《三角函数》高考真题理科大题总结和答案解析
三角函数典型例题(高考题)及详细解答
1.已知ΔABC_三个顶点的直角坐标分别为A(3,4)、B(0,0)、C(c ,0). (1)若0AB AC ⋅=,求c 的值; (2)若c=5,求sin ∠A 的值.2 已知函数()sin()(0,0),f x A x A x R ϕϕπ=+><<∈的最大值是1,其图像经过点1(,)32M π。
(1)求()f x 的解析式;(2)已知,(0,)2παβ∈,且312(),(),513f f αβ==求()f αβ-的值 3.已知向量)2,(sin -=θa 与)cos ,1(θ=b 互相垂直,其中)2,0(πθ∈(1)求θsin 和θcos 的值;(2)若ϕϕθcos 53)cos(5=-,<<ϕ02π,求ϕcos 的值 4.设函数()3sin 6f x x πω⎛⎫=+⎪⎝⎭,0ω>,(),x ∈-∞+∞,且以2π为最小正周期. (1)求()0f ;(2)求()f x 的解析式;(3)已知94125f απ⎛⎫+= ⎪⎝⎭,求sin α的值. 5.已知函数1()2sin(),36f x x x π=-∈R .(1)求(0)f 的值;(2)设10,0,,(3)2213f ππαβα⎡⎤∈+=⎢⎥⎣⎦,6(32)5f βπ+=,求sin()αβ+的值. 一.选择填空题1.在ABC 中,若15,,sin 43b B A π=∠==,则a = . 2..在ABC ∆中,角,,A B C 所对的边分,,a b c .若cos sin a A b B =,则2sin cos cos A A B +=(A)-12 (B) 12(C) -1 (D) 1 3.设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于(A )13(B )3 (C )6 (D )94.设函数(A )y=在单调递增,其图像关于直线对称(B )y=在单调递增,其图像关于直线对称(C )y= f (x) 在(0,2π)单调递减,其图像关于直线x = 4π对称(D )y= f (x) 在(0,2π)单调递减,其图像关于直线x = 2π对称5.)已知角θ的顶点为坐标原点,始边为x 轴的正半轴,若()4,p y 是角θ终边上一点,且25sin 5θ=-,则y=_______.6.已知函数()sin(2)f x x ϕ=+,其中ϕ为实数,若()()6f x f π≤对x R ∈恒成立,且()()2f f ππ>,则()f x 的单调递增区间是(A ),()36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ (B ),()2k k k Z πππ⎡⎤+∈⎢⎥⎣⎦ (C )2,()63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦(D ),()2k k k Z πππ⎡⎤-∈⎢⎥⎣⎦ 7.在△ABC 中,222sin sin sin sin sin A B C B C ≤+-,则A 的取值范围是(A )(0,]6π(B )[,)6ππ(C )(0,]3π(D )[,)3ππ二:解答题1.已知函数()4cos sin() 1.6f x x x π=+-(Ⅰ)求()f x 的最小正周期;(Ⅱ)求()f x 在区间,64ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值。
2022年高考数学真题:三角函数与解三角形(解析版)
第3讲三角函数与解三角形一、单选题1.(2022·全国·高考真题(理))双曲线C 的两个焦点为12,F F ,以C 的实轴为直径的圆记为D ,过1F 作D 的切线与C 的两支交于M ,N 两点,且123cos 5F NF ,则C 的离心率为()AB .32C .132D .172【答案】C 【解析】【分析】依题意不妨设双曲线焦点在x 轴,设过1F 作圆D 的切线切点为G ,可判断N 在双曲线的右支,设12F NF ,21F F N ,即可求出sin ,sin ,cos ,在21F F N 中由12sin sin F F N 求出12sin F F N ,再由正弦定理求出1NF ,2NF ,最后根据双曲线的定义得到23b a ,即可得解;【详解】解:依题意不妨设双曲线焦点在x 轴,设过1F 作圆D 的切线切点为G ,所以1OG NF ,因为123cos 05F NF,所以N 在双曲线的右支,所以OG a ,1OF c ,1GF b ,设12F NF ,21F F N ,由123cos 5F NF,即3cos 5 ,则4sin 5=,sin a c ,cos b c ,在21F F N 中,12sin sin sin F F N 4334sin cos cos sin 555b a a bc c c,由正弦定理得211225sin sin sin 2NF NF c c F F N ,所以112553434sin 2252c c a b a b NF F F N c,2555sin 222c c a a NF c 又12345422222a b a b aNF NF a,所以23b a ,即32b a ,所以双曲线的离心率132c e a故选:C2.(2022·全国·高考真题)若sin()cos()sin 4,则()A . tan 1B . tan 1C . tan 1D . tan 1【答案】C 【解析】【分析】由两角和差的正余弦公式化简,结合同角三角函数的商数关系即可得解.【详解】由已知得:sin cos cos sin cos cos sin sin 2cos sin sin ,即:sin cos cos sin cos cos sin sin 0 ,即: sin cos 0 ,所以 tan 1 ,故选:C3.(2022·全国·高考真题)记函数()sin (0)4f x x b的最小正周期为T .若23T ,且()y f x 的图象关于点3,22中心对称,则2f()A .1B .32C .52D .3【答案】A【解析】【分析】由三角函数的图象与性质可求得参数,进而可得函数解析式,代入即可得解.【详解】由函数的最小正周期T 满足23T ,得223,解得23 ,又因为函数图象关于点3,22对称,所以3,24k k Z ,且2b ,所以12,63k k Z ,所以52 ,5()sin 224f x x ,所以5sin 21244f .故选:A4.(2022·全国·高考真题(理))设函数π()sin 3f x x在区间(0,π)恰有三个极值点、两个零点,则 的取值范围是()A .513,36B .519,36C .138,63D .1319,66【答案】C 【解析】【分析】由x 的取值范围得到3x的取值范围,再结合正弦函数的性质得到不等式组,解得即可.【详解】解:依题意可得0 ,因为 0,x ,所以,333x,要使函数在区间 0, 恰有三个极值点、两个零点,又sin y x ,,33x的图象如下所示:则5323 ,解得13863 ,即138,63.故选:C .5.(2022·全国·高考真题(理))沈括的《梦溪笔谈》是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”,如图, AB 是以O 为圆心,OA 为半径的圆弧,C 是的AB 中点,D 在 AB 上,CD AB .“会圆术”给出 AB 的弧长的近似值s 的计算公式:2CD s AB OA.当2,60OA AOB 时,s ()A .112B .112C D .92【答案】B 【解析】【分析】连接OC ,分别求出,,AB OC CD ,再根据题中公式即可得出答案.【详解】解:如图,连接OC ,因为C 是AB 的中点,所以OC AB ,又CD AB ,所以,,O C D 三点共线,即2OD OA OB ,又60AOB ,所以2AB OA OB ,则OC 2CD所以22211222CD s AB OA.故选:B.6.(2022·全国·高考真题(理))函数 33cos x xy x 在区间ππ,22的图象大致为()A .B .C .D .【答案】A 【解析】【分析】由函数的奇偶性结合指数函数、三角函数的性质逐项排除即可得解.【详解】令33cos ,,22x xf x x x,则 33cos 33cos x x x xf x x x f x ,所以 f x 为奇函数,排除BD ;又当0,2x时,330,cos 0x x x ,所以 0f x ,排除C.故选:A.7.(2022·全国·高考真题(文))将函数π()sin (0)3f x x的图像向左平移π2个单位长度后得到曲线C ,若C 关于y 轴对称,则 的最小值是()A .16B .14C .13D .12【答案】C 【解析】【分析】先由平移求出曲线C 的解析式,再结合对称性得,232k kZ ,即可求出 的最小值.【详解】由题意知:曲线C 为sin sin()2323y x x,又C 关于y 轴对称,则,232k kZ ,解得12,3k kZ ,又0 ,故当0k 时, 的最小值为13.故选:C.二、填空题8.(2022·全国·高考真题(理))记函数 cos (0,0π)f x x 的最小正周期为T ,若3()2f T ,9x 为()f x 的零点,则 的最小值为____________.【答案】3【解析】【分析】首先表示出T ,根据f T ,再根据π9x 为函数的零点,即可求出 的取值,从而得解;【详解】解:因为 cos f x x ,(0 ,0π )所以最小正周期2πT,因为 2π3cos cos 2πcos 2f T,又0π ,所以π6 ,即 πcos 6f x x,又π9x为 f x 的零点,所以ππππ,Z 962k k ,解得39,Z k k ,因为0 ,所以当0k 时min 3 ;故答案为:39.(2022·全国·高考真题(理))已知ABC 中,点D 在边BC 上,120,2,2ADB AD CD BD .当ACAB取得最小值时,BD ________.1## 【解析】【分析】设220CD BD m ,利用余弦定理表示出22AC AB 后,结合基本不等式即可得解.【详解】设220CD BD m ,则在ABD △中,22222cos 42AB BD AD BD AD ADB m m ,在ACD △中,22222cos 444AC CD AD CD AD ADC m m ,所以 2222224421214441243424211m m m AC m m AB m m m mm m44 当且仅当311mm 即1m 时,等号成立,所以当ACAB取最小值时,1m .1.三、解答题10.(2022·全国·高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,分别以a ,b ,c 为边长的三个正三角形的面积依次为123,,S S S ,已知1233123S S S B .(1)求ABC 的面积;(2)若2sin sin 3A C ,求b .【答案】(2)12【解析】【分析】(1)先表示出123,,S S S ,再由123S S S 2222a c b ,结合余弦定理及平方关系求得ac ,再由面积公式求解即可;(2)由正弦定理得22sin sin sin b acB A C,即可求解.(1)由题意得22221231,,2S a a S b S c ,则2221234442S S S a b c,即2222a c b ,由余弦定理得222cos 2a c b B ac ,整理得cos 1ac B ,则cos 0B ,又1sin 3B ,则cos B ,1cos ac B 1sin 2ABC S ac B (2)由正弦定理得:sin sin sin b a cB AC ,则223294sin sin sin sin sin 423b ac ac B A C A C,则3sin 2b B ,31sin 22b B .11.(2022·全国·高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 21sin 1cos2A BA B.(1)若23C,求B ;(2)求222a b c的最小值.【答案】(1)π6;(2)5.【解析】【分析】(1)根据二倍角公式以及两角差的余弦公式可将cos sin 21sin 1cos2A BA B化成cos sin A B B ,再结合π02B,即可求出;(2)由(1)知,π2C B ,π22A B ,再利用正弦定理以及二倍角公式将222a b c 化成2224cos 5cos B B,然后利用基本不等式即可解出.(1)因为2cos sin 22sin cos sin 1sin 1cos 22cos cos A B B B BA B B B,即1sin cos cos sin sin cos cos 2B A B A B A B C,而π02B ,所以π6B ;(2)由(1)知,sin cos 0B C ,所以πππ,022C B ,而πsin cos sin 2B C C,所以π2C B,即有π22A B .所以222222222sin sin cos 21cos sin cos a b A B B B c C B2222222cos 11cos 24cos 555cos cos B BB BB.当且仅当2cos 2B 时取等号,所以222a b c的最小值为5.12.(2022·全国·高考真题(文))记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ﹐已知 sin sin sin sin C A B B C A .(1)若2A B ,求C ;(2)证明:2222a b c 【答案】(1)5π8;(2)证明见解析.【解析】【分析】(1)根据题意可得, sin sin C C A ,再结合三角形内角和定理即可解出;(2)由题意利用两角差的正弦公式展开得sin sin cos cos sin sin sin cos cos sin C A B A B B C A C A ,再根据正弦定理,余弦定理化简即可证出.(1)由2A B , sin sin sin sin C A B B C A 可得, sin sin sin sin C B B C A ,而π02B,所以 sin 0,1B ,即有 sin sin 0C C A ,而0π,0πC C A ,显然C C A ,所以,πC C A ,而2A B ,πA B C ,所以5π8C .(2)由 sin sin sin sin C A B B C A 可得,sin sin cos cos sin sin sin cos cos sin C A B A B B C A C A ,再由正弦定理可得,cos cos cos cos ac B bc A bc A ab C ,然后根据余弦定理可知,22222222222211112222a c b b c a b c a a b c ,化简得:2222a b c ,故原等式成立.27.(2022·全国·高考真题(理))记ABC 的内角,,A B C 的对边分别为,,a b c ,已知sin sin()sin sin()C A B B C A .(1)证明:2222a b c ;(2)若255,cos 31a A ,求ABC 的周长.【答案】(1)见解析(2)14【解析】【分析】(1)利用两角差的正弦公式化简,再根据正弦定理和余弦定理化角为边,从而即可得证;(2)根据(1)的结论结合余弦定理求出bc ,从而可求得b c ,即可得解.(1)证明:因为 sin sin sin sin C A B B C A ,所以sin sin cos sin sin cos sin sin cos sin sin cos C A B C B A B C A B A C ,所以2222222222222a c b b c a a b c ac bc ab ac bc ab,即22222222222a c b a b c b c a ,所以2222a b c ;(2)解:因为255,cos 31a A ,由(1)得2250bc ,由余弦定理可得2222cos a b c bc A ,则50502531bc ,所以312bc,故 2222503181b c b c bc ,所以9b c ,所以ABC 的周长为14a b c .。
((完整版))《三角函数》高考真题理科大题总结及答案,推荐文档
x = kp +p (k Î Z). 2
(2)1) f(x) +g(x) = 2sin x +cos x = 5( 2 sin x + 1 cos x)
已知函数
f
x
sin
2
x
sin
x
3 cos2 x
(1)求 f x的最小正周期和最大值;
(2)讨论
f
x在
6
,
2 3
上的单调性.
9.【2015 高考四川,理 19】
如图,A,B,C,D 为平面四边形
ABCD 的四个内角. (1)证明: tan A 1 cos A ;
2 sin A
(2)若 A C 180o, AB 6, BC 3,CD 4, AD 5, 求
tan A tan B tan C tan D 的值.
2
2
2
2
D
C
A
B
10.【2015 高考湖北,理 17】某同学用“五点法”画函数 f (x) Asin(x ) ( 0, | | π) 在某一个周期内的图象
2
时,列表并填入了部分数据,如下表:
x x
Asin(x )
0
π 2
π
π 3
(1)求实数 m 的取值范围; (2)证明: cos( a - b) = 2m2 - 1.
5
4.【2015 高考浙江,理 16】在 ABC 中,内角 A , B , C 所对的边分
别为 a , b , c ,已知 A , b2 a2 = 1 c2 .
4
2
(1)求 tan C 的值;
(2)若 ABC 的面积为 7,求 b 的值.
,
x
2024年高考数学真题分类汇编(三角函数篇,解析版)
专题三角函数1(新课标全国Ⅰ卷)已知cos (α+β)=m ,tan αtan β=2,则cos (α-β)=()A.-3mB.-m3C.m 3D.3m【答案】A【分析】根据两角和的余弦可求cos αcos β,sin αsin β的关系,结合tan αtan β的值可求前者,故可求cos α-β 的值.【详解】因为cos α+β =m ,所以cos αcos β-sin αsin β=m ,而tan αtan β=2,所以=12×2b ×kb ×sin A 2+12×kb ×b ×sin A2,故cos αcos β-2cos αcos β=m 即cos αcos β=-m ,从而sin αsin β=-2m ,故cos α-β =-3m ,故选:A .2(新课标全国Ⅰ卷)当x ∈[0,2π]时,曲线y =sin x 与y =2sin 3x -π6 的交点个数为()A.3B.4C.6D.8【答案】C【分析】画出两函数在0,2π 上的图象,根据图象即可求解【详解】因为函数y =sin x 的的最小正周期为T =2π,函数y =2sin 3x -π6 的最小正周期为T =2π3,所以在x ∈0,2π 上函数y =2sin 3x -π6有三个周期的图象,在坐标系中结合五点法画出两函数图象,如图所示:由图可知,两函数图象有6个交点.故选:C3(新课标全国Ⅱ卷)设函数f (x )=a (x +1)2-1,g (x )=cos x +2ax ,当x ∈(-1,1)时,曲线y =f (x )与y =g (x )恰有一个交点,则a =()A.-1B.12C.1D.22024年高考数学真题分类汇编——三角函数篇【分析】解法一:令F x =ax 2+a -1,G x =cos x ,分析可知曲线y =F (x )与y =G (x )恰有一个交点,结合偶函数的对称性可知该交点只能在y 轴上,即可得a =2,并代入检验即可;解法二:令h x =f (x )-g x ,x ∈-1,1 ,可知h x 为偶函数,根据偶函数的对称性可知h x 的零点只能为0,即可得a =2,并代入检验即可.【详解】解法一:令f (x )=g x ,即a (x +1)2-1=cos x +2ax ,可得ax 2+a -1=cos x ,令F x =ax 2+a -1,G x =cos x ,原题意等价于当x ∈(-1,1)时,曲线y =F (x )与y =G (x )恰有一个交点,注意到F x ,G x 均为偶函数,可知该交点只能在y 轴上,可得F 0 =G 0 ,即a -1=1,解得a =2,若a =2,令F x =G x ,可得2x 2+1-cos x =0因为x ∈-1,1 ,则2x 2≥0,1-cos x ≥0,当且仅当x =0时,等号成立,可得2x 2+1-cos x ≥0,当且仅当x =0时,等号成立,则方程2x 2+1-cos x =0有且仅有一个实根0,即曲线y =F (x )与y =G (x )恰有一个交点,所以a =2符合题意;综上所述:a =2.解法二:令h x =f (x )-g x =ax 2+a -1-cos x ,x ∈-1,1 ,原题意等价于h x 有且仅有一个零点,因为h -x =a -x 2+a -1-cos -x =ax 2+a -1-cos x =h x ,则h x 为偶函数,根据偶函数的对称性可知h x 的零点只能为0,即h 0 =a -2=0,解得a =2,若a =2,则h x =2x 2+1-cos x ,x ∈-1,1 ,又因为2x 2≥0,1-cos x ≥0当且仅当x =0时,等号成立,可得h x ≥0,当且仅当x =0时,等号成立,即h x 有且仅有一个零点0,所以a =2符合题意;故选:D .4(全国甲卷数学(理)(文))已知cos αcos α-sin α=3,则tan α+π4=()A.23+1 B.23-1C.32D.1-3【答案】B【分析】先将cos αcos α-sin α弦化切求得tan α,再根据两角和的正切公式即可求解.【详解】因为cos αcos α-sin α=3,所以11-tan α=3,⇒tan α=1-33,所以tan α+π4 =tan α+11-tan α=23-1,故选:B .5(新高考北京卷)已知f x =sin ωx ω>0 ,f x 1 =-1,f x 2 =1,|x 1-x 2|min =π2,则ω=()A.1B.2C.3D.4【分析】根据三角函数最值分析周期性,结合三角函数最小正周期公式运算求解.【详解】由题意可知:x 1为f x 的最小值点,x 2为f x 的最大值点,则x 1-x 2 min =T 2=π2,即T =π,且ω>0,所以ω=2πT=2.故选:B .6(新高考天津卷)已知函数f x =sin3ωx +π3ω>0 的最小正周期为π.则函数在-π12,π6 的最小值是()A.-32B.-32C.0D.32【答案】A【分析】先由诱导公式化简,结合周期公式求出ω,得f x =-sin2x ,再整体求出x ∈-π12,π6时,2x 的范围,结合正弦三角函数图象特征即可求解.【详解】f x =sin3ωx +π3 =sin 3ωx +π =-sin3ωx ,由T =2π3ω=π得ω=23,即f x =-sin2x ,当x ∈-π12,π6 时,2x ∈-π6,π3,画出f x =-sin2x 图象,如下图,由图可知,f x =-sin2x 在-π12,π6上递减,所以,当x =π6时,f x min =-sin π3=-32故选:A7(新高考上海卷)下列函数f x 的最小正周期是2π的是()A.sin x +cos xB.sin x cos xC.sin 2x +cos 2xD.sin 2x -cos 2x【答案】A【分析】根据辅助角公式、二倍角公式以及同角三角函数关系并结合三角函数的性质一一判断即可 .【详解】对A ,sin x +cos x =2sin x +π4,周期T =2π,故A 正确;对B ,sin x cos x =12sin2x ,周期T =2π2=π,故B 错误;对于选项C ,sin 2x +cos 2x =1,是常值函数,不存在最小正周期,故C 错误;对于选项D ,sin 2x -cos 2x =-cos2x ,周期T =2π2=π,故D 错误,故选:A .8(新课标全国Ⅱ卷)对于函数f(x)=sin2x和g(x)=sin2x-π4,下列说法正确的有() A.f(x)与g(x)有相同的零点 B.f(x)与g(x)有相同的最大值C.f(x)与g(x)有相同的最小正周期D.f(x)与g(x)的图像有相同的对称轴【答案】BC【分析】根据正弦函数的零点,最值,周期公式,对称轴方程逐一分析每个选项即可.【详解】A选项,令f(x)=sin2x=0,解得x=kπ2,k∈Z,即为f(x)零点,令g(x)=sin2x-π4=0,解得x=kπ2+π8,k∈Z,即为g(x)零点,显然f(x),g(x)零点不同,A选项错误;B选项,显然f(x)max=g(x)max=1,B选项正确;C选项,根据周期公式,f(x),g(x)的周期均为2π2=π,C选项正确;D选项,根据正弦函数的性质f(x)的对称轴满足2x=kπ+π2⇔x=kπ2+π4,k∈Z,g(x)的对称轴满足2x-π4=kπ+π2⇔x=kπ2+3π8,k∈Z,显然f(x),g(x)图像的对称轴不同,D选项错误.故选:BC9(新课标全国Ⅱ卷)已知α为第一象限角,β为第三象限角,tanα+tanβ=4,tanαtanβ=2+1,则sin(α+β)=.【答案】-22 3【分析】法一:根据两角和与差的正切公式得tanα+β=-22,再缩小α+β的范围,最后结合同角的平方和关系即可得到答案;法二:利用弦化切的方法即可得到答案.【详解】法一:由题意得tanα+β=tanα+tanβ1-tanαtanβ=41-2+1=-22,因为α∈2kπ,2kπ+π2,β∈2mπ+π,2mπ+3π2,k,m∈Z,则α+β∈2m+2kπ+π,2m+2kπ+2π,k,m∈Z,又因为tanα+β=-22<0,则α+β∈2m+2kπ+3π2,2m+2kπ+2π,k,m∈Z,则sinα+β<0,则sinα+βcosα+β=-22,联立sin2α+β+cos2α+β=1,解得sinα+β=-223.法二:因为α为第一象限角,β为第三象限角,则cosα>0,cosβ<0,cosα=cosαsin2α+cos2α=11+tan2α,cosβ=cosβsin2β+cos2β=-11+tan2β,则sin(α+β)=sinαcosβ+cosαsinβ=cosαcosβ(tanα+tanβ)=4cosαcosβ=-41+tan2α1+tan2β=-4(tanα+tanβ)2+(tanαtanβ-1)2=-442+2=-223故答案为:-22 3.10(全国甲卷数学(文))函数f x =sin x-3cos x在0,π上的最大值是.【答案】2【分析】结合辅助角公式化简成正弦型函数,再求给定区间最值即可.【详解】f x =sin x -3cos x =2sin x -π3 ,当x ∈0,π 时,x -π3∈-π3,2π3,当x -π3=π2时,即x =5π6时,f x max =2.故答案为:2一、单选题1(2024·宁夏石嘴山·三模)在平面直角坐标系中,角θ的顶点与原点重合,始边与x 轴的非负半轴重合,终边经过点P 1,2 ,则7cos 2θ-2sin2θ=()A.-15B.15C.-2D.2【答案】A【分析】由题意可知:tan θ=2,根据倍角公式结合齐次化问题分析求解.【详解】由题意可知:tan θ=2,所以7cos 2θ-2sin2θ=7cos 2θ-4sin θcos θsin 2θ+cos 2θ=7-4tan θtan 2θ+1=7-4×222+1=-15.故选:A .2(2024·广东茂名·一模)已知cos α+π =-2sin α,则sin 2α-3cos α+π2cos αcos2α+1=()A.-1B.-25C.45D.78【答案】D【分析】根据给定条件,求出tan α,再结合诱导公式及二倍角的余弦公式,利用正余弦齐次式法计算得解.【详解】由cos α+π =-2sin α,得cos α=2sin α,则tan α=12,所以sin 2α-3cos α+π2 cos αcos2α+1=sin 2α+3sin αcos α2cos 2α=12tan 2α+32tan α=18+34=78.故选:D3(2024·河北保定·二模)函数f (x )=1-e x1+e xcos2x 的部分图象大致为()A. B.C. D.【答案】A【分析】根据函数的奇偶性判断即可.【详解】设g x =1-e x1+e x,则g-x=1-e-x1+e-x=e x-11+e x=-g x ,所以g x 为奇函数,设h x =cos2x,可知h x 为偶函数,所以f x =1-e x1+e xcos2x为奇函数,则B,C错误,易知f0 =0,所以A正确,D错误.故选:A.4(2024·山东济宁·三模)已知函数f(x)=(3sin x+cos x)cos x-12,若f(x)在区间-π4,m上的值域为-3 2,1,则实数m的取值范围是()A.π6,π2B.π6,π2C.π6,7π12D.π6,7π12【答案】D【分析】利用二倍角公式、辅助角公式化简函数f(x),再借助正弦函数的图象与性质求解即得.【详解】依题意,函数f(x)=3sin x cos x+cos2x-12=32sin2x+12cos2x=sin2x+π6,当x∈-π4,m时,2x+π6∈-π3,2m+π6,显然sin-π3=sin4π3=-32,sinπ2=1,且正弦函数y=sin x在π2,4π3上单调递减,由f(x)在区间-π4,m上的值域为-32,1,得π2≤2m+π6≤4π3,解得π6≤m≤7π12,所以实数m的取值范围是π6,7π12.故选:D5(2024·江西景德镇·三模)函数f x =cosωx x∈R在0,π内恰有两个对称中心,fπ=1,将函数f x 的图象向右平移π3个单位得到函数g x 的图象.若fα +gα =35,则cos4α+π3=()A.725B.1625C.-925D.-1925【答案】A【分析】根据y轴右边第二个对称中心在0,π内,第三个对称中心不在0,π内可求得32≤ω<52,结合fπ=1可得ω=2,再利用平移变换求出g x ,根据三角变换化简fα +gα =35可得sin2α+π6=35,然后由二倍角公式可解.【详解】由x∈0,π得ωx∈0,ωπ,因为函数f x 在0,π内恰有两个对称中心,所以3π2≤ωπ5π2>ωπ,解得32≤ω<52,又fπ=cosωπ=1,所以ωπ=kπ,k∈Z,即ω=k,k∈Z,所以ω=2,将函数f x 的图象向右平移π3个单位得到函数y=cos2x-π3=cos2x-2π3,即g x =cos2x-2π3,因为fα +gα =cos2α+cos2α-2π3=32sin2α+12cos2α=sin2α+π6=35,所以cos4α+π3=1-2sin22α+π6=1-2×35 2=725.故选:A6(2024·安徽马鞍山·三模)已知函数f(x)=sin2ωx+cos2ωx(ω>1)的一个零点是π2,且f(x)在-π6,π16上单调,则ω=()A.54B.74C.94D.114【答案】B【分析】整理可得f(x)=2sin2ωx+π4,以2ωx+π4为整体,根据单调性分析可得1<ω≤2,再结合零点分析求解.【详解】因为f(x)=sin2ωx+cos2ωx=2sin2ωx+π4,x∈-π6,π16,且ω>1时,可得2ωx+π4∈-π3ω+π4,π8ω+π4,且-π3ω+π4<0<π8ω+π4,若f(x)在-π6,π16上单调,则-π3ω+π4≥-π2π8ω+π4≤π2,解得1<ω≤2,又因为f(x)的一个零点是π2,则πω+π4=kπ,k∈Z,解得ω=k-14,k∈Z,所以k=2,ω=7 4 .