome=0;for(i=1; i<=size; i=i+1) //for语句if(b[i]) outcome=outcome +(a << (i-1));endendmodule【例5.17】用repeat实现8位二进制数的乘法module mult_repeat(outcome,a,b);parameter size=8;input[size:1] a,b;output[2*size:1] outcome;reg[2*size:1] temp_a,outcome;reg[size:1] temp_b;always @(a or b)beginoutcome=0;temp_a=a;temp_b=b;repeat(size) //repeat语句,size为循环次数beginif(temp_b[1]) //如果temp_b的最低位为1,就执行下面的加法outcome=outcome+temp_a;temp_a=temp_a<<1; //操作数a左移一位temp_b=temp_b>>1; //操作数b右移一位endendendmodule【例5.18】同一循环的不同实现方式module loop1; //方式1integer i;initialfor(i=0;i<4;i=i+1) //for语句begin$display(“i=%h”,i);endendmodulemodule loop2; //方式2integer i;initial begini=0;while(i<4) //while语句begin$display ("i=%h",i);i=i+1;endendendmodulemodule loop3; //方式3integer i;initial begini=0;repeat(4) //repeat语句begin$display ("i=%h",i);i=i+1;endendendmodule【例5.19】使用了`include语句的16位加法器`include "adder.v"module adder16(cout,sum,a,b,cin);output cout;parameter my_size=16;output[my_size-1:0] sum;input[my_size-1:0] a,b;input cin;adder my_adder(cout,sum,a,b,cin); //调用adder模块endmodule//下面是adder模块代码module adder(cout,sum,a,b,cin);parameter size=16;output cout;output[size-1:0] sum;input cin;input[size-1:0] a,b;assign {cout,sum}=a+b+cin;endmodule【例5.20】条件编译举例module compile(out,A,B);output out;input A,B;`ifdef add //宏名为add assign out=A+B;`elseassign out=A-B;`endifendmodule【例6.1】加法计数器中的进程module count(data,clk,reset,load,cout,qout);output cout;output[3:0] qout;reg[3:0] qout;input[3:0] data;input clk,reset,load;always @(posedge clk) //进程1,always过程块beginif (!reset) qout= 4'h00; //同步清0,低电平有效else if (load) qout= data; //同步预置else qout=qout + 1; //加法计数endassign cout=(qout==4'hf)?1:0; //进程2,用持续赋值产生进位信号endmodule【例6.2】任务举例module alutask(code,a,b,c);input[1:0] code;input[3:0] a,b;output[4:0] c;reg[4:0] c;task//任务定义,注意无端口列表input//a,b,out名称的作用域范围为task任务内部output[4:0] out;integer i;beginfor(i=3;i>=0;i=i-1)out[i]=a[i]&b[i]; //按位与endendtaskalways@(code or a or b)begincase(code)2'b00: my_and(a,b,c);/* 调用任务my_and,需注意端口列表的顺序应与任务定义中的一致,这里的a,b,c 分别对应任务定义中的a,b,out */2'b01: c=a|b; //或2'b10: c=a-b; //相减2'b11: c=a+b; //相加endcaseendendmodule【例6.3】测试程序`include "alutask.v"module alu_tp;reg[3:0] a,b;reg[1:0] code;wire[4:0] c;parameter DELY = 100;alutask ADD(code,a,b,c); //调用被测试模块initial begincode=4'd0; a= 4'b0000; b= 4'b1111;#DELY code=4'd0; a= 4'b0111; b= 4'b1101;#DELY code=4'd1; a= 4'b0001; b= 4'b0011;#DELY code=4'd2; a= 4'b1001; b= 4'b0011;#DELY code=4'd3; a= 4'b0011; b= 4'b0001;#DELY code=4'd3; a= 4'b0111; b= 4'b1001;#DELY $finish;endinitial $monitor($time,,,"code=%b a=%b b=%b c=%b", code,a,b,c); endmodule【例6.4】函数function[7:0] get0;input[7:0] x;reg[7:0] count;integer i;begincount=0;for (i=0;i<=7;i=i+1)if (x[i]=1'b0) count=count+1;get0=count;endendfunction【例6.5】用函数和case语句描述的编码器(不含优先顺序)module code_83(din,dout);input[7:0] din;output[2:0] dout;function[2:0] code; //函数定义input[7:0] din; //函数只有输入,输出为函数名本身casex (din)8'b1xxx_xxxx : code = 3'h7;8'b01xx_xxxx : code = 3'h6;8'b001x_xxxx : code = 3'h5;8'b0001_xxxx : code = 3'h4;8'b0000_1xxx : code = 3'h3;8'b0000_01xx : code = 3'h2;8'b0000_001x : code = 3'h1;8'b0000_000x : code = 3'h0;default: code = 3'hx;endcaseendfunctionassign dout = code(din) ; //函数调用endmodule【例6.6】阶乘运算函数module funct(clk,n,result,reset);output[31:0] result;input[3:0] n;input reset,clk;reg[31:0] result;always @(posedge clk) //在clk的上升沿时执行运算beginif(!reset) result<=0; //复位else beginresult <= 2 * factorial(n); //调用factorial函数endendfunction[31:0] factorial; //阶乘运算函数定义(注意无端口列表)input[3:0] opa; //函数只能定义输入端,输出端口为函数名本身reg[3:0] i;beginfactorial = opa ? 1 : 0;for(i= 2; i <= opa; i = i+1) //该句若要综合通过,opa应赋具体的数值factorial = i* factorial; //阶乘运算endfunctionendmodule【例6.7】测试程序`define clk_cycle 50`include "funct.v"module funct_tp;reg[3:0] n;reg reset,clk;wire[31:0] result;initial//定义激励向量beginn=0; reset=1; clk=0;for(n=0;n<=15;n=n+1)#100 n=n;endinitial $monitor($time,,,"n=%d result=%d",n,result);//定义输出显示格式always # `clk_cycle clk=~clk; //产生时钟信号funct funct_try(.clk(clk),.n(n),.result(result),.reset(reset));//调用被测试模块endmodule【例6.8】顺序执行模块1module serial1(q,a,clk);output q,a;input clk;reg q,a;always @(posedge clk)beginq=~q;a=~q;endendmodule【例6.9】顺序执行模块2module serial2(q,a,clk);input clk;reg q,a;always @(posedge clk)begina=~q;q=~q;endendmodule【例6.10】并行执行模块1 module paral1(q,a,clk); output q,a;input clk;reg q,a;always @(posedge clk)beginq=~q;endalways @(posedge clk)begina=~q;endendmodule【例6.11】并行执行模块2 module paral2(q,a,clk); output q,a;input clk;reg q,a;always @(posedge clk)begina=~q;endalways @(posedge clk)beginq=~q;endendmodulemodule mux4_1a(out,in1,in2,in3,in4,cntrl1,cntrl2); output out;input in1,in2,in3,in4,cntrl1,cntrl2;wire notcntrl1,notcntrl2,w,x,y,z;not(notcntrl1,cntrl2),(notcntrl2,cntrl2);and (w,in1,notcntrl1,notcntrl2),(x,in2,notcntrl1,cntrl2),(y,in3,cntrl1,notcntrl2),(z,in4,cntrl1,cntrl2);or (out,w,x,y,z);endmodule【例7.2】用case语句描述的4选1 MUXmodule mux4_1b(out,in1,in2,in3,in4,cntrl1,cntrl2); output out;input in1,in2,in3,in4,cntrl1,cntrl2;reg out;always@(in1 or in2 or in3 or in4 or cntrl1 or cntrl2) case({cntrl1,cntrl2})2'b00:out=in1;2'b01:out=in2;2'b10:out=in3;2'b11:out=in4;default:out=2'bx;endcaseendmodule【例7.3】行为描述方式实现的4位计数器module count4(clk,clr,out);input clk,clr;output[3:0] out;reg[3:0] out;always @(posedge clk or posedge clr)beginif (clr) out<=0;else out<=out+1;endendmodule【例7.4】数据流方式描述的4选1 MUXmodule mux4_1c(out,in1,in2,in3,in4,cntrl1,cntrl2);output out;input in1,in2,in3,in4,cntrl1,cntrl2;assign out=(in1 & ~cntrl1 & ~cntrl2)|(in2 & ~cntrl1 & cntrl2)| (in3 & cntrl1 & ~cntrl2)|(in4 & cntrl1 & cntrl2); endmodule【例7.5】用条件运算符描述的4选1 MUXmodule mux4_1d(out,in1,in2,in3,in4,cntrl1,cntrl2);output out;input in1,in2,in3,in4,cntrl1,cntrl2;assign out=cntrl1 ? (cntrl2 ? in4:in3):(cntrl2 ? in2:in1); endmodule【例7.6】门级结构描述的2选1MUXmodule mux2_1a(out,a,b,sel);output out;input a,b,sel;not (sel_,sel);and(a1,a,sel_),(a2,b,sel);or (out,a1,a2);endmodule【例7.7】行为描述的2选1MUXmodule mux2_1b(out,a,b,sel);output out;input a,b,sel;reg out;always @(a or b or sel)beginif(sel) out = b;else out = a;endendmodule【例7.8】数据流描述的2选1MUXmodule MUX2_1c(out,a,b,sel);input a,b,sel;assign out = sel ? b : a;endmodule【例7.9】调用门元件实现的1位半加器module half_add1(a,b,sum,cout);input a,b;output sum,cout;and(cout,a,b);xor(sum,a,b);endmodule【例7.10】数据流方式描述的1位半加器module half_add2(a,b,sum,cout);input a,b;output sum,cout;assign sum=a^b;assign cout=a&b;endmodule【例7.11】采用行为描述的1位半加器module half_add3(a,b,sum,cout);input a,b;output sum,cout;reg sum,cout;always @(a or b)begincase ({a,b}) //真值表描述2'b00: begin sum=0; cout=0; end2'b01: begin sum=1; cout=0; end2'b10: begin sum=1; cout=0; end2'b11: begin sum=0; cout=1; endendcaseendendmodule【例7.12】采用行为描述的1位半加器module half_add4(a,b,sum,cout);input a,b;reg sum,cout;always @(a or b)beginsum= a^b;cout=a&b;endendmodule【例7.13】调用门元件实现的1位全加器module full_add1(a,b,cin,sum,cout);input a,b,cin;output sum,cout;wire s1,m1,m2,m3;and (m1,a,b),(m2,b,cin),(m3,a,cin);xor(s1,a,b),(sum,s1,cin);or(cout,m1,m2,m3);endmodule【例7.14】数据流描述的1位全加器module full_add2(a,b,cin,sum,cout);input a,b,cin;output sum,cout;assign sum = a ^ b ^ cin;assign cout = (a & b)|(b & cin)|(cin & a); endmodule【例7.15】1位全加器module full_add3(a,b,cin,sum,cout);input a,b,cin;output sum,cout;assign {cout,sum}=a+b+cin;endmodule【例7.16】行为描述的1位全加器module full_add4(a,b,cin,sum,cout);input a,b,cin;reg sum,cout; //在always块中被赋值的变量应定义为reg型reg m1,m2,m3;always @(a or b or cin)beginsum = (a ^ b) ^ cin;m1 = a & b;m2 = b & cin;m3 = a & cin;cout = (m1|m2)|m3;endendmodule【例7.17】混合描述的1位全加器 module full_add5(a,b,cin,sum,cout);input a,b,cin;output sum,cout;reg cout,m1,m2,m3; //在always块中被赋值的变量应定义为reg型wire s1;xor x1(s1,a,b); //调用门元件always @(a or b or cin) //always块语句beginm1 = a & b;m2 = b & cin;m3 = a & cin;cout = (m1| m2) | m3;endassign sum = s1 ^ cin; //assign持续赋值语句endmodule【例7.18】结构描述的4位级连全加器 `include "full_add1.v"module add4_1(sum,cout,a,b,cin);output[3:0] sum;output cout;input[3:0] a,b;input cin;full_add1 f0(a[0],b[0],cin,sum[0],cin1); //级连描述full_add1 f1(a[1],b[1],cin1,sum[1],cin2);full_add1 f2(a[2],b[2],cin2,sum[2],cin3);- 21 -full_add1 f3(a[3],b[3],cin3,sum[3],cout);endmodule【例7.19】数据流描述的4位全加器module add4_2(cout,sum,a,b,cin);output[3:0] sum;output cout;input[3:0] a,b;input cin;assign {cout,sum}=a+b+cin;endmodule【例7.20】行为描述的4位全加器module add4_3(cout,sum,a,b,cin);output[3:0] sum;output cout;input[3:0] a,b;input cin;reg[3:0] sum;reg cout;always @(a or b or cin)begin{cout,sum}=a+b+cin;endendmodule【例8.1】$time与$realtime的区别`timescale 10ns/1nsmodule time_dif;reg ts;parameter delay=2.6;initialbegin#delay ts=1;#delay ts=0;#delay ts=1;#delay ts=0;endinitial $monitor($time,,,"ts=%b",ts); //使用函数$time - 22 -endmodule【例8.2】$random函数的使用`timescale 10ns/1nsmodule random_tp;integer data;integer i;parameter delay=10;initial $monitor($time,,,"data=%b",data);initial beginfor(i=0; i<=100; i=i+1)#delay data=$random; //每次产生一个随机数endendmodule【例8.3】1位全加器进位输出UDP元件primitive carry_udp(cout,cin,a,b);input cin,a,b;output cout;table//cin a b : cout //真值表0 0 0 : 0;0 1 0 : 0;0 0 1 : 0;0 1 1 : 1;1 0 0 : 0;1 0 1 : 1;1 1 0 : 1;1 1 1 : 1;endtableendprimitive【例8.4】包含x态输入的1位全加器进位输出UDP元件primitive carry_udpx1(cout,cin,a,b);input cin,a,b;output cout;table// cin a b : cout //真值表0 0 0 : 0;- 23 -0 1 0 : 0;0 0 1 : 0;0 1 1 : 1;1 0 0 : 0;1 0 1 : 1;1 1 0 : 1;1 1 1 : 1;0 0 x : 0; //只要有两个输入为0,则进位输出肯定为00 x 0 : 0;x 0 0 : 0;1 1 x : 1; //只要有两个输入为1,则进位输出肯定为11 x 1 : 1;x 1 1 : 1;endtableendprimitive【例8.5】用简缩符“?”