故选:B.7(2024·山东临沂·二模)已知函数f x =sin2x+φϕ <π2图象的一个对称中心为π6,0,则()A.f x 在区间-π8,π3上单调递增B.x=5π6是f x 图象的一条对称轴C.f x 在-π6,π4上的值域为-1,32D.将f x 图象上的所有点向左平移5π12个长度单位后,得到的函数图象关于y轴对称【答案】D【分析】借助整体代入法结合正弦函数的性质可得A、B;结合正弦函数最值可得C;得到平移后的函数解析式后借助诱导公式即可得D.【详解】由题意可得2×π6+φ=kπk∈Z,解得φ=-π3+kπk∈Z,又ϕ <π2,故φ=-π3,即f x =sin2x-π3;对A :当x ∈-π8,π3 时,2x -π3∈-7π12,π3,由函数y =sin x 在-7π12,π3上不为单调递增,故f x 在区间-π8,π3上不为单调递增,故A 错误;对B :当x =5π6时,2x -π3=4π3,由x =4π3不是函数y =sin x 的对称轴,故x =5π6不是f x 图象的对称轴,故B 错误;对C :当x ∈-π6,π4 时,2x -π3∈-2π3,π6,则f x ∈-1,12,故C 错误;对D :将f x 图象上的所有点向左平移5π12个长度单位后,可得y =sin 2x +2×5π12-π3 =sin 2x +π2=cos2x ,该函数关于y 轴对称,故D 正确.故选:D .8(2024·广东广州·二模)已知函数f (x )=2sin (ωx +φ)ω>0,|φ|<π2的部分图象如图所示,若将函数f (x )的图象向右平移θ(θ>0)个单位后所得曲线关于y 轴对称,则θ的最小值为()A.π8B.π4C.3π8D.π2【答案】A【分析】根据给定的图象特征,结合五点法作图列式求出ω和φ,再根据图象的平移变换,以及图象的对称性即可得解.【详解】由f π4=1,得sin π4ω+φ =22,又点π4,1 及附近点从左到右是上升的,则π4ω+φ=π4+2k π,k ∈Z ,由f 5π8 =0,点5π8,0 及附近点从左到右是下降的,且上升、下降的两段图象相邻,得5π8ω+φ=π+2k π,k ∈Z ,联立解得ω=2,φ=-π4+2k π,k ∈Z ,而|φ|<π2,于是φ=-π4,f (x )=2sin 2x -π4,若将函数f (x )的图像向右平移θ(θ>0)个单位后,得到y =sin 2x -2θ-π4,则-2θ-π4=π2-k π,k ∈Z ,而θ>0,因此θ=-3π8+k π2,k ∈N ,所以当k =1时,θ取得最小值为π8.故选:A9(2024·四川雅安·三模)已知函数f x =sin ωx +3cos ωx (ω>0),则下列说法中正确的个数是()①当ω=2时,函数y =f x -2log πx 有且只有一个零点;②当ω=2时,函数y =f x +φ 为奇函数,则正数φ的最小值为π3;③若函数y =f x 在0,π3 上单调递增,则ω的最小值为12;④若函数y =f x 在0,π 上恰有两个极值点,则ω的取值范围为136,256.A.1 B.2C.3D.4【答案】B【分析】利用辅助角公式化简函数,由图象分析判断①;由正弦函数的性质判断②③;由极大值的意义结合正弦函数的性质判断④.【详解】依题意,ω>0,函数f (x )=212sin ωx +32cos ωx =2sin ωx +π3,对于①:f (x )=2sin 2x +π3,令y =f x -2log πx =0,即f x =2log πx ,作出函数y =f (x )和函数y =2log πx 的图象,如图,观察图象知,两个函数在0,7π12 上只有一个零点,f 13π12 =2sin 5π2=2,当x =13π12时,y =2log π13π12=2log π1312+2log ππ=2+2log π1312>2,当x >13π12时,2log πx >2≥f (x ),因此函数y =f x 与函数y =2log πx 的图象有且只有一个交点,①正确;对于②:f (x +φ)=2sin 2x +2φ+π3 为奇函数,则2φ+π3=k π,k ∈Z ,φ=-π6+k π2,k ∈Z ,即正数φ的最小值为π3,②正确;对于③:当x ∈0,π3 时,ωx +π3∈π3,π(ω+1)3,由y =f x 在0,π3 上单调递增,得π(ω+1)3≤π2ω>0,解得0<ω≤12,正数ω有最大值12,③错误;对于④:当x ∈(0,π)时,ωx +π3∈π3,ωπ+π3,而y =f x 在(0,π)上恰有两个极值点,由正弦函数的性质得3π2<ωπ+π3≤5π2,解得76<ω≤136,因此ω的取值范围是76,136,④错误.综上,共2个正确,故选:B .10(2024·河北保定·二模)已知tan α=3cos αsin α+11,则cos2α=()A.-78B.78C.79D.-79【答案】B【分析】利用切化弦和同角三角函数的关系,解出sin α,再结合二倍角公式即可求解.【详解】因为sin αcos α=3cos αsin α+11,所以4sin 2α+11sin α-3=0,解得sin α=14或sin α=-3(舍去),所以cos2α=1-2sin 2α=78.故选:B .11(2024·河北衡水·三模)已知sin (3α-β)=m sin (α-β),tan (2α-β)=n tan α,则m ,n 的关系为()A.m =2nB.n =m +1mC.n =m m -1D.n =m +1m -1【答案】D【分析】利用和差角的正弦公式化简,结合已知列出方程即可求解.【详解】依题意,sin (3α-β)=sin [(2α-β)+α]=sin (2α-β)cos α+cos (2α-β)sin α,sin (α-β)=sin [(2α-β)-α]=sin (2α-β)cos α-cos (2α-β)sin α,则sin (2α-β)cos α+cos (2α-β)sin α=m sin (2α-β)cos α-m cos (2α-β)sin α,即sin (2α-β)cos αcos (2α-β)sin α=m +1m -1,即tan (2α-β)tan α=m +1m -1=n .故选:D12(2024·辽宁沈阳·三模)已知tan α2=2,则sin 2α2+sin α的值是()A.25B.45C.65D.85【答案】D【分析】利用二倍角公式和同角之间的转化,进行求解判断选项【详解】当tan α2=2,则sin 2α2+sin α=sin 2α2+2sin α2cos α2sin 2α2+cos 2α2=tan 2α2+2tan α2tan 2α2+1=22+2×222+1=85故选:D13(2024·贵州黔东南·二模)已知0<α<β<π,且sin α+β =2cos α+β ,sin αsin β-3cos αcos β=0,则tan α-β =()A.-1 B.-32C.-12D.12【答案】C【分析】找出tan α和tan β的关系,求出tan α和tan β即可求解.【详解】∵sin αsin β-3cos αcos β=0,∴sin αsin β=3cos αcos β,∴tan αtan β=3①,∵sin α+β =2cos α+β ,∴tan α+β =2⇒tan α+tan β1-tan αtan β=2⇒tan α+tan β1-3=2,∴tan α+tan β=-4②,由①②解得tan α=-1tan β=-3或tan α=-3tan β=-1 ,∵0<α<β<π,∴tan α<tan β,∴tan α=-3tan β=-1 ,∴tan α-β =tan α-tan β1+tan αtan β=-12.故选:C .二、多选题14(2024·河北张家口·三模)已知函数f (x )=23cos 2x +2sin x cos x ,则下列说法正确的是()A.函数f (x )的一个周期为2πB.函数f (x )的图象关于点π3,0 对称C.将函数f (x )的图象向右平移φ(φ>0)个单位长度,得到函数g (x )的图象,若函数g (x )为偶函数,则φ的最小值为5π12D.若f 12α-5π24 -3=12,其中α为锐角,则sin α-cos α的值为6-308【答案】ACD【分析】利用三角恒等变换公式化简,由周期公式可判断A ;代入验证可判断B ;根据平移变化求g (x ),由奇偶性可求出φ,可判断C ;根据已知化简可得sin α-π12 =14,将目标式化为2sin α-π12 -π6 ,由和差角公式求解可判断D .【详解】对于A ,因为f (x )=31+cos2x +sin2x =2sin 2x +π3+3,所以f (x )的最小值周期T =2π2=π,所以2π是函数f (x )的一个周期,A 正确;对于B ,因为f π3 =2sin 2×π3+π3 +3=3,所以,点π3,0 不是函数f (x )的对称中心,B 错误;对于C ,由题知,g x =f (x -φ)=2sin 2(x -φ)+π3 +3=2sin 2x +π3-2φ +3,若函数g (x )为偶函数,则π3-2φ=π2+k π,k ∈Z ,得φ=-π12-k π2,k ∈Z ,因为φ>0,所以φ的最小值为5π12,C 正确;对于D ,若f 12α-5π24-3=2sin 212α-5π24 +π3 =2sin α-π12 =12,则sin α-π12 =14,因为α为锐角,-π12<α-π12<5π12,所以cos α-π12 =154,所以sin α-cos α=2sin α-π4 =2sin α-π12 -π6=232sin α-π12 -12cos α-π12=232×14-12×154=6-308,D 正确.故选:ACD 15(2024·辽宁鞍山·模拟预测)已知函数f x =sin x ⋅cos x ,则()A.f x 是奇函数B.f x 的最小正周期为2πC.f x 的最小值为-12D.f x 在0,π2上单调递增【答案】AC【分析】首先化简函数f x =12sin2x ,再根据函数的性质判断各选项.【详解】f x =sin x ⋅cos x =12sin2x ,函数的定义域为R ,对A ,f -x =-12sin2x =-f x ,所以函数f x 是奇函数,故A 正确;对B ,函数f x 的最小正周期为2π2=π,故B 错误;对C ,函数f x 的最小值为-12,故C 正确;对D ,x ∈0,π2 ,2x ∈0,π ,函数f x 不单调,f x 在0,π4 上单调递增,在π4,π2上单调递减,故D 错误.故选:AC16(2024·安徽·三模)已知函数f x =sin x -3cos x ,则()A.f x 是偶函数B.f x 的最小正周期是πC.f x 的值域为-3,2D.f x 在-π,-π2上单调递增【答案】AC【分析】对于A ,直接用偶函数的定义即可验证;对于B ,直接说明f 0 ≠f π 即可否定;对于C ,先证明-3≤f x ≤2,再说明对-3≤u ≤2总有f x =u 有解即可验证;对于D ,直接说明f -5π6>f -2π3 即可否定.【详解】对于A ,由于f x 的定义域为R ,且f -x =sin -x -3cos -x =-sin x -3cos x =sin x -3cos x =f x ,故f x 是偶函数,A 正确;对于B ,由于f 0 =sin0 -3cos0=-3,f π =sinπ -3cosπ=3,故f 0 ≠f π ,这说明π不是f x 的周期,B 错误;对于C ,由于f x =sin x -3cos x ≤sin x +3cos x =sin x +3cos x 2≤sin x +3cos x 2+3sin x -cos x 2=sin 2x +3cos 2x +23sin x cos x +3sin 2x +cos 2x -23sin x cos x =4sin 2x +4cos 2x =4=2,且f x =sin x -3cos x ≥-3cos x ≥-3,故-3≤f x ≤2.而对-3≤u ≤2,有f 0 =-3≤u ,f 5π6 =2≥u ,故由零点存在定理知一定存在x ∈0,5π6使得f x =u .所以f x 的值域为-3,2 ,C 正确;对于D ,由于-π<-5π6<-2π3<-π2,f -5π6 =2>3=f -2π3 ,故f x 在-π,-π2上并不是单调递增的,D 错误.故选:AC .17(2024·山西太原·模拟预测)已知函数f x =sin 2x +φ 0<φ<π2 的图象关于直线x =π12对称,且h x =sin2x -f x ,则()A.φ=π12B.h x 的图象关于点π6,0中心对称C.f x 与h x 的图象关于直线x =π4对称 D.h x 在区间π6,5π12内单调递增【答案】BCD【分析】根据正弦函数的对称性求解φ判断A ,先求出h x =sin 2x -π3,然后利用正弦函数的对称性求解判断B ,根据对称函数的性质判断C ,结合正弦函数的单调性代入验证判断D .【详解】由题意得2×π12+φ=π2+k π,k ∈Z ,解得φ=π3+k π,k ∈Z ,又因为0<φ<π2,所以φ=π3,A 错误;由φ=π3可知f x =sin 2x +π3,则h x =sin2x -sin 2x +π3 =12sin2x -32cos2x =sin 2x -π3,令2x -π3=k π,k ∈Z ,解得x =π6+k π2,k ∈Z ,令k =0,得x =π6,所以点π6,0 是曲线y =h x 的对称中心,B 正确;因为f π2-x =sin 2π2-x +π3 =sin 4π3-2x =sin 2x -π3=h x ,所以f x 与h x 的图象关于直线x =π4对称,C 正确;当x ∈π6,5π12 时,2x -π3∈0,π2 ,故h x 在区间π6,5π12内单调递增,D 正确.故选:BCD 18(2024·浙江金华·三模)已知函数f x =sin2ωx cos φ+cos2ωx sin φω>0,0<φ<π2的部分图象如图所示,则()A.φ=π6B.ω=2C.f x +π6为偶函数 D.f x 在区间0,π2的最小值为-12【答案】ACD【分析】先由正弦展开式,五点法结合图象求出f x =sin 2x +π6,可得A 正确,B 错误;由诱导公式可得C 正确;整体代入由正弦函数的值域可得D 正确.【详解】由题意得f x =sin 2ω+φ ,由图象可得f 0 =12⇒sin φ=12,又0<φ<π2,所以φ=π6,由五点法可得ω×4π3+π6=3π2⇒ω=1,所以f x =sin 2x +π6 .A :由以上解析可得φ=π6,故A 正确;B :由以上解析可得ω=1,故B 错误;C :f x +π6 =sin 2x +π6 +π6=cos2x ,故C 正确;D :当x ∈0,π2 ⇒2x +π6∈π6,7π6 时,sin 2x +π6 ∈-12,1,所以最小值为-12,故D 正确;故选:ACD .19(2024·浙江温州·二模)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,P -3,4 为其终边上一点,若角β的终边与角2α的终边关于直线y =-x 对称,则()A.cos π+α =35B.β=2k π+π2+2αk ∈Z C.tan β=724D.角β的终边在第一象限【答案】ACD【分析】根据三角函数的定义,可求角α的三角函数,结合诱导公式判断A 的真假;利用二倍角公式,求出2α的三角函数值,结合三角函数的概念指出角2α的终边与单位圆的交点,由对称性确定角β终边与单位圆交点,从而判断BCD 的真假.【详解】因为角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边经过点P -3,4 ,所以:OP =5,所以sin α=45,cos α=-35,所以cos π+α =-cos α=35,故A 对;又sin2α=2sin α⋅cos α=2×45×-35 =-2425,cos2α=cos 2α-sin 2α=-35 2-45 2=-725,所以2α的终边与单位圆的交点坐标为:-725,-2425 ,因为角β的终边与角2α的终边关于直线y =-x 对称,所以角β的终边与单位圆的交点为2425,725,所以tan β=724,且β的终边在第一象限,故CD 正确;又因为终边在直线y =-x 的角为:k π-π4,k ∈Z ,角2α的终边与角β的终边关于y =-x 对称,所以2α+β2=k π-π4⇒β=2k π-π2-2αk ∈Z ,故B 错误.故选:ACD20(2024·广东佛山·二模)已知函数f x =sin x +cos2x 与g x =sin2x +cos x ,记h x =λf x +μg x ,其中λ,μ∈R 且λ2+μ2≠0.下列说法正确的是()A.h x 一定为周期函数B.若λ⋅μ>0,则h x 在0,π2上总有零点C.h x 可能为偶函数 D.h x 在区间0,2π 上的图象过3个定点【答案】ABD【分析】对于A :计算h x +2π ,化简即可;对于B :求出h x ,然后计算h 0 h π2的正负即可;对于C :计算h x ,h -x 是否恒相等即可;对于D :令f x =0g x =0,求解x 即可.【详解】对于A ,∀x ∈R ,h x +2π =λf x +2π +μg x +2π =λf x +μg x =h x ,A 正确;对于B ,h x =λcos x -2sin2x +μ2cos2x -sin x ,则h 0 =λ+2μ,h π2=-3μ,因为λμ>0,即λ,μ同号,所以h 0 h π2<0,由零点存在定理知h x 在0,π2上总有零点,故B 正确;对于C ,h x =λsin x +λcos2x +μsin2x +μcos x ,h -x =-λsin x +λcos2x -μsin2x +μcos x ,由h x =h -x 得2λsin x +2μsin2x =2λsin x +2μ⋅2sin x cos x =2sin x λ+2μcos x =0对x ∈R 恒成立,则λ=μ=0与题意不符,故C 错误;对于D ,令f x =0g x =0 ,则sin x +cos2x =1-2sin 2x +sin x =-sin x -1 2sin x +1 =0sin2x +cos x =cos x 2sin x +1 =0 ⇒sin x =1或sin x =-12cos x =0或sin x =-12,即x ∈-π6+2k π,π2+2k π,7π6+2k π ,k ∈Z ,故所有定点坐标为-π6+2k π,0 ,π2+2k π,0 ,7π6+2k π,0 ,k ∈Z ,又因为x ∈0,2π ,所以函数h x 的图象过定点π2,0 ,7π6,0 ,11π6,0 ,故D 正确;故选:ABD .21(2024·湖南·二模)已知函数f x =12cos 2x -π3 ,把y =f x 的图象向右平移π3个单位长度,得到函数y =g x 的图象,以下说法正确的是()A.x =π6是y =f x 图象的一条对称轴B.f x 的单调递减区间为k π+π6,k π+2π3k ∈Z C.y =g x 的图象关于原点对称D.f x +g x 的最大值为12【答案】ABD【分析】根据题意,求得g x =-12cos2x 的图象,结合三角函数的图象与性质,以及两角差的正弦公式,逐项判定,即可求解.【详解】将函数f x =12cos 2x -π3 的图象向右平移π3个单位长度,得到函数y =g x =12cos 2x -π =-12cos2x 的图象,对于A 中,令x =π6,求得f x =12,即为函数y =f x 最大值,所以直线x =π6是函数f x 图象的一条对称轴,所以A 正确;对于B 中,令2k π≤2x -π3≤2k π+π,k ∈Z ,解得k π+π6≤x ≤k π+2π3,k ∈Z ,可得f x 的单调减区间为k π+π6,k π+2π3,k ∈Z ,所以B 正确.对于C 中,由于g x =-12cos2x 是偶函数,可得函数g x 的图象关于y 轴对称,所以C 错误.对于D 中,由f x +g x =12cos 2x -π3 +-12cos2x =1212cos2x +32sin2x -12cos2x =34sin2x -14cos2x =12sin 2x -π6 ≤12,即f x +g x 的最大值为12,所以D 正确.故选:ABD .22(2024·广东江门·一模)已知函数f (x )=sin 2ωx +π3 +sin 2ωx -π3+23cos 2ωx -3(ω>0),则下列结论正确的是()A.若f x 相邻两条对称轴的距离为π2,则ω=2B.当ω=1,x ∈0,π2时,f x 的值域为-3,2 C.当ω=1时,f x 的图象向左平移π6个单位长度得到函数解析式为y =2cos 2x +π6D.若f x 在区间0,π6上有且仅有两个零点,则5≤ω<8【答案】BCD【分析】根据三角恒等变换化简f x =2sin 2ωx +π3,进而根据周期可判断A ,根据整体法求解函数的值域判断B ,根据函数图象的平移可判断C ,根据零点个数确定不等式满足的条件可判断D .【详解】f (x )=sin 2ωx +π3 +sin 2ωx -π3+23cos 2ωx -3=sin2ωx cos π3+cos2ωx sin π3+sin2ωx cos π3-cos2ωx sin π3+3cos2ωx=sin2ωx +3cos2ωx =2sin 2ωx +π3,对于A ,若f x 相邻两条对称轴的距离为π2,则T =2×π2=π=2π2ω,故ω=1,A 错误,对于B ,当ω=1,f x =2sin 2x +π3 ,当x ∈0,π2 时,2x +π3∈π3,4π3,则f x 的值域为-3,2 ,B 正确,对于C ,当ω=1,f x =2sin 2x +π3,f x 的图象向左平移π6个单位长度得到函数解析式为f x +π6 =2sin 2x +π6 +π3 =2sin 2x +2π3 =2cos 2x +π6,C 正确,对于D ,当x ∈0,π6 时,2ωx +π3∈π3,2ωπ6+π3,若f x 在区间0,π6 上有且仅有两个零点,则2π≤2ωπ6+π3<3π,解得5≤ω<8,故D 正确,故选:BCD 三、填空题23(2024·北京·三模)已知函数f (x )=sin x cos ωx ,x ∈R .①若ω=1,则f (x )的最小正周期是;,②若ω=2,则f (x )的值域是.【答案】π[-1,1]【分析】把ω=1代入,t 明智二倍角的正弦,结合正弦函数的周期求出f (x )的最小正周期;把ω=2代入,利用二倍角的余弦公式,借助换元法,利用导数求出f (x )的值域.【详解】当ω=1时,f (x )=sin x cos x =12sin2x ,函数f (x )的最小正周期为2π2=π;当ω=2时,f (x )=sin x cos2x =sin x (1-2sin 2x ),令sin x =t ∈[-1,1],g (t )=t (1-2t 2)=-2t 3+t ,求导得g (t )=-6t 2+1,当-1≤t <-66或66<t ≤1时,g (t )<0,当-66<t <66时,g (t )>0,函数g (t )在-1,-66 ,66,1 上单调递减,在-66,66上单调递增,g (-1)=1,g 66 =69,g (1)=-1,g -66 =-69,所以g (t )min =-1,g (t )max =1,f (x )的值域是[-1,1].故答案为:π;[-1,1]24(2024·北京·模拟预测)已知函数f (x )=sin ωx -2cos ωx (ω>0),且f α+x =f α-x .若两个不等的实数x 1,x 2满足f x 1 f x 2 =5且x 1-x 2 min =π,则sin4α=.【答案】-45/-0.8【分析】利用辅助角公式化简f (x )的解析式,再由题意可得函数关于x =α对称,且最小正周期T =π,即可求出ω的值,从而得到2α=φ+π2+k π,k ∈Z ,再由二倍角公式及同角三角函数的基本关系计算可得.【详解】因为f (x )=sin ωx -2cos ωx =5sin ωx -φ ,其中tan φ=2,由f α+x =f α-x ,可得f x 关于x =α对称,又两个不等的实数x 1,x 2满足f x 1 f x 2 =5且x 1-x 2 min =π,所以f x 的最小正周期T =π,又ω>0,所以2πω=π,解得ω=2,所以f x =5sin 2x -φ ,所以2α-φ=π2+k π,k ∈Z ,则2α=φ+π2+k π,k ∈Z ,所以sin4α=sin2φ+π2+k π =sin 2φ+π+2k π =-sin2φ=-2sin φcos φsin 2φ+cos 2φ=-2tan φtan 2φ+1=-2×222+1=-45.故答案为:-4525(2024·湖北荆州·三模)设0<α<β<π2,tan α=m tan β,cos α-β =35,若满足条件的α与β存在且唯一,则m =,tan αtan β=.【答案】191【分析】由tan α=m tan β得到sin αcos β=m cos αsin β,再结合cos α-β =35,利用sin α-β =-45,得到cos αsin β=-45m -1 ,sin αcos β=-4m5m -1 ,从而sin α+β =-4m +1 5m -1,再由满足条件的α与β存在且唯一,得到α+β唯一,从而sin α+β =-4m +15m -1=1,求得m 即可.【详解】解:由tan α=m tan β,得sin αcos α=m sin βcos β,即sin αcos β=m cos αsin β,因为0<α<β<π2,tan α=m tan β,所以-π2<α-β<0,0<m <1,又cos α-β =35,所以sin α-β <0,从而sin α-β =sin αcos β-cos αsin β=m -1 cos αsin β=-45,所以cos αsin β=-45m -1,所以sin αcos β=m cos αsin β=-4m5m -1,所以sin α+β =sin αcos β+cos αsin β=-4m +15m -1,因为α,β∈0,π2,所以α+β∈0,π ,因为满足条件的α与β存在且唯一,所以α+β唯一,所以sin α+β =-4m +1 5m -1=1,所以m =19,经检验符合题意,所以tan α=19tan β,则tan α-β =-43=tan α-tan β1+tan αtan β=tan α-9tan α1+9tan 2α,解得tan α=13,所以tan αtan β=9tan 2α=1.故答案为:19,1【点睛】关键点点睛:关键是结合已知得出sin α+β =-4m +15m -1 =1,求出m ,由此即可顺利得解.。
三角函数高考大题整理
三角函数高考大题(一)姓名________日期_________1.(14广东16)已知函数R x x A x f ∈+=),4sin()(π,且23)125(=πf , (1)求A 的值;(2)若23)()(=-+θθf f ,)2,0(πθ∈,求)43(θπ-f2.(14湖北17)某实验室一天的温度(单位:)随时间(单位;h )的变化近似满足函数关系;(1) 求实验室这一天的最大温差; (2) 若要求实验室温度不高于,则在哪段时间实验室需要降温?3.(2014•福建)已知函数f (x )=cosx (sinx+cosx )﹣. (1)若0<α<,且sin α=,求f (α)的值;(2)求函数f (x )的最小正周期及单调递增区间.三角函数高考大题(二)姓名________日期_________ 1.(2014•江西)已知函数f (x )=sin (x+θ)+acos (x+2θ),其中a ∈R ,θ∈(﹣,)(1)当a=,θ=时,求f (x )在区间[0,π]上的最大值与最小值;(2)若f ()=0,f (π)=1,求a ,θ的值.2.(14天津)(本小题满分13分)已知函数()23cos sin 3cos 34f x x x x π⎛⎫=⋅+-+ ⎪⎝⎭,x R ∈. (Ⅰ)求()f x 的最小正周期;(Ⅱ)求()f x 在闭区间,44ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值.(14山东本小题满分12分)已知向量()(),cos 2,sin 2,a m x b x n ==,函数()f x a b =⋅ ,且()y f x =的图像过点,312π⎛⎫⎪⎝⎭和点2,23π⎛⎫- ⎪⎝⎭.(I )求,m n 的值;(II )将()y f x =的图像向左平移()0ϕϕπ<<个单位后得到函数()y g x =的图像,若()y g x =图像上各最高点到点()0,3的距离的最小值为1,求()y g x =的单调递增区间.三角函数高考大题(三)姓名________日期_________1.(2014•四川)已知函数f (x )=sin (3x+).(1)求f (x )的单调递增区间;(2)若α是第二象限角,f ()=cos (α+)cos2α,求cos α﹣sin α的值.2.(2014•重庆)已知函数f (x )=sin (ωx+φ)(ω>0,﹣≤φ<)的图象关于直线x=对称,且图象上相邻两个最高点的距离为π. (Ⅰ)求ω和φ的值; (Ⅱ)若f ()=(<α<),求cos (α+)的值.(14江苏本小题满分14分) 已知),2(ππα∈,55sin =α.(1)求)4sin(απ+的值; (2)求)265cos(απ-的值.三角函数高考大题(四)姓名________日期_________1.(13天津)已知函数.(Ⅰ) 求f (x )的最小正周期;(Ⅱ) 求f(x)在区间上的最大值和最小值.2.(13江苏)已知向量,。
高三数学三角函数试题答案及解析