表述的1位全加器进位输出UDP元件primitive carry_udpx2(cout,cin,a,b);input cin,a,b;output cout;table// cin a b : cout //真值表? 0 0 : 0; //只要有两个输入为0,则进位输出肯定为00 ? 0 : 0;0 0 ? : 0;? 1 1 : 1; //只要有两个输入为1,则进位输出肯定为11 ? 1 : 1;1 1 ? : 1;endtableendprimitive【例8.6】3选1多路选择器UDP元件primitive mux31(Y,in0,in1,in2,s2,s1);input in0,in1,in2,s2,s1;output Y;table//in0 in1 in2 s2 s1 : Y0 ? ? 0 0 : 0; //当s2s1=00时,Y=in01 ? ? 0 0 : 1;? 0 ? 0 1 : 0; //当s2s1=01时,Y=in1- 24 -? 1 ? 0 1 : 1;? ? 0 1 ? : 0; //当s2s1=1?时,Y=in2? ? 1 1 ? : 1;0 0 ? 0 ? : 0;1 1 ? 0 ? : 1;0 ? 0 ? 0 : 0;1 ? 1 ? 0 : 1;? 0 0 ? 1 : 0;? 1 1 ? 1 : 1;endtableendprimitive【例8.7】电平敏感的1位数据锁存器UDP元件primitive latch(Q,clk,reset,D);input clk,reset,D;output Q;reg Q;initial Q = 1'b1; //初始化table// clk reset D : state : Q? 1 ? : ? : 0 ; //reset=1,则不管其他端口为什么值,输出都为00 0 0 : ? : 0 ; //clk=0,锁存器把D端的输入值输出0 0 1 : ? : 1 ;1 0 ? : ? : - ; //clk=1,锁存器的输出保持原值,用符号“-”表示endtableendprimitive【例8.8】上升沿触发的D触发器UDP元件primitive DFF(Q,D,clk);output Q;input D,clk;reg Q;table//clk D : state : Q(01) 0 : ? : 0; //上升沿到来,输出Q=D(01) 1 : ? : 1;(0x) 1 : 1 : 1;(0x) 0 : 0 : 0;(?0) ? : ? : -; //没有上升沿到来,输出Q保持原值? (??) : ? : - ; //时钟不变,输出也不变- 25 -endprimitive【例8.9】带异步置1和异步清零的上升沿触发的D触发器UDP元件primitive DFF_UDP(Q,D,clk,clr,set);output Q;input D,clk,clr,set;reg Q;table// clk D clr s et : state : Q(01) 1 0 0 : ? : 0;(01) 1 0 x : ? : 0;? ? 0 x : 0 : 0;(01) 0 0 0 : ? : 1;(01) 0 x 0 : ? : 1;? ? x 0 : 1 : 1;(x1) 1 0 0 : 0 : 0;(x1) 0 0 0 : 1 : 1;(0x) 1 0 0 : 0 : 0;(0x) 0 0 0 : 1 : 1;? ? 1 ? : ? : 1; //异步复位? ? 0 1 : ? : 0; //异步置1n ? 0 0 : ? : -;? * ? ? : ? : -;? ? (?0) ? : ? : -;? ? ? (?0): ? : -;? ? ? ? : ? : x;endtableendprimitive【例8.12】延迟定义块举例module delay(out,a,b,c);output out;input a,b,c;and a1(n1,a,b);or o1(out,c,n1);specify(a=>out)=2;(b=>out)=3;(c=>out)=1;- 26 -endmodule【例8.13】激励波形的描述'timescale 1ns/1nsmodule test1;reg A,B,C;initialbegin//激励波形描述A = 0;B = 1;C = 0;#100 C = 1;#100 A = 1; B = 0;#100 A = 0;#100 C = 0;#100 $finish;endinitial $monitor($time,,,"A=%d B=%d C=%d",A,B,C); //显示endmodule【例8.15】用always过程块产生两个时钟信号module test2;reg clk1,clk2;parameter CYCLE = 100;alwaysbegin{clk1,clk2} = 2'b10;#(CYCLE/4) {clk1,clk2} = 2'b01;#(CYCLE/4) {clk1,clk2} = 2'b11;#(CYCLE/4) {clk1,clk2} = 2'b00;#(CYCLE/4) {clk1,clk2} = 2'b10;endinitial $monitor($time,,,"clk1=%b clk2=%b",clk1,clk2);endmodule【例8.17】存储器在仿真程序中的应用module ROM(addr,data,oe);output[7:0] data; //数据信号input[14:0] addr; //地址信号input oe; //读使能信号,低电平有效- 27 -reg[7:0] mem[0:255]; //存储器定义parameter DELAY = 100;assign #DELAY data=(oe==0) ? mem[addr] : 8'hzz;initial $readmemh("rom.hex",mem); //从文件中读入数据endmodule【例8.18】8位乘法器的仿真程序`timescale 10ns/1nsmodule mult_tp; //测试模块的名字reg[7:0] a,b; //测试输入信号定义为reg型wire [15:0] out; //测试输出信号定义为wire型integer i,j;mult8 m1(out,a,b); //调用测试对象//激励波形设定initialbegina=0;b=0;for(i=1;i<255;i=i+1)#10 a=i;endinitialbeginfor(j=1;j<255;j=j+1)#10 b=j;endinitial//定义结果显示格式begin$monitor($time,,,"%d * %d= %d",a,b,out);#2560 $finish;endendmodulemodule mult8(out, a, b); //8位乘法器源代码parameter size=8;input[size:1] a,b; //两个操作数output[2*size:1] out; //结果assign out=a*b; //乘法运算符- 28 -endmodule【例8.19】8位加法器的仿真程序`timescale 1ns/1nsmodule add8_tp; //仿真模块无端口列表reg[7:0] A,B; //输入激励信号定义为reg型reg cin;wire[7:0] SUM; //输出信号定义为wire型wire cout;parameter DELY = 100;add8 AD1(SUM,cout,A,B,cin); //调用测试对象initial begin//激励波形设定A= 8'd0; B= 8'd0; cin=1'b0;#DELY A= 8'd100; B= 8'd200; cin=1'b1;#DELY A= 8'd200; B= 8'd88;#DELY A= 8'd210; B= 8'd18; cin=1'b0;#DELY A= 8'd12; B= 8'd12;#DELY A= 8'd100; B= 8'd154;#DELY A= 8'd255; B= 8'd255; cin=1'b1;#DELY $finish;end//输出格式定义initial $monitor($time,,,"%d + %d + %b = {%b, %d}",A,B,cin,cout,SUM); endmodulemodule add8(SUM,cout,A,B,cin); //待测试的8位加法器模块output[7:0] SUM;output cout;input[7:0] A,B;input cin;assign {cout,SUM}=A+B+cin;endmodule【例8.20】2选1多路选择器的仿真`timescale 1ns/1nsmodule mux_tp;reg a,b,sel;wire out;- 29 -MUX2_1 m1(out,a,b,sel); //调用待测试模块initialbegina=1'b0; b=1'b0; sel=1'b0;#5 sel=1'b1;#5 a=1'b1; s el=1'b0;#5 sel=1'b1;#5 a=1'b0; b=1'b1; sel=1'b0;#5 sel=1'b1;#5 a=1'b1; b=1'b1; sel=1'b0;#5 sel=1'b1;endinitial $monitor($time,,,"a=%b b=%b sel=%b out=%b",a,b,sel,out);endmodulemodule MUX2_1(out,a,b,sel); //待测试的2选1MUX模块input a,b,sel;output out;not #(0.4,0.3) (sel_,sel); //#(0.4,0.3)为门延时and #(0.7,0.6) (a1,a,sel_);and #(0.7,0.6) (a2,b,sel);or #(0.7,0.6) (out,a1,a2);endmodule【例8.21】8位计数器的仿真`timescale 10ns/1nsmodule count8_tp;reg clk,reset; //输入激励信号定义为reg型wire[7:0] qout; //输出信号定义为wire型parameter DELY=100;counter C1(qout,reset,clk); //调用测试对象always #(DELY/2) clk = ~clk; //产生时钟波形initialbegin//激励波形定义clk =0; reset=0;- 30 -#DELY reset=1;#DELY reset=0;#(DELY*300) $finish;end//结果显示initial $monitor($time,,,"clk=%d reset=%d qout=%d",clk,reset,qout); endmodulemodule counter(qout,reset,clk); //待测试的8位计数器模块output[7:0] qout;input clk,reset;reg[7:0] qout;always @(posedge clk)begin if (reset) qout<=0;else qout<=qout+1;endendmodule【例9.1】基本门电路的几种描述方法(1)门级结构描述module gate1(F,A,B,C,D);input A,B,C,D;output F;nand(F1,A,B); //调用门元件and(F2,B,C,D);or(F,F1,F2);endmodule(2)数据流描述module gate2(F,A,B,C,D);input A,B,C,D;output F;assign F=(A&B)|(B&C&D); //assign持续赋值endmodule(3)行为描述module gate3(F,A,B,C,D);input A,B,C,D;output F;- 31 -reg F;always @(A or B or C or D) //过程赋值beginF=(A&B)|(B&C&D);endendmodule【例9.2】用bufif1关键字描述的三态门module tri_1(in,en,out);input in,en;output out;tri out;bufif1 b1(out,in,en); //注意三态门端口的排列顺序endmodule【例9.3】用assign语句描述的三态门module tri_2(out,in,en);output out;input in,en;assign out = en ? in : 'bz;//若en=1,则out=in;若en=0,则out为高阻态endmodule【例9.4】三态双向驱动器module bidir(tri_inout,out,in,en,b);inout tri_inout;output out;input in,en,b;assign tri_inout = en ? in : 'bz;assign out = tri_inout ^ b;endmodule【例9.5】三态双向驱动器module bidir2(bidir,en,clk);inout[7:0] bidir;input en,clk;reg[7:0] temp;assign bidir= en ? temp : 8'bz;always @(posedge clk)begin- 32 -if(en) temp=bidir;else temp=temp+1;endendmodule【例9.6】3-8译码器module decoder_38(out,in);output[7:0] out;input[2:0] in;reg[7:0] out;always @(in)begincase(in)3'd0: out=8'b11111110;3'd1: out=8'b11111101;3'd2: out=8'b11111011;3'd3: out=8'b11110111;3'd4: out=8'b11101111;3'd5: out=8'b11011111;3'd6: out=8'b10111111;3'd7: out=8'b01111111;endcaseendendmodule【例9.7】8-3优先编码器module encoder8_3(none_on,outcode,a,b,c,d,e,f,g,h);output none_on;output[2:0] outcode;input a,b,c,d,e,f,g,h;reg[3:0] outtemp;assign {none_on,outcode}=outtemp;always @(a or b or c or d or e or f or g or h)beginif(h) outtemp=4'b0111;else if(g) outtemp=4'b0110;else if(f) outtemp=4'b0101;else if(e) outtemp=4'b0100;else if(d) outtemp=4'b0011;else if(c) outtemp=4'b0010;- 33 -else if(b) outtemp=4'b0001;else if(a) outtemp=4'b0000;else outtemp=4'b1000;endendmodule【例9.8】用函数定义的8-3优先编码器module code_83(din, dout);input[7:0] din;output[2:0] dout;function[2:0] code; //函数定义input[7:0] din; //函数只有输入端口,输出为函数名本身if (din[7]) code = 3'd7;else if (din[6]) code = 3'd6;else if (din[5]) code = 3'd5;else if (din[4]) code = 3'd4;else if (din[3]) code = 3'd3;else if (din[2]) code = 3'd2;else if (din[1]) code = 3'd1;else code = 3'd0;endfunctionassign dout = code(din); //函数调用endmodule【例9.9】七段数码管译码器module decode47(a,b,c,d,e,f,g,D3,D2,D1,D0);output a,b,c,d,e,f,g;input D3,D2,D1,D0; //输入的4位BCD码reg a,b,c,d,e,f,g;always @(D3 or D2 or D1 or D0)begincase({D3,D2,D1,D0}) //用case语句进行译码4'd0: {a,b,c,d,e,f,g}=7'b1111110;4'd1: {a,b,c,d,e,f,g}=7'b0110000;4'd2: {a,b,c,d,e,f,g}=7'b1101101;4'd3: {a,b,c,d,e,f,g}=7'b1111001;4'd4: {a,b,c,d,e,f,g}=7'b0110011;4'd5: {a,b,c,d,e,f,g}=7'b1011011;- 34 -4'd6: {a,b,c,d,e,f,g}=7'b1011111;4'd7: {a,b,c,d,e,f,g}=7'b1110000;4'd8: {a,b,c,d,e,f,g}=7'b1111111;4'd9: {a,b,c,d,e,f,g}=7'b1111011;default: {a,b,c,d,e,f,g}=7'bx;endcaseendendmodule【例9.10】奇偶校验位产生器module parity(even_bit,odd_bit,input_bus);output even_bit,odd_bit;input[7:0] input_bus;assign odd_bit = ^ input_bus; //产生奇校验位assign even_bit = ~odd_bit; //产生偶校验位endmodule【例9.11】用if-else语句描述的4选1 MUXmodule mux_if(out,in0,in1,in2,in3,sel);output out;input in0,in1,in2,in3;input[1:0] sel;reg out;always @(in0 or in1 or in2 or in3 or sel)beginif(sel==2'b00) out=in0;else if(sel==2'b01) out=in1;else if(sel==2'b10) out=in2;else out=in3;endendmodule【例9.12】用case语句描述的4选1 MUXmodule mux_case(out,in0,in1,in2,in3,sel);output out;input in0,in1,in2,in3;input[1:0] sel;reg out;always @(in0 or in1 or in2 or in3 or sel)begin- 35 -。

verilog多模块编程实例

verilog多模块编程实例

Verilog多模块编程实例1. 介绍Verilog是一种硬件描述语言,被广泛应用于数字电路设计。

Verilog具有模块化设计的特点,可以将一个大型的电路设计分解成多个小模块,然后逐个实现和调试。

本文将介绍Verilog多模块编程的实例,以帮助读者了解如何使用Verilog进行模块化设计。

2. 模块化设计的优势模块化设计是一种将大型系统分解成多个小模块的设计方法。

在Verilog中,模块化设计有以下几个优势:- 提高代码可读性:通过将大型系统分解成多个小模块,可以提高代码的可读性和可维护性。

- 便于调试:每个小模块相对独立,可以单独调试和测试,提高了系统的可靠性和稳定性。

- 提高复用性:将功能相似的代码封装成模块,可以提高代码的复用性,减少代码冗余。

3. 多模块编程实例接下来,我们将通过一个简单的数字电路设计来演示Verilog多模块编程的实例。

假设我们要设计一个4位全加器电路,首先我们需要实现一个单位全加器模块,然后将四个单元全加器模块连接成一个4位全加器模块。

3.1 单位全加器模块我们定义一个单位全加器模块,代码如下:```verilogmodule Adder_unit (input a, b, cin,output sum, cout);assign {cout, sum} = a + b + cin;endmodule```在单位全加器模块中,我们定义了三个输入信号a、b、cin和两个输出信号sum、cout。

其中,sum表示相加的结果,cout表示进位。

在模块内部,我们通过assign语句实现了全加器的功能。

3.2 4位全加器模块接下来,我们将四个单位全加器模块连接成一个4位全加器模块,代码如下:```verilogmodule Adder_4bit (input [3:0] a, b,input cin,output [3:0] sum,output cout);Adder_unit U0(.a(a[0]), .b(b[0]), .cin(cin), .sum(sum[0]), .cout(cout0));Adder_unit U1(.a(a[1]), .b(b[1]), .cin(cout0), .sum(sum[1]), .cout(cout1)); Adder_unit U2(.a(a[2]), .b(b[2]), .cin(cout1), .sum(sum[2]), .cout(cout2)); Adder_unit U3(.a(a[3]), .b(b[3]), .cin(cout2), .sum(sum[3]), .cout(cout));endmodule```在4位全加器模块中,我们首先定义了四个输入信号a、b和一个输入信号cin,以及四个输出信号sum和一个输出信号cout。