高三数学三角函数试题答案及解析1.在中,已知,若分别是角所对的边,则的最大值为.【答案】【解析】由正余弦定理得:,化简得因此即最大值为.【考点】正余弦定理,基本不等式2. sin7°cos37°﹣sin83°cos53°的值为()A.﹣B.C.D.﹣【答案】A【解析】sin7°cos37°﹣sin83°cos53°=cos83°cos37°﹣sin83°sin37°=cos(83°+37°)=cos120°=﹣,故选A.3.三角形ABC是锐角三角形,若角θ终边上一点P的坐标为(sin A-cos B,cos A-sin C),则的值是( )A.1B.-1C.3D.4【答案】B【解析】因为三角形ABC是锐角三角形,所以A+B>90°,即A>90°-B,则sin A>sin(90°-B)=cos B,sin A-cos B>0,同理cos A-sin C<0,所以点P在第四象限,=-1+1-1=-1,故选B.4.已知函数则=【答案】【解析】因为函数由需要求的x都是整数,所以当x为奇数时的解析式为,当x为偶数时的解析式为.所以.所以.【考点】1.分段函数的性质.2.归纳推理的思想.3.三角函数的运算.4.等差数列的求和公式.5.若方程有实根,则实数的取值范围为【答案】【解析】由方程得,,即,因为,所以,若方程有实根,则,解得.【考点】方程的根.6.设,将函数在区间内的全部极值点按从小到大的顺序排成数列.(1)求数列的通项公式;(2)设,数列的前项和为,求.【答案】(1);(2).【解析】(1)先根据三角函数的恒等变换化简,得,再根据三角函数的性质找到极值点,利用等差数列的性质写出数列的通项公式;(2)先根据(1)中的结果写出的通项公式,然后写出的解析式,在构造出,利用错位相减法求,计算量比较大,要细心.试题解析:(1),其极值点为, 2分它在内的全部极值点构成以为首项,为公差的等差数列, 4分所以; 6分(2), 8分所以,,相减,得,所以. 12分【考点】1、三角函数的恒等变换及化简;2、三角函数的性质的应用;3、等差数列的通项公式;4、错位相减法求数列的前项和;5、等比数列的前项和.7.已知函数d的最大值为2,是集合中的任意两个元素,且的最小值为.(1)求函数的解析式及其对称轴;(2)若,求的值.【答案】(1),;(2).【解析】本题主要考查两角和与差的正弦公式、二倍角的余弦公式、诱导公式、三角函数的最小正周期、单调性等基础知识,考查运算能力.第一问,利用倍角公式化简表达式,先利用周期求出,再求最值,通过解方程求出,确定了解析式后求正弦函数的对称轴;第二问,通过角之间的关系转化角,考查诱导公式和倍角公式.试题解析:(1),由题意知:的周期为,由,知 2分由最大值为2,故,又, 4分∴ 5分令,解得的对称轴为 7分(2)由知,即, 8分∴ 10分12分【考点】1.倍角公式;2.两角和与差的三角函数;3.函数的周期;4.函数的对称轴.8.是偶函数,,则 .【答案】【解析】,,所以,因为为偶函数,所以对任意的,都有即成立,又,所以.【考点】三角函数的恒等变换,偶函数.9.已知方程在上有两个不同的解、,则下列结论正确的是()A.B.C.D.【答案】C【解析】由于方程在上有两个不同的解、,即方程在上有两个不同的解、,也就是说,直线与函数在轴右侧的图象有且仅有两个交点,由图象可知,当时,直线与曲线相切,且切点的横坐标为,当时,,则,故,在切点处有,即,,两边同时乘以得,,故选C.【考点】1.函数的零点;2.函数的图象;3.利用导数求切线的斜率10.将函数图像上各点的横坐标缩短到原来的倍(纵坐标不变),再向右平移个单位,那么所得图像的一条对称轴方程为()A.B.C.D.【答案】B【解析】将函数的图像按题中要求变换后得到函数的图像,令,则,当时,.【考点】1.三角函数的变换;2.三角函数图象的对称轴.11.函数f(x)=sin+ACos(>0)的图像关于M(,0)对称,且在处函数有最小值,则的一个可能取值是( )A.0B.3C.6D.9【答案】D【解析】根据题意:相邻对称点与最小值之间可以相差也可以是不妨设为:=,可以为9,故选D.【考点】三角函数的最值;正弦函数的对称性.12.已知函数,(1)求的值;(2)若,且,求.【答案】(1);(2).【解析】(1)直接将代入计算即可;(2)用二倍角的正弦、余弦公式化简,再将正弦、余弦合为同一个的三角函数;根据已知条件,求出的值.试题解析:(1)(2)因为,且,所以,所以【考点】1、三角恒等变换;2、三角函数的基本运算.13.已知函数的最小正周期为.(Ⅰ)求的值;(Ⅱ)讨论在区间上的单调性.【答案】(Ⅰ)(Ⅱ)当,即时,单调递增;当,即,单调递减.【解析】(1)由题意,所以由(1)知若,则当,即时,单调递增;当,即,单调递减.第(1)题根据三角函数的和差化简,二倍角公式以及辅助角公式,最后化成的形式,利用确定的值;第(2)题用整体法的思想确定的单调性,再反求出在指定范围内的单调性.本题属简单题.【考点】本题主要考查三角恒等变形、三角函数的图像及性质与三角函数图像的变换.考查逻辑推理和运算求解能力,中等难度.14.已知函数若方程有三个不同的实根,且从小到大依次成等比数列,则m的值为 .【答案】【解析】设三个根由小到大依次为,结合余弦函数图像可知关于直线对称,关于直线对称,代入计算得【考点】三角函数图像及性质点评:题目中主要结合三角函数图像的轴对称性找到三根之间的联系15.已知,则的值为()A.B.C.D.【答案】B【解析】因为,,即,,所以,=,故选B。
2020年高考理科数学《三角函数》题型归纳与训练含答案解析
2020年高考理科数学《三角函数》题型归纳与训练【题型归纳】题型一 三角函数的概念、诱导公式及同角关系式例1 (1)点P 从(1,0)出发,沿单位圆x 2+y 2=1逆时针方向运动2π3弧长到达Q 点,则Q 点的坐标为( )A .(-12,32)B .(-32,-12) C .(-12,-32)D .(-32,12) (2)已知角α的顶点与原点重合,始边与x 轴的正半轴重合,终边上一点P(-4,3),则cos()sin()2119cos()sin()22παπαππαα+---+的值为________. 【答案】(1)A (2)-34【解析】(1)设Q 点的坐标为(x ,y), 则x =cos 2π3=-12,y =sin 2π3=32.∴Q 点的坐标为(-12,32).(2)原式=-sin α·sin α-sin α·cos α=tan α.根据三角函数的定义, 得tan α=y x =-34,∴原式=-34.【易错点】诱导公式和三角函数定义不熟练【思维点拨】(1)涉及与圆及角有关的函数建模问题(如钟表、摩天轮、水车等),常常借助三角函数的定义求解.应用定义时,注意三角函数值仅与终边位置有关,与终边上点的位置无关.(2)应用诱导公式时要弄清三角函数在各个象限内的符号;利用同角三角函数的关系化简过程要遵循一定的原则,如切化弦、化异为同、化高为低、化繁为简等. 题型二 三角函数的图象及应用例1已知曲线1cos C y x =:,22πsin 23C y x ⎛⎫=+⎪⎝⎭:,则下面结正确的是( ).A.把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线2CB.把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线2CC.把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线2CD.把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线2C 【答案】D【解析】(1) 1:cos C y x =,22π:sin 23⎛⎫=+ ⎪⎝⎭C y x ,首先曲线1C 、2C 统一为一三角函数名,可将1:cos C y x =用诱导公式处理.πππcos cos sin 222⎛⎫⎛⎫==+-=+ ⎪ ⎪⎝⎭⎝⎭y x x x .横坐标变换需将1=ω变成2=ω,即112πππsin sin 2sin 2224y x y x x ⎛⎫⎛⎫⎛⎫=+−−−−−−−−→=+=+→ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C 上各坐短它原点横标缩来2ππsin 2sin 233y x x ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭. 注意ω的系数,在右平移需将2=ω提到括号外面,这时π4+x 平移至π3+x ,根据“左加右减”原则,“π4+x ”到“π3+x ”需加上π12,即再向左平移π12.故选D. 【易错点】函数图像水平方向平移容易出错 【思维点拨】平移变换理论 (1)平移变换:①沿x 轴平移,按“左加右减”法则; ②沿y 轴平移,按“上加下减”法则. (2)伸缩变换:①沿x 轴伸缩时,横坐标x 伸长(0<ω<1)或缩短(ω>1)为原来的 倍(纵坐标y 不变); ②沿y 轴伸缩时,纵坐标y 伸长(A>1)或缩短(0<A<1)为原来的A 倍(横坐标x 不变). 2.注意平移前后两个函数的名称是否一致,若不一致,应用诱导公式化为同名函数再平移.例2函数sin 21cos xy x=-的部分图像大致为( ).【答案】C【解析】由题意知,函数sin 21cos xy x =-为奇函数,故排除B ;当x =π时,0y =,排除D ;当1x =时,sin 21cos 2y =>-,排除A.故选C.【易错点】函数图形判断通过过排除法 【思维点拨】例3函数f(x)=2sin(ωx +φ)⎝⎛⎭⎫ω>0,-π2<φ<π2的部分图象如图所示,则ω,φ的值分别是( ) A .2,-π3B .2,-π6C .4,-π6D .4,π3【答案】A【解析】 (1)因为T 2=11π12-5π12,所以T =π.又T =2πω(ω>0),所以2πω=π,所以ω=2.又2×5π12+φ=π2+2kπ(k ∈Z ),且-π2<φ<π2,故φ=-π3.【易错点】求φ时,容易忽略讨论k 【思维点拨】题型三 三角函数性质例1 (1)已知函数f(x)=sin(ωx +φ)+3cos(ωx +φ)(ω>0,0<|φ|<π2)为奇函数,且函数y =f(x)的图象的两相邻对称轴之间的距离为π2.(1)求f(π6)的值;(2)将函数y =f(x)的图象向右平移π6个单位后,得到函数y =g(x)的图象,求函数g(x)的单调递增区间.【答案】(1)f(π6)=2sin π3=3(2)[kπ-π12,kπ+5π12](k ∈Z ).【解析】(1)f(x)=sin(ωx +φ)+3cos(ωx +φ) =2[12sin(ωx +φ)+32cos(ωx +φ)]=2sin(ωx +φ+π3).因为f(x)为奇函数,所以f(0)=2sin(φ+π3)=0,又0<|φ|<π2,可得φ=-π3,所以f(x)=2sin ωx ,由题意得2πω=2·π2,所以ω=2.故f(x)=2sin 2x. 因此f(π6)=2sin π3= 3.(2)将f(x)的图象向右平移π6个单位后,得到f(x -π6)的图象,所以g(x)=f(x -π6)=2sin[2(x -π6)]=2sin(2x -π3).当2kπ-π2≤2x -π3≤2kπ+π2(k ∈Z ),即kπ-π12≤x≤kπ+5π12(k ∈Z )时,g(x)单调递增,因此g(x)的单调递增区间为[kπ-π12,kπ+5π12](k ∈Z ).【易错点】 【思维点拨】题型四三角函数范围问题例1函数()23sin 0,42f x x x x ⎛π⎫⎡⎤=-∈ ⎪⎢⎥⎣⎦⎝⎭的最大值是 . 【答案】1【解析】()2233πsin 1cos 0442f x x x x x x ⎛⎫⎡⎤=+-=--∈ ⎪⎢⎥⎣⎦⎝⎭,,令cos x t =且[]01t ∈,,214y t =-+21t ⎛=-+ ⎝⎭,则当t =时,()f x 取最大值1. 【易错点】换元之后转化为二次函数在定区间上的定义域及最值 【思维点拨】 例2函数()cos sin =2+fx x x 的最大值为 .【解析】2()21f x +=【易错点】【思维点拨】辅助角公式运用 例3【2017年Ⅲ】函数()1ππsin cos 536f x x x ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭的最大值为( ). A .65B .1C .35D .15【答案】A 【解析】11()sin sin sin sin 5362533f x x x x x πππππ⎛⎫⎛⎫⎛⎫⎛⎫=++-+=+++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 6sin 53x π⎛⎫+ ⎪⎝⎭.故选A. 【易错点】本题属于中档题,基础差一点的学生在解题思路方面可能会存在一定问题,三角恒等变换中公式的选择对于学生来说是一个难点,对于老师教学来说是一个重点,选择合适的公式能起到事半功倍的效果!【思维点拨】题型五三角函数求值问题 例1已知π0,2α⎛⎫∈ ⎪⎝⎭,tan 2α=,则πcos 4α⎛⎫-= ⎪⎝⎭ .【解析】由tan 2sin 2cos ααα==得 又22sin cos 1αα+=,所以21cos 5α=.因为0,2απ⎛⎫∈ ⎪⎝⎭,所以cos 5α=,sin 5α=.因为cos cos cos sin sin 44αααππ⎛⎫-=π+ ⎪⎝⎭,所以cos 4525210πα⎛⎫-=+⨯= ⎪⎝⎭. 【易错点】【思维点拨】例2(1)若3tan 4α=,则2cos 2sin 2αα+=( ) (A)6425 (B) 4825 (C) 1 (D)1625(2)sin 20cos10cos160sin10-=( )A .-B C .12- D .12【答案】(1)A (2)12【解析】(1)由sin 3tan cos 4ααα==,22cos sin 1αα+=,得3sin 5α=,4cos 5α=或3sin 5α=-, 4cos 5α=-,所以24sin 22sin cos 25ααα==,则2164864cos 2sin 2252525αα+=+=,故选A(2)原式=1sin 20cos10cos 20sin10sin(2010)sin 302+=+==【易错点】 【思维点拨】例3已知函数f(x)=sin ⎝⎛⎭⎫π2-x sin x -3cos 2x. (1)求f(x)的最小正周期和最大值; (2)讨论f(x)在⎣⎡⎦⎤π6,2π3上的单调性.【答案】(1)f(x)的最小正周期为π,最大值为2-32,(2)f(x)在⎣⎡⎦⎤π6,5π12上单调递增;在⎣⎡⎦⎤5π12,2π3上单调递减【解析】 (1)f(x)=sin ⎝⎛⎭⎫π2-x sin x -3cos 2x =cos xsin x -32(1+cos 2x)=12sin 2x -32cos 2x -32=sin ⎝⎛⎭⎫2x -π3-32, 因此f(x)的最小正周期为π,最大值为2-32.(2)当x ∈⎣⎡⎦⎤π6,2π3时,0≤2x -π3≤π,从而当0≤2x -π3≤π2,即π6≤x≤5π12时, f(x)单调递增,当π2≤2x -π3≤π,即5π12≤x≤2π3时, f(x)单调递减.综上可知,f(x)在⎣⎡⎦⎤π6,5π12上单调递增;在⎣⎡⎦⎤5π12,2π3上单调递减. 【易错点】【思维点拨】解答技巧,方法策略等 题型六 简单的三角恒等变换 例1(2018·新疆第二次适应性检测)cos10(13tan 30)cos50︒+︒︒的值是________.【答案】2【解析】依题意得cos 10°1+3tan 10°cos 50°=cos 10°+3sin 10°cos 50°=2sin 10°+30°cos 50°=2sin 40°sin 40°=2.【易错点】【思维点拨】解答技巧,方法策略等 例2已知tan α=2. (1)求tan ⎝⎛⎭⎫α+π4的值; (2)求sin 2αsin 2α+sin αcos α-cos 2α-1的值.【答案】(1)-3(2)1【解析】(1)tan ⎝⎛⎭⎫α+π4=tan α+tanπ41-tan αtanπ4=2+11-2×1=-3. (2)sin 2αsin 2α+sin αcos α-cos 2α-1 =2sin αcos αsin 2α+sin αcos α-2cos 2α=2tan αtan 2α+tan α-2=2×24+2-2=1.【易错点】 【思维点拨】解三角函数的给值求值问题的基本步骤 (1)先化简所求式子或所给条件; (2)观察已知条件与所求式子之间的联系; (3)将已知条件代入所求式子,化简求值. 例3若sin 2α=55,sin(β-α)=1010,且α∈⎣⎡⎦⎤π4,π,β∈⎣⎡⎦⎤π,3π2,则α+β的值是( ) A.7π4 B.9π4 C.5π4或7π4 D.5π4或9π4【答案】A【解析】选A ∵α∈⎣⎡⎦⎤π4,π,∴2α∈⎣⎡⎦⎤π2,2π,∵sin 2α=55,∴2α∈⎣⎡⎦⎤π2,π. ∴α∈⎣⎡⎦⎤π4,π2且cos 2α=-255,又∵sin(β-α)=1010,β∈⎣⎡⎦⎤π,3π2,∴β-α∈⎣⎡⎦⎤π2,5π4,cos(β-α)=-31010, ∴cos(α+β)=cos[(β-α)+2α]=cos(β-α)cos 2α-sin(β-α)sin 2α=⎝⎛⎭⎫-31010×⎝⎛⎭⎫-255-1010×55=22,又α+β∈⎣⎡⎦⎤5π4,2π,所以α+β=7π4. 【易错点】 【思维点拨】对于给值求角问题,通过先求角的某个三角函数值来求角,在选取函数时,遵循以下原则: (1)已知正切函数值,选正切函数.(2)已知正、余弦函数值,选正弦或余弦函数.若角的范围是⎝⎛⎭⎫0,π2,选正弦或余弦函数皆可;若角的范围是(0,π),选余弦函数较好;若角的范围为⎝⎛⎭⎫-π2,π2,选正弦函数较好.【巩固训练】题型一 三角函数的概念、诱导公式及同角关系式1. 已知角θ的顶点为坐标原点,始边为x 轴的正半轴,若()4,P y 是角θ终边上一点,且sin θ=则y = . 【答案】-8.【解析】由tan ⎝⎛⎭⎫π4-θ=1-tanθ1+tanθ=12,得tanθ=13,∴sinθcosθ=sinθcosθsin 2θ+cos 2θ=tanθtan 2θ+1=1319+1=310.故填310. 2. (1)已知tan α=2,求值: ①2sin α-3cos α4sin α-9cos α;②4sin 2α-3sin αcos α-5cos 2α.(2)已知θ∈(0,π),且sin θ+cos θ=13,求sin θ-cos θ的值.【答案】(1)①-1②1(2)173【解析】(1)①2sin α-3cos α4sin α-9cos α=2tan α-34tan α-9=2×2-34×2-9=-1.②4sin 2α-3sin αcos α-5cos 2α=4sin 2α-3sin αcos α-5cos 2αsin 2α+cos 2α=4tan 2α-3tan α-5tan 2α+1=4×4-3×2-54+1=1.(2)∵sin θ+cos θ=13,∴(sin θ+cos θ)2=1+2sin θcos θ=19,∴sin θcos θ=-49.∵θ∈(0,π),θ∈⎝⎛⎭⎫π2,θ, ∴sin θ>0>cos θ,sin θ-cos θ>0.由(sin θ-cos θ)2=1-2sin θcos θ=1+89=179,得sin θ-cos θ=173.3.若cos(π-α)=53且α∈⎝⎛⎭⎫π2,π,则sin(π+α)=( ) A .-53B .-23C .-13D .±23【答案】B【解析】cos (π-α)=-cos α=53,∴cos α=-53. 又∵α∈⎝⎛⎭⎫π2,π,∴sin α=1-cos 2α=1-⎝⎛⎭⎫-532=23, ∴sin (π+α)=-sin α=-23,故选B .题型二 三角函数图像1.为了得到函数y =sin 3x +cos 3x 的图象,可以将函数y =2cos 3x 的图象( A ) A .向右平移π12个单位B .向右平移π4个单位C .向左平移 π12个单位 D .向左平移π4个单位【答案】A【解析】因为y =sin 3x +cos 3x =2cos ⎝⎛⎭⎫3x -π4,所以将y =2cos 3x 的图象向右平移π12个单位后可得到y =2cos ⎝⎛⎭⎫3x -π4的图象. 2.函数f(x)=Asin(ωx +φ)⎝⎛⎭⎫A>0,ω>0,|φ|<π2的部分图象如图所示,若x 1,x 2∈⎝⎛⎭⎫-π6,π3,且f(x 1)=f(x 2),则f(x 1+x 2)=( )A .1B .12C .22D .32【答案】D【解析】 观察图象可知,A =1,T =π,∴ω=2,f(x)=sin(2x +φ). 将⎝⎛⎭⎫-π6,0代入上式得sin ⎝⎛⎭⎫-π3+φ=0. 由|φ|<π2,得φ=π3,则f(x)=sin ⎝⎛⎭⎫2x +π3.函数图象的对称轴为x =-π6+π32=π12.又x 1,x 2∈⎝⎛⎭⎫-π6,π3,且f(x 1)=f(x 2),∴x 1+x 22=π12, ∴x 1+x 2=π6,∴f(x 1+x 2)=sin ⎝⎛⎭⎫2×π6+π3=32,故选D . 3.已知函数f(x)=2sin ⎝⎛⎭⎫2ωx +π4(ω>0)的最小正周期为π. (1)求ω的值;(2)讨论f(x)在区间⎣⎡⎦⎤0,π2上的单调性. 【答案】(1) ω=1(2) f(x)在区间⎣⎡⎦⎤0,π8上单调递增, 在区间⎝⎛⎦⎤π8,π2上单调递减.【解析】 (1)因为f(x)=2sin ⎝⎛⎭⎫2ωx +π4的最小正周期为π,且ω>0.从而有2π2ω=π,故ω=1. (2)因为f(x)=2sin ⎝⎛⎭⎫2x +π4. 若0≤x≤π2,则π4≤2x +π4≤5π4.当π4≤2x +π4≤π2,即0≤x≤π8时,f(x)单调递增; 当π2<2x +π4≤5π4,即π8<x≤π2时,f(x)单调递减. 综上可知,f(x)在区间⎣⎡⎦⎤0,π8上单调递增, 在区间⎝⎛⎦⎤π8,π2上单调递减. 题型三 三角函数性质1. 已知ω>0,函数f(x)=sin ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π上单调递减,则ω的取值范围是( ) A .⎣⎡⎦⎤12,54 B .⎣⎡⎦⎤12,34 C .⎣⎡⎦⎤0,12 D .[0,2]【答案】A【解析】由π2<x<π,ω>0得,ωπ2+π4<ωx +π4<ωπ+π4.又y =sin x 在⎝⎛⎭⎫π2,3π2上递减,所以⎩⎨⎧ωπ2+π4≥π2,ωπ+π4≤3π2,解得12≤ω≤54,故选A .2.设函数f(x)=cos ⎝⎛⎭⎫x +π3,则下列结论错误的是( ) A .f(x)的一个周期为-2πB .y =f(x)的图象关于直线x =8π3对称C .f(x +π)的一个零点为x =π6D .f(x)在⎝⎛⎭⎫π2,π单调递减 【答案】D【解析】根据函数解析式可知函数f(x)的最小正周期为2π,所以函数一个周期为-2π,A 项正确;当x =8π3时,x +π3=3π,所以cos ⎝⎛⎭⎫x +π3=-1,所以B 项正确;f(x +π)=cos ⎝⎛⎭⎫x +π+π3=cos ⎝⎛⎭⎫x +4π3,当x =π6时,x +4π3=3π2,所以f(x +π)=0,所以C 项正确;函数f(x)=cos ⎝⎛⎭⎫x +π3在⎝⎛⎭⎫π2,23π上单调递减,在⎝⎛⎭⎫23π,π上单调递增,故D 项不正确,故选D .3.已知函数①y =sin x +cos x ,②y =22sin xcos x ,则下列结论正确的是( ) A .两个函数的图象均关于点⎝⎛⎭⎫-π4,0中心对称 B .两个函数的图象均关于直线x =-π4对称C .两个函数在区间⎝⎛⎭⎫-π4,π4上都是单调递增函数 D .将函数②的图象向左平移π4个单位得到函数①的图象【答案】C【解析】函数①y =sin x +cos x =2sin ⎝⎛⎭⎫x +π4,②y =22·sin xcos x =2sin 2x ,由于①的图象关于点⎝⎛⎭⎫-π4,0中心对称,②的图象不关于点⎝⎛⎭⎫-π4,0中心对称,故A 项不正确;由于函数①的图象不可能关于直线x =-π4对称,故B 项不正确;由于这两个函数在区间⎝⎛⎭⎫-π4,π4上都是单调递增函数,故C 项正确;将函数②的图象向左平移π4个单位得到函数y =2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π4的图象,而y =2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π4≠2sin ⎝⎛⎭⎫x +π4,故D 项不正确,故选C .题型四三角函数范围问题1.已知函数f(x)=2sin x+sin 2x,则f(x)的最小值是 .【答案】3√32【解析】由题意可得T=2π是f(x)=2sin x+sin 2x 的一个周期,所以求f(x)的最小值可考虑求f(x)在[0,2π)上的值域.由f(x)=2sin x+sin 2x,得f'(x)=2cos x+2cos 2x=4cos 2x+2cos x -2.令f'(x)=0,可得cos x=12或cos x=-1,x ∈[0,2π)时,解得x=π3或x=5π3或x=π.因为f(x)=2sin x+sin 2x 的最值只能在x=π3,x=5π3,x=π或x=0时取到,且f (π3)=3√32,f (5π3)=-3√32,f(π)=0,f(0)=0,所以函数f(x)的最小值为-3√32.2.已知y =3-sin x -2cos 2x ,x ∈⎣⎡⎦⎤π6,7π6,求y 的最大值与最小值之和. 【答案】238【解析】 ∵x ∈⎣⎡⎦⎤π6,7π6,∴sin x ∈⎣⎡⎦⎤-12,1. 又y =3-sin x -2cos 2x =3-sin x -2(1-sin 2x) =2⎝⎛⎭⎫sin x -142+78, ∴当sin x =14时,y min =78;当sin x =-12或sin x =1时,y max =2.故函数的最大值与最小值的和为2+78=238.3.已知函数f(x)=sin(ωx +φ)(0<ω<1,0≤φ≤π)是R 上的偶函数,其图象关于点M ⎝⎛⎭⎫3π4,0对称. (1)求ω,φ的值; (2)求f(x)的单调递增区间;(3)若x ∈⎣⎡⎦⎤-3π4,π2,求f(x)的最大值与最小值, 【答案】(1)ω=23.(2) ⎣⎡⎦⎤3kπ-3π2,3kπ,k ∈Z (3) 函数f(x)的最大值为1,最小值为0. 【解析】(1)因为f(x)=sin(ωx +φ)是R 上的偶函数,所以φ=π2+kπ,k ∈Z ,且0≤φ≤π,则φ=π2,即f(x)=cos ωx.因为图象关于点M ⎝⎛⎭⎫34π,0对称, 所以ω×34π=π2+mπ,m ∈Z ,ω=23+4m3,又0<ω<1,所以ω=23.(2)由(1)得f(x)=cos 23x ,由-π+2kπ≤23x≤2kπ,且 k ∈Z 得,3kπ-3π2≤x≤3kπ,k ∈Z ,所以函数的递增区间是⎣⎡⎦⎤3kπ-3π2,3kπ,k ∈Z . (3)因为x ∈⎣⎡⎦⎤-3π4,π2,所以23x ∈⎣⎡⎦⎤-π2,π3, 当23x =0时,即x =0,函数f(x)的最大值为1, 当23x =-π2时,即x =-3π4,函数f(x)的最小值为0.题型五三角函数求值问题 1.设α,β为钝角,且sin α=55,cos β=-31010,则α+β的值为( ) A .3π4B .5π4C .7π4D .5π4或7π4【答案】 C【解析】∵α,β为钝角,sin α=55,cos β=-31010,∴cos α=-255,sin β=1010, ∴cos(α+β)=cos αcos β-sin αsin β=22>0. 又α+β∈(π,2π),∴α+β∈⎝⎛⎭⎫3π2,2π,∴α+β=7π4. 2.已知函数f(x)=2cos 2ωx -1+23sin ωxcos ωx(0<ω<1),直线x =π3是函数f(x)的图象的一条对称轴.(1)求函数f(x)的单调递增区间;(2)已知函数y =g(x)的图象是由y =f(x)的图象上各点的横坐标伸长到原来的2倍,然后再向左平移2π3个单位长度得到的,若g ⎝⎛⎭⎫2α+π3=65,α∈⎝⎛⎭⎫0,π2,求sin α的值. 【答案】(1)f(x)的单调递增区间为⎣⎡⎦⎤2kπ-2π3,2kπ+π3(k ∈Z )(2) 【解析】 (1)f(x)=cos 2ωx +3sin 2ωx =2sin ⎝⎛⎭⎫2ωx +π6,(2)43-310由于直线x =π3是函数f(x)=2sin ⎝⎛⎭⎫2ωx +π6的图象的一条对称轴,所以sin ⎝⎛⎭⎫2π3ω+π6=±1,因此2π3ω+π6=kπ+π2(k ∈Z ),解得ω=32k +12(k ∈Z ),又0<ω<1,所以ω=12,所以f(x)=2sin ⎝⎛⎭⎫x +π6.由2kπ-π2≤x +π6≤2kπ+π2(k ∈Z ),得2kπ-2π3≤x≤2kπ+π3(k ∈Z ), 所以函数f(x)的单调递增区间为⎣⎡⎦⎤2kπ-2π3,2kπ+π3(k ∈Z ). (2)由题意可得g(x)=2sin ⎣⎡⎦⎤12⎝⎛⎭⎫x +2π3+π6,即g(x)=2cos x 2, 由g ⎝⎛⎭⎫2α+π3=2cos ⎣⎡⎦⎤12⎝⎛⎭⎫2α+π3=2cos ⎝⎛⎭⎫α+π6=65,得cos ⎝⎛⎭⎫α+π6=35, 又α∈⎝⎛⎭⎫0,π2,故π6<α+π6<2π3,所以sin ⎝⎛⎭⎫α+π6=45, 所以sin α=sin ⎣⎡⎦⎤⎝⎛⎭⎫α+π6-π6=sin ⎝⎛⎭⎫α+π6cos π6-cos ⎝⎛⎭⎫α+π6sin π6=45×32-35×12=43-310.3.已知cos ⎝⎛⎭⎫π6-α=33,求cos ⎝⎛⎭⎫5π6+α-sin 2⎝⎛⎭⎫α-π6的值. 【答案】-3+23 【解析】 cos ⎝⎛⎭⎫56π+α-sin 2⎝⎛⎭⎫α-π6 =cos ⎣⎡⎦⎤π-⎝⎛⎭⎫π6-α-sin 2⎝⎛⎭⎫π6-α =-cos ⎝⎛⎭⎫π6-α-⎣⎡⎦⎤1-cos 2⎝⎛⎭⎫π6-α =-33-⎝⎛⎭⎫1-13=-3+23. 题型六 简单的三角恒等变换1.已知sin ⎝⎛⎭⎫π6-α=cos ⎝⎛⎭⎫π6+α,则cos 2α=( ) A .1 B .-1 C.12D .0【答案】选D【解析】 ∵sin ⎝⎛⎭⎫π6-α=cos ⎝⎛⎭⎫π6+α, ∴12cos α-32sin α=32cos α-12sin α,即⎝⎛⎭⎫12-32sin α=-⎝⎛⎭⎫12-32cos α, ∴tan α=sin αcos α=-1,∴cos 2α=cos 2α-sin 2α=cos 2α-sin 2αsin 2α+cos 2α=1-tan 2αtan 2α+1=0.2.计算cos 10°-3cos -100°r(1-sin 10°)=________(用数字作答).【答案】2【解析】cos 10°-3cos -100°r(1-sin 10°)=cos 10°+3cos 80°1-cos 80°=cos 10°+3sin 10°2sin 40°=2sin10°+30°r(2sin 40°)=2.3.已知cos α=17,cos(α-β)=1314,且0<β<α<π2,则β=________.【答案】π3【解析】由cos α=17,0<α<π2,得sin α=1-cos 2α=1-⎝⎛⎭⎫172=437,由0<β<α<π2,得0<α-β<π2,又∵cos(α-β)=1314,∴sin(α-β)=1-cos 2α-β=1-⎝⎛⎭⎫13142=3314.由β=α-(α-β),得cos β=cos[α-(α-β)] =cos αcos(α-β)+sin αsin(α-β) =17×1314+437×3314=12. ∴β=π3.。
高三数学三角函数试题答案及解析
高三数学三角函数试题答案及解析1.设角的终边在第一象限,函数的定义域为,且,当时,有,则使等式成立的的集合为.【答案】【解析】令得:,令得:,由得:,又角的终边在第一象限,所以因而的集合为.【考点】抽象函数赋值法2. sin7°cos37°﹣sin83°cos53°的值为()A.﹣B.C.D.﹣【答案】A【解析】sin7°cos37°﹣sin83°cos53°=cos83°cos37°﹣sin83°sin37°=cos(83°+37°)=cos120°=﹣,故选A.3.若点在函数的图象上,则的值为 .【答案】.【解析】由题意知,解得,所以.【考点】1.幂函数;2.三角函数求值4.已知函数则=【答案】【解析】因为函数由需要求的x都是整数,所以当x为奇数时的解析式为,当x为偶数时的解析式为.所以.所以.【考点】1.分段函数的性质.2.归纳推理的思想.3.三角函数的运算.4.等差数列的求和公式.5.已知向量,设函数.(1)求函数在上的单调递增区间;(2)在中,,,分别是角,,的对边,为锐角,若,,的面积为,求边的长.【答案】(1)函数在上的单调递增区间为,;(2)边的长为.【解析】(1)根据平面向量的数量积,应用和差倍半的三角函数公式,将化简为.通过研究的单调减区间得到函数在上的单调递增区间为,.(2)根据两角和的正弦公式,求得,利用三角形的面积,解得,结合,由余弦定理得从而得解.试题解析:(1)由题意得3分令,解得:,,,或所以函数在上的单调递增区间为, 6分(2)由得:化简得:又因为,解得: 9分由题意知:,解得,又,所以故所求边的长为. 12分【考点】平面向量的数量积,和差倍半的三角函数,三角函数的图像和性质,正弦定理、余弦定理的应用.6.函数的最小正周期为,若其图象向右平移个单位后关于y轴对称,则()A.B.C.D.【答案】B【解析】由题意可知:,得,函数关于对称,所以,,又因为,解得,故选B.【考点】的图像和性质7.已知函数的最小正周期为,将的图像向左平移个单位长度,所得图像关于轴对称,则的一个值是()A.B.C.D.【答案】D【解析】函数的最小正周期为,所以从而.将各选项代入验证可知选【考点】1、三角函数的周期;2、函数图象的变换8.若函数的一个对称中心是,则的最小值为()A.B.C.D.【答案】B【解析】由于正切函数的对称中心坐标为,且函数的一个对称中心是,所以,因此有,因为,所以当时,取最小值,故选B.【考点】三角函数的对称性9.在中,(1)求角B的大小;(2)求的取值范围.【答案】(1) ;(2) .【解析】(1)由正弦定理实现边角互化,再利用两角和与差的正余弦公式化简为,再求角的值;(2)二倍角公式降幂扩角,两角差余弦公式展开,同时注意隐含条件,即可化为一角一函数,再结合求其值域.求解时一定借助函数图象找其最低点与最高点的纵坐标.试题解析:(1)由已知得:,即∴∴ 5分(2)由(1)得:,故+又∴所以的取值范围是. 12分【考点】1.正余弦定理;2.三角函数值域;3.二倍角公式与两角和与差的正余弦公式.10.已知函数,(1)求的值;(2)若,且,求.【答案】(1);(2).【解析】(1)直接将代入计算即可;(2)用二倍角的正弦、余弦公式化简,再将正弦、余弦合为同一个的三角函数;根据已知条件,求出的值.试题解析:(1)(2)因为,且,所以,所以【考点】1、三角恒等变换;2、三角函数的基本运算.11.函数,,在上的部分图象如图所示,则的值为.【答案】【解析】根据题意,由于函数,,在上的部分图象可知周期为12,由此可知,A=5,将(5,0)代入可知,5sin(+)=0,可知=,故可知==,故答案为【考点】三角函数的解析式点评:主要是考查了三角函数的解析式的求解和运用,属于基础题。