Verilog的135个经典设计实例

Verilog的135个经典设计实例

王金明《Verilog HDL程序设计教程》【例3.1】4位全加器module adder4(cout,sum,ina,inb,cin);output[3:0] sum;output cout;input[3:0] ina,inb;input cin;assign {cout,sum}=ina+inb+cin;endmodule【例3.2】4位计数器module count4(out,reset,clk);output[3:0] out;input reset,clk;reg[3:0] out;always @(posedge clk)beginif (reset) out<=0; //同步复位else out<=out+1; //计数endendmodule【例3.3】4位全加器的仿真程序`timescale 1ns/1ns`include "adder4.v"module adder_tp; //测试模块的名字reg[3:0] a,b; //测试输入信号定义为reg型reg cin;wire[3:0] sum; //测试输出信号定义为wire型wire cout;integer i,j;adder4 adder(sum,cout,a,b,cin); //调用测试对象always #5 cin=~cin; //设定cin的取值initialbegina=0;b=0;cin=0;for(i=1;i<16;i=i+1)#10 a=i; //设定a的取值end- 1 - 程序文本initialbeginfor(j=1;j<16;j=j+1)#10 b=j; //设定b的取值endinitial //定义结果显示格式begin$monitor($time,,,"%d + %d + %b={%b,%d}",a,b,cin,cout,sum); #160 $finish;endendmodule【例3.4】4位计数器的仿真程序`timescale 1ns/1ns`include "count4.v"module coun4_tp;reg clk,reset; //测试输入信号定义为reg型wire[3:0] out; //测试输出信号定义为wire型parameter DELY=100;count4 mycount(out,reset,clk); //调用测试对象always #(DELY/2) clk = ~clk; //产生时钟波形initialbegin //激励信号定义clk =0; reset=0;#DELY reset=1;#DELY reset=0;#(DELY*20) $finish;end//定义结果显示格式initial $monitor($time,,,"clk=%d reset=%d out=%d", clk, reset,out);endmodule【例3.5】“与-或-非”门电路module AOI(A,B,C,D,F); //模块名为AOI(端口列表A B C D F)input A,B,C,D; //模块的输入端口为A B C Doutput F; //模块的输出端口为F- 2 -王金明《Verilog HDL程序设计教程》wire A,B,C,D,F; //定义信号的数据类型 assign F= ~((A&B)|(C&D)); //逻辑功能描述endmodule【例5.1】用case语句描述的4选1数据选择器module mux4_1(out,in0,in1,in2,in3,sel);output out;input in0,in1,in2,in3;input[1:0] sel;reg out;always @(in0 or in1 or in2 or in3 or sel) //敏感信号列表 case(sel)2'b00: out=in0;2'b01: out=in1;2'b10: out=in2;2'b11: out=in3;default: out=2'bx;endcaseendmodule【例5.2】同步置数、同步清零的计数器module count(out,data,load,reset,clk);output[7:0] out;input[7:0] data;input load,clk,reset;reg[7:0] out;always @(posedge clk) //clk上升沿触发beginif (!reset) out = 8'h00; //同步清0低电平有效else if (load) out = data; //同步预置else out = out + 1; //计数endendmodule【例5.3】用always过程语句描述的简单算术逻辑单元`define add 3'd0`define minus 3'd1`define band 3'd2`define bor 3'd3`define bnot 3'd4- 3 - 程序文本module alu(out,opcode,a,b);output[7:0] out;reg[7:0] out;input[2:0] opcode; //操作码input[7:0] a,b; //操作数always@(opcode or a or b) //电平敏感的always块 begincase(opcode)`add: out = a+b; //加操作`minus: out = a-b; //减操作`band: out = a&b; //求与`bor: out = a|b; //求或`bnot: out=~a; //求反default: out=8'hx; //未收到指令时输出任意态 endcaseendendmodule【例5.4】用initial过程语句对测试变量A、B、C赋值 `timescale 1ns/1nsmodule test;reg A,B,C;initialbeginA = 0;B = 1;C = 0;#50 A = 1; B = 0;#50 A = 0; C = 1;#50 B = 1;#50 B = 0; C = 0;#50 $finish ;endendmodule【例5.5】用begin-end串行块产生信号波形 `timescale 10ns/1nsmodule wave1;reg wave;parameter cycle=10;initialbegin- 4 -王金明《Verilog HDL程序设计教程》wave=0;#(cycle/2) wave=1;#(cycle/2) wave=0;#(cycle/2) wave=1;#(cycle/2) wave=0;#(cycle/2) wave=1;#(cycle/2) $finish ;endinitial $monitor($time,,,"wave=%b",wave); endmodule【例5.6】用fork-join并行块产生信号波形`timescale 10ns/1nsmodule wave2;reg wave;parameter cycle=5;initialforkwave=0;#(cycle) wave=1;#(2*cycle) wave=0;#(3*cycle) wave=1;#(4*cycle) wave=0;#(5*cycle) wave=1;#(6*cycle) $finish;joininitial $monitor($time,,,"wave=%b",wave); endmodule【例5.7】持续赋值方式定义的2选1多路选择器module MUX21_1(out,a,b,sel);input a,b,sel;output out;assign out=(sel==0)?a:b;//持续赋值如果sel为0则out=a 否则out=b endmodule【例5.8】阻塞赋值方式定义的2选1多路选择器module MUX21_2(out,a,b,sel); input a,b,sel;- 5 - 程序文本output out;reg out;always@(a or b or sel)beginif(sel==0) out=a; //阻塞赋值 else out=b;endendmodule【例5.9】非阻塞赋值module non_block(c,b,a,clk);output c,b;input clk,a;reg c,b;always @(posedge clk)beginb<=a;c<=b;endendmodule【例5.10】阻塞赋值module block(c,b,a,clk);output c,b;input clk,a;reg c,b;always @(posedge clk)beginb=a;c=b;endendmodule【例5.11】模为60的BCD码加法计数器module count60(qout,cout,data,load,cin,reset,clk); output[7:0] qout;output cout;input[7:0] data;input load,cin,clk,reset;reg[7:0] qout;always @(posedge clk) //clk上升沿时刻计数- 6 -王金明《Verilog HDL程序设计教程》beginif (reset) qout<=0; //同步复位else if(load) qout<=data; //同步置数else if(cin)beginif(qout[3:0]==9) //低位是否为9是则beginqout[3:0]<=0; //回0并判断高位是否为5if (qout[7:4]==5) qout[7:4]<=0;elseqout[7:4]<=qout[7:4]+1; //高位不为5则加1endelse //低位不为9则加1qout[3:0]<=qout[3:0]+1;endendassign cout=((qout==8'h59)&cin)?1:0; //产生进位输出信号endmodule【例5.12】BCD码—七段数码管显示译码器module decode4_7(decodeout,indec);output[6:0] decodeout;input[3:0] indec;reg[6:0] decodeout;always @(indec)begincase(indec) //用case语句进行译码4'd0:decodeout=7'b1111110;4'd1:decodeout=7'b0110000;4'd2:decodeout=7'b1101101;4'd3:decodeout=7'b1111001;4'd4:decodeout=7'b0110011;4'd5:decodeout=7'b1011011;4'd6:decodeout=7'b1011111;4'd7:decodeout=7'b1110000;4'd8:decodeout=7'b1111111;4'd9:decodeout=7'b1111011;default: decodeout=7'bx;endcaseend- 7 - 程序文本endmodule【例5.13】用casez描述的数据选择器 module mux_casez(out,a,b,c,d,select); output out;input a,b,c,d;input[3:0] select;reg out;always @(select or a or b or c or d)begincasez(select)4'b???1: out = a;4'b??1?: out = b;4'b?1??: out = c;4'b1???: out = d;endcaseendendmodule【例5.14】隐含锁存器举例module buried_ff(c,b,a);output c;input b,a;reg c;always @(a or b)beginif((b==1)&&(a==1)) c=a&b;endendmodule【例5.15】用for语句描述的七人投票表决器module voter7(pass,vote);output pass;input[6:0] vote;reg[2:0] sum;integer i;reg pass;always @(vote)beginsum=0;- 8 -王金明《Verilog HDL程序设计教程》for(i=0;i<=6;i=i+1) //for语句if(vote[i]) sum=sum+1;if(sum[2]) pass=1; //若超过4人赞成则pass=1 else pass=0;endendmodule【例5.16】用for语句实现2个8位数相乘module mult_for(outcome,a,b);parameter size=8;input[size:1] a,b; //两个操作数output[2*size:1] outcome; //结果reg[2*size:1] outcome;integer i;always @(a or b)beginoutcome=0;for(i=1; i<=size; i=i+1) //for语句if(b[i]) outcome=outcome +(a << (i-1));endendmodule【例5.17】用repeat实现8位二进制数的乘法module mult_repeat(outcome,a,b);parameter size=8;input[size:1] a,b;output[2*size:1] outcome;reg[2*size:1] temp_a,outcome;reg[size:1] temp_b;always @(a or b)beginoutcome=0;temp_a=a;temp_b=b;repeat(size) //repeat语句size为循环次数beginif(temp_b[1]) //如果temp_b的最低位为1就执行下面的加法 outcome=outcome+temp_a;temp_a=temp_a<<1; //操作数a左移一位- 9 - 程序文本temp_b=temp_b>>1; //操作数b右移一位endendendmodule【例5.18】同一循环的不同实现方式 module loop1; //方式1integer i;initialfor(i=0;i<4;i=i+1) //for语句begin$display(“i=%h”,i);endendmodulemodule loop2; //方式2integer i;initial begini=0;while(i<4) //while语句begin$display ("i=%h",i);i=i+1;endendendmodulemodule loop3; //方式3integer i;initial begini=0;repeat(4) //repeat语句begin$display ("i=%h",i);i=i+1;endendendmodule【例5.19】使用了`include语句的16位加法器- 10 -王金明《Verilog HDL程序设计教程》`include "adder.v" module adder16(cout,sum,a,b,cin);output cout;parameter my_size=16;output[my_size-1:0] sum;input[my_size-1:0] a,b;input cin;adder my_adder(cout,sum,a,b,cin); //调用adder模块endmodule//下面是adder模块代码module adder(cout,sum,a,b,cin);parameter size=16;output cout;output[size-1:0] sum;input cin;input[size-1:0] a,b;assign {cout,sum}=a+b+cin;endmodule【例5.20】条件编译举例module compile(out,A,B);output out;input A,B;`ifdef add //宏名为addassign out=A+B;`elseassign out=A-B;`endifendmodule【例6.1】加法计数器中的进程module count(data,clk,reset,load,cout,qout);output cout;output[3:0] qout;reg[3:0] qout;input[3:0] data;input clk,reset,load;- 11 - 程序文本always @(posedge clk) //进程1always过程块beginif (!reset) qout= 4'h00; //同步清0低电平有效else if (load) qout= data; //同步预置else qout=qout + 1; //加法计数endassign cout=(qout==4'hf)?1:0; //进程2用持续赋值产生进位信号【例6.2】任务举例module alutask(code,a,b,c);input[1:0] code;input[3:0] a,b;output[4:0] c;reg[4:0] c;task my_and; //任务定义注意无端口列表input[3:0] a,b; //a,b,out名称的作用域范围为task任务内部output[4:0] out;integer i;beginfor(i=3;i>=0;i=i-1)out[i]=a[i]&b[i]; //按位与endendtaskalways@(code or a or b)begincase(code)2'b00: my_and(a,b,c);/* 用任务my_and需注意端口列表的顺序应与任务定义中的一致这里的a,b,c分别对应任务定义中的a,b,out */2'b01: c=a|b; //或2'b10: c=a-b; //相减2'b11: c=a+b; //相加endcaseend- 12 -王金明《Verilog HDL程序设计教程》【例6.3】测试程序`include "alutask.v"module alu_tp;reg[3:0] a,b;reg[1:0] code;wire[4:0] c;parameter DELY = 100;alutask ADD(code,a,b,c); //调用被测试模块initial begincode=4'd0; a= 4'b0000; b= 4'b1111;#DELY code=4'd0; a= 4'b0111; b= 4'b1101;#DELY code=4'd1; a= 4'b0001; b= 4'b0011;#DELY code=4'd2; a= 4'b1001; b= 4'b0011;#DELY code=4'd3; a= 4'b0011; b= 4'b0001;#DELY code=4'd3; a= 4'b0111; b= 4'b1001;#DELY $finish;endinitial $monitor($time,,,"code=%b a=%b b=%b c=%b", code,a,b,c); endmodule【例6.4】函数function[7:0] get0;input[7:0] x;reg[7:0] count;integer i;begincount=0;for (i=0;i<=7;i=i+1)if (x[i]=1'b0) count=count+1;get0=count;endendfunction【例6.5】用函数和case语句描述的编码器不含优先顺序module code_83(din,dout);input[7:0] din;output[2:0] dout;- 13 - 程序文本function[2:0] code; //函数定义input[7:0] din; //函数只有输入输出为函数名本身 casex (din)8'b1xxx_xxxx : code = 3'h7;8'b01xx_xxxx : code = 3'h6;8'b001x_xxxx : code = 3'h5;8'b0001_xxxx : code = 3'h4;8'b0000_1xxx : code = 3'h3;8'b0000_01xx : code = 3'h2;8'b0000_001x : code = 3'h1;8'b0000_000x : code = 3'h0;default: code = 3'hx;endcaseendfunctionassign dout = code(din) ; //函数调用endmodule【例6.6】阶乘运算函数module funct(clk,n,result,reset);output[31:0] result;input[3:0] n;input reset,clk;reg[31:0] result;always @(posedge clk) //在clk的上升沿时执行运算beginif(!reset) result<=0; //复位else beginresult <= 2 * factorial(n); //调用factorial函数endendfunction[31:0] factorial; //阶乘运算函数定义注意无端口列表input[3:0] opa; //函数只能定义输入端输出端口为函数名本身 reg[3:0] i;beginfactorial = opa ? 1 : 0;for(i= 2; i <= opa; i = i+1) //该句若要综合通过opa应赋具体的数值 factorial = i* factorial; //阶乘运算end- 14 -王金明《Verilog HDL程序设计教程》endfunctionendmodule【例6.7】测试程序`define clk_cycle 50`include "funct.v"module funct_tp;reg[3:0] n;reg reset,clk;wire[31:0] result;initial //定义激励向量beginn=0; reset=1; clk=0;for(n=0;n<=15;n=n+1)#100 n=n;endinitial $monitor($time,,,"n=%d result=%d",n,result);//定义输出显示格式always # `clk_cycle clk=~clk; //产生时钟信号funct funct_try(.clk(clk),.n(n),.result(result),.reset(reset)); //调用被测试模块endmodule【例6.8】顺序执行模块1module serial1(q,a,clk);output q,a;input clk;reg q,a;always @(posedge clk)beginq=~q;a=~q;endendmodule【例6.9】顺序执行模块2 module serial2(q,a,clk); output q,a;- 15 - 程序文本input clk;reg q,a;always @(posedge clk)begina=~q;q=~q;endendmodule【例6.10】并行执行模块1 module paral1(q,a,clk);output q,a;input clk;reg q,a;always @(posedge clk)beginq=~q;endalways @(posedge clk)begina=~q;endendmodule【例6.11】并行执行模块2module paral2(q,a,clk);output q,a;input clk;reg q,a;always @(posedge clk)begina=~q;endalways @(posedge clk)beginq=~q;endendmodule【例7.1】调用门元件实现的4选1 MUX- 16 -王金明《Verilog HDL程序设计教程》module mux4_1a(out,in1,in2,in3,in4,cntrl1,cntrl2); output out;input in1,in2,in3,in4,cntrl1,cntrl2;wire notcntrl1,notcntrl2,w,x,y,z;not notcntrl1,cntrl2),(notcntrl2,cntrl2);and (w,in1,notcntrl1,notcntrl2),(x,in2,notcntrl1,cntrl2),(y,in3,cntrl1,notcntrl2),(z,in4,cntrl1,cntrl2);or (out,w,x,y,z);endmodule【例7.2】用case语句描述的4选1 MUXmodule mux4_1b(out,in1,in2,in3,in4,cntrl1,cntrl2); output out;input in1,in2,in3,in4,cntrl1,cntrl2;reg out;always@(in1 or in2 or in3 or in4 or cntrl1 or cntrl2) case({cntrl1,cntrl2})2'b00:out=in1;2'b01:out=in2;2'b10:out=in3;2'b11:out=in4;default:out=2'bx;endcaseendmodule【例7.3】行为描述方式实现的4位计数器module count4(clk,clr,out);input clk,clr;output[3:0] out;reg[3:0] out;always @(posedge clk or posedge clr)beginif (clr) out<=0;else out<=out+1;endendmodule- 17 - 程序文本【例7.4】数据流方式描述的4选1 MUXmodule mux4_1c(out,in1,in2,in3,in4,cntrl1,cntrl2);output out;input in1,in2,in3,in4,cntrl1,cntrl2;assign out=(in1 & ~cntrl1 & ~cntrl2)|(in2 & ~cntrl1 & cntrl2)| (in3 & cntrl1 & ~cntrl2)|(in4 & cntrl1 & cntrl2);endmodule【例7.5】用条件运算符描述的4选1 MUXmodule mux4_1d(out,in1,in2,in3,in4,cntrl1,cntrl2);output out;input in1,in2,in3,in4,cntrl1,cntrl2;assign out=cntrl1 ? (cntrl2 ? in4:in3):(cntrl2 ? in2:in1);endmodule【例7.6】门级结构描述的2选1MUXmodule mux2_1a(out,a,b,sel);output out;input a,b,sel;not (sel_,sel);and a1,a,sel_),(a2,b,sel);or (out,a1,a2);endmodule【例7.7】行为描述的2选1MUXmodule mux2_1b(out,a,b,sel);output out;input a,b,sel;reg out;always @(a or b or sel)beginif(sel) out = b;else out = a;endendmodule【例7.8】数据流描述的2选1MUXmodule MUX2_1c(out,a,b,sel);output out;- 18 -王金明《Verilog HDL程序设计教程》input a,b,sel; assign out = sel ? b : a;endmodule【例7.9】调用门元件实现的1位半加器module half_add1(a,b,sum,cout);input a,b;output sum,cout;and cout,a,b);xor sum,a,b);endmodule【例7.10】数据流方式描述的1位半加器module half_add2(a,b,sum,cout);input a,b;output sum,cout;assign sum=a^b;assign cout=a&b;endmodule【例7.11】采用行为描述的1位半加器module half_add3(a,b,sum,cout);input a,b;output sum,cout;reg sum,cout;always @(a or b)begincase ({a,b}) //真值表描述 2'b00: begin sum=0; cout=0; end2'b01: begin sum=1; cout=0; end2'b10: begin sum=1; cout=0; end2'b11: begin sum=0; cout=1; endendcaseendendmodule【例7.12】采用行为描述的1位半加器module half_add4(a,b,sum,cout);input a,b;output sum,cout;- 19 - 程序文本reg sum,cout;always @(a or b)beginsum= a^b;cout=a&b;endendmodule【例7.13】调用门元件实现的1位全加器 module full_add1(a,b,cin,sum,cout);input a,b,cin;output sum,cout;wire s1,m1,m2,m3;and m1,a,b),(m2,b,cin),(m3,a,cin);xor s1,a,b),(sum,s1,cin);or (cout,m1,m2,m3);endmodule【例7.14】数据流描述的1位全加器module full_add2(a,b,cin,sum,cout);input a,b,cin;output sum,cout;assign sum = a ^ b ^ cin;assign cout = (a & b)|(b & cin)|(cin & a); endmodule【例7.15】1位全加器module full_add3(a,b,cin,sum,cout);input a,b,cin;output sum,cout;assign {cout,sum}=a+b+cin;endmodule【例7.16】行为描述的1位全加器module full_add4(a,b,cin,sum,cout);input a,b,cin;output sum,cout;- 20 -王金明《Verilog HDL程序设计教程》reg sum,cout; //在always块中被赋值的变量应定义为reg型reg m1,m2,m3;always @(a or b or cin)beginsum = (a ^ b) ^ cin;m1 = a & b;m2 = b & cin;m3 = a & cin;cout = (m1|m2)|m3;endendmodule【例7.17】混合描述的1位全加器module full_add5(a,b,cin,sum,cout);input a,b,cin;output sum,cout;reg cout,m1,m2,m3; //在always块中被赋值的变量应定义为reg型wire s1;xor x1(s1,a,b); //调用门元件always @(a or b or cin) //always块语句beginm1 = a & b;m2 = b & cin;m3 = a & cin;cout = (m1| m2) | m3;endassign sum = s1 ^ cin; //assign持续赋值语句endmodule【例7.18】结构描述的4位级连全加器`include "full_add1.v"module add4_1(sum,cout,a,b,cin);output[3:0] sum;output cout;input[3:0] a,b;input cin;full_add1 f0(a[0],b[0],cin,sum[0],cin1); //级连描述full_add1 f1(a[1],b[1],cin1,sum[1],cin2);full_add1 f2(a[2],b[2],cin2,sum[2],cin3);- 21 - 程序文本full_add1 f3(a[3],b[3],cin3,sum[3],cout);endmodule【例7.19】数据流描述的4位全加器module add4_2(cout,sum,a,b,cin);output[3:0] sum;output cout;input[3:0] a,b;input cin;assign {cout,sum}=a+b+cin;endmodule【例7.20】行为描述的4位全加器module add4_3(cout,sum,a,b,cin);output[3:0] sum;output cout;input[3:0] a,b;input cin;reg[3:0] sum;reg cout;always @(a or b or cin)begin{cout,sum}=a+b+cin;endendmodule【例8.1】$time与$realtime的区别`timescale 10ns/1nsmodule time_dif;reg ts;parameter delay=2.6;initialbegin#delay ts=1;#delay ts=0;#delay ts=1;#delay ts=0;endinitial $monitor($time,,,"ts=%b",ts); //使用函数$time- 22 -王金明《Verilog HDL程序设计教程》endmodule【例8.2】$random函数的使用`timescale 10ns/1nsmodule random_tp;integer data;integer i;parameter delay=10;initial $monitor($time,,,"data=%b",data);initial beginfor(i=0; i<=100; i=i+1)#delay data=$random; //每次产生一个随机数 endendmodule【例8.3】1位全加器进位输出UDP元件primitive carry_udp(cout,cin,a,b);input cin,a,b;output cout;table//cin a b : cout //真值表0 0 0 : 0;0 1 0 : 0;0 0 1 : 0;0 1 1 : 1;1 0 0 : 0;1 0 1 : 1;1 1 0 : 1;1 1 1 : 1;endtableendprimitive【例8.4】包含x态输入的1位全加器进位输出UDP元件primitive carry_udpx1(cout,cin,a,b);input cin,a,b;output cout;table// cin a b : cout //真值表0 0 0 : 0;- 23 - 程序文本0 1 0 : 0;0 0 1 : 0;0 1 1 : 1;1 0 0 : 0;1 0 1 : 1;1 1 0 : 1;1 1 1 : 1;0 0 x : 0; //只要有两个输入为0则进位输出肯定为0 0 x 0 : 0;x 0 0 : 0;1 1 x : 1; //只要有两个输入为1则进位输出肯定为1 1 x 1 : 1;x 1 1 : 1;endtableendprimitive【例8.5】用简缩符“”表述的1位全加器进位输出UDP元件 primitive carry_udpx2(cout,cin,a,b);input cin,a,b;output cout;table// cin a b : cout //真值表? 0 0 : 0; //只要有两个输入为0则进位输出肯定为0 0 ? 0 : 0;0 0 ? : 0;? 1 1 : 1; //只要有两个输入为1则进位输出肯定为1 1 ? 1 : 1;1 1 ? : 1;endtableendprimitive【例8.6】3选1多路选择器UDP元件primitive mux31(Y,in0,in1,in2,s2,s1);input in0,in1,in2,s2,s1;output Y;table//in0 in1 in2 s2 s1 : Y0 ? ? 0 0 : 0; //当s2s1=00时Y=in01 ? ? 0 0 : 1;? 0 ? 0 1 : 0; //当s2s1=01时Y=in1- 24 -王金明《Verilog HDL程序设计教程》? 1 ? 0 1 : 1;? ? 0 1 ? : 0; //当s2s1=1时Y=in2? ? 1 1 ? : 1;0 0 ? 0 ? : 0;1 1 ? 0 ? : 1;0 ? 0 ? 0 : 0;1 ? 1 ? 0 : 1;? 0 0 ? 1 : 0;? 1 1 ? 1 : 1;endtableendprimitive【例8.7】电平敏感的1位数据锁存器UDP元件primitive latch(Q,clk,reset,D);input clk,reset,D;output Q;reg Q;initial Q = 1'b1; //初始化table// clk reset D : state : Q? 1 ? : ? : 0 ; //reset=1则不管其他端口为什么值输出都为0 0 0 0 : ? : 0 ; //clk=0锁存器把D端的输入值输出0 0 1 : ? : 1 ;1 0 ? : ? : - ; //clk=1锁存器的输出保持原值用符号“-”表示 endtableendprimitive【例8.8】上升沿触发的D触发器UDP元件primitive DFF(Q,D,clk);output Q;input D,clk;reg Q;table//clk D : state : Q(01) 0 : ? : 0; //上升沿到来输出Q=D(01) 1 : ? : 1;(0x) 1 : 1 : 1;(0x) 0 : 0 : 0;(?0) ? : ? : -; //没有上升沿到来输出Q保持原值? (??) : ? : - ; //时钟不变输出也不变- 25 - 程序文本endtableendprimitive【例8.9】带异步置1和异步清零的上升沿触发的D触发器UDP元件 primitive DFF_UDP(Q,D,clk,clr,set);output Q;input D,clk,clr,set;reg Q;table// clk D clr et state : Q(01) 1 0 0 : ? : 0;(01) 1 0 x : ? : 0;? ? 0 x : 0 : 0;(01) 0 0 0 : ? : 1;(01) 0 x 0 : ? : 1;? ? x 0 : 1 : 1;(x1) 1 0 0 : 0 : 0;(x1) 0 0 0 : 1 : 1;(0x) 1 0 0 : 0 : 0;(0x) 0 0 0 : 1 : 1;? ? 1 ? : ? : 1; //异步复位? ? 0 1 : ? : 0; //异步置1n ? 0 0 : ? : -;? * ? ? : ? : -;? ? (?0) ? : ? : -;? ? ? (?0): ? : -;? ? ? ? : ? : x;endtableendprimitive【例8.12】延迟定义块举例module delay(out,a,b,c);output out;input a,b,c;and a1(n1,a,b);or o1(out,c,n1);specify(a=>out)=2;(b=>out)=3;(c=>out)=1;- 26 -王金明《Verilog HDL程序设计教程》 endspecifyendmodule【例8.13】激励波形的描述'timescale 1ns/1nsmodule test1;reg A,B,C;initialbegin //激励波形描述A = 0;B = 1;C = 0;#100 C = 1;#100 A = 1; B = 0;#100 A = 0;#100 C = 0;#100 $finish;endinitial $monitor($time,,,"A=%d B=%d C=%d",A,B,C); //显示endmodule【例8.15】用always过程块产生两个时钟信号module test2;reg clk1,clk2;parameter CYCLE = 100;alwaysbegin{clk1,clk2} = 2'b10;#(CYCLE/4) {clk1,clk2} = 2'b01;#(CYCLE/4) {clk1,clk2} = 2'b11;#(CYCLE/4) {clk1,clk2} = 2'b00;#(CYCLE/4) {clk1,clk2} = 2'b10;endinitial $monitor($time,,,"clk1=%b clk2=%b",clk1,clk2);endmodule【例8.17】存储器在仿真程序中的应用module ROM(addr,data,oe);output[7:0] data; //数据信号input[14:0] addr; //地址信号input oe; //读使能信号低电平有效- 27 - 程序文本reg[7:0] mem[0:255]; //存储器定义parameter DELAY = 100;assign #DELAY data=(oe==0) ? mem[addr] : 8'hzz;initial $readmemh("rom.hex",mem); //从文件中读入数据 endmodule【例8.18】8位乘法器的仿真程序`timescale 10ns/1nsmodule mult_tp; //测试模块的名字reg[7:0] a,b; //测试输入信号定义为reg型wire [15:0] out; //测试输出信号定义为wire型integer i,j;mult8 m1(out,a,b); //调用测试对象//激励波形设定initialbegina=0;b=0;for(i=1;i<255;i=i+1)#10 a=i;endinitialbeginfor(j=1;j<255;j=j+1)#10 b=j;endinitial //定义结果显示格式begin$monitor($time,,,"%d * %d= %d",a,b,out);#2560 $finish;endendmodulemodule mult8(out, a, b); //8位乘法器源代码parameter size=8;input[size:1] a,b; //两个操作数output[2*size:1] out; //结果assign out=a*b; //乘法运算符- 28 -王金明《Verilog HDL程序设计教程》endmodule 【例8.19】8位加法器的仿真程序`timescale 1ns/1nsmodule add8_tp; //仿真模块无端口列表reg[7:0] A,B; //输入激励信号定义为reg型reg cin;wire[7:0] SUM; //输出信号定义为wire型wire cout;parameter DELY = 100;add8 AD1(SUM,cout,A,B,cin); //调用测试对象initial begin //激励波形设定A= 8'd0; B= 8'd0; cin=1'b0;#DELY A= 8'd100; B= 8'd200; cin=1'b1;#DELY A= 8'd200; B= 8'd88;#DELY A= 8'd210; B= 8'd18; cin=1'b0;#DELY A= 8'd12; B= 8'd12;#DELY A= 8'd100; B= 8'd154;#DELY A= 8'd255; B= 8'd255; cin=1'b1;#DELY $finish;end//输出格式定义initial $monitor($time,,,"%d + %d + %b = {%b, %d}",A,B,cin,cout,SUM);endmodule module add8(SUM,cout,A,B,cin); //待测试的8位加法器模块output[7:0] SUM;output cout;input[7:0] A,B;input cin;assign {cout,SUM}=A+B+cin;endmodule【例8.20】2选1多路选择器的仿真`timescale 1ns/1nsmodule mux_tp;reg a,b,sel;wire out;- 29 - 程序文本MUX2_1 m1(out,a,b,sel); //调用待测试模块initialbegina=1'b0; b=1'b0; sel=1'b0;#5 sel=1'b1;#5 a=1'b1; el=1'b0;#5 sel=1'b1;#5 a=1'b0; b=1'b1; el=1'b0;#5 sel=1'b1;#5 a=1'b1; b=1'b1; sel=1'b0;#5 sel=1'b1;endinitial $monitor($time,,,"a=%b b=%b sel=%b out=%b",a,b,sel,out); endmodulemodule MUX2_1(out,a,b,sel); //待测试的2选1MUX模块input a,b,sel;output out;not #(0.4,0.3) (sel_,sel); //#(0.4,0.3)为门延时and #(0.7,0.6) (a1,a,sel_);and #(0.7,0.6) (a2,b,sel);or #(0.7,0.6) (out,a1,a2);endmodule【例8.21】8位计数器的仿真`timescale 10ns/1nsmodule count8_tp;reg clk,reset; //输入激励信号定义为reg型wire[7:0] qout; //输出信号定义为wire型parameter DELY=100;counter C1(qout,reset,clk); //调用测试对象always #(DELY/2) clk = ~clk; //产生时钟波形initialbegin //激励波形定义clk =0; reset=0;- 30 -王金明《Verilog HDL程序设计教程》#DELY reset=1;#DELY reset=0;#(DELY*300) $finish;end//结果显示initial $monitor($time,,,"clk=%d reset=%d qout=%d",clk,reset,qout);endmodule module counter(qout,reset,clk); //待测试的8位计数器模块output[7:0] qout;input clk,reset;reg[7:0] qout;always @(posedge clk)begin if (reset) qout<=0;else qout<=qout+1;endendmodule【例9.1】基本门电路的几种描述方法1门级结构描述module gate1(F,A,B,C,D);input A,B,C,D;output F;nand(F1,A,B); //调用门元件and(F2,B,C,D);or(F,F1,F2);endmodule2数据流描述module gate2(F,A,B,C,D);input A,B,C,D;output F;assign F=(A&B)|(B&C&D); //assign持续赋值endmodule3行为描述module gate3(F,A,B,C,D);input A,B,C,D;output F;- 31 - 程序文本reg F;always @(A or B or C or D) //过程赋值beginF=(A&B)|(B&C&D);endendmodule【例9.2】用bufif1关键字描述的三态门module tri_1(in,en,out);input in,en;output out;tri out;bufif1 b1(out,in,en); //注意三态门端口的排列顺序endmodule【例9.3】用assign语句描述的三态门module tri_2(out,in,en);output out;input in,en;assign out = en ? in : 'bz;//若en=1则out=in若en=0则out为高阻态 endmodule【例9.4】三态双向驱动器module bidir(tri_inout,out,in,en,b);inout tri_inout;output out;input in,en,b;assign tri_inout = en ? in : 'bz;assign out = tri_inout ^ b;endmodule【例9.5】三态双向驱动器module bidir2(bidir,en,clk);inout[7:0] bidir;input en,clk;reg[7:0] temp;assign bidir= en ? temp : 8'bz;always @(posedge clk)begin- 32 -王金明《Verilog HDL程序设计教程》if(en) temp=bidir;else temp=temp+1;endendmodule【例9.6】3-8译码器module decoder_38(out,in);output[7:0] out;input[2:0] in;reg[7:0] out;always @(in)begincase(in)3'd0: out=8'b11111110;3'd1: out=8'b11111101;3'd2: out=8'b11111011;3'd3: out=8'b11110111;3'd4: out=8'b11101111;3'd5: out=8'b11011111;3'd6: out=8'b10111111;3'd7: out=8'b01111111;endcaseendendmodule【例9.7】8-3优先编码器module encoder8_3(none_on,outcode,a,b,c,d,e,f,g,h); output none_on;output[2:0] outcode;input a,b,c,d,e,f,g,h;reg[3:0] outtemp;assign {none_on,outcode}=outtemp;always @(a or b or c or d or e or f or g or h)beginif(h) outtemp=4'b0111;else if(g) outtemp=4'b0110;else if(f) outtemp=4'b0101;else if(e) outtemp=4'b0100;else if(d) outtemp=4'b0011;else if(c) outtemp=4'b0010;- 33 - 程序文本else if(b) outtemp=4'b0001;else if(a) outtemp=4'b0000;else outtemp=4'b1000;endendmodule【例9.8】用函数定义的8-3优先编码器module code_83(din, dout);input[7:0] din;output[2:0] dout;function[2:0] code; //函数定义input[7:0] din; //函数只有输入端口输出为函数名本身 if (din[7]) code = 3'd7;else if (din[6]) code = 3'd6;else if (din[5]) code = 3'd5;else if (din[4]) code = 3'd4;else if (din[3]) code = 3'd3;else if (din[2]) code = 3'd2;else if (din[1]) code = 3'd1;else code = 3'd0;endfunctionassign dout = code(din); //函数调用endmodule【例9.9】七段数码管译码器module decode47(a,b,c,d,e,f,g,D3,D2,D1,D0);output a,b,c,d,e,f,g;input D3,D2,D1,D0; //输入的4位BCD码reg a,b,c,d,e,f,g;always @(D3 or D2 or D1 or D0)begincase({D3,D2,D1,D0}) //用case语句进行译码 4'd0: {a,b,c,d,e,f,g}=7'b1111110;4'd1: {a,b,c,d,e,f,g}=7'b0110000;4'd2: {a,b,c,d,e,f,g}=7'b1101101;4'd3: {a,b,c,d,e,f,g}=7'b1111001;4'd4: {a,b,c,d,e,f,g}=7'b0110011;4'd5: {a,b,c,d,e,f,g}=7'b1011011;- 34 -王金明《Verilog HDL程序设计教程》4'd6: {a,b,c,d,e,f,g}=7'b1011111;4'd7: {a,b,c,d,e,f,g}=7'b1110000;4'd8: {a,b,c,d,e,f,g}=7'b1111111;。