高考数学最新真题专题解析—三角函数(全国通用)
高考数学最新真题专题解析—三角函数(全国通用)考向一 三角函数的图像【母题来源】2022年高考全国I 卷【母题题文】 设函数π()sin 3f x x ω⎛⎫=+ ⎪⎝⎭在区间(0,π)恰有三个极值点、两个零点,则ω的取值范围是( )A. 513,36⎫⎡⎪⎢⎣⎭B. 519,36⎡⎫⎪⎢⎣⎭C. 138,63⎛⎤ ⎥⎝⎦D.1319,66⎛⎤ ⎥⎝⎦【答案】C【试题解析】解:依题意可得0>ω,因为()0,x π∈,所以,333x πππωωπ⎛⎫+∈+ ⎪⎝⎭, 要使函数在区间()0,π恰有三个极值点、两个零点,又sin y x =,,33x ππ⎛⎫∈ ⎪⎝⎭的图象如下所示:则5323ππωππ<+≤,解得13863ω<≤,即138,63ω⎛⎤∈ ⎥⎝⎦. 故选:C .【命题意图】本题主要考查正弦型函数的图象的变换,考查学生的数学运算能力,逻辑分析那能力,是一道中档题.【命题方向】这类试题在考查题型上主要以选择形式出现.多为低档题,本类题型主要考查三角函数的图像和性质以及三角函数的平移变换问题. 常见题型:平移变换、辅助角公式、诱导公式. 【得分要点】(1)利用降幂公式、辅助角公式对三角函数进行化简; (2)利用三角函数的一些性质解题. 考向二 三角函数的性质 【母题来源】2022年高考北京卷【母题题文】 已知函数22()cos sin f x x x =-,则( ) A.()f x 在,26ππ⎛⎫-- ⎪⎝⎭上单调递减 B.()f x 在,412ππ⎛⎫-⎪⎝⎭上单调递增 C. ()f x 在0,3π⎛⎫⎪⎝⎭上单调递减 D.()f x 在7,412ππ⎛⎫⎪⎝⎭上单调递增 【答案】C【试题解析】因为()22cos sin cos2f x x x x =-=.对于A 选项,当26x ππ-<<-时,23x ππ-<<-,则()f x 在,26ππ⎛⎫-- ⎪⎝⎭上单调递增,A 错; 对于B 选项,当412x ππ-<<时,226x ππ-<<,则()f x 在,412ππ⎛⎫- ⎪⎝⎭上不单调,B 错;对于C 选项,当03x π<<时,2023x π<<,则()f x 在0,3π⎛⎫⎪⎝⎭上单调递减,C 对;对于D 选项,当7412x ππ<<时,7226x ππ<<,则()f x 在7,412ππ⎛⎫⎪⎝⎭上不单调,D 错. 故选:C.【命题意图】本题考查倍角公式及三角函数的单调性.【命题方向】这类试题在考查题型选择、填空、解答题都有可能出现,多为中档题,是历年高考的热点. 常见的命题角度有:(1)三角函数的图像;(2)三角函数的性质:定义域、值域、奇偶性、单调性、对称性等; 【得分要点】(3)利用倍角公式、降幂公式及辅助角公式对三角函数进行化简; (4)利用三角函数的一些性质解题. 真题汇总及解析 一、单选题1.(2022·天津市求真高级中学高二期末)函数()()sin 0f x x ωω=>的最小正周期为2π,则ω的值为( ) A .4 B .2 C .1D .12【答案】A 【解析】 【分析】根据正弦型函数的周期计算公式2T πω=即可求解.【详解】由2T πω=,∴2242Tππωπ===.故选:A. 2.(2022·上海·华师大二附中模拟预测)已知,x y ∈R ,则表达式22cos cos cos x yxy( )A .既有最大值,也有最小值B .有最大值,无最小值C .无最大值,有最小值D .既无最大值,也无最小值【答案】D 【解析】 【分析】结合余弦函数,可分别得到2cos x ,2cos y ,()cos xy 的范围,再确定端点值是否可以同时取等,即可判断. 【详解】由[]22cos ,cos 0,1x y ∈,()[]cos 1,1xy ∈-,易知22cos cos cos 1,3x yxy.同时,由于π是无理数,因此当cos cos 0xy时,cos 1xy ;当22cos cos 1xy时,cos 0xy,故两端均不能取得等号.补充证明:二元表达式22cos cos cos x yxy(,x y R )可以取到任意接近1-和3的值,从而该式无最值.①取x π=,y n (*n ∈N ),则222cos cos cos 2cos x y xy n .对任意0ε>,由抽屉原理,存在*N N ,使得22N N .再考虑*k ∈N ,使得1k k(由π的无理性,两头都不取等).则nkN 时,212122NN kkN k,从而2cos 1,coskN,22cos cos cos 2cos ,3x y xy ,即证.②取2x π=,2yn(*n ∈N ),则22221cos cos cos cos4n x y xy .对任意0ε>,由抽屉原理,存在*N N ,使得224N N .再考虑k ∈Z ,使得4k k(不取等的理由同上).则nkN 时,2244244N kN N kk,从而221cos cos ,14kN ,22cos cos cos 1,cosxy xy,即证.故选:D 【点睛】易错点点睛:2cos x ,2cos y ,()cos xy 均有最值,但三者加和后,需确定能否同时取得最值.3.(2022·河南安阳·模拟预测(文))已知函数()sin cos f x a x b x c ωω=++(a ,b ,0>ω)的部分图象如图所示,则=a ( )A .1B 2C 3D .2【答案】B 【解析】 【分析】整理()()22f x a b x c ωϕ=+++,且tan b aϕ=222a b +,利用相邻对称轴的距离求得ω,根据对称轴求得ϕ,进而可得tan 1ϕ=,即a b =,即可求解. 【详解】由题,()()22sin cos f x a x b x c a b x c ωωωϕ=+++++,tan b aϕ=,223a b c +=,221a b c -+=-,所以1c =222a b +,又51882T ππ-=,所以T π=,则22T πω==,因为对称轴为8x π=,所以2282k ππϕπ⨯+=+,k ∈Z ,则24k ϕπ=+π,k ∈Z 所以tan 1ϕ=,即a b =, 所以2a = 故选:B4.(2023·广西柳州·模拟预测(文))若()4sin π5α-=,则cos2α=( ) A .-2425B .725C .-725D .2425【答案】C 【解析】 【分析】根据给定条件,利用诱导公式、二倍角的余弦公式化简计算作答. 【详解】依题意,4sin 5α=,所以2247cos 212sin 12525αα⎛⎫=-=-⨯=- ⎪⎝⎭.故选:C5.(2022·四川成都·模拟预测(理))函数2cos 34cos f x x x 的最小正周期为( ) A .23πB .43π C .π D .2π【答案】A 【解析】 【分析】利用三角恒等变换化简函数()f x 的解析式,利用余弦型函数的周期公式可求得函数()f x 的最小正周期. 【详解】222cos 22cos 2cos 1cos 2sin cos2sin sin 2cos2cos f xx x x x x xx x x xcos3x =-,所以,函数()f x 的最小正周期为23T π=. 故选:A.6.(2022·上海闵行·二模)“角,αβ的终边关于y 轴对称”是“cos cos 0αβ+="的( ) A .充要条件 B .充分不必要条件 C .必要不充分条许 D .既不充分也不必要各件【答案】B 【解析】 【分析】先证明充分性,再举出反例说明必要性不成立,得到答案. 【详解】由角,αβ的终边关于y 轴对称,则π2π,k k αβ+=+∈Z ,可知cos cos αβ=-,即cos cos 0αβ+=成立,充分性成立;当cos cos 0αβ+=时,角,αβ的终边关于y 轴对称或(21),k k Z αβπ=++∈, 所以“角,αβ的终边关于y 轴对称”是“cos cos 0αβ+=”的充分不必要条件, 故选:B.7.(2022·甘肃·武威第六中学模拟预测(理))已知函数()12sin 32f x x πϕϕ⎛⎫⎛⎫=+< ⎪⎪⎝⎭⎝⎭,直线x π=-为()f x 图象的一条对称轴,则下列说法正确的是( ) A .6π=ϕB .()f x 在区间,2ππ⎡⎤--⎢⎥⎣⎦单调递减C .()f x 在区间[],ππ-上的最大值为2D .()f x θ+为偶函数,则()23k k Z θππ=+∈【答案】D 【解析】 【分析】由已知得()2sin 23f ππϕ⎛⎫-=-+=± ⎪⎝⎭,由2πϕ<可求得ϕ,可判断A 选项,由此有()12sin 36x f x π⎛⎫=- ⎪⎝⎭;对于B ,由,2x ππ⎡⎤∈--⎢⎥⎣⎦得12363x πππ-≤-≤-,由正弦函数的单调性可判断;对于C ,由[],x ππ∈-得12366x πππ-≤-≤,由此得()f x 在区间[],ππ-上的最大值为2sin16π=;对于D ,()11+2sin +336f x x πθθ⎛⎫=- ⎪⎝⎭,由()1+362k k Z ππθπ-=∈,解得()23k k Z θππ=+∈. 【详解】解:因为函数()12sin 32f x x πϕϕ⎛⎫⎛⎫=+< ⎪⎪⎝⎭⎝⎭,直线x π=-为()f x 图象的一条对称轴,所以()2sin 23f ππϕ⎛⎫-=-+=± ⎪⎝⎭,所以+,32k k Z ππϕπ-+=∈,又2πϕ<,所以6πϕ=-,故A 不正确;所以()12sin 36x f x π⎛⎫=- ⎪⎝⎭,对于B ,当,2x ππ⎡⎤∈--⎢⎥⎣⎦时,12363x πππ-≤-≤-,所以()f x 在区间,2单调递增,故B 不正确;对于C ,当[],x ππ∈-时,12366x πππ-≤-≤,()f x 在区间[],ππ-上的最大值为2sin16π=,故C 不正确;对于D ,若()f x θ+为偶函数,且()()111+2sin +2sin +36336f x x x ππθθθ⎡⎤⎛⎫=-=- ⎪⎢⎥⎣⎦⎝⎭,所以()1+362k k Z ππθπ-=∈,解得()23k k Z θππ=+∈,故D 正确,故选:D.8.(2022·青海·海东市第一中学模拟预测(理))已知函数()()23sin cos cos 0f x x x x ωωωω+>,若函数f (x )在,2ππ⎛⎫⎪⎝⎭上单调递减,则实数ω的取值范围是( )A .13,32⎡⎤⎢⎥⎣⎦B .12,33⎡⎤⎢⎥⎣⎦C .10,3⎛⎤⎥⎝⎦D .20,3⎛⎤⎥⎝⎦【答案】B 【解析】 【分析】利用二倍角和辅助角公式化简解析式,然后利用正弦函数的单调性解决即可. 【详解】 函数()()()2313sin cos cos 0sin 21cos222f x x x x x x ωωωωωω=+>=++311sin 2cos2222x x ωω=++1sin 262x πω⎛⎫=++ ⎪⎝⎭,由函数f (x )在,2ππ⎛⎫ ⎪⎝⎭上单调递减,且2,2666x πππωωπωπ⎛⎫+∈++ ⎪⎝⎭,得26232262k k ππωππππωππ⎧+≥+⎪⎪⎨⎪+≤+⎪⎩,k ∈Z ,解12233k k ω+≤≤+,k ∈Z .又因为ω>0,12222πππω⨯≥-,所以k =0,所以实数ω的取值范围是12,33⎡⎤⎢⎥⎣⎦.故选:B9.(2022·浙江·模拟预测)如图所示的是函数()y f x =的图像,则函数()f x 可能是( )A .sin y x x =B .cos y x x =C .sin cos y x x x x =+D .sin cos y x x x x =-【答案】C 【解析】 【分析】由图象确定函数的性质,验证各选项是否符合要求即可. 【详解】由图可知:()f x 是非奇非偶函数,且在y 轴右侧,先正后负.若()sin f x x x =,则()()()sin sin f x x x x x -=--=,所以函数sin y x x =为偶函数, 与条件矛盾,A 错,若()cos f x x x =,则()()()cos cos f x x x x x -=--=-,所以函数cos y x x =为奇函数,与条件矛盾,B 错,若()sin cos f x x x x x =-,则()2sin 4f x x x π⎛⎫=- ⎪⎝⎭,当04x π⎛⎫∈ ⎪⎝⎭,时,()2sin 04f x x x π⎛⎫=-< ⎪⎝⎭,与所给函数图象不一致,D 错,若()sin cos f x x x x x =+,则()2sin 4f x x x π⎛⎫=+ ⎪⎝⎭,当304x π⎛⎫∈ ⎪⎝⎭,时,()0f x >,又2()4f π=, ()04f π-=,所以函数sin cos y x x x x =+为非奇非偶函数,与所给函数图象基本一致, 故选:C .10.(2022·北京·北大附中三模)如图矩形,6ABCD AB =,沿PQ 对折使得点B 与AD 边上的点1B 重合,则PQ 的长度可以用含α的式子表示,那么PQ 长度的最小值为( )A .4B .8C .2D 93【答案】D 【解析】 【分析】设PQ y =,由三角比的定义可得sin PB y α=,sin cos2PA y αα=⋅,继而求得()262sin 1sin y αα=-,令()()221g t t t =-和2sin t α⎛=∈ ⎝⎭,求导可得()g t 的最大值为:343g =⎝⎭PQ 长度的最小值. 【详解】设PQ y =,1PB PB =,11180APB B PB ∠+∠=,12180B PB α+∠=,则12APB α∠=,则有sin PB y α=和11cos cos2PA PB APB PB ∠α==,代入6AB PA PB =+=,解得:()()266sin 1cos22sin 1sin y αααα==+-,令()()221g t t t =-和2sin t α⎛=∈ ⎝⎭, 导函数()226g t t '=-,即可得()g t 的最大值在3t =此时343g =⎝⎭min 93y =, 故选:D .二、填空题11.(2022·辽宁实验中学模拟预测)已知tan 2α=,则222222cos 2sin 2cos 3sin sin 1cos 2αααααα--+=++_________.【答案】16799-##68199-【解析】 【分析】利用同角间的三角函数关系,把待求式化为关于tan α的式子,然后代入已知计算. 【详解】2222222222222222cos 2sin 2cos 3sin cos 2sin 2cos 3sin sin 1cos 2sin sin cos cos 2(sin cos )αααααααααααααααα----+=+++++++22222222cos 2sin 2cos 3sin 2sin cos 2sin 3cos αααααααα--++=+222212tan 23tan 2tan 12tan 3αααα--+=++ 182128183--=+++16799=-. 故答案为:16799-. 12.(2022·内蒙古·乌兰浩特一中模拟预测(文))将最小正周期为π的函数()2sin(2)1(0)6f x x πωω=-+>的图像向左平移4π个单位长度,得到()g x 的图像,则函数()g x 的一个对称中心为___________【答案】,13π⎛⎫⎪⎝⎭,不唯一【解析】 【分析】根据最小正周期求出ω ,再根据函数平移规则即可求出()g x 的解析式. 【详解】由题意,T π= ,2,12ππωω∴== ,即()2sin 216f x x π⎛⎫=-+ ⎪⎝⎭ ,()f x 向左平移4π得()g x , ()2sin 212sin 21463g x x x πππ⎡⎤⎛⎫⎛⎫∴=+-+=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ ,令2,33x x πππ+== ,∴()g x 的一个对称中心为,13π⎛⎫ ⎪⎝⎭;故答案为: ,13π⎛⎫⎪⎝⎭.13.(2022·福建·三明一中模拟预测)已知函数2()322cos 1f x x x =-+,且方程()0f x a -=在,36ππ⎡⎤-⎢⎥⎣⎦内有实数根,则实数a 的取值范围是___________.【答案】[2,1]- 【解析】 【分析】由题意可得()a f x =在,36ππ⎡⎤-⎢⎥⎣⎦内有实数根,a 的取值范围即为函数()f x 的值域.【详解】2()322cos 132cos 22sin(2)6f x x x x x x π-+=-=-,方程()0f x a -=在,36ππ⎡⎤-⎢⎥⎣⎦内有实数根,即()a f x =在,36ππ⎡⎤-⎢⎥⎣⎦内有实数根, ,36x ππ⎡⎤∈-⎢⎥⎣⎦,52,666x πππ⎡⎤-∈-⎢⎥⎣⎦,得2()1f x -≤≤,即a 的取值范围是[2,1]-,故答案为:[2,1]-14.(2022·北京工业大学附属中学三模)已知函数ππ()sin()sin()44f x x x =+-给出下列四个结论: ①f (x )的值域是[1,1]-; ②f (x )在π[0,]2上单调递减: ③f (x )是周期为π的周期函数④将f (x )的图象向左平移π2个单位长度后,可得一个奇函数的图象 其中所有正确结论的序号是___________. 【答案】②③ 【解析】 【分析】先将()f x 化简,然后根据余弦函数的性质逐一判断即可 【详解】ππ()sin()sin()44f x x x =+-2222()()x x x x =+ 2211cos sin 22x x =- 1cos22x =所以()f x 的值域为11[,]22- ,故①错误; 令2π2π2π,k x k k Z ≤≤+∈ ,πππ,2k x k k Z ∴≤≤+∈当0k =时,()f x 的一个单调递减区间为π[0,]2,故②正确;()f x 的周期2ππT ω== ,故③正确()f x 的图像向左平移π2个单位长度后得到的函数图像对应的解析式为π1π1()()cos[2()]cos 22222g x f x x x =+=+=- ,是偶函数,故④错误故答案为:②③ 三、解答题15.(2022·浙江绍兴·模拟预测)函数()sin(π),R f x A x x ϕ=+∈(其中π0,02A ϕ>≤≤)部分图象如图所示,1(,)3P A 是该图象的最高点,M ,N 是图象与x 轴的交点.(1)求()f x 的最小正周期及ϕ的值; (2)若π4PMN PNM ∠+∠=,求A 的值. 【答案】(1)2;π6ϕ=;(2)71A =. 【解析】 【分析】(1)利用()f x 的解析式求出周期,再由给定的最高点P 求出ϕ作答.(2)由(1)求出点M ,N 的坐标,结合图形求出PMN ∠和PNM ∠的正切,再利用和角公式计算作答.(1)函数()sin(π)f x A xϕ=+的最小正周期2π2πT==,因1(,)3P A是函数()f x图象的最高点,则1ππ2π,Z32k kϕ+=+∈,而02πϕ≤≤,有0k=,π6ϕ=,所以函数()f x的最小正周期为2,π6ϕ=.(2)由(1)知,π()sin(π)6f x A x=+,由ππ06x+=得16x=-,即点1(,0)6M-,由ππ2π6x+=得116x,即点11(,0)6N,于是得tan211()36APMN A∠==--,2tan111363APNM A∠==-,而π4PMN PNM∠+∠=,则22tan tan3tan()121tan tan123A APMN PNMPMN PNMPMN PNM A A+∠+∠∠+∠===-∠⋅∠-⋅,又0A>,解得712A=-,所以712A=-.16.(2022·上海奉贤·二模)如图,某地有三家工厂,分别位于矩形ABCD的两个顶点A、B及CD的中点P处.20AB=km,10BC=km.为了处理这三家工厂的污水,现要在该矩形区域内(含边界)且与A、B等距的一点O处,建造一个污水处理厂,并铺设三条排污管道AO,BO,PO.记铺设管道的总长度为y km.(1)设BAOθ∠=(弧度),将y表示成θ的函数并求函数的定义域;(2)假设铺设的污水管道总长度是(10103+km ,请确定污水处理厂的位置. 【答案】(1)2010sin π10,0cos 4y θθθ-=+≤≤(2)位置是在线段AB 的中垂线上且离AB 103km 【解析】 【分析】(1)依据题给条件,先分别求得OA OB OP 、、的表达式,进而得到管道总长度y 的表达式,再去求其定义域即可解决; (2)先解方程2010sin 1010103cos θθ-+=+π6θ=,再去确定污水处理厂的位置. (1)矩形ABCD 中,20AB =km ,10BC =km ,DP PC =,DC PO ⊥,BAO ABO θ∠=∠=则()10km,1010tan km cos OA OB OP θθ===-, 201010tan cos y OA OB OP θθ∴=++=+- 则2010sin π10,0cos 4y θθθ-=+≤≤(2)令2010sin 1010103cos θθ-+=+π10sin 10320,20sin 20,3θθθ⎛⎫∴+=∴+= ⎪⎝⎭则πsin 1,3θ⎛⎫+= ⎪⎝⎭又π04θ≤≤,即ππ7π3312θ≤+≤,则ππ32θ+=,则π6θ=此时π101010tan 103(km)63OP =-=所以确定污水处理厂的位置是在线段AB的中垂线上且离AB103km。
高考三角函数历年真题汇总以及解析
1.若34cos,sin ,2525θθ==则角θ的终边落在直线( )上A. 2470x y -=B. 2470x y +=C. 7240x y +=D. 7240x y -=2.已知在△ABC 中,22tan tan A a B b =,判断△ABC 的形状为( ).A. 等腰三角形B. 直角三角形C. 等腰或直角三角形D. 等腰直角三角形3.已知函数()()cos 20,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的最小正周期为π,将其图象向右平移6π个单位后得函数()cos2g x x =的图象,则函数()f x 的图象( )A. 关于直线23x π=对称 B. 关于直线6x π=对称C. 关于点2-03π⎛⎫⎪⎝⎭,对称 D. 关于点5-012π⎛⎫⎪⎝⎭,对称 4.已知2sin 1cos αα=+,其中α是第一象限角,则tan2α=( )A.12- B. 2C.12D.135.已知函数()sin()(0,||)2f x x πωϕωϕ=+><,其图像相邻两条对称轴之间的距离为2π,且函数()12f x π+是偶函数,则下列判断正确的是( )A. 函数f (x )的最小正周期为2πB. 函数f (x )在区间3[,]4ππ上单调递增 C. 函数f (x )的图象关于直线712x π=-对称 D. 函数f (x )的图象关于点7(,0)12π对称 6.在△ABC 中,a 、b 、c 分别为内角A 、B 、C()sin sin A B A B+=+,3cos 5C =,且4ABCS=,则c =( )B. 4C.3D. 57.在△ABC 中,4ABC π∠=,AB =,3BC =,则sin BAC ∠=( )8.将函数()2sin(2)(0)f x x ϕϕπ=+<<的图象上所有点的纵坐标缩短为原来的12,再把所得图象上的所有点向右平移4π个单位长度后,得到函数()g x 的图象,若函数()g x 在3x π=处取得最大值,则函数()f x 的图象( )A 关于点5,012π⎛⎫-⎪⎝⎭对称 B. 关于点,06π⎛⎫⎪⎝⎭对称C. 关于直线512x π=-对称 D. 关于直线6x π=对称9.当[,]33x ππ∈-时,函数2()cos 444x x x f x =+ )A. C. 110.若1cos 44πα⎛⎫-= ⎪⎝⎭,则sin 2α的值为( )A. 78- B.78C. 18-D.1811.函数()sin()sin()36f x x a x ππ=++-的一条对称轴方程为2x π=,则a =( )A. 1C. 2D. 312.在△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,4A π=,12B π=,c =,则a =( )A. 2B. 22C. 32D. 4213.在直角坐标系xOy 中,如果相异两点()(),,,A a b B a b --都在函数()y f x =的图象上,那么称A ,B 为函数()f x 的一对关于原点成中心对称的点对(A ,B 与B ,A 为同一对).函数()6sin ,02log ,0x x f x x x π⎧≤⎪=⎨⎪>⎩图象上关于原点成中心对称的点对有( )A. 1对B. 2对C. 3对D. 4对14.将函数()sin 36f x x π⎛⎫=+⎪⎝⎭的图象上各点的横坐标伸长到原来的6倍(纵坐标不变),再将所得到的图象向右平移()0m m >个单位长度,得到函数()g x 的图象.若()g x 为奇函数,则m 的最小值为_______. 15.给出下列四个命题正确的是______________: ①函数()ln 2f x x x =-+在区间(1,)e 上存在零点; ②将函数cos()6y x π=-的图象的横坐标变为原来的12倍得到函数cos(2)3y x π=-; ③若1m ≥-,则函数22log (2)y x x m =--的值域为R ;④“1a =”是“函数()1xxa e f x ae-=+在定义域上是奇函数”的充分不必要条件; 16.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若cos cos sin a B b A c A +=,则△ABC 的形状为_____________. 17.正弦型函数()sin()f x A x ωϕ=+(0A >,0>ω,2πϕ<)的图象如图所示,则()f x 的解析式为_______________.18.用I M 表示函数sin y x =在闭区间I 上的最大值,若正数a 满足[0,][,2]2a a a M M ≥,则[0,]a M =________;a 的取值范围为________.19.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,22a bc =且sin 2sin A C =,则cos C ________.20.△ABC 内角A ,B ,C 的对边分别为a ,b ,c ,且2b sin A a cos B +a sin B . (1)求B ;(2)设b =,a =4,D 为线段BC 上一点,若S △ABD ,求AD 的长. 21.已知函数()()22sin cos f x x x x =++-(1)求它的单调递增区间; (2)若0,2x π⎛⎫∈ ⎪⎝⎭,求此函数的值域. 22.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且22sin 30C C -++=. (1)求角C 的大小;(2)若b =,△ABC 的面积为sin 2A B ,求sin A 及c 的值. 23.已知函数()2cos 2sin 2x x f x x πωωω⎛⎫=++ ⎪⎝⎭(0>ω)的最小正周期为π.(1)求ω的值和函数f (x )的单调增区间; (2)求函数f (x )在区间,2ππ⎡⎤⎢⎥⎣⎦上的取值范围. 24.已知△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且1cos 2a c Bb =+. (1)求cos C ;(2)若c =,求+a b 的取值范围.25.已知函数2()cos 2cos 1f x x x x =+-(x ∈R ). (1)求函数()f x 的最小正周期及在区间0,2π⎡⎤⎢⎥⎣⎦上的单调区间;(2)若06()5f x =,0[,]42x ππ∈,求0cos2x 的值. 26.已知a ,b ,c 分别为说角△ABC 三个内角A ,B ,C 的对边,满足222sin sin sin sin sin 0.A B C B C --+=(1)求A ;(2)若b =2,求△ABC 面积的取值范围. 27.已知函数()()sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭满足下列3个条件中的2个条件:①函数f (x )的周期为π;②6x π=是函数f (x )的对称轴;③04f π⎛⎫=⎪⎝⎭且在区间,62ππ⎛⎫⎪⎝⎭上单调; (Ⅰ)请指出这二个条件并说明理由,求出函数f (x )的解析式; (Ⅱ)若0,3x π⎡⎤∈⎢⎥⎣⎦,求函数f (x )的最值.试卷答案1.B【详解】由条件可知2724cos 2cos1,sin 2sin cos 2252225θθθθθ=-=-==, 24tan 7θ-=.又24tan 7y x θ==-, 所以247x y =-,即2470x y +=. 故选:B . 2.C 【分析】22tan tan A a B b=左边切化弦,右边用正弦定理化边为角可解 【详解】22tan tan A a B b =,22sin cos sin sin cos sin A B AB A B∴=cos sin cos sin B A A B∴=,sin cos sin cos A A B B ∴= sin 2sin 2A B ∴=22A B ∴=或2+2=A B πA B ∴=或+=2A B πABC 是等腰或直角三角形故选:C . 3.D 由题意得22ππω=,故1ω=, ∴()cos(2)f x x ϕ=+, ∴()cos[2()]cos(2)cos 263g x x x x ππϕϕ=-+=-+=,∴3πϕ=,∴()cos(2)3f x x π=+.∵2251()cos(2)cos 133332f ππππ=⨯+==≠±,21()cos(2)cos 166332f ππππ=⨯+==-≠±, ∴选项A,B 不正确. 又22()cos(2)cos()10333f ππππ-=-⨯+=-=-≠, 55()cos(2)cos()0121232f ππππ-=-⨯+=-=, ∴选项C,不正确,选项D 正确.选D . 4.C 【分析】由二倍角公式和平方关系可得22sincoscos 222ααα=,再由商数关系即可得解.