verilog实例代码2word版本

verilog实例代码2word版本

实or2码代例gliev //与门module zxhand2(c,a,b);input a,b;output c;assign c= a & b;endmodule//或门module zxhor2(c,a,b);input a,b;output c;assign c= a | b;endmodule//非门module zxhnot2(c,b);input b;output c;assign c=~ b;endmodule////异或门module zxhxro2(c,a,b);output c;assign c=a ^ b;endmodule两选一电路module data_scan(d0,d1,sel,q);output q;input d0,d1,sel;wire t1,t2,t3;n1 zxhand2(t1,d0,sel);n2 zxhnot2 (t4,sel);n3 zxhand2(t2,d1,t4);n4 zxhor2(t3,t1,t2);assign q=t1;endmoduleverilog HDL实例(一)练习一.简单的组合逻辑设计目的: 掌握基本组合逻辑电路的实现方法。

这是一个可综合的数据比较器,很容易看出它的功能是比较数据a与数据b,如果两个数据相同,则给出结果1,否则给出结果0。

在Verilog HDL中,描述组合逻辑时常使用assign结构。

注意equal=(a==b)?1:0,这是一种在组合逻辑实现分支判断时常使用的格式。

模块源代码://--------------- compare.v -----------------module compare(equal,a,b);input a,b;output equal;assign equal=(a==b)?1:0; //a等于b时,equal输出为1;a不等于b时,//equal输出为0。

endmodule测试模块用于检测模块设计得正确与否,它给出模块的输入信号,观察模块的内部信号和输出信号,如果发现结果与预期的有所偏差,则要对设计模块进行修改。

38译码器verilog代码_Verilog设计实例(2)一步一步实现一个多功能通用计数器

38译码器verilog代码_Verilog设计实例(2)一步一步实现一个多功能通用计数器

38译码器verilog代码_Verilog设计实例(2)⼀步⼀步实现⼀个多功能通⽤计数器写在前⾯博客⾸页 注:学习交流使⽤!相关博⽂相关博⽂ 博客⾸页正⽂多功能计数器,英⽂名为:多功能计数器;所谓多功能,这⾥包括⼆进制计数,格雷码计数以及线性反馈移位寄存器(LFSR)三种,本⽂Verilog设通过从普通的计数器开始,也就是单个功能的计数器开始,⼀步⼀步过渡到多功能计数器。

作为对以下相关博⽂的延伸练习: Verilog设FPGA设计⼼得(8)Verilog中的编译预处理语句计实例(1)线性反馈移位寄存器(LFSR) FPGA设计⼼得(8)Verilog中的编译预处理语句计实例(1)线性反馈移位寄存器(LFSR)普通的⼆进制计数器这个作为开头,不必多说,计数就完事了。

电路设计设计⽂件:`timescale 1ns/1ps//// Engineer: Reborn Lee// Module Name: binary counter// Additional Comments:////module binary_counter#(parameter N_BITS = 4)(input i_clk,input i_rst,output [N_BITS - 1 : 0] o_cnt,output o_cnt_done);reg [N_BITS - 1 : 0] bin_cnt = 0;always@(posedge i_clk) beginif(i_rst) beginbin_cnt <= 0;endelse beginbin_cnt <= bin_cnt + 1;endendassign o_cnt_done = (bin_cnt == 0)? 1:0;assign o_cnt = bin_cnt;endmodule⾏为仿真tb⽂件:`timescale 1ns/1psmodule bin_cnt_tb;parameter N_BITS = 4;reg i_clk;reg i_rst;wire [N_BITS - 1 : 0] o_cnt;wire o_cnt_done;initial begini_clk = 0;forever begin# 2 i_clk = ~ i_clk;endendinitial begini_rst = 1;# 8i_rst = 0;endbinary_counter #(.N_BITS(N_BITS))inst_bin_cnt(.i_rst(i_rst),.i_clk(i_clk),.o_cnt(o_cnt),.o_cnt_done(o_cnt_done));endmodule仿真图:普通的格雷码计数器任意位宽的格雷码计数器,实现的⽅式通常是设计⼀个普通的⼆进制计数器,同时将计数结果转化为格雷码。

verilog采样实例

verilog采样实例

verilog采样实例Verilog采样实例引言Verilog是一种硬件描述语言,广泛应用于数字电路设计和仿真。

在数字电路中,采样是一种常见的操作,用于将连续时间的信号转换为离散时间的信号。

本文将介绍Verilog中的采样实例,以帮助读者更好地理解和应用Verilog语言。

一、采样的基本概念在数字电路中,连续时间的信号是由不断变化的模拟信号组成的。

而数字电路处理的是离散时间的信号,因此需要将连续时间的信号进行采样。

采样即在一定时间间隔内对模拟信号进行测量,将其转换为离散时间的数值。

采样实例的目的就是通过Verilog语言实现对模拟信号的采样。

二、Verilog采样实例的实现步骤1. 信号输入:首先需要定义一个输入信号,用于接收模拟信号。

在Verilog中,可以使用wire或reg等数据类型来定义信号。

2. 采样时间控制:通过控制采样时间间隔,可以确定离散时间信号的采样频率。

可以使用计数器或时钟模块来实现时间控制。

3. 采样操作:在每个采样时间点,将输入信号的值保存到一个寄存器中。

可以使用always块来实现采样操作。

4. 输出采样结果:将采样结果输出到其他模块进行处理或显示。

可以使用assign语句将采样结果赋值给输出信号。

三、Verilog采样实例代码示例下面是一个简单的Verilog采样实例代码示例:```verilogmodule sampler (input wire clk,input wire analog_signal,output reg sampled_signal);reg [7:0] counter;always @(posedge clk) begincounter <= counter + 1;if (counter == 255) beginsampled_signal <= analog_signal;counter <= 0;endendendmodule```在上述代码中,定义了一个采样模块sampler,包括一个时钟输入clk、一个模拟信号输入analog_signal和一个采样结果输出sampled_signal。

Verilog实例数组

Verilog实例数组

Verilog实例数组编写 Verilog 代码多年,⾄今才⽆意中发现了⼀种奇怪的语法,估计见过的这种的写法的⼈,在 FPGA 开发者中不会超过 20% 吧。

直接来看代码吧。

先定义了⼀个简单的模块,名为 mod。

module mod(input clk,input din,output reg [1:0] dout);always @(posedge clk)dout <= {din, ~din};endmodule下⾯是对 mod 模块进⾏例化。

注意例化名后⾯的东西。

module top(input clk,input [3:0] din,output [7:0] dout);mod u_mod[3:0] ( // 例化名后⾯跟了⼀个位宽定义。

.clk (clk ), // I.din (din[3:0] ), // I 连接的位宽是单个 mod 所需要的4倍.dout (dout[7:0] ) // O 连接的位宽是单个 mod 所需要的4倍);endmodule虽然以前从来没有见过这种写法,但从代码上⼤概可以推断出这种写法应该和 generate ... for ... 的作⽤是⼀样的,但是写法上要简洁得多。

实验⼀使⽤ Vivado 对代码进⾏综合后,得到的原理图如下。

从图上可以看到 mod 模块的确是被例化了 4 次。

顶层的 4 bits 的 din 分别连接到了 4 个 u_mod,4 个 din 的索引和u_mod 的索引相同,din[0] 连接到了 u_mod[0],din[3] 连接到了 u_mod[3]。

4 个模块的 dout 输出后合并成了 8 bits,其中 u_mod[0] 的 2 bits 输出连接到了 dout[1:0],u_mod[3] 的 2 bits 输出连接到了 dout[7:6]。

实验⼆为了进⼀步研究连接的顺序,⼜做了如下实验。

模块例化时的位宽由原来的 [3:0] 改为 [0:3]。

verilog编程实例

verilog编程实例

verilog编程实例我们需要明确这个电路的功能和设计要求。

假设我们需要实现一个4位二进制加法器,即输入两个4位的二进制数,输出它们的和。

为了简化问题,我们先考虑只有无符号整数的加法,即只需要实现两个正整数的相加。

接下来,我们可以使用Verilog语言来描述这个电路的结构和行为。

我们首先声明输入端口和输出端口的位宽,即4位。

然后,我们定义一个module,命名为"binary_adder"。

在这个module中,我们定义了两个4位的输入信号a和b,以及一个4位的输出信号sum。

同时,我们还定义了一个内部信号carry,用于记录进位信息。

在module的主体部分,我们使用assign语句来实现信号之间的逻辑关系。

具体地,我们可以通过逐位相加的方式,将输入信号a和b的每一位与进位carry相加,并将结果存储在输出信号sum的对应位上。

同时,我们还需要更新进位carry的值,以确保加法运算的正确性。

为了实现这个逻辑,我们可以使用Verilog中的加法运算符"+"和逻辑与运算符"&"。

通过对输入信号的每一位进行逐位运算,我们可以得到输出信号sum的每一位的值。

同时,我们还需要根据输入信号和进位carry的值,计算出新的进位carry的值。

在实际的Verilog编程中,我们需要注意信号的声明和赋值的顺序。

一般而言,我们需要先声明信号,然后再通过assign语句对信号进行赋值。

这样可以确保信号的值能够正确传递和计算。

完成Verilog代码的编写后,我们需要使用相应的仿真工具来验证电路的功能。

常用的仿真工具有ModelSim和Xilinx ISE等。

通过仿真工具,我们可以为输入信号a和b设置不同的值,并观察输出信号sum的变化。

通过比较输出信号sum和预期的结果,我们可以验证电路的正确性。

除了验证电路的正确性外,我们还可以通过综合工具将Verilog代码转换成对应的门级电路。

verilog 原语例化语法

verilog 原语例化语法

verilog 原语例化语法Verilog原语是VerilogHDL中的基本建筑块,用于构建数字电路。

原语的实例化是将原语作为模块进行实例化的过程。

这篇文章将介绍 Verilog 原语实例化语法。

Verilog 原语实例化使用以下语法:<primitive_name> #(<parameter_assignment>) <instance_name> (<port_list>);其中,primitive_name 是要实例化的原语名称,parameter_assignment 是可选的参数分配列表,instance_name 是实例名称,port_list 是端口连接列表。

例如,下面是一个简单的 Verilog 原语实例化代码:and #(.N(2)) and1 (A, B, out);这个代码实例化了一个名为 'and' 的原语,指定了一个名为 'N' 的参数,并将输入端口 A 和 B 连接到该实例的端口,并将输出端口 out 连接到该实例的输出端口。

在实例化多个原语时,可以使用逗号分隔的列表。

例如:and #(.N(2)) and1 (A, B, out1),and #(.N(2)) and2 (B, C, out2);这个代码实例化了两个名为 'and' 的原语,并将它们的输入和输出端口连接到不同的端口。

Verilog 原语实例化可以嵌套在 Verilog 模块或其他原语实例化的内部。

例如:module gate (input A, B, output Y);and #(.N(2)) and1 (A, B, Y);endmodule这个代码定义了一个名为 'gate' 的模块,实例化了一个 'and' 原语,并将其输入端口连接到模块的输入端口,并将其输出端口连接到模块的输出端口。

verilog实例代码

verilog实例代码

//与门module zxhand2(c,a,b);input a,b;output c;assign c= a & b;endmodule//或门module zxhor2(c,a,b);input a,b;output c;assign c= a | b;endmodule//非门module zxhnot2(c,b);input b;output c;assign c=~ b;endmodule////异或门module zxhxro2(c,a,b);input b;output c;assign c=a ^ b;endmodule两选一电路module data_scan(d0,d1,sel,q); output q;input d0,d1,sel;wire t1,t2,t3;n1 zxhand2(t1,d0,sel);n2 zxhnot2 (t4,sel);n3 zxhand2(t2,d1,t4);n4 zxhor2(t3,t1,t2);assign q=t1;endmoduleverilog HDL实例(一)练习一.简单的组合逻辑设计目的: 掌握基本组合逻辑电路的实现方法。

这是一个可综合的数据比较器,很容易看出它的功能是比较数据a与数据b,如果两个数据相同,则给出结果1,否则给出结果0。

在Verilog HDL中,描述组合逻辑时常使用assign结构。

注意equal=(a==b)?1:0,这是一种在组合逻辑实现分支判断时常使用的格式。

rCRYt。

模块源代码://--------------- compare.v -----------------module compare(equal,a,b);input a,b;output equal;assign equal=(a==b)?1:0; //a等于b时,equal输出为1;a不等于b时,//equal输出为0。

endmodule测试模块用于检测模块设计得正确与否,它给出模块的输入信号,观察模块的内部信号和输出信号,如果发现结果与预期的有所偏差,则要对设计模块进行修改。

verilog顶层模块调用实例

verilog顶层模块调用实例

verilog顶层模块调用实例
以下是一个简单的Verilog顶层模块调用的示例代码:verilogmodule TopModule( input wire clk, input wire reset, output wire out); 实例化子模块SubModule
submodule( .clk(clk), .in(reset), .out(out) );endmodulemodul e SubModule( input wire clk, input wire in, output wire out); 具体逻辑实现 ...endmodule在上述代码中,`TopModule` 是顶层模块,它实例化了一个名为`SubModule` 的子模块,并通过端口连接起来。