【详解】因为2sin 1cos αα=+,所以224sin cos1cos sin 2222αααα=+-,所以22sincoscos 222ααα=,又α是第一象限角,所以cos02α≠,所以2sincos1222cos 2ααα=即1tan 22α=.故选:C.【点睛】本题考查了二倍角公式及同角三角函数关系的应用,考查了运算求解能力,属于基础题. 5.B图像相邻两条对称轴之间的距离为2π,即三角函数的周期为22,,22ππππωω⨯=∴==,所以sin 2sin 212126f x x x πππϕϕ⎡⎤⎛⎫⎛⎫⎛⎫+=++=++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,又12f x π⎛⎫+ ⎪⎝⎭是偶函数,,62k k Z ππϕπ∴+=+∈,即,3k k Z πϕπ=+∈,又2πϕ<,解得3πϕ=,所以()sin 23f x x π⎛⎫=+ ⎪⎝⎭.A项,最小正周期T π=,错误;B 项, 由222,232k x k k Zπππππ-≤+≤+∈,解得单调递增区间为5,,1212k k k Z ππππ⎡⎤-+⎢⎥⎣∈⎦,k=1时成立,故正确;;C 项, 2,32x k k Z πππ+=+∈,解得对称轴是,212k x k Z ππ=+∈,错误;D 项, 由2,3x k k Z ππ+=∈,解得对称中心是,0,26⎛⎫-∈ ⎪⎝⎭k k Z ππ,错误;综上所述,应选B. 6.B 【分析】由三角函数的基本关系式和4ABCS=,求得10ab =,再由正弦定理,得到a b =+,根据余弦定理,列出方程,即可求解.【详解】因3cos 5C =,则(0,)2C π∈,所以4sin 5==C ,又因为4ABCS=,即114sin 4225ab C ab =⨯=,解得10ab =,sin sin C A B =+a b =+, 由余弦定理,可得22222223162cos 2()33255c a b ab C a b ab a b ab c =+-=+-⨯=+-=-,整理得216c =,即4c =.故选:B.【点睛】本题主要考查了正弦定理、余弦定理和三角形的面积公式的应用,其中在解有关三角形的题目时,要抓住题设条件和利用某个定理的信息,合理应用正弦定理和余弦定理求解是解答的关键,着重考查了运算与求解能力,属于中档题. 7.C试题分析:由余弦定理得22923cos5,4b b π=+-⋅==.由正弦定理得3sin sin 4BAC π=∠,解得sin BAC ∠=考点:解三角形. 8.C 【分析】根据函数()sin y A ωx φ=+的图象变换规律,得到sin 2)2(x g x πϕ⎛⎫-+ ⎝=⎪⎭,函数()g x 在3x π=处取得最大值,求得3πϕ=,再求函数()f x 的对称轴和对称中心即可.【详解】由题意得,12sin 2sin (4)222x x x g ππϕϕ⎡⎤⎛⎫⎛⎫⨯-+=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦=, 由函数()g x 在3x π=处取得最大值,得max sin 2sin 13326()g x g ππππϕϕ⎛⎫⎛⎫⎛⎫==⨯-+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,∴262k ππϕπ+=+,k Z ∈,23k πϕπ=+,k Z ∈,∵0ϕπ<<,∴3πϕ=,∴2n 2)3(si f x x π⎛⎫=+ ⎪⎝⎭,由23x k ππ+=,k Z ∈,得26k x ππ=-,k Z ∈, ∴函数()f x 的图象关于,026k ππ⎛⎫- ⎪⎝⎭,k Z ∈对称, 故A ,B 选项错误; 由232x k πππ+=+,k Z ∈,得212k x ππ=+,k Z ∈, ∴函数()f x 的图象的对称轴方程为212k x ππ=+,k Z ∈, 显然当1k =-时,函数()f x 的图象的对称轴为直线512x π=-, 故选:C .【点睛】本题主要考查三角函数的图象变换,三角函数的最值,三角函数图象的对称性等,考查的数学核心素养是数学运算、直观想象. 9.B【分析】由二倍角公式降幂,然后由两角和的正弦公式化简函数为一个角一个三角函数形式,再利用正弦函数性质可得最小值. 【详解】21()cos sin 4442222223x x x x x x x x f x π⎫⎛⎫=-=+==+⎪ ⎪⎪⎝⎭⎭, 当,33x ππ⎡⎤∈-⎢⎥⎣⎦时,,2362x πππ⎡⎤+∈⎢⎥⎣⎦,所以236x ππ+=,即3x π=-时,min ()2f x =. 故选:B .【点睛】本题考查求正弦型函数的最值,解题关键是利用二倍角公式,两角和的正弦公式化函数为一个角的一个三角函数形式. 10.A 【分析】 根据1cos 44πα⎛⎫-=⎪⎝⎭,将sin 2α,利用诱导公式和二倍角的余弦公式转化为2sin 22cos 14παα⎛⎫=-- ⎪⎝⎭求解.【详解】因为1cos 44πα⎛⎫-=⎪⎝⎭, 所以27sin 2cos 22cos 1448ππααα⎡⎤⎛⎫⎛⎫=-=--=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.故选:A【点睛】本题主要考查诱导公式和二倍角公式的应用,还考查了转化求解问题的能力,属于基础题. 11. B 【详解】试题分析:()f x 的对称轴是2x π=2f π⎛⎫∴= ⎪⎝⎭cos cos 36a ππ+=a =考点:三角函数性质点评:利用对称轴处取最值求解 12.C 【分析】先求得C ,然后利用正弦定理求得a . 【详解】因为,412A B ππ==,所以23C A B ππ=--=,所以sin sin c Aa C===故选:C【答案】 13.C 【分析】作出函数6log y x =,作出sin ,02y x x π=≤关于原点的对称图像,由图象交点个数即可得到结论.【详解】若()6sin ,02log ,0x x f x x x π⎧≤⎪=⎨⎪>⎩图象上有关于原点成中心对称的点, 则6log y x =与sin,02y x x π=≤关于原点对称图像有交点,作出6log y x =,sin(),02y x x π=--≥图象如图,由图象可知,有3个交点,从而()f x 有3对关于原点对称的点. 故选:C【点睛】本题主要考查了对数函数、正弦型函数的图象与性质的应用问题,也考查了数形结合思想,属于中档题. 14.3π 【分析】利用图象变换求得函数()y g x =的解析式,由函数()y g x =为奇函数,可得出关于m 的代数式,进而可求得正数m 的最小值. 【详解】将函数()sin 36f x x π⎛⎫=+ ⎪⎝⎭的图象上各点的横坐标伸长到原来的6倍(纵坐标不变),得到函数11sin 3sin 6626y x x ππ⎛⎫⎛⎫=⨯+=+ ⎪ ⎪⎝⎭⎝⎭的图象, 再将所得函数图象向右平移()0m m >个单位长度,得到()()111sin sin 26262g x x m x m ππ⎡⎤⎛⎫=-+=+- ⎪⎢⎥⎣⎦⎝⎭的图象,由于函数()y g x =为奇函数,则()162m k k Z ππ-=∈,()23m k k Z ππ∴=-∈, 当0k =时,正数m 取得最小值3π. 故答案为:3π. 【点睛】本题考查利用三角函数图象变换求函数解析式,同时也考查了利用正弦型函数的奇偶性求参数,考查计算能力,属于中等题.①③④ 【分析】根据零点存在定理,三角函数图象变换,对数函数的性质,充分不必要条件的定义判断各选项.【详解】①()ln 2f x x x =-+,(1)10f =-<,()10f e e =->,由零点存在定理得()f x 在(1,)e 上有零点,①正确;②函数cos()6y x π=-的图象的横坐标变为原来的12得到函数cos 26y x π⎛⎫=- ⎪⎝⎭,②错误;③1m ≥-时,440m ∆=+≥,故函数值域为R ,③正确;④()1x x a e f x ae -=+是奇函数,则1()11x x xx x xa e ae a e f x ae e a ae------===-+++,22(1)(1)0xa e --=,1a =±,因此“1a =”是“函数()1xxa e f x ae-=+在定义域上是奇函数”的充分不必要条件,④正确. 故答案为:①③④【点睛】本题考查命题的真假判断,掌握零点存在定理,三角函数图象变换,对数函数的性质,充分不必要条件的定义是解题基础. 16. 直角三角形 【分析】利用正弦定理边角互化思想求得sin A 的值,可求得角A 的值,进而可判断出ABC 的形状. 【详解】cos cos sin a B b A c A+=,由正弦定理得sin cos cos sin sin sin A B A B A C +=,即()()sin sin sin sin sin A C A B C C π=+=-=,0C π<<,则sin 0C >,sin 1A ∴=,0A π<<,2A π∴=.因此,ABC 为直角三角形. 故答案为:直角三角形.【点睛】本题考查利用正弦定理边角互化思想判断三角形的形状,考查计算能力,属于基17.()2sin(2)3f x x π=+【分析】由最值求得A ,由周期求得ω,由最高点或零点横坐标及ϕ的范围求得ϕ,得解析式.【详解】由题意1A =,4312T πππ⎛⎫=⨯-= ⎪⎝⎭,∴22πωπ==, 由正弦函数性质得,22122k ππϕπ⨯+=+,k Z ∈,∵2πϕ<,∴3πϕ=.∴()2sin(2)3f x x π=+.故答案为:()2sin(2)3f x x π=+【点睛】本题考查求三角函数的解析式,掌握“五点法”作正弦函数的图象是解题关键. 18. 1; 513,612ππ⎡⎤⎢⎥⎣⎦【分析】根据三角函数的有界性易得[0,]1a M =,通过作图分析可得a 的取值范围. 【详解】作出函数sin y x =的图象,如图所示:显然,[0,]a M 的最大值为1,[0,][,2]2a a a M M ≥,∴[,2]a a M 的最大值为12, 作出直线12y =与sin y x =相交于,,A B C 三点,且151131(,)(,),(,)626262A B C πππ,由图形可得:5,513613662,6a a a ππππ⎧≤⎪⎪⇒≤≤⎨⎪≤⎪⎩, 故答案为:513[,]66ππ. 【点睛】本题考查函数的新定义问题,考查函数与方程思想、数形结合思想,考查逻辑推理能力、运算求解能力,求解时注意结合图象进行分析求解. 19.78【分析】根据正弦定理将角化成边得2a c =,结合2b c =,将边统一用c 表示,再利用余弦定理,即可得答案; 【详解】sin 2sin 2A C a c =⇒=,又22a bc =,∴2b c =,∴2222277cos 2248a b c c C ab c +-===⋅⋅, 故答案为:78. 【点睛】本题考查正余弦定理的应用,考查函数与方程思想,考查逻辑推理能力、运算求解能力,求解时注意将边统一用c 进行表示,进而求得角的余弦值. 20. (1)3π;(2) 【分析】(1)根据2b sin Aa cos B +a sin B ,利用正弦定理得到sin sin cos B A A B =,再根据sin 0A ≠求解.(2)在△ABC 中,利用余弦定理求得c ,再由S △ABD,求得BD ,然后 在△ABD 中,由余弦定理求解.【详解】(1)因为2b sin Acos B +a sin B ,所以2sin sin sin cos sin sin B A A B A B =+,sin sin cos B A A B =,sin 0A ≠tan B =()0,B π∈ 3B π=(2)在△ABC 中,由余弦定理得:2222cos b a c ac B =+-,解得6c =或2c =-(舍去),因为S △ABD =1sin 22⨯⨯=BD c B , 解得 3BD =,在△ABD 中,由余弦定理得:2222cos 27AD BD c BD c B =+-⨯⨯⨯=,解得AD =.【点睛】本题主要考查正弦定理,余弦定理的应用,还考查了运算求解的能力,属于中档题. 21.(1)5,1212k k ππππ⎡⎤-++⎢⎥⎣⎦(k Z ∈);(2)(1⎤⎦.【分析】(1)化简()f x ,再根据正弦函数的单调增区间代入求解即可. (2)根据(1)的结果()2sin 213f x x π⎛⎫=++ ⎪⎝⎭,再根据0,2x π⎛⎫∈ ⎪⎝⎭求出23x π+的范围结合sin 23y x π⎛⎫=+⎪⎝⎭的值域为,12⎛⎤-⎥⎝⎦,即可求出结果.【详解】(1)())21sin 22cos 1f x x x =+-1sin 212sin 23x x x π⎛⎫=++=++ ⎪⎝⎭由222232k x k πππππ-+≤+≤+,得51212k x k ππππ-+≤≤+,k Z ∈.故此函数的单调递增区间为5,1212k k ππππ⎡⎤-++⎢⎥⎣⎦(k Z ∈).(2)由02x π<<,得42333x πππ<+<.sin 23y x π⎛⎫=+ ⎪⎝⎭的值域为⎛⎤ ⎥⎝⎦.()12sin 23f x x π⎛⎫=++ ⎪⎝⎭的值域为(1⎤⎦,故此函数的值域为(1⎤-⎦【点睛】本题主要考查了三角函数的性质,常考三角函数的性质有:对称轴、单调性、最值、对称中心.属于中档题. 22.(1)34C π=;(2)sin 1A c ==. 【分析】(1)由三角恒等变形可得cos 2C =-,0C π<<又,即34C π=.(2)由余弦定理得c =,再由正弦定理及三角形面积公式可得:2sin ()sin sin sin sin a b c C C A B C==,即1c ==,得解.【详解】解:(1)22sin 30C C -++=,可得:22(1cos )30C C --++=,22cos 10C C ∴++=, cos C ∴=0C π<<,34C π∴=. (2)2222222cos 325c a b ab C a a a =+-=+=,c ∴,sin C A ∴,sinA C ∴==,1sin sin 2ABC S ab C A B ∆=,∴1sin sin 2ab C A B =,∴2sin ()sin sin sin sin a b c C C A B C=1c ∴=.【点睛】本题考查了三角恒等变形及正余弦定理,属中档题. 23.(1)1ω=;单调增区间为2,63k k ππππ⎡⎤++⎢⎥⎣⎦,k ∈Z ;(2)[]0,3. 【分析】(1)先将函数解析式整理,得到()2sin 216f x x ⎛⎫=-++ ⎪⎝⎭πω,根据最小正周期,即可求出1ω=,由正弦函数的单调性,列出不等式求解,即可得出单调增区间; (2)先由3x ππ≤≤,得到7132666x πππ≤+≤,根据正弦函数的性质,即可求出结果. 【详解】(1)()2cos 2sin cos 1cos 22x x x x x f x x ⎛⎫=++=-+- ⎪⎝⎭πωωωωωω2cos 212sin 216x x x ⎛⎫=-+=-++ ⎪⎝⎭πωωω,∵函数()f x 的最小正周期为22T ππω==, ∴1ω=;∴()2sin 216f x x π⎛⎫=-++ ⎪⎝⎭, 由3222262k x k πππππ+≤+≤+()k ∈Z ,得263k x k ππππ+≤≤+()k ∈Z ,∴函数()f x 的单调增区间为2,63k k ππππ⎡⎤++⎢⎥⎣⎦,k ∈Z . (2)由2x ππ≤≤得7132666x πππ≤+≤, 所以1sin 21,62x π⎛⎫⎡⎤+∈- ⎪⎢⎥⎝⎭⎣⎦,则()[]2sin 210,36f x x ⎛⎫=-++∈ ⎪⎝⎭π. 即()f x 的取值范围为[]0,3.【点睛】本题主要考查由正弦型函数的周期求参数,考查求正弦型函数的单调区间,考查求正弦型函数在给定区间的值域,属于常考题型. 24.(1)12;(2)3【分析】(1)利用余弦定理将角转化为边,再利用余弦定理求得结果;(2)由已知结合正弦定理将边转化角,再利用三角形内角和定理、辅助角公式转化为求6a b A π⎛⎫+=+ ⎪⎝⎭的取值范围.【详解】(1)由1cos 2a c Bb =+,可得222222cos a ab ac B a c b -==+-, 整理得222a b c ab +-=,所以222cos 122a b c C ab +-==.(2)由(1)得1cos 2C =,0C π<<,3C π=,,sin 2C =,c = 由正弦定理得2sin sin sin a b cA B C===, ∴22sin 2sin 2sin 2sin 3a b A B A A π⎛⎫+=+=+-⎪⎝⎭3sin 6A A A π⎛⎫=+=+ ⎪⎝⎭,∵3C π=,∴203A π<<,5666A πππ<+<, 1sin 126A π⎛⎫<+≤ ⎪⎝⎭6A π⎛⎫<+≤ ⎪⎝⎭∴+a b 的取值范围是3.【点睛】本题主要考查正弦定理和余弦定理的应用,属于中档题. 25.(1)最小正周期是π,增区间是06,π⎡⎤⎢⎥⎣⎦,减区间是,62ππ⎡⎤⎢⎥⎣⎦;(2 【分析】(1)应用二倍角公式和两角和的正弦公式化函数为一个角的一个三角函数形式,然后结合正弦函数性质求解; (2)由(1)求得0sin 26x π⎛⎫+ ⎪⎝⎭,再求出0cos 26x π⎛⎫+⎪⎝⎭,然后用两角差的余弦公式求解.【详解】(1)1()2cos 222cos 22sin 2326f x x x x x x π⎛⎫⎛⎫=+=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭, 所以最小正周期为22T ππ==, 0,2x π⎡⎤∈⎢⎥⎣⎦时,72,666x πππ⎡⎤+∈⎢⎥⎣⎦,由2662x πππ≤+≤,得06x π≤≤, 由72266x πππ≤+≤得62x ππ≤≤, 所以()f x 的增区间是06,π⎡⎤⎢⎥⎣⎦,减区间是,62ππ⎡⎤⎢⎥⎣⎦;(2)由(1)得062sin 265x π⎛⎫+= ⎪⎝⎭,即03sin 265x π⎛⎫+= ⎪⎝⎭, 因为0,43x ππ⎡⎤∈⎢⎥⎣⎦,所以0252,636x πππ⎡⎤+∈⎢⎥⎣⎦,所以04cos 265x π⎛⎫+=- ⎪⎝⎭,所以0000cos 2cos 2cos 2cos sin 2sin 666666x x x x ππππππ⎡⎤⎛⎫⎛⎫⎛⎫=+-=+++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦431552=-+⨯=【点睛】本题考查求三角函数的周期与单调区间,考查两角和与差的正弦、余弦公式,二倍角公式,同角间的三角函数关系.解题关键是把三角函数化为一个角的一个三角函数形式,然后由正弦函数性质求解. 26.(1)3A π=;(2)(2【分析】 (1)利用正弦定理的边角互化可得222a b c bc =+-,再利用余弦定理即可求解. (2)利用正弦定理可得2sin sin C c B=,再利用三角形的面积公式可得12sin 2sin 2sin ABC C S A B=⨯⨯,根据三角形的内角和性质以及两角差的正弦公式可将式子312tan B ⨯,结合B 的取值范围即可求解. 【详解】解:(1)由已知及正弦定理得, 222,a b c bc =+- 由余弦定理可得2221cos .22b c a A bc +-== 又0A π<<,.3A π∴=(2) 由已知及正弦定理得, 2sin ,sin C c B =由2,3B C π+=得12sin 2sin 2sin ABC C S A B=⨯⨯2sin()313.sin 2tan B B Bπ-==+⨯ ABC 是锐角三角形,得20,0,232B B πππ<<<-<得.62B ππ<<tan B >∴10tan B ∴<<ABC S <<所以ABC面积的取值范围是,2 【点睛】本题考查了正弦定理的边角互化、余弦定理解三角形、三角形的面积公式、两角差的正弦公式,属于中档题.27.(Ⅰ)①②成立,理由见解析,()sin 26f x x π⎛⎫+⎝=⎪⎭;(Ⅱ)f (x )的最大值为1;最小值为12.【分析】(Ⅰ)依次讨论①②成立,①③成立,②③成立,计算得到只有①②成立,得到答案. (Ⅱ)03x π≤≤得到52666x πππ≤+≤,得到函数值域,即可得出最值. 【详解】(Ⅰ)由①可得,22ππωω=⇒=. 由②得:6226k k πωπππωϕπϕπ+=+⇒=+-,k Z ∈ 由③得,44m m πωπωωπϕπ+=⇒=-,m Z ∈220322633T πππππωω≥-=⇒≥⇒<≤ 若①②成立,则2ω=,6π=ϕ,()sin 26f x x π⎛⎫+ ⎝=⎪⎭. 若①③成立,则42m m πωπϕππ=-=-,m Z ∈,不合题意. 若②③成立,则()1266264k m m k ππωπωππω+-=-⇒=--≥,k Z ∈与③中的03ω<≤矛盾,所以②③不成立.所以,只有①②成立,()sin 26f x x π⎛⎫+⎝=⎪⎭. (Ⅱ)由题意得,()5102136662x x f x ππππ≤≤⇒≤+≤⇒≤≤. 所以,当6x π=时,函数()f x 取得最大值1;当0x =或3x π=时,函数()f x 取得最小值12.。
2020年高考数学(理)大题分解专题01 三角函数与解三角形(含答案)
已知向量(sin cos ,2cos )x x x =+m ,sin co,s )s in (x x x =-n ,()1f x =⋅+m n . (1)求()f x 的解析式,并求函数()f x 的单调增区间; (2)求()f x 在[0,]2π上的值域.【肢解1】在已知条件下求出,函数()f x 的解析式.【肢解2】在“肢解1”的基础上,完成问题:函数()f x 的单调增区间. 【肢解3】在已知条件下,求()f x 在[0,]2π上的值域.【解析】(1)22()sin cos 2sin cos 1sin 2cos21)14f x x x x x x x x π=-++=-+=-+.(3分)令222242k x k ππππ-≤-≤π+,k ∈Z ,得88k x k π3ππ-≤≤π+,k ∈Z . 故函数()f x 的单调增区间为[,]88k k π3ππ-π+,k ∈Z .(6分)(2)因为02x π≤≤,所以2444x ππ3π-≤-≤,从而sin(2)14x π≤-≤,(8分)大题肢解一三角函数的图象及其性质所以0)114x π-+≤,所以()f x 在[0,]2π上的值域为1].(12分)此类问题通常先通过三角恒等变换化简函数解析式为si (n )y A x B ωϕ++=的形式,再结合正弦函数sin y x =的性质研究其相关性质.(1)已知三角函数解析式求单调区间:①求函数的单调区间应遵循简单化原则,将解析式先化简,并注意复合函数单调性规律“同增异减”; ②求形如sin()y A x ωϕ=+或cos()y A x ωϕ=+(其中ω>0)的单调区间时,要视“ωx +φ”为一个整体,通过解不等式求解.但如果ω<0,那么一定先借助诱导公式将ω化为正数,防止把单调性弄错. (2)函数图象的平移变换解题策略:①对函数sin y x =,sin()y A x ωϕ=+或cos()y A x ωϕ=+的图象,无论是先平移再伸缩,还是先伸缩再平移,只要平移|φ|个单位,都是相应的解析式中的x 变为x ±|φ|,而不是ωx 变为x ωϕ±.②注意平移前后两个函数的名称是否一致,若不一致,应用诱导公式化为同名函数再平移.【拓展1】已知向量()sin ,cos x x =a ,()cos ,cos x x =b ,x ∈R ,已知函数()()f x =⋅+a a b . 求()f x 的最值与最小正周期;【解析】由向量()sin ,cos x x =a ,()cos ,cos x x =b ,所以()sin cos ,2cos x x x +=+a b , 所以()()()2sin sin cos 2cos f x x x x x =⋅+=++a a b ()111sin 2cos 2122x x =+++32224x π⎛⎫=++ ⎪⎝⎭,又[]sin 2-1,14x π⎛⎫+∈ ⎪⎝⎭,即()f x的最大值是322+,最小值是322-,()f x 的最小正周期是22T π==π. 【拓展2】已知函数23()cos cos 2f x x x x =++,当[,]63x ππ∈-时,求函数()y f x =的值域.【解析】由题得1cos 23()2sin(2)22226x f x x x +π=++=++, ∵[,]63x ππ∈-, ∴2[,]666x ππ5π+∈-, ∴1sin(2)126x π-≤+≤, ∴函数()y f x =的值域为3[,3]2.(2019年河北省存瑞中学高三上一质检)已知向量)1cos ,,,cos2,2x x x x ⎛⎫=-=∈ ⎪⎝⎭R a b ,设函数()f x =⋅a b .(1)求()f x 的最小正周期; (2)求函数()f x 的单调递减区间;(3)求()f x 在0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.【解析】由已知可得:变式训练一()11·cos cos2cos2sin 22226f x x x x x x x π⎛⎫==-=-=- ⎪⎝⎭a b ,(3分)(1)()f x 的最小正周期2π2T π==;(5分) (2)由3222,262k x k k ππππ+≤-≤π+∈Z ,可得5,36k x k k πππ+≤≤π+∈Z , ()f x ∴的单调递减区间为()5,36k k k ππ⎡⎤π+π+∈⎢⎥⎣⎦Z .(7分)(3)0,2x π⎡⎤∈=⎢⎥⎣⎦,52,666x πππ⎡⎤∴-∈-⎢⎥⎣⎦,1sin 2,162x π⎛⎫⎡⎤∴-∈- ⎪⎢⎥⎝⎭⎣⎦,(10分)()f x ∴的最大值为1,最小值为12-.(12分)在锐角ABC △中,角,,AB C 的对边分别为,,a b c ,已知ππsin 2)cos()44B B B =+-. (1)求角B 的大小;(2)若1b =,ABC △的面积为2,求ABC △的周长.【肢解1】在已知条件下化解二倍角公式和余弦和差公式. 【肢解2】根据正、余弦定理求解即可.大题肢解二解三角形【解析】(1)因为在锐角ABC △中,ππsin 2)cos()44B B B =+-,所以ππsin 2cos()sin()44B B B =++,所以sin 22B B =,(3分) 因为cos20B ≠,所以tan 2B =因为π02B <<, 所以π6B =.(6分) (2)由余弦定理2222cos b a c ac B =+-,得2212cos a c ac B =+-,所以221a c =+,(8分)因为ABC △的面积为2,所以1πsin 26ac =,即ac = 所以227a c +=,(10分)所以22()7(2a c +=+=+,所以2a c +=+所以3a b c ++=+ABC △的周长为3(12分)(1)利用正、余弦定理求边和角的方法:①根据题目给出的条件(即边和角)作出相应的图形,并在图形中标出相关的位置.②选择正弦定理或余弦定理或二者结合求出待解问题.一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.③在运算求解过程中注意三角恒等变换与三角形内角和定理的应用. (2)求三角形面积的方法:①若三角形中已知一个角(角的大小,或该角的正、余弦值),结合题意求夹这个角的两边或该两边之积,套公式求解.②若已知三角形的三边,可先求其一个角的余弦值,再求其正弦值,套公式求面积,总之,结合图形恰当选择面积公式是解题的关键.【拓展1】已知在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,且ca bA B A C +=--sin sin sin sin , (1)求角C 的大小; (2)若3=c ,求b a +的取值范围. 【答案】(1)由c a b A B A C +=--sin sin sin sin ,则ca ba b a c +=--.⇒ab c b a =-+222,所以2122cos 222==-+=ab ab ab c b a C 而),0(π∈C 故3π=C , (2)由ab c b a =-+222 且3=c ,⇒ab ab b a =--+92)(2, ⇒22)2(339)(b a ab b a +≤=-+, ⇒36)(2≤+b a 所以6≤+b a ,又3=>+c b a ,所以b a +的取值范围是]6,3(.【拓展2】在ABC ∆中,设边,,a b c 所对的角分别为,,A B C ,cos cos 2A aC b c=-+. (1)求角A 的大小;(2)若2,bc =ABC ∆的周长为3,求a 的值.【答案】(1)23A π=(2)a =【解析】(1)因为cos cos 2A aC b c=-+ 由正弦定理得cos sin cos 2sin sin A A C B C=-+ sin cos cos sin 2cos sin 0A C A C A B ++=sin()2cos sin 0A C A B ++=sin 2cos sin 0B A B +=,(0,)B π∈, 1cos 2A =-,(0,)A π∈,23A π=(2)由余弦定理得2222222cos 2a b c bc Aa b c =+-⇒=++因为周长3a b c ++=,又222a b c =+-(),所以2232a a =+-(),所以a =【点睛】本题考查正、余弦定理的综合运用,考查了逻辑推理能力,考查了方程思想,属于中档题.(百校联盟2019-2020学年高三上学期10月尖子生联考数学理科试题)已知ABC △的内角A 、B 、C 所对的边分别为a 、b 、c .且cos 2sin cos 6B C A π⎛⎫=-⋅ ⎪⎝⎭. (1)求角A ;(2)若ABC △的面积为ABC ∆周长的最小值.【解析】(1)cos 2sin cos 6B C A π⎛⎫=-⋅ ⎪⎝⎭,且A B C ++=π,()1cos 2cos cos 2A C C C A ⎫∴-+=-⋅⎪⎪⎝⎭,(2分)sin sin cos A C C A ∴⋅=,0C <<π,且0A <<π,sin 0,sin C A A ∴>∴=,3A π∴=.(6分) 变式训练二(2)由1sin 2S bc A ==,得8bc =.(8分) 又222a b c bc =+-,28a bc ∴≥=,(当且仅当b c =时取等号),(10分) ()2224b c a ∴+=+,l a b c a a ∴=++=+≥,l ∴≥=ABC∴△周长的最小值为.(12分)已知函数πππ()cos(2)2sin()cos()()344f x x x x x =-+--∈R .(1)求函数的最小正周期及在区间π2π[,]123上的值域;(2)在ABC△中,ABC △的面积.【肢解1】在已知条件下化解二倍角公式和余弦和差公式. 【肢解2】根据正、余弦定理及三角形的面积公式求解即可.()f x ()f x 5AB =大题肢解三三角函数与解三角形的综合问题【解析】(1)∵πππ()cos(2)2sin()cos()344f x x x x =-+--1πcos 22sin(2)222x x x =++-12cos 2cos 2x x x =+-12cos 22x x =- πsin(2)6x =-.(3分)的最小正周期为2ππ2T ==;∵π2π[,]123x ∈, ∴π7π2[0,]66x -∈,(4分) ∴max ππππ()()sin(2)sin 13362f x f ==⨯-==,min 2π2ππ7π1()()sin(2)sin 33662f x f ==⨯-==-, ∴在区间π2π[,]123(6分)(2π1sin(2)62A -=,即π6A =,(7分) 由余弦定理得2725(0b b b =+-⇒--=,∴b =b =(10分))(x f ∴()f x∴ABC △(12分)此类问题是将三角函数的图象与性质、解三角形综合命题进行考查,解题时,只需从条件出发,其间只需熟练掌握三角函数的图象与性质的求解方法以及解三角形的相关知识即可顺利解决.【拓展1】已知函数()22sin 24f x x x π⎛⎫=+⎪⎝⎭. (1)求()f x 的最小正周期;(2)设ABC △的内角,,A B C 的对边分别为,,a b c ,且12C c f ⎛⎫== ⎪⎝⎭,若sin 2sin B A =,求,a b 的值.【解析】(1)1cos 22()221sin 2212sin 223x f x x x x x π⎛⎫-+ ⎪π⎛⎫⎝⎭=-=+=+- ⎪⎝⎭,所以22T π==π.(4分) (2)因为12sin 1sin 0233C f C C ππ⎛⎫⎛⎫⎛⎫=+-=⇒-=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,因为0C <<π,所以3C π=.(5分) 因为222222cos 3c a b ab C a b ab =+-⇒=+-①,因为sin sin a b A B=,sin 2sin B A =,所以2b a =②,联立方程①②得:1,2a b ==.(12分)[广东省珠海市2019-2020学年高三上学期期末数学(理)]已知A 、B 、C 是ABC ∆的内角,a 、b 、c 分别是其对边长,向量(),m a b c =+,()sin sin ,sin sin n B A C B =--,且m n ⊥. (1)求角A 的大小;(2)若2a =,求ABC ∆面积的最大值. 【答案】(1)3A π=;(2【解析】(1)(),m a b c =+,()sin sin ,sin sin n B A C B =--,m n ⊥,()()()sin sin sin sin 0a b B A c C B ∴+-+-=,由正弦定理得()()()0b a b a c c b +-+-=,整理得222b c a bc +-=,2221cos 22b c a A bc +-∴==,0A π<<,3A π∴=;(2)在ABC ∆中,3A π=,2a =,由余弦定理知2222242cos a b c bc A b c bc ==+-=+-,由基本不等式得2242bc b c bc +=+≥,当且仅当b c =时等号成立,4bc ∴≤,11sin 422ABC S bc A ∆∴=≤⨯=ABC ∆.【点睛】本题考查利用余弦定理解三角形,同时也考查了三角形面积最值的计算,涉及基本不等式以及正变式训练三弦定理边角互化思想的应用,考查计算能力,属于中等题.1.(2019年10月广东省广州市天河区高考数学一模试题)在ABC △中,角A 、B 、C 所对的边分别为a 、b、c ,且22sin 30C C -++=.(1)求角C 的大小;(2)若b =,ABC △sin A B ,求sin A 及c 的值.【解析】(1)22sin 30C C -++=,可得:22(1cos )30C C --++=,22cos 10C C ∴++=, cos C ∴=0C π<<,34C π∴=. (2)2222222cos 325c a b ab C a a a =+-=+=,c ∴,sin C A ∴=,sinA C ∴=,1sin sin 2ABC S ab C A B ∆=,∴1sin sin 2ab C A B =,∴2sin ()sin sin sin sin a b c C C A B C=1c ∴=.2.(2019·沙雅县第二中学押题卷)已知点)P,(cos ,sin )Q x x ,O 为坐标原点,函数()f x OP QP =⋅.(1)求函数()f x 的解析式及最小正周期;(2)若A 为ABC △的内角,()4f A =,3BC =,ABC ∆ABC △的周长. 【解析】(1).()3,1OP =,()3cos ,1sin QP x x =-.∴()f x OP QP =⋅)3cos 1sin x x =-+-42sin 3x π⎛⎫=-+ ⎪⎝⎭,()f x 的最小正周期为2π.(2).因为()4f A =,所以sin 03A π⎛⎫+= ⎪⎝⎭,因为0A <<π,所以23A π=,因为1sin 2ABC S bc A ∆=12sin 234bc π==,所以3bc =,根据余弦定理22222cos3a b c b π=+-2()29b c bc bc =+-+=,所以b c +=即三角形的周长为3+3.(四川省遂宁市射洪县射洪中学2020届高三上学期10月月考数学试题)锐角ABC △的内角,,A B C 的对边分别为,,a b c cos sin C c B +=. (1)求角B 的大小;(2)若b =ABC △的周长的取值范围.【解析】(1cos sin C c B +=,cos sin sin B C C B A +=, 又由sin sin()sin cos cos sin A B C B C B C =+=+,代入整理得sin sin sin C B B C =,又由(0,)C ∈π,则sin 0C >,所以sin B B =,即tan B =又因为(0,)B ∈π,所以3B π=. (2)因为3b B π==,且由正弦定理,可得2sin sin sin a b cA B C====, 即2sin ,2sin a A c C ==,所以周长22(sin sin )2(sin sin())3L a b c a c A C A A π=++=+=+=+-32(sin ))26A A A π=+=+,即)6L A π=+又因ABC △为锐角三角形,且23A C π+=, 所以203202A A ππ⎧<-<⎪⎪⎨π⎪<<⎪⎩,解得62A ππ<<,所以2(,)633A πππ+∈,则有sin()6A π+∈ 即(3L ∈, 即ABC △的周长取值范围为(3+.4.(2019年河北省唐山市高三上学期摸底考试数学试题)ABC △的内角A B C ,,的对边分别为a b c ,,,已知ABC △的面积21tan 6S b A =. (1)证明:3cos b c A =;(2)若a c ==,求tanA .【解析】(1)由211sin tan 26S bc A b A ==得3sin tan c A b A = . 因为sin tan cos A A A =,所以sin 3sin cos b A c A A=, 又因为0A π<<,所以0sinA ≠ , 因此3b ccosA =.(2)由(1)得3cos b c A A ==,所以2230bccosA cos A =由余弦定理得2222a b c bccosA =+-,所以22845530cos A cos A -=+,解得21cos 5A =因此24sin 5A =,即2tan 4A = 由(1)得cos 0A >,所以tan 0A > , 故tan 2A =.5.(黑龙江省大庆市2019-2020学年高三上学期第一次教学质量检测数学试题)在ABC △中,角A 、B 、C 所对的边分别为a ,b ,c ,已知sin sin sin sin b B c C a A c B +=+.(1)求角A 的大小;(2)若cos 7B =,a =ABC △的面积S 的值. 【解析】(1)∵由正弦定理2sin sin sin a b cR A B C===, ∴有sin 2a A R =,sin 2b B R =,sin 2c C R=, 则sin sin sin sin b B c C a A c B +=+可化为2222b c a bb c a c R R R R⋅+⋅=⋅+⋅, 即222b c a bc +=+,即222a b c bc =+-, 又∵余弦定理2222cos a b c bc A =+-,∴1cos 2A =, 由()0,A ∈π,得3A π=; (2)由(1)知,3A π=,则sin 2A =,1cos 2A =,∵cos B =,()0,B ∈π,∴1sin 7B ==, ∴()1113sin sin 272714C A B =+=+⨯=,由正弦定理得,13sin 13sin a C c A===,∴111sin 132272S ac B ==⨯⨯=. 6.(河南省郑州市第一中学2019届高三高考适应性考试数学试题)在ABC △中,三边a ,b ,c 的对角分别为A ,B ,C ,已知3a =,cos cos cos sin cos B A C B C b+=.(1)若c =,求sin A ;(2)若AB 边上的中线长为2,求ABC △的面积.【解析】(1)因为cos cos cos sin cos B A C B C b+=,由正弦定理,得cos cos cos sin cos B A C B C +=,所以cos()cos cos sin cos A C A C B C -++=.所以sin sin cos A C A C =.又因为sin 0A ≠,所以tan C =因为(0,)C ∈π,所以3C π=.又因为sin sin a c A C =,所以3sin A =,所以3sin 4A =. (2)设AB 边上的中线为CD ,则2CD CA CB =+,所以22224()2cos CD CA CB b a ab C =+=++,即23793b b =++,23280b b +-=. 解得4b =或7b =-(舍去).所以11sin 4322ABC S ab C ∆==⨯⨯=.7.(河南、河北两省重点高中2019届高三考前预测试卷数学试题)在ABC △中,角A ,B ,C 的对边分别是a ,b ,c ,30B =︒,且()()2sin 2sin 2sin a A b c B c b C -+=+.(1)求()sin A C -的大小;(2)若ABC △的面积为ABC ∆的周长.【解析】(1)因为()()2sin 2sin 2sin a A b c B c b C -+=+,由正弦定理可得:()()2222a b b c c c b -+=+,整理得222b c a bc +-=-,∴2221cos 22b c a A bc +-==-,解得120A =︒.又30B =︒,所以1801203030C =︒-︒-︒=︒,即30C B ==︒, ∴()()sin sin 120301A C -=︒-︒=. (2)由(1)知b c =,120A =︒,∴21sin1202b ︒=bc ==. 由余弦定理,得22212cos 1212212362a b c bc A ⎛⎫=+-=+-⨯⨯-= ⎪⎝⎭,即6a =.∴ABC 的周长为6.8.(重庆市2019届高三高考全真模拟考试数学试题)已知锐角ABC △中,角A ,B ,C 所对的边分别为a,b ,c ,sin cos (sin )0A C B B -+=.(1)求角C ;(2)若b =c =AB 边上的高长.【解析】(1)()sin cos sin 0A C B B -=,()()sin cos sin 0B C C B B ∴+-=, ()cos sin 0B C C ∴=,tan C ∴=3C π∴=.(2)由余弦定理可得:2222cos c a b ab C =+-,可得:210a -=,可得:a =,由等面积可得:11sin 22S ab C ch ==,可得:h =. 9.[惠州市2020届高三第三次调研考试数学(理)]【答案】(1)在ABC ∆中,因为2BC =,π3ABC ∠=,1sin 22ABC S AB BC ABC ∆=⋅∠=,所以22AB =,解得3AB =. 在ABC ∆中,由余弦定理得2222cos 7AC AB BC AB BC ABC =+-⋅∠=,因为0AC >,所以AC =(2)设ACD α∠=,则ππ33ACB ACD α∠=∠+=+. 在Rt ACD ∆中,因为AD =sin AD AC α==. 在ABC ∆中,ππ3BAC ACB ABC α∠=-∠-∠=-, 由正弦定理得sin sin BC AC BAC ABC =∠∠,即2πsin()3α=-, 所以2sin()sin 3παα-=,所以12(cos sin )sin 22ααα-=,2sin αα=,所以tan α=,即tan ACD ∠=。
(完整版)高考大题-三角函数题型汇总精华(含答案解释)
【模拟演练】1、[2014·江西卷16] 已知函数f (x )=(a +2cos 2x )cos(2x +θ)为奇函数,且f ⎝⎛⎭⎫π4=0,其中a ∈R ,θ∈(0,π).(1)求a ,θ的值; (2)若f ⎝⎛⎭⎫α4=-25,α∈⎝⎛⎭⎫π2,π,求sin ⎝⎛⎭⎫α+π3的值.2、[2014·北京卷16] 函数f (x )=3sin ⎝⎛⎭⎪⎫2x +π6的部分图像如图所示.(1)写出f (x )的最小正周期及图中x 0,y 0的值;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤-π2,-π12上的最大值和最小值.3、[2014·福建卷18] 已知函数f (x )=2cos x (sin x +cos x ).(1)求f ⎝ ⎛⎭⎪⎫5π4的值; (2)求函数f (x )的最小正周期及单调递增区间.4、( 06湖南)如图,D 是直角△ABC 斜边BC 上一点,AB=AD,记∠CAD=α,∠ABC=β.(1)证明 sin cos 20αβ+=; (2)若求β的值.BDCαβ A图5、(07福建)在ABC △中,1tan 4A =,3tan 5B =. (Ⅰ)求角C 的大小; (Ⅱ)若ABC △最大边的边长为17,求最小边的边长.6、(07浙江)已知ABC △的周长为21+,且sin sin 2sin A B C +=.(I )求边AB 的长; (II )若ABC △的面积为1sin 6C ,求角C 的度数.7、(07山东)如图,甲船以每小时302海里的速度向正北 方向航行,乙船按固定方向匀速直线航行,当甲船位于1A 处时, 乙船位于甲船的北偏西105︒的方向1B 处,此时两船相距20 海里.当甲船航行20分钟到达2A 处时,乙船航行到甲船的 北偏西120︒方向的2B 处,此时两船相距102海里, 问乙船每小时航行多少海里?8、(2013年全国新课标2)在ABC ∆中,c b a ,,C B A 所对的边分别为,,角,已知B cC b a sin cos +=(1)求B ;(2)若b=2, 求ABC S ∆的最大值。
高三数学三角函数试题答案及解析
高三数学三角函数试题答案及解析1.若点在函数的图象上,则的值为 .【答案】.【解析】由题意知,解得,所以.【考点】1.幂函数;2.三角函数求值2.设,将函数在区间内的全部极值点按从小到大的顺序排成数列.(1)求数列的通项公式;(2)设,数列的前项和为,求.【答案】(1);(2).【解析】(1)先根据三角函数的恒等变换化简,得,再根据三角函数的性质找到极值点,利用等差数列的性质写出数列的通项公式;(2)先根据(1)中的结果写出的通项公式,然后写出的解析式,在构造出,利用错位相减法求,计算量比较大,要细心.试题解析:(1),其极值点为, 2分它在内的全部极值点构成以为首项,为公差的等差数列, 4分所以; 6分(2), 8分所以,,相减,得,所以. 12分【考点】1、三角函数的恒等变换及化简;2、三角函数的性质的应用;3、等差数列的通项公式;4、错位相减法求数列的前项和;5、等比数列的前项和.3.若函数的一个对称中心是,则的最小值为()A.B.C.D.【答案】B【解析】由于正切函数的对称中心坐标为,且函数的一个对称中心是,所以,因此有,因为,所以当时,取最小值,故选B.【考点】三角函数的对称性4.在锐角中,,,则的值等于;的取值范围为 .【答案】;【解析】,所以,由正弦定理得,即,所以,为锐角三角形,则,且,即,则有,且有,所以,故有,,所以,即,故的取值范围为.【考点】1.正弦定理;2.三角函数的取值范围5.已知是第二象限角,,则()A.B.C.D.【答案】B【解析】已知是第二象限角,,所以,故选B.【考点】同角三角函数基本关系式.6.在中,角的对边分别为向量,,且.(1)求的值;(2)若,,求角的大小及向量在方向上的投影.【答案】(1);(2),向量在方向上的投影.【解析】(1)由向量数量积坐标形式列式,可求得的值,再利用平方关系可求得的值;(2)先利用正弦定理可求得的值,再利用大边对大角可求得角的大小.由投影的定义可求得向量在方向上的投影.试题解析:(1)由,得, 1分, 2分.. 3分.4分(2)由正弦定理,有, 5分.6分,, 7分. 8分由余弦定理,有, 9分或(舍去). 10分故向量在方向上的投影为 11分. 12分【考点】1、向量数量积、投影;2、三角恒等变换;3、解三角形.7.在中产生区间上均匀随机数的函数为“( )”,在用计算机模拟估计函数的图像、直线和轴在区间上部分围成的图形面积时,随机点与该区域内的点的坐标变换公式为( )A.B.C.D.【答案】D【解析】由于,,而,,所以坐标变换公式为,. 故选D.【考点】均匀随机数的意义与简单应用.8.已知函数,则下列结论正确的是()A.函数的图象关于直线对称B.函数的最大值为C.函数在区间上是增函数D.函数的最小正周期为【答案】C【解析】令得错误;函数的最大值为,故错误;函数的最小正周期为,故错误;当时,,故函数在区间上是增函数,所以选.【考点】考查三角函数的图像及其性质.9.函数,,在上的部分图象如图所示,则的值为.【答案】【解析】根据题意,由于函数,,在上的部分图象可知周期为12,由此可知,A=5,将(5,0)代入可知,5sin(+)=0,可知=,故可知==,故答案为【考点】三角函数的解析式点评:主要是考查了三角函数的解析式的求解和运用,属于基础题。
2023届全国高考数学真题分类专项(三角函数)汇编解析(附答案)
2023届全国高考数学真题分类专项(三角函数)汇编解析第一节 三角函数概念、同角三角函数关系式和诱导公式1.(2023全国甲卷理科7)“22sin sin 1 ”是“sin cos 0 ”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件【详细分析】根据充分条件、必要条件概念及同角三角函数的基本关系得解. 【过程解析】当2,0 时,有22sin sin 1 ,但sin cos 0 , 即22sin sin 1 推不出sin cos 0 ;当sin cos 0 时, 2222sin sin cos sin 1 ,即sin cos 0 能推出22sin sin 1 .综上可知,22sin sin 1 是sin cos 0 成立的必要不充分条件. 故选B.2.(2023北京卷13)已知命题:p 若, 为第一象限角,且 ,则tan tan .能说明p 为假命题的一组, 的值为 ; .【详细分析】根据正切函数单调性以及任意角的定义详细分析求解.【过程解析】因为 tan f x x 在π0,2上单调递增,若00π02 ,则00tan tan ,取1020122π,2π,,k k k k Z ,则 100200tan tan 2πtan ,tan tan 2πtan k k ,即tan tan , 令12k k ,则 102012002π2π2πk k k k , 因为 1200π2π2π,02k k ,则 12003π2π02k k , 即12k k ,则 . 不妨取1200ππ1,0,,43k k ,即9ππ,43满足题意. 故答案为:9ππ;43.第二节 三角恒等变换1.(2023新高考I 卷6)过点 0,2 与圆22410x y x 相切的两条直线的夹角为 ,则sin ( )A.1B.4C.4D.4【过程解析】 222241025x y x x y ,所以圆心为 2,0B , 记 0,2A ,设切点为,M N ,如图所示.因为AB ,BM,故AMcos cos2AM MAB AB,sin 2,sin 2sincos2224.故选B.2.(2023新高考I 卷8)已知 1sin 3,1cos sin 6,则 cos 22 ( ) A.79B.19C.19D.79【过程解析】 1sin sin cos cos sin 3,1cos sin 6, 所以1sin cos 2,所以 112sin sin cos cos sin 263, 2221cos 22cos 212sin 1239.故选B.3.(2023新高考II 卷7)已知 为锐角,1cos 4,则sin 2 ( )A.38 B.18 C.34 D.14【过程解析】21cos 12sin 24,所以2231sin 284,则1sin24或1sin 24.因为 为锐角,所以sin02,sin2sin 2故选D. 第三节 三角函数的图像与性质1.(2023新高考II 卷16)已知函数 sin f x x ,如图所示,A ,B 是直线12y 与曲线 y f x 的两个交点,若π=6AB ,则 πf _______.【过程解析】sin y x 的图象与直线12y两个相邻交点的最近距离为2π3,占周期2π的13,所以12ππ36,解得4 ,所以 sin 4f x x . 再将2π,03代入 sin 4f x x 得 的一个值为2π3 ,即 2πsin 43f x x.所以 2ππsin 4π32f. 2.(2023全国甲卷理科10,文科12)已知 f x 为函数cos 26y x向左平移6 个单位所得函数,则 y f x 与1122y x交点个数为( ) A.1 B.2 C.3 D.4【过程解析】因为函数πcos 26y x向左平移π6个单位可得 sin 2.f x x而1122y x 过10,2 与 1,0两点,分别作出 f x 与1122y x 的图像如图所示,考虑3π3π7π2,2,2222x x x,即3π3π7π,,444x x x 处 f x 与1122y x 的大小关系,结合图像可知有3个交点. 故选C.3.(2023全国乙卷理科6,文科10)已知函数 sin f x x 在区间2,63单调递增,直线6x和23x 为函数 y f x 的图像的两条对称轴,则512f( )A. B.12 C.12 【过程解析】2222362T T,所以 sin 2.f x x又222,32k k Z ,则52,6k k Z .所以5555sin 22sin 121263f k故选D.【评注】本题考查了三角函数图像与性质,当然此题也可以通过画图快速来做,读者可以自行体会.4.(2023全国乙卷理科10)已知等差数列 n a 的公差为23,集合*cos n S a n N ,若 ,S a b ,则ab ( )A.1B.12C.0D.12【过程解析】解法一(利用三角函数图像与性质) 因为公差为23,所以只考虑123,,a a a ,即一个周期内的情形即可. 依题意, cos ,n S a a b ,即S 中只有2个元素, 则123cos ,cos ,cos a a a 中必有且仅有2个相等.如图所示,设横坐标为123,,a a a 的点对应图像中123,,A A A 点.①当12cos cos a a 时,且2123a a, 所以图像上点的位置必为如图1所示,12,A A 关于x 对称,且1223A A , 则1233a,2433a,32a . 所以11122ab.②当13cos cos a a 时,3143a a, 所以图像上点的位置必为如图2所示,13,A A 关于x 对称,且1343A A , 则133a,3533a,2a .图1图2所以 11122ab. 综上所述,12ab .故选B.解法二(代数法) 11113n a a n d a n, 21cos cos 3a a ,31cos cos 3a a, 由于*cos ,n S a n a b N ,故123cos ,cos ,cos a a a 中必有2个相等.①若121111cos cos cos cos 322a a a a a,即113cos 22a a , 解得11cos 2a 或11cos 2a .若11cos 2a ,则1sin a ,3111113cos cos cos 132244a a a a,若11cos 2a,则1sin a ,3111113cos cos cos 13244a a a a, 故131cos cos 2a a ab .②若131111cos cos cos cos sin 322a a a a a,得113cos 22a a , 解得11cos 2a 或11cos 2a .当11cos 2a 时,1sin a ,2111113cos cos cos 132244a a a a,当11cos 2a 时,1sin a ,213cos 144a , 故121cos cos 2a a ab .③若23cos cos a a ,与①类似有121cos cos 2a a ab .综上,故选B.5.(2023北京卷17)已知函数 sin cos cos sin ,0,2f x x x .(1)若 0f ,求 的值; (2)若 f x 在区间2,33上单调递增,且213f,再从条件①、条件②、条件③这三个条件中选择一个作为已知,使函数 f x 存在,求, 的值.条件①:3f;条件②:13f;条件③: f x 在,23上单调递减.注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.【详细分析】(1)把0x 代入()f x 的过程解析式求出sin ,再由π||2即可求出 的值; (2)若选条件①不合题意;若选条件②,先把()f x 的过程解析式化简,根据() f x 在π2π,33上的单调性及函数的最值可求出T ,从而求出 的值;把 的值代入()f x 的过程解析式,由π13f和π||2 即可求出 的值;若选条件③:由() f x 的单调性可知() f x 在π3x 处取得最小值1 ,则与条件②所给的条件一样,解法与条件②相同.【过程解析】(1)因为π()sin cos cos sin ,0,||2f x x x所以 (0)sin 0cos cos 0sin sin 2f , 因为π||2,所以π3. (2)因为π()sin cos cos sin ,0,||2f x x x , 所以 π()sin ,0,||2f x x,所以() f x 的最大值为1,最小值为1 .若选条件①:因为 ()sin f x x 最大值为1,最小值为1,所以π3f无解,故条件①不能使函数()f x 存在;若选条件②:因为() f x 在π2π,33上单调递增,且2π13f,π13f, 所以2πππ233T ,所以2πT ,2π1T,所以 ()sin f x x , 又因为π13f ,所以πsin 13,所以ππ2π,32k k Z ,所以π2π,6k kZ ,因为||2 ,所以π6 .所以1 ,π6; 若选条件③:因为() f x 在π2π,33 上单调递增,在ππ,23上单调递减,所以() f x 在π3x处取得最小值1 ,即π13f. 以下与条件②相同.的故选B.第四节 解三角形1.(2023全国甲卷理科16)在ABC △中,2AB ,60BAC,BC D 为BC 上一点,AD 平分BAC ,则AD .【过程解析】如图所示,记,,,AB c AC b BC a由余弦定理可得22222cos606b b,解得1b (负值舍去).由ABC ABD ACD S S S △△△可得,1112sin602sin30sin30222b AD AD b ,解得1212AD b . 2.(2023全国甲卷文科17)记ABC △的内角,,A B C 的对边分别为,,a b c ,已知2222cos b c a A.(1)求bc . (2)若cos cos 1a Bb A b,求ABC △面积 .3.(2023全国乙卷理科18)在ABC △中,120BAC ,2AB ,1AC. (1)求sin ABC;(2)若D 为BC 上一点,且90BAD ,求ADC △的面积. 【过程解析】(1)利用余弦定理可得2222cos 14212cos120527BCAC AB AC AB BAC.故BC .又由正弦定理可知sin sin BC ACBAC ABC.故sin sin 14AC BAC ABC BC. (2)由(1)可知tan 5ABC, 在Rt BAD △中,tan 2ADAB ABC故11222ABD S AB AD△, 又11sin 21sin120222ABC S AB AC BAC△, 所以ADC ABC ABD S S S△△△. C5.(2023新高考I 卷17)已知在ABC △中,3A B C , 2sin sin A C B . (1)求sin A ;(2)设=5AB ,求AB 边上的高.【过程解析】(1)解法一 因为3A B C ,所以4A B C C ,所以4C , 2sin()sin()A C A C2sin cos 2cos sin sin cos cos sin A C A C A C A Csin cos 3cos sin A C A Ctan 3tan 3sin 10A C A . 解法二 因为3ABC ,所以4A B C C ,所以4C , 所以4A B ,所以4B A , 故2sin()sin()4A C A ,即2sin cos 2cos sin sin cos cos sin 4444A A A A ,得sin 3cos A A .又22sin cos 1A A , 0,A ,得sin 10A. (2) 若||5AB . 如图所示,设AC 边上的高为BG ,AB 边上的高为CH , ||CH h ,由(1)可得cos 10A ,||||cos ||102AG AB A AB ,||||2BG CG ,所以||AC ,||||2||6||5AC BGCHAB.6.(2023新高考II卷17)记ABC△的内角,,A B C的对边分别为,,a b c,已知ABC△的面,D为BC的中点,且1AD .(1)若π3ADC,求tan B;(2)若228b c,求,b c.【过程解析】(1)依题意,122ADC ABCS S△△,1sin242ADCS AD DC ADC DC△,解得2DC ,2BD .如图所示,过点A作AE BC于点E.因为60ADC,所以12DE,2AE ,则15222BE,所以tan5AEBBE.(2)设ABc,ACb,由极化恒等式得2214AB AC AD BC=,即2114b c=b c,化简得22244b c=b c,GHCBA即cos cos 2BAC bc BAC b c =b c ①,又1sin 2ABC S bc BAC △,即sin bc BAC . ②①得tan BAC 0πBAC 得2π3BAC , 代入①得4bc =,与228b c 联立可得2b c .7.(2023北京卷7)在ABC △中, sin sin sin sin a c A C b A B ,则C ( ) A.6 B.3 C.3 D.6【详细分析】利用正弦定理的边角变换与余弦定理即可得解.【过程解析】因为()(sin sin )(sin sin )a c A C b A B ,所以由正弦定理得()()()a c a c b a b ,即222a c ab b ,则222a b c ab ,故2221cos 222a b c ab C ab ab , 又0πC ,所以π3C . 故选B.。
通用版五年高考2024_2025高考数学真题专题归纳专题06三角函数及解三角形含解析理
1 1
tan tan
2 2
1 1
22 22
3, 5
tan( ) tan 1 2 1 1 , 4 1 tan 1 2 3
11.(2024·江苏卷)已知 sin2 ( ) = 2 ,则 sin 2 的值是____.
4
3
【答案】 1 3
【解析】 sin2 ( ) ( 2 cos 2 sin )2 1 (1 sin 2 )
图1
9
图2
图3
4.【2024·全国Ⅱ卷】已知 α∈(0, ),2sin2α=cos2α+1,则 sinα= 2
A. 1 5
B. 5 5
C. 3 3
【答案】B
D. 2 5 5
【解析】
2sin 2α cos 2α 1,4sin α cos α 2 cos2 α .
α
0,
2
,
cos
α
0
,
sin α 0, 2sin α cos α ,又 sin2 cos2 1,5sin2 α 1,sin2 α 1 ,又 5
f
x
可得:
cos
4 9
6
0
.又
4 9
,
0
是函数
f
x 图象与
x
轴负半轴的第一个交点,
所以 4 ,解得: 3
9
62
2
所以函数
f
x 的最小正周期为T
2
2 3
4 3
2
2.(2024·新课标Ⅰ)已知 (0, π) ,且 3cos2 8cos 5 ,则 sin (
A5 3
B. 2 3
7.(2024·山东卷)下图是函数 y= sin(ωx+φ)的部分图像,则 sin(ωx+φ)= ( )
《三角函数》高考真题理科大题总结和答案解析
完美 WORD 格式《三角函数》大题总结1.【2015 高考新课标 2,理 17】ABC中, 是BC 上的点,AD 平分 BAC ,DABD 面积是 ADC 面积的 2 倍.( Ⅰ) 求sinB ;sin C(Ⅱ)若 AD1, DC2,求 BD 和 AC 的长.22. 【2015 江苏高考, 15】在 ABC 中,已知 AB2,AC 3,A60 .(1)求 BC 的长;( 2)求 sin 2C 的值 .3.【2015 高考福建,理 19】已知函数 f( x) 的图像是由函数 g( x) = cos x 的图像经如下变换得到: 先将 g( x) 图像上所有点的纵坐标伸长到原来的2 倍(横坐标不变),再将所得到的图像向右平移p2个单位长度 .( Ⅰ) 求函数 f( x) 的解析式,并求其图像的对称轴方程;( Ⅱ) 已知关于 x 的方程 f( x) +g( x) = m 在 [0, 2p ) 内有两个不同的解 a , b .(1) 求实数 m 的取值范围;(2) 证明: cos( a - b ) =2m 2- 1.54. 【2015 高考浙江,理 16】在 ABC 中,内角 A , B , C 所对的边分 别为 a , b , c ,已知 A, b 2 a 2 = 1 c 2 .42( 1)求 tanC 的值;( 2)若 ABC 的面积为 7,求 b 的值 .5. 【2015 高考山东,理 16】设f x sin x cos x cos2x.(Ⅰ)求 f x的单调区间;(Ⅱ)在锐角A0, a 1 , ABC 中,角 A, B, C 的对边分别为 a, b,c ,若f2求ABC 面积的最大值.6. 【2015 高考天津,理 15】已知函数f x sin2 x sin2x,x R6(I)求 f ( x) 最小正周期;(II)求 f ( x) 在区间[-p,p]上的最大值和最小值. 347. 【2015 高考安徽,理 16】在ABC 中, A 3, AB 6, AC 3 2 ,点D 4在BC边上,AD BD ,求 AD 的长.8. 【2015 高考重庆,理 18】已知函数f x sin x sin x 3 cos2 x(1)求f x的最小正周期和最大值;2(2)讨论f x 在,6 3上的单调性 .9. 【2015 高考四川,理 19】 如图, A ,B ,C ,D 为平面四边形 ABCD的四个内角 .A 1 cos A(1)证明: tan;2sin A(2 ) 若 A C 180o , AB 6,BC3,CD 4, AD 5,求tan A tan B tan Ctan D的值 .2 2 2 210. 【2015 高考湖北,理17】某同学用“五点法”画函数f ( x) A sin(x ) ( 0, | |π)在某一个周期内的图象2时,列表并填入了部分数据,如下表:xπ π3π 2 π2 2xπ 5π36A sin( x)0 55(Ⅰ)请将上表数据补充完整,填写在答题卡上相应位置 ,并直...........接写出函数f (x) 的解析式;(Ⅱ)将 yf (x) 图象上所有点向左平行移动(0) 个单位长度,得到 yg (x) 的图象. 若 yg (x) 图象的一个对称中心为 (5 π ,求 的最小值 ., 0)1211.【2015 高考陕西,理 17】(本小题满分 12 分)C的内角,,C 所对的边分别为a, b ,c.向量m a, 3b 与n cos ,sin平行.(I)求;(II )若a7 , b 2 求 C 的面积.12. 【2015 高考北京,理 15】已知函数f ( x) 2sin x cos x 2 sin 2x.222 ( Ⅰ) 求f (x)的最小正周期;( Ⅱ) 求f (x)在区间[π,0]上的最小值.13. 【2015 高考广东,理 16】在平面直角坐标系xoy 中,已知向量m 2 ,2, n sin x,cos x , x 0,.222(1)若m n ,求tan x的值;(2)若m与n的夹角为,求x的值.314.【2015 高考湖南,理 17】设ABC的内角A,B,C的对边分别为a ,b, c,ab tan A ,且B为钝角.(1)证明:B A;2(2)求sin A sin C的取值范围 .《三角函数》大题答案1. 【答案】 ( Ⅰ) 1;( Ⅱ) 1.21AB AD sin1AC AD sin【解析】( Ⅰ) S ABDBAD , S ADCCAD ,因为22sin BAC 1 .S ABD 2S ADC , BADCAD ,所以 AB 2 AC .由正弦定理可得sin C AB 2( Ⅱ)因为 S ABD :S ADC BD : DC ,所以 BD2 .在 ABD 和 ADC 中,由余弦定理得AB 2AD 2BD 2,2AD 2DC 22 AD DC cos ADC .2 AD BD cos ADB ACAB 2 2AC 23AD 2 BD 22DC 26.由(Ⅰ)知 AB 2 AC ,所以 AC 1 .2. 【答案】( 1) 7 ;( 2)4 373. 【答案】 ( Ⅰ )f( x) = 2sin x , x = kp + p(k ? Z). ; ( Ⅱ ) ( 1) (- 5,5) ;( 2)详见解2析.【解析】解法一: (1) 将 g( x) = cos x 的图像上所有点的纵坐标伸长到原来的2 倍(横坐标不变)得到y = 2cos x 的图像,再将 y = 2cos x 的图像向右平移p个单位长度后得到2py = 2cos( x - ) 的图像,故 f( x) = 2sin x ,从而函数 f( x) = 2sin x 图像的对称轴方程为2px = kp + (k ? Z).2(2)1) f( x) + g(x) = 2sin x +cos x =5( 2 sin x +1cos x)55= 5 sin( x +j ) (其中 sin j =1=2,cosj)5 5依题意, sin(x +j)=mm|<1,故 m 的 在区间 [0, 2p ) 内有两个不同的解 a , b 当且仅当 |55取值范围是 (- 5, 5) .2) 因为 a , b 是方程 5 sin( x +j )=m 在区间 [0, 2p ) 内有两个不同的解,所以 sin(a +j)=m m, sin( b +j)=.55当 1 £m< 5 时, a +b =2(p- j ), a - b = p - 2(b +j );2当 - 5<m<1时 , 3p );a +b =2( - j ), a - b = 3p - 2(b +j2所以 cos( a - b ) = - cos2( b +j) = 2sin 2 ( b +j ) - 1 = 2( m)2- 1 =2m 2- 1.5 5解法二: (1) 同解法一 .(2)1) 同解法一 .2) 因为 a , b 是方程 5 sin( x +j )=m 在区间 [0, 2p ) 内有两个不同的解,所以 sin(a +j)=mm, sin( b +j)=.55p- j ),即a +j = p - (b +j );当 1 £m< 5 时, a +b =2(2当 - 5<m<1 时 , 3p ),即 a +j= 3p - ( b +j );a +b =2(- j2所以 cos( a +j ) = - cos(b +j )于是 cos( a - b ) = cos[(a +j) - (b +j )] = cos(a +j )cos( b +j ) +sin(a +j )sin( b +j )2m 2 ] +(m 2=2m 2 = - cos (b +j) + sin(a +j )sin( b +j ) = - [1- ())- 1.5554. 【答案】( 1) 2 ;( 2) b 3 .又∵ A,1bcsin A 3 ,∴ bc6 2 ,故 b3.4 25. 【答案】( I )单调递增区间是4k , kk Z ;4单调递减区间是k ,3kkZ44(II )ABC 面积的最大值为 234【解析】sin 2x1 cos 2x(I )由题意知 f x222sin2x1 sin2xsin 2x 1222由2k 2x2k , k Z22 由2k2x3,kZ 2k22可得可得kx k , k Z44k x3 , kZk 44所以函数f x 的单调递增区间是k , k k Z;单调递减区间是k , 3k k Z446. 【答案】 (I); (II)f ( x) max3 ,f ( x) min1 4.2【解析】 (I) 由已知,有1 cos2x 1 cos 2x1 1 313sin 2xf ( x)222cos2 x2cos2x223sin2x1cos2x1sin 2 x.4426所以 f ( x) 的最小正周期T2 .2(II) 因为 f ( x) 在区间 [ -p, - p] 上是减函数,在区间 [ - p , p] 上是增函数,3 66 4f () 1, f ()1, f ()3 ,所以 f ( x) 在区间 [ - p , p] 上的最大值为3 ,3462443 4 41 最小值为.27. 【答案】10【解析】如图,设ABC 的内角A, B, C所对边的长分别是a,b, c ,由余弦定理得a2b2 c22bc cos BAC (32) 262 2 3 2 6cos 318 36 ( 36) 90,4所以 a 3 10.又由正弦定理得b sin BAC310 sin Ba 3 10.10由题设知 0 B,所以 cosB1sin2 B1 1 310.41010在 ABD 中,由正弦定理得ADAB sin B6sin B32B)2sin B cosB 10sin(cosB8.【答案】( 1)最小正周期为p,最大值为 2 -3;( 2)f (x)在[,5] 上单调递增; f (x) 2612在[5,2]上单调递减. 12 3当2x5x2 时 , 即时, f ( x) 单调递减,23123综上可知,f ( x) 在 [ , 5] 上单调递增; f (x) 在 [5,2]上单调递减 .6 121239. 【答案】( 1)详见解析; (2)4 10.3A sinA2sin 2A1 cos A【解析】( 1) tan22 .2 cosA2sin A Asin A2 cos22 (2)由 AC 180 ,得 C 180 A,D 180 B .由( 1),有 tanAtanBtanCtanD22221 cos A 1 cosB 1 cos(180 A) 1 cos(180 B)sin A sin Bsin(180 A)sin(180 B)22sin A sin B连结 BD ,在 ABD 中,有 BD 2AB 2 AD 2 2 AB AD cos A , 在BCD 中,有 BD 2BC 2 CD 2 2BC CD cosC ,所以 AB 2 AD 22AB AD cos ABC 2CD 22BC CD cos A ,完美 WORD 格式则 cos AAB 2 AD 2 BC 2 CD 2 62 52 32 423 ,2(AB AD BC CD)2(6 5 3 4) 7于是 sin A1 cos 2A1 (3)22 10 .77连结 AC ,同理可得cosBAB 2 BC 2 AD 2 CD 2 62 32 52 42 1 ,2( AB BC AD CD)2(6 3 54) 19于是 sin B1 cos2 B1 ( 1 )2 6 10 .1919所以 tanAtanBtanCtanD2 2 222 2sin Asin B14 2 19210 21010. 【答案】(Ⅰ) f ( x)5sin(2 xππ) ;(Ⅱ).66【解析】(Ⅰ)根据表中已知数据,解得A 5,2,π 数据补全如下表:.6xππ3π22xππ7π5π123126Asin( x )55且函数表达式为f ( x) 5sin(2 xπ) .6(Ⅱ)由(Ⅰ)知f ( x)5sin(2 xπ ,得 g ( x) 5sin(2 x 2π) ) .66因为 y sin x 的对称中心为 (k π, 0) , k Z .令 2 x2πk πx π πk, kZ .6,解得212由于函数 yg (x) 的图象关于点 5π成中心对称,令 kπ π 5π, (, 0)122 1212解得k π π, k Z .由0 可知,当 k1 时,取得最小值 π.23611. 【答案】( I );(II )33 .3 22π13 π12【解析】(I )因为 m//n ,所以 a sin B -3b cos A = 0 ,由正弦定理,得sinAsinB - 3 sinBcos A = 0又 sin0,从而 tan A = 3 ,从而 sin B =21 ,7又由 a > b ,知 A > B ,所以 cos B =27 .7故 sinCsin A Bsinsin B cos3 213 cos B sin1433所以C 的面积为 1 bcsinA =33 .2212. 【答案】( 1) 2 ,( 2) 122【解析】 :f ( x )2 sin xcos x2 sin 2x1 1 cosx2sin x222 2222sin x 2cos x2sin( x)222242(1) f ( x )的最小正周期为 T 22;1(2)x3x,当 x, x30,44时,4424f ( x ) 取得最小值为:1225 13. 【答案】( 1)1;(2)x.12【解析】( 1)∵m 2 ,2, n sin x,cos x 且 m n ,22∴m n 2 ,2sin x,cos x 2sin x2cosx sin x0 ,又22224x0, ,2∴ x,,∴ x40 即 x,∴ tan x tan1;44444m n sin x(2)由(1)依题知cos4,2sin x3m n2422sin2 x cos2 x22∴ sin x41又 x,,2444∴ x即 x56.41214.【答案】( 1)详见解析;(2)(2,9] .2 8(2 A2 )2A 0,∴ A(0, ) ,于是 sin A sin C sin A sin( 2A)2 4 1)2 92 sin A cos2 A 2sin 2 A sin A 1 2(sin A , ∵ 0 A , ∴4 8 4 0 sin A2,因此2 2(sin A 1)29 9,由此可知 sin Asin C 的取值范围224 8 8是 ( 2,9]. 28。
三角函数 高考数学真题分类大全 专题06解析
专题6三角函数第一部分近3年高考真题一、选择题1.(2021·北京高考真题)函数()cos cos 2f x x x =-,试判断函数的奇偶性及最大值()A .奇函数,最大值为2B .偶函数,最大值为2C .奇函数,最大值为98D .偶函数,最大值为98【答案】D【解析】由题意,()()()()cos cos 2cos cos 2f x x x x x f x -=---=-=,所以该函数为偶函数,又2219()cos cos 22cos cos 12cos 48f x x x x x x ⎛⎫=-=-++=--+ ⎪⎝⎭,所以当1cos 4x =时,()f x 取最大值98.故选:D.2.(2021·全国高考真题)若tan 2θ=-,则()sin 1sin 2sin cos θθθθ+=+()A .65-B .25-C .25D .65【答案】C【解析】将式子进行齐次化处理得:()()()22sin sin cos 2sin cos sin 1sin 2sin sin cos sin cos sin cos θθθθθθθθθθθθθθ+++==+++()2222sin sin cos tan tan 422sin cos 1tan 145θθθθθθθθ++-====+++.故选:C .3.(2021·全国高考真题(文))函数()sin cos 33x xf x =+的最小正周期和最大值分别是()A .3πB .3π和2C .6πD .6π和2【答案】C【解析】由题,()34x f x π⎛⎫=+ ⎪⎝⎭,所以()f x 的最小正周期为2613T pp ==,最大值为.故选:C .4.(2021·全国高考真题(文))若cos 0,,tan 222sin παααα⎛⎫∈= ⎪-⎝⎭,则tan α=()A .1515B .55C .53D .153【答案】A【解析】cos tan 22sin ααα=- 2sin 22sin cos cos tan 2cos 212sin 2sin αααααααα∴===--,0,2πα⎛⎫∈ ⎪⎝⎭ ,cos 0α∴≠,22sin 112sin 2sin ααα∴=--,解得1sin 4α=,15cos 4α∴==,sin 15tan cos 15ααα∴==.故选:A.5.(2021·全国高考真题(理))把函数()y f x =图像上所有点的横坐标缩短到原来的12倍,纵坐标不变,再把所得曲线向右平移3π个单位长度,得到函数sin 4y x π⎛⎫=- ⎪⎝⎭的图像,则()f x =()A .7sin 212x x ⎛⎫-⎪⎝⎭B .sin 212x π⎛⎫+⎪⎝⎭C .7sin 212x π⎛⎫- ⎪⎝⎭D .sin 212x π⎛⎫+⎪⎝⎭【答案】B【解析】解法一:函数()y f x =图象上所有点的横坐标缩短到原来的12倍,纵坐标不变,得到(2)y f x =的图象,再把所得曲线向右平移3π个单位长度,应当得到23y f x π⎡⎤⎛⎫=- ⎪⎢⎥⎝⎭⎣⎦的图象,根据已知得到了函数sin 4y x π⎛⎫=-⎪⎝⎭的图象,所以2sin 34f x x ππ⎡⎤⎛⎫⎛⎫-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,令23t x π⎛⎫=-⎪⎝⎭,则,234212t t x x πππ=+-=+,所以()sin 212t f t π⎛⎫=+⎪⎝⎭,所以()sin 212x f x π⎛⎫=+ ⎪⎝⎭;解法二:由已知的函数sin 4y x π⎛⎫=-⎪⎝⎭逆向变换,第一步:向左平移3π个单位长度,得到sin sin 3412y x x πππ⎛⎫⎛⎫=+-=+ ⎪ ⎪⎝⎭⎝⎭的图象,第二步:图象上所有点的横坐标伸长到原来的2倍,纵坐标不变,得到sin 212x y π⎛⎫=+⎪⎝⎭的图象,即为()y f x =的图象,所以()sin 212x f x π⎛⎫=+ ⎪⎝⎭.故选:B.6.(2021·全国高考真题(文))22π5πcos cos 1212-=()A .12B .3C .2D .2【答案】D【解析】由题意,2222225coscos cos cos cos sin 1212122121212πππππππ⎛⎫-=--=- ⎪⎝⎭cos26π==.故选:D.7.(2021·全国高考真题)下列区间中,函数()7sin 6f x x π⎛⎫=-⎪⎝⎭单调递增的区间是()A .0,2π⎛⎫ ⎪⎝⎭B .,2ππ⎛⎫⎪⎝⎭C .3,2ππ⎛⎫ ⎪⎝⎭D .3,22ππ⎛⎫ ⎪⎝⎭【答案】A【解析】因为函数sin y x =的单调递增区间为()22,22k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭,对于函数()7sin 6f x x π⎛⎫=-⎪⎝⎭,由()22262k x k k Z πππππ-<-<+∈,解得()22233k x k k Z ππππ-<<+∈,取0k =,可得函数()f x 的一个单调递增区间为2,33ππ⎛⎫-⎪⎝⎭,则20,,233πππ⎛⎫⎛⎫⊆- ⎪ ⎪⎝⎭⎝⎭,2,,233ππππ⎛⎫⎛⎫⊄- ⎪ ⎪⎝⎭⎝⎭,A 选项满足条件,B 不满足条件;取1k =,可得函数()f x 的一个单调递增区间为58,33ππ⎛⎫⎪⎝⎭,32,,233ππππ⎛⎫⎛⎫⊄- ⎪ ⎝⎭⎝⎭且358,,233ππππ⎛⎫⎛⎫⊄ ⎪ ⎪⎝⎭⎝⎭,358,2,233ππππ⎛⎫⎛⎫⊄ ⎪⎪⎝⎭⎝⎭,CD 选项均不满足条件.故选:A.8.(2020·天津高考真题)已知函数()sin 3f x x π⎛⎫=+ ⎪⎝⎭.给出下列结论:①()f x 的最小正周期为2π;②2f π⎛⎫⎪⎝⎭是()f x 的最大值;③把函数sin y x =的图象上所有点向左平移3π个单位长度,可得到函数()y f x =的图象.其中所有正确结论的序号是()A .①B .①③C .②③D .①②③【答案】B【解析】因为()sin(3f x x π=+,所以周期22T ππω==,故①正确;51()sin(sin 122362f ππππ=+==≠,故②不正确;将函数sin y x =的图象上所有点向左平移3π个单位长度,得到sin()3y x π=+的图象,故③正确.故选:B.9.(2020·北京高考真题)2020年3月14日是全球首个国际圆周率日(πDay ).历史上,求圆周率π的方法有多种,与中国传统数学中的“割圆术”相似.数学家阿尔·卡西的方法是:当正整数n 充分大时,计算单位圆的内接正6n 边形的周长和外切正6n 边形(各边均与圆相切的正6n 边形)的周长,将它们的算术平均数作为2π的近似值.按照阿尔·卡西的方法,π的近似值的表达式是().A .30303sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭B .30306sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭C .60603sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭D .60606sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭【答案】A【解析】单位圆内接正6n 边形的每条边所对应的圆周角为360606n n ︒︒=⨯,每条边长为302sin n︒,所以,单位圆的内接正6n 边形的周长为3012sin n n︒,单位圆的外切正6n 边形的每条边长为302tann ︒,其周长为3012tan n n︒,303012sin12tan 303026sin tan 2n n n n n n n π︒︒+︒︒⎛⎫∴==+ ⎪⎝⎭,则30303sin tan n n n π︒︒⎛⎫=+ ⎪⎝⎭.故选:A.10.(2020·全国高考真题(理))设函数()cos π(6f x x ω=+在[π,π]-的图像大致如下图,则f (x )的最小正周期为()A .10π9B .7π6C .4π3D .3π2【答案】C【解析】由图可得:函数图象过点4,09π⎛⎫-⎪⎝⎭,将它代入函数()f x 可得:4cos 096ππω⎛⎫-⋅+= ⎪⎝⎭又4,09π⎛⎫-⎪⎝⎭是函数()f x 图象与x 轴负半轴的第一个交点,所以4962πππω-⋅+=-,解得:32ω=所以函数()f x 的最小正周期为224332T πππω===故选:C11.如图,A ,B 是半径为2的圆周上的定点,P 为圆周上的动点,APB ∠是锐角,大小为β.图中阴影区域的面积的最大值为A .4β+4cos βB .4β+4sin βC .2β+2cos βD .2β+2sin β【答案】B【解析】观察图象可知,当P 为弧AB 的中点时,阴影部分的面积S取最大值,此时∠BOP =∠AOP =π-β,面积S 的最大值为2222βππ⨯⨯+S △POB +S △POA =4β+1||sin()2OP OB πβ-‖1||sin()2OP OA πβ+-‖42sin 2sin 44sin βββββ=++=+⋅.故选B .12.设函数()f x =sin (5x ωπ+)(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论:①()f x 在(0,2π)有且仅有3个极大值点②()f x 在(0,2π)有且仅有2个极小值点③()f x 在(0,10π)单调递增④ω的取值范围是[1229510,)其中所有正确结论的编号是()A .①④B .②③C .①②③D .①③④【答案】D【解析】当[0,2]x πÎ时,,2555x πππωπω⎡⎤+∈+⎢⎥⎣⎦,∵f (x )在[0,2]π有且仅有5个零点,∴5265πππωπ≤+<,∴1229510ω≤<,故④正确,由5265πππωπ≤+<,知,2555x πππωπω⎡⎤+∈+⎢⎥⎣⎦时,令59,,5222x ππππω+=时取得极大值,①正确;极小值点不确定,可能是2个也可能是3个,②不正确;因此由选项可知只需判断③是否正确即可得到答案,当0,10x π⎛⎫∈ ⎪⎝⎭时,(2),5510x ππωπω+⎡⎤+∈⎢⎥⎣⎦,若f (x )在0,10π⎛⎫⎪⎝⎭单调递增,则(2)102ωππ+<,即<3ϖ,∵1229510ω≤<,故③正确.故选D .13.已知函数()sin()(0,0,||)f x A x A ωϕωϕπ=+>><是奇函数,将()y f x =的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图像对应的函数为()g x .若()g x 的最小正周期为2π,且4g π⎛⎫= ⎪⎝⎭,则38f π⎛⎫= ⎪⎝⎭()A .2-B.CD .2【答案】C【解析】因为()f x 为奇函数,∴(0)sin 0=,0,f A k k ϕϕπ==∴=,0ϕ=;又12()sin ,2,122g x A x T πωπω=∴==2ω=,2A =,又(4g π=∴()2sin 2f x x =,3()8f π=故选C .14.函数f (x )=2sin cos x xx x ++在[—π,π]的图像大致为()A.B.C .D .【答案】D 【解析】由22sin()()sin ()()cos()()cos x x x xf x f x x x x x -+----===--+-+,得()f x 是奇函数,其图象关于原点对称.又221422()1,2()2f πππππ++==>2()01f πππ=>-+.故选D .15.(2020·海南高考真题)下图是函数y =sin(ωx +φ)的部分图像,则sin(ωx +φ)=()A .πsin(3x +)B .πsin(2)3x -C .πcos(26x +)D .5πcos(2)6x -【答案】BC【解析】由函数图像可知:22362T πππ=-=,则222T ππωπ===,所以不选A,当2536212x πππ+==时,1y =-∴()5322122k k Z ππϕπ⨯+=+∈,解得:()223k k ϕπ=+∈Z ,即函数的解析式为:2sin 22sin 2cos 2sin 236263y x k x x x ππππππ⎛⎫⎛⎫⎛⎫⎛⎫=++=++=+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.而5cos 2cos(2)66x x ππ⎛⎫+=-- ⎪⎝⎭故选:BC.二、填空题16.(2021·北京高考真题)若点(cos ,sin )P θθ与点(cos())66Q ππθθ++关于y 轴对称,写出一个符合题意的θ=___.