顶层模块有三个端口:`clk`、`reset` 和`out`。

子模块也有三个端口:`clk`、`in` 和`out`。

顶层模块中的`clk` 和`reset` 端口直接连接到子模块的`clk` 和`in` 端口,而`out` 端口通过子模块传递给顶层模块。

这个例子中,顶层模块作为顶层设计的入口,可以将输入信号传递到子模块,并从子模块获取输出信号。

子模块的具体逻辑实现可以根据实际需求进行定义。

请注意,这只是一个简单的示例,你可以根据实际需求进行更复杂的模块调用和连接。

定时器设计——Verilog代码及仿真实例

定时器设计——Verilog代码及仿真实例

定时器设计——Verilog代码及仿真实例在Verilog中,我们可以使用定时器来生成一系列的时钟脉冲。

定时器通常由一个计数器和一个比较器组成,计数器用于计算时间的过程,比较器用于比较计数器的值是否达到了设定的阈值,如果达到了阈值,比较器会产生一个输出信号。

下面是一个简单的定时器的Verilog代码示例:```verilogmodule Timerinput clk, // 输入时钟input reset, // 复位信号output reg out // 输出信号reg [15:0] count; // 计数器,16位beginif (reset)count <= 0; // 复位计数器else if (count == 16'd9999)count <= 0; // 当计数器达到9999时复位elsecount <= count + 1; // 计数器加1endbeginif (count == 16'd9999)out <= 1'b1; // 当计数器达到9999时输出高电平elseout <= 1'b0;endendmodule```在这个例子中,定时器接收一个时钟信号`clk`和一个复位信号`reset`作为输入,产生一个输出信号`out`。

计数器`count`是一个16位的寄存器,用于记录时间的过程。

当复位信号为高电平时,计数器会被复位为0;当计数器达到9999时,会被自动复位为0。

输出信号`out`在计数器达到9999时变为高电平,否则为低电平。

下面是一个定时器的仿真实例,使用iverilog和gtkwave工具进行仿真。

假设我们的时钟频率为100MHz,我们希望定时器的时间间隔为10ms,即每当计数器达到9999时,输出信号变为高电平。

我们可以通过仿真来验证这个设计是否正确。

首先,我们需要创建一个测试文件testbench.v,用于生成时钟和复位信号,并将输出信号保存到一个文件中:```verilogmodule testbench;reg clk;reg reset;wire out;.clk(clk),.reset(reset),.out(out)initial beginclk = 1'b0;reset = 1'b1;reset = 1'b0;$finish;endalways beginclk = ~clk;endendmodule```然后,我们可以使用iverilog编译并运行仿真:``````最后,使用gtkwave打开生成的.vcd文件,我们可以观察到时钟和输出信号的波形:```gtkwave testbench.vcd```通过观察波形,我们可以验证定时器的设计是否正确。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Shandy @ IME of Tsinghua Univ. 2004
Verilog HDL语法 - 常量
Verilog HDL中有三类常量: 1) 整型:1, -2, 4’b0101, 16’o47, 32’hEEEEFFFF, ... 2) 实数型:1.234, -56.78, 3.6e4, 3) 字符串型:”verilog!!” – 看做9个8位无符号整数,可用\转义特殊字 符,例如\n, \t 下划线符号(_)可以随意用在整数或实数中,它们就数量本身没有意 义。它们能用来提高易读性;唯一的限制是下划线符号不能用作为首字 符。例如: 32’b0010_1101_1110_1111 等价于 32’b0010110111101111
Shandy @ IME of Tsinghua Univ. 2004
数据采样模块的
一个完整的数据采样器设计实例
“ ”
ModemSim仿真输出: # at # at # at # at # at # at 0 clk=0, din = 0101, dout= 0000, data=0000 100 clk=1, din = 0101, dout= 0000, data=0000 200 clk=0, din = 0101, dout= 0000, data=0000 300 clk=1, din = 0101, dout= 0101, data=0101 400 clk=0, din = 0101, dout= 0101, data=0101 500 clk=1, din = 1010, dout= 1010, data=1010 600 clk=0, din = 1010, dout= 1010, data=1010 # at 700 clk=1, din = 1010, dout= 1010, data=1010
Shandy @ IME of Tsinghua Univ. 2004
提纲
什么是Verilog HDL? Verilog HDL vs. VHDL Verilog HDL语法 设计描述层次 设计的测试与验证 可综合的设计 有限状态机(FSM) 一个除法器的设计实例 常用仿真器和综合软件 网络资源
Shandy @ IME of Tsinghua Univ. 2004
什么是Verilog HDL? (cont.)
Verilog HDL 语言具有下述描述能力:
设计的行为特性、设计的数据流特性、设计的结构 组成以及包含响应监控和设计验证方面的时延和波 形产生机制。 提供了编程语言接口(PLI),通过该接口可以在 模拟、验证期间从设计外部访问设计,包括模拟的 具体控制和运行。 支持多个设计层次的混合层次建模
Shandy @ IME of Tsinghua Univ. 2004
Verilog HDL vs. VHDL
Verilog HDL 和VHDL 都是用于逻辑设计的硬件描述语言并且都已成为 IEEE 标准。VHDL 是在1987 年成为IEEE 标准,Verilog HDL 则在 1995 年才正式成为IEEE 标准。 Verilog HDL 和VHDL 共同的特点:
Top = 3'b001;
#2 Top = 3'b011 ; end 在Verilog HDL中有两种形式的注释: /*第一种形式:可以扩展至 多行*/ //第二种形式:在本行结束。
Shandy @ IME of Tsinghua Univ. 2004
Verilog HDL语法 - 值集合
Verilog HDL有下列四种基本的值: 1) 0:逻辑0或“假” 2) 1:逻辑1或“真” 3) x:未知 4) z:高阻 在门或一个表达式的输入中有为“z”的值则输出通常解释成“x”。 此外, x值和z值都是不分大小写的。 Verilog HDL中的常量是由以上这四类基本值组成的。
Shandy @ IME of Tsinghua Univ. 2004
Verilog HDL语法 -数据类型(conБайду номын сангаас.)
寄存器类型: • reg • integer – 一般相当于32位的reg(可能更多),但不允许作为位向量访问,用于高层 次建模 • time, real, realtime 例如: reg rdy, finish; //2个1位的寄存器 reg [3:0] result; //1个4位的寄存器 reg [3:0] mem4x64 [63:0] //mem4x64为64个4位寄存器的数组,可表示存储器 interger I; //定义一个整数,至少32位 并不一定对应为硬件寄存器,可能映射为latch,也可能为连线 参数:parameter -- 类似于常量,可表示任意数据。例如: parameter LOAD = 4'd12, STORE = 4'd10;
Verilog HDL使用简介
张建良 shandy98@
数字大规模集成电路讲义
Shandy @ IME of Tsinghua Univ. 10/11/2004
提纲
什么是Verilog HDL? Verilog HDL vs. VHDL Verilog HDL语法 设计描述层次 设计的测试与验证 可综合的设计 有限状态机(FSM) 一个除法器的设计实例 常用仿真器和综合软件 网络资源
数据采样模块

“ ”
# at


Shandy @ IME of Tsinghua Univ. 2004
Verilog HDL语法 - 模块
模块(module)是Verilog HDL的基本单位,除 了编译指令,其它所有的设计代码都必须放在 一个或多个模块中 一个模块内部可以使用其它模块,称为实例。 上层模块可以引用底层任意层次模块的变量, 引用方法为: 实例名.[第二层实例名.]变量名 模块内部可以包含若干个“块”
能形式化地抽象表示电路的行为和结构 支持逻辑设计中层次与范围的描述,可借用高级语言的精巧结构来简化电路 行为的描述 具有电路仿真与验证机制以保证设计的正确性 支持电路描述由高层到低层的综合转换 硬件描述与实现工艺无关,有关工艺参数可通过语言提供的属性包括进去便 于文档管理易于理解和设计重用。
Shandy @ IME of Tsinghua Univ. 2004
Verilog HDL语法 -数据类型
Verilog HDL 有两大类数据类型。 1) 线网类型。net type 表示Verilog结构化元件间的物理连线。它 的值由驱动元件的值决定,例如连续赋值或门的输出。如果没有 驱动元件连接到线网,线网的缺省值为z。 2) 寄存器类型。register type表示一个抽象的数据存储单元,它 只能在always语句和initial语句中被赋值,并且它的值从一个赋 值到另一个赋值被保存下来。寄存器类型的变量具有x的缺省值。
Shandy @ IME of Tsinghua Univ. 2004
Verilog HDL vs. VHDL (cont.)
Verilog HDL 和VHDL 又各有其自己的特点:
Verilog HDL 拥有更广泛的设计群体,成熟的资源也远比VHDL 丰 富 Verilog HDL 是一种非常容易掌握的硬件描述语言(类C语言),而 掌握VHDL 设计技术就相对比较困难(类Ada语言)。 一般认为Verilog HDL 在系统级抽象方面比VHDL 略差一些而在门 级开关电路描述方面比VHDL 强得多 大学、研究机构更多使用VHDL,而工业界更多使用Verilog HDL
Shandy @ IME of Tsinghua Univ. 2004
更重要的是...
Verilog HDL语言与C语言很相似,从C 语言中继承了多种操作符和结构,其核 心子集非常易于学习和使用--而这对 大多数建模应用来说这已经足够。
Shandy @ IME of Tsinghua Univ. 2004
Shandy @ IME of Tsinghua Univ. 2004
Verilog HDL语法 - 语法规范与注 释
Verilog HDL中的标识符可以是任意一组字母、数字、$符号和下划线符号的组合, 但标识符的第一个字符必须是字母或者下划线。标识符区分大小写。 Verilog是自由格式的,即结构可以跨越多行编写,也可以在一行内编写。白空 (新行、制表符和空格)没有特殊意义。 initial begin Top = 3'b001; #2 Top = 3'b011; end 和下面的指令一样: initial begin
Shandy @ IME of Tsinghua Univ. 2004
Verilog HDL语法 -数据类型(cont.)
线网类型: • wire • supply0, supply1 • tri, wor, trior, wand, triand, trireg, tri1, tri0 例如: wire rdy, finish; //2个1位的连线。 wire [3:0] result; //1个4位的连线 使用assign赋值,例如: assign rdy = a & b; //rdy赋值为a和b的与操作结果 assign #20 result = a * b; //result经过20个时间单位后赋值为a*b
Shandy @ IME of Tsinghua Univ. 2004
什么是Verilog HDL?
Verilog HDL是一种硬件描述语言,用于从算 法级、结构级、门级到开关级的多种抽象设计 层次的数字系统建模。 被建模的数字系统对象的复杂性可以介于开关 级电路(例如pmos/nmos)、简单的门(例如 库单元描述)和完整的复杂电子数字系统之间 (例如CPU)
Shandy @ IME of Tsinghua Univ. 2004
相关文档
最新文档