【答案】512π(满足5,12k k Z πθπ=+∈即可)【解析】 (cos ,sin )P θθ与cos ,sin 66Q ππθθ⎛⎫⎛⎫⎛⎫++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭关于y 轴对称,即,6πθθ+关于y 轴对称,2,6k k Z πθθππ++=+∈,则5,12k k Z πθπ=+∈,当0k =时,可取θ的一个值为512π.故答案为:512π(满足5,12k k Z πθπ=+∈即可).17.(2021·全国高考真题(文))已知函数()()2cos f x x ωϕ=+的部分图像如图所示,则2f π⎛⎫= ⎪⎝⎭_______________.【答案】【解析】由题意可得:31332,,241234T T Tπππππω=-=∴===,当1312x π=时,()131322,2126x k k k Z πωϕϕπϕππ+=⨯+=∴=-∈,令1k =可得:6πϕ=-,据此有:()52cos 2,2cos 22cos 62266f x x f πππππ⎛⎫⎛⎫⎛⎫=-=⨯-== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭故答案为:.18.(2021·全国高考真题(理))已知函数()2cos()f x x ωϕ=+的部分图像如图所示,则满足条件74()()043f x f f x f ππ⎛⎫⎛⎫⎛⎫⎛⎫---> ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭的最小正整数x 为________.【答案】2【解析】由图可知313341234T πππ=-=,即2T ππω==,所以2ω=;由五点法可得232ππϕ⨯+=,即6πϕ=-;所以()2cos 26f x x π⎛⎫=-⎪⎝⎭.因为7()2cos 143f π11π⎛⎫-=-= ⎪⎝⎭,()2cos 032f 4π5π⎛⎫== ⎪⎝⎭;所以由74(()())(()())043f x f f x f ππ--->可得()1f x >或()0f x <;因为()12cos 22cos 1626f πππ⎛⎫⎛⎫=-<-= ⎪ ⎪⎝⎭⎝⎭,所以,方法一:结合图形可知,最小正整数应该满足()0f x <,即cos 206x π⎛⎫-< ⎪⎝⎭,解得,36k x k k π5ππ+<<π+∈Z ,令0k =,可得536x <<ππ,可得x 的最小正整数为2.方法二:结合图形可知,最小正整数应该满足()0f x <,又(2)2cos 406f π⎛⎫=-< ⎪⎝⎭,符合题意,可得x 的最小正整数为2.故答案为:2.19.(2020·浙江高考真题)已知圆锥的侧面积(单位:2cm )为2π,且它的侧面积展开图是一个半圆,则这个圆锥的底面半径(单位:cm )是_______.【答案】1【解析】设圆锥底面半径为r ,母线长为l ,则21222r l r l ππππ⨯⨯=⎧⎪⎨⨯⨯=⨯⨯⨯⎪⎩,解得1,2r l ==.故答案为:120.(2020·海南高考真题)某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O 为圆孔及轮廓圆弧AB 所在圆的圆心,A 是圆弧AB 与直线AG 的切点,B 是圆弧AB 与直线BC 的切点,四边形DEFG 为矩形,BC ⊥DG ,垂足为C ,tan ∠ODC =35,//BH DG ,EF =12cm ,DE=2cm ,A 到直线DE 和EF 的距离均为7cm ,圆孔半径为1cm ,则图中阴影部分的面积为________cm 2.【答案】542π+【解析】设==OB OA r ,由题意7AM AN ==,12EF =,所以5NF =,因为5AP =,所以45AGP ︒∠=,因为//BH DG ,所以45AHO ︒∠=,因为AG 与圆弧AB 相切于A 点,所以OA AG ⊥,即OAH △为等腰直角三角形;在直角OQD △中,252OQ r =-,272DQ r =-,因为3tan 5OQ ODC DQ ∠==,所以3252212522r r -=-,解得22r =等腰直角OAH △的面积为11222242S =⨯=;扇形AOB 的面积(221322324S ππ=⨯⨯=,所以阴影部分的面积为1215422S S ππ+-=+.故答案为:542π+.21.(2020·全国高考真题(理))关于函数f (x )=1sin sin x x+有如下四个命题:①f (x )的图象关于y 轴对称.②f (x )的图象关于原点对称.③f (x )的图象关于直线x =2π对称.④f (x )的最小值为2.其中所有真命题的序号是__________.【答案】②③【解析】对于命题①,152622f π⎛⎫=+=⎪⎝⎭,152622f π⎛⎫-=--=- ⎪⎝⎭,则66f f ππ⎛⎫⎛⎫-≠ ⎪ ⎪⎝⎭⎝⎭,所以,函数()f x 的图象不关于y 轴对称,命题①错误;对于命题②,函数()f x 的定义域为{},x x k k Z π≠∈,定义域关于原点对称,()()()()111sin sin sin sin sin sin f x x x x f x x x x ⎛⎫-=-+=--=-+=- ⎪-⎝⎭,所以,函数()f x 的图象关于原点对称,命题②正确;对于命题③,11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫-=-+=+⎪ ⎪⎛⎫⎝⎭⎝⎭- ⎪⎝⎭ ,11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫+=++=+⎪ ⎪⎛⎫⎝⎭⎝⎭+ ⎪⎝⎭,则22f x f x ππ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,所以,函数()f x 的图象关于直线2x π=对称,命题③正确;对于命题④,当0x π-<<时,sin 0x <,则()1sin 02sin f x x x=+<<,命题④错误.故答案为:②③.三、解答题22.(2021·浙江高考真题)设函数()sin cos (R)f x x x x =+∈.(1)求函数22y fx π⎡⎤⎛⎫=+ ⎪⎢⎥⎝⎭⎣⎦的最小正周期;(2)求函数()4y f x f x π⎛⎫=-⎪⎝⎭在0,2π⎡⎤⎢⎥⎣⎦上的最大值.【答案】(1)π;(2)212+.【解析】(1)由辅助角公式得()sin cos 4f x x x x π⎛⎫=+=+⎪⎝⎭,则2223332sin 1cos 21sin 22442y fx x x x x ππππ⎡⎤⎤⎛⎫⎛⎫⎛⎫=+=+=+=-+=- ⎪ ⎪ ⎪⎢⎥⎥⎝⎭⎝⎭⎝⎭⎣⎦⎛⎫ ⎪⎭⎦⎝,所以该函数的最小正周期22T ππ==;(2)由题意,()2sin sin 444y f x f x x x x x πππ⎛⎫⎛⎫⎛⎫=-=+⋅=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭22sin sin cos cos 22x x x x x x ⎛⎫=⋅+=+ ⎪ ⎪⎝⎭1cos 2222sin 22222242x x x x x π-⎛⎫=+=-+=-+⎪⎝⎭,由0,2x π⎡⎤∈⎢⎥⎣⎦可得32,444x πππ⎡⎤-∈-⎢⎣⎦,所以当242x ππ-=即38x π=时,函数取最大值212+.23.(2020·浙江高考真题)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2sin 0b A =.(I )求角B 的大小;(II )求cos A +cos B +cos C 的取值范围.【答案】(I )3B π=;(II )313,22⎛⎤ ⎥ ⎝⎦【解析】(I )由2sin b A =结合正弦定理可得:32sin sin ,sin 2B A A B =∴=△ABC 为锐角三角形,故3B π=.(II )结合(1)的结论有:12cos cos cos cos cos 23A B C A A π⎛⎫++=++- ⎪⎝⎭131cos cos sin 222A A A =-++311sin cos 222A A =++1sin 62A π⎛⎫=++ ⎪⎝⎭.由203202A A πππ⎧<-<⎪⎪⎨⎪<<⎪⎩可得:62A ππ<<,2363A πππ<+<,则3sin ,132A π⎛⎤⎛⎫+∈ ⎥ ⎪ ⎝⎭⎝⎦,1313sin ,2232A π⎛⎤+⎛⎫++∈ ⎥ ⎪ ⎝⎭⎝⎦.即cos cos cos A B C ++的取值范围是313,22⎛⎤+ ⎥⎝⎦.24.(2020·全国高考真题(文))△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知25cos ()cos 24A A π++=.(1)求A ;(2)若33b c a -=,证明:△ABC 是直角三角形.【答案】(1)3A π=;(2)证明见解析【解析】(1)因为25cos cos 24A A π⎛⎫++= ⎪⎝⎭,所以25sin cos 4A A +=,即251cos cos 4A A -+=,解得1cos 2A =,又0A π<<,所以3A π=;(2)因为3A π=,所以2221cos 22b c a A bc +-==,即222b c a bc +-=①,又33b c a -=②,将②代入①得,()2223b c b c bc +--=,即222250b c bc +-=,而b c >,解得2b c =,所以a =,故222b a c =+,即ABC 是直角三角形.第二部分模拟训练1.古希腊的数学家毕达哥拉斯通过研究正五边形和正十边形的作图,发现了黄金分割率,黄金分割率的值也可以用2sin18︒表示.若实数n 满足224sin 184n ︒+=,则221sin188sin 18n ︒︒-=()A .14B .12C.4D.2【答案】A【解析】根据题中的条件可得()22222221sin181sin181sin181sin188sin 188sin 184cos 188sin 368sin 1844sin 18n -︒-︒-︒-︒===︒︒⨯︒︒︒-︒()1sin181sin1811cos 7241cos 72482-︒-==-︒︒︒=-⨯.故选:A .2.已知函数()()2sin f x x ωϕ=+,(0,2πωϕ><的部分图象如图所示,()f x 的图象过,14A π⎛⎫ ⎪⎝⎭,5,14B π⎛⎫- ⎪⎝⎭两点,将()f x 的图象向左平移712π个单位得到()g x 的图象,则函数()g x 在30,4π⎡⎤⎢⎥⎣⎦上的最小值为()A.BC.D .1-【答案】A【解析】由图象知,5244T πππ=-=,∴2T π=,则1ω=,∴()()2sin f x x ϕ=+,将点,14A π⎛⎫ ⎪⎝⎭的坐标代入得,2sin 14πϕ⎛⎫+= ⎪⎝⎭,即1sin 42πϕ⎛⎫+= ⎪⎝⎭,又2πϕ<,∴12πϕ=-,则()2sin 12f x x π⎛⎫=-⎪⎝⎭,将()f x 的图象向左平移712π个单位得到函数()72sin 2sin 2cos 12122g x x x x πππ⎛⎫⎛⎫=+-=+= ⎪ ⎪⎝⎭⎝⎭,∴()g x 在30,4π⎡⎤⎢⎣⎦上的最小值为32cos 4π=,故选:A3.如图所示,扇形OQP 的半径为2,圆心角为3π,C 是扇形弧上的动点,四边形ABCD 是扇形的内接矩形,则ABCD S 的最大值是()A .233B .CD .23【答案】A【解析】如图,记COP α∠=,在Rt OBC 中,2cos OB α=,2sin BC α=,在Rt OAD 中,3323sin 333OA DA BC α===,所以232cos sin 3AB OB OA αα=-=-,设矩形ABCD 的面积为S,2(2cos )2sin 34323234sin cos 2sin 2cos 2333sin(2)363S AB BC ααααααααπα=⋅=-⋅=-=+-=+-由03πα<<,所以当262ππα+=,即6πα=时,S 取最大值,为432323333-=,故选:A.4.某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.图中的ABCD 为矩形,弧CED 为一段圆弧,其尺寸如图所示,则截面(图中阴影部分)的面积为()A.210cm 3π⎛+⎝B.28cm 3π⎛+⎝C.2(4π+D.2(2π+【答案】B 【解析】如图,由图可知,球半径2r cm =,设阴影部分面积为1S ,则截面面积为1ABCD S S S S =+-圆矩形截面,()224S r cm ππ==圆,)21233ABCD S cm =⨯=矩形,3AB CD cm ==,连接CD ,作OF CD ⊥于F 点,2OD OC r cm === ,F ∴为CD 中点,3,2F D D O =∴=,3cos 2DF ODF OD ∴∠==,故30ODF ︒∠=,60DOF ∴∠=︒,∴扇形ODC 的面积()22114242233S r cm ππα==⨯⨯⨯=扇形,)21131322ODC S DC OF cm =⋅=⨯= ,)21433ODC ODC S S S cm π∴=-=扇形)2484333333S cm πππ∴=+-+=+截面,故选:B5.定义在R 上的函数()f x 满足:()()ln 2f x f x =--,函数()()2sin cos xx x f x g π++=,若()()1ln2a g e a =∈R ,则()a g e -=______.【答案】2ln 2【解析】∵()()ln 2f x f x =--,∴()()ln 2f x f x +-=,故()()ln 2aaf e f e +-=;令()2sin cos xh x x π=+,则()()()g x f x h x =+,而()()2sin cos xx h x h x π-=+-=-,即()()0h x h x +-=,该函数是奇函数,故()()0a a h e h e +-=;故()()()()()()()()()a a a a a a aa a g e g e f e h e f e f e f e h e h e ⎡⎤⎡⎤+-=++-=+-++-⎣⎦⎣⎦ln 20ln 2=+=,又∵()1ln ln 22ag e==-,∴()()ln 2ln 22ln 2ag e -=--=.故答案为:2ln 2.6.已知函数()sin sin 2f x x x =⋅,[]0,2πx ∈.下列有关()f x 的说法中,正确的是______(填写你认为正确的序号).①不等式()0f x >的解集为π04x x ⎧<<⎨⎩或3ππ4x ⎫<<⎬⎭;②()f x 在区间[]0,2π上有四个零点;③()f x 的图象关于直线πx =对称;④()f x ;⑤()f x 的最小值为2;【答案】③④【解析】由()2sin sin 22sin cos f x x x x x =⋅=⋅①()0f x >,即cos 0x >,又[]0,2πx ∈,则02x π<<或322x ππ<<,故①不正确.②()0f x =,则sin 0x =或cos 0x =,又[]0,2πx ∈所以30,,,,222x ππππ=,共有5个零点,故②不正确.③()()()()2222sin 2cos 22sin cos f x x x x x f x πππ-=-⋅-=⋅=所以()2f x π-=()f x ,则()f x 的图象关于直线πx =对称,故③正确.④()()222sin cos 2cos 1cos f x x x x x =⋅=⋅-设[]cos 1,1x t =∈-,则322y t t =-+,则262y t '=-+由2620y t '=-+>解得3333t -<<-,由2620y t '=-+<解得313t -<<-或313t <<所以322y t t =-+在313⎡--⎢⎣⎦,上单调递减,在3333⎡-⎢⎣⎦,上单调递增,在313⎤⎥⎣⎦上单调递减.当33t =时,y =,当t 3=-时,y =,当1t =时,0y =,当1t =-时,0y =,所以当33t =时,函数322y t t =-+有最大值9所以当t 3=-时,函数322y t t =-+有最小值439-所以④正确,⑤不正确.故答案为:③④7.已知函数2()cos 222x x x f x =+-.(1)求函数()f x 在区间[]0,π上的值域;(2)若方程(0)f x ωω>在区间[]0,π上至少有两个不同的解,求ω的取值范围.【答案】(1)2⎡⎤⎣⎦;(2)5,12⎡⎫+∞⎪⎢⎣⎭.【解析】(1)2()cos 2222sin()4x x x f x x x x π=+=++-,令4U x π=+,[]0,x π∈ ,5,44U ππ⎡⎤∴∈⎢⎥⎣⎦由sin y U =的图像知,2sin 2U ⎡⎤∈-⎢⎥⎣⎦,即sin ,142x π⎡⎤⎛⎫+∈-⎢⎥ ⎪⎝⎭⎣⎦,2sin 24x π⎛⎫⎡⎤∴+∈ ⎪⎣⎦⎝⎭,所以函数()f x 的值域为2⎡⎤⎣⎦.(2)()2sin()(0)4f x x πωωω=+>(f x ωQ2sin()4x πω∴+=,即3sin()=42x πω+[]0,x π∈ ,444x πππωωπ⎡⎤∴+∈+⎢⎥⎣⎦,,且=2()43x k k ππωπ++∈Z 或2=2()43x k k ππωπ++∈Z由于方程(0)f x ωω>在区间[]0,π上至少有两个不同的解,所以243ππωπ+≥,解得512ω≥,所以ω的取值范围为5,12⎡⎫+∞⎪⎢⎣⎭.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
完美 WORD 格式《三角函数》大题总结1.【2015 高考新课标 2,理17】ABC 中,是BC上的点,AD平分BAC,DABD 面积是ADC面积的2倍.( Ⅰ) 求sinB ;sin C(Ⅱ)若AD1, DC2,求 BD和AC的长.22. 【2015 江苏高考, 15】在ABC中,已知AB2,AC 3,A60.(1)求BC的长;(2)求sin 2C的值 .3.【2015 高考福建,理 19】已知函数f( x)的图像是由函数g( x) = cos x的图像经如下变换得到:先将 g( x) 图像上所有点的纵坐标伸长到原来的2 倍(横坐标不变),再将所得到的图像向右平移p2个单位长度 .( Ⅰ) 求函数f( x)的解析式,并求其图像的对称轴方程;( Ⅱ) 已知关于x的方程f( x) +g( x) = m在[0, 2p )内有两个不同的解a , b.(1) 求实数 m的取值范围;(2) 证明:cos( a - b ) =2m2- 1.54. 【2015 高考浙江,理16】在ABC中,内角A,B,C所对的边分别为 a ,b, c ,已知A, b2a2 =1c2.42(1)求tanC的值;(2)若ABC的面积为 7,求b的值 .范文范例学习参考完美 WORD 格式5. 【2015 高考山东,理 16】设f x sin x cos x cos2x.(Ⅰ)求 f x的单调区间;(Ⅱ)在锐角A0, a 1 , ABC 中,角 A, B, C 的对边分别为 a, b,c ,若f2求ABC 面积的最大值.6. 【2015 高考天津,理 15】已知函数f x sin2 x sin2x,x R6(I)求 f ( x) 最小正周期;(II)求 f ( x) 在区间[-p,p]上的最大值和最小值.347. 【2015 高考安徽,理 16】在ABC 中, A3, AB 6, AC 3 2 ,点D4在BC边上,AD BD ,求 AD 的长.8. 【2015 高考重庆,理 18】已知函数f x sin x sin x 3 cos2 x(1)求f x的最小正周期和最大值;2上的单调性 .(2)讨论f x 在,6 3范文范例学习参考完美 WORD 格式9.【2015 高考四川,理 19】如图,A,B,C,D为平面四边形 ABCD 的四个内角 .A 1cos A(1)证明:tan;2sin A(2)若 A C 180o , AB 6,BC 3,CD 4, AD 5,求tan AtanBtanCtanD的值.222210. 【2015 高考湖北,理17】某同学用“五点法”画函数f ( x) A sin( x) (0, | |π)在某一个周期内的图象2时,列表并填入了部分数据,如下表:x0ππ3π2 π22x π5π36A sin( x)0550(Ⅰ)请将上表数据补充完整,填写在答题卡上相应位置,并直...........接写出函数 f (x) 的解析式;(Ⅱ)将 y f (x) 图象上所有点向左平行移动(0) 个单位长度,得到 y g (x) 的图象. 若y g (x) 图象的一个对称中心为 (5 π,求的最小值 ., 0)12范文范例学习参考完美 WORD 格式11.【2015 高考陕西,理 17】(本小题满分 12 分) C 的内角,,C 所对的边分别为a, b ,c.向量m a, 3b 与n cos ,sin平行.(I)求;(II )若a7 , b 2 求 C 的面积.12. 【2015 高考北京,理 15】已知函数f ( x) 2sin x cos x2 sin 2x.222 ( Ⅰ) 求f (x)的最小正周期;( Ⅱ) 求f (x)在区间[π,0]上的最小值.13. 【2015 高考广东,理 16】在平面直角坐标系xoy 中,已知向量m 2 ,2,n sin x,cos x , x 0,.222(1)若m n ,求tan x的值;(2)若m与n的夹角为,求x的值.314.【2015 高考湖南,理 17】设ABC的内角A,B,C的对边分别为a ,b, c,ab tan A ,且B为钝角.(1)证明:B A;2(2)求sin A sin C的取值范围 .范文范例学习参考完美 WORD 格式《三角函数》大题答案1. 【答案】 ( Ⅰ) 1;( Ⅱ) 1.21 AB ADsin1 AC ADsin【解析】( Ⅰ) S ABDBAD , S ADCCAD ,因为22sin BAC 1 .S ABD 2S ADC , BADCAD ,所以 AB 2 AC .由正弦定理可得sin C AB 2( Ⅱ)因为 S ABD :S ADC BD : DC ,所以 BD2 .在 ABD 和 ADC 中,由余弦定理得AB 2AD 2BD 2, 2AD 2DC 22 ADDC cos ADC .2 AD BD cos ADB ACAB 2 2AC 23AD 2 BD 2 2DC 26.由(Ⅰ)知 AB2 AC ,所以 AC1 .2. 【答案】( 1) 7 ;( 2) 4 373. 【答案】 ( Ⅰ )f( x) = 2sin x , x = kp + p(k ? Z). ; ( Ⅱ ) ( 1) (-5,5) ;( 2)详见解2析.【解析】解法一: (1) 将 g( x) = cos x 的图像上所有点的纵坐标伸长到原来的2 倍(横坐标不变)得到y = 2cos x 的图像,再将y = 2cos x 的图像向右平移p个单位长度后得到2范文范例学习参考完美 WORD 格式py = 2cos( x - ) 的图像,故f( x) = 2sin x ,从而函数 f( x) = 2sin x 图像的对称轴方程为2px = kp + (k ? Z).2(2)1) f( x) + g(x) = 2sin x +cos x=5( 2 sin x + 1 cos x)55= 5 sin( x +j ) (其中 sin j=1=2,cosj)55依题意, sin(x +j)=mm |<1,故 m的在区间 [0, 2p ) 内有两个不同的解 a , b 当且仅当 |55取值范围是 (- 5, 5) .2) 因为 a , b 是方程5 sin( x +j)=m 在区间 [0, 2p ) 内有两个不同的解,所以 sin(a+j)=mm, sin( b +j)=.55当 1 £m<5时, a +b =2(p -j ), a - b = p - 2(b +j );2当 - 5<m<1时 ,3p);a +b =2( - j ), a - b = 3p - 2(b +j2所以 cos( a - b ) = - cos2( b+j) = 2sin 2 ( b+j) - 1 = 2( m )2 - 1 = 2m 2- 1.55解法二: (1) 同解法一 .(2)1) 同解法一 .2) 因为 a , b 是方程 5 sin( x +j )=m 在区间 [0, 2p ) 内有两个不同的解,所以 sin(a +j)=mm, sin( b +j)=.55p- j ),即a +j = p - (b +j );当 1 £m< 5 时, a +b =2(2当 -时 , 3p),即 a +j= 3p - ( b +j );a +b =2(- j5<m<12所以 cos( a +j ) = - cos(b+j)于是 cos( a - b ) = cos[(a +j ) - (b +j )] = cos(a +j )cos( b +j ) +sin(a +j )sin( b +j )范文范例学习参考完美 WORD 格式2m2 ] +( m 2= 2m 2 = - cos (b +j) + sin(a +j )sin( b +j ) = - [1- ()) - 1.5554. 【答案】( 1) 2 ;( 2) b3 .又∵ A, 1 bcsinA 3 ,∴ bc 6 2 ,故 b3.4 25. 【答案】( I )单调递增区间是4k ,kk Z ;4单调递减区间是k ,3k kZ44(II )ABC 面积的最大值为 234【解析】sin 2x1 cos 2x(I )由题意知 f x222sin2x1 sin2xsin 2x 1222由2k2x 2k , k Z22由2k2x3,k Z2k22可得可得k x k, k Z 44k x3, k Zk44所以函数 f x的单调递增区间是k ,k k Z;44范文范例学习参考完美 WORD 格式单调递减区间是k , 3k k Z446. 【答案】 (I); (II)f ( x) max3,f ( x) min14.2【解析】 (I)由已知,有1 cos2x 1 cos 2x1 1313sin 2xf ( x)222cos2 x2 cos2x223 sin2x 1 cos2x1sin 2 x.4426所以 f ( x) 的最小正周期T2 .2(II)因为 f ( x) 在区间[ -p , - p ] 上是减函数,在区间 [ - p , p ] 上是增函数,366 4f ( )1 , f ()1 , f () 3,所以 f ( x) 在区间[ - p , p ] 上的最大值为3 ,346244344 1最小值为.27. 【答案】10范文范例学习参考完美 WORD 格式【解析】如图,设ABC 的内角 A, B, C 所对边的长分别是 a,b, c ,由余弦定理得a 2b 2c 22bc cos BAC (32) 2 62 2 32 6cos318 36 ( 36) 90,4所以 a3 10 .又由正弦定理得bsinBAC 3 10sin Ba3 10 .10由题设知 0 B,所以 cosB1 sin2 B1 1 310.410 10在 ABD 中,由正弦定理得 ADAB sin B6sin B32B) 2sin B cosB 10sin( cosB8.【答案】( 1)最小正周期为 p ,最大值为 2 -3 ;( 2) f (x) 在 [, 5] 上单调递增; f (x)26 12在 [5 ,2 ]上单调递减 .12 3范文范例学习参考完美 WORD 格式当2x5 x2 时 , 即时, f ( x) 单调递减,2 3123综上可知, f ( x) 在 [ , 5 ] 上单调递增; f (x) 在 [ 5 ,2]上单调递减 .6 1212 3 9. 【答案】( 1)详见解析; (2) 4 10 .3A sinA2sin 2A1 cos A【解析】( 1)tan22 .2cosA 2sinA Asin A2 cos22(2)由 AC 180 ,得 C180 A, D 180 B .由( 1),有 tan AtanBtan C tanD22221 cos A 1 cosB 1 cos(180A) 1 cos(180 B)sin A sin Bsin(180 A)sin(180 B)22sin A sin B连结 BD ,在ABD 中,有 BD 2AB 2 AD 2 2 AB AD cos A ,在BCD 中,有BD2BC 2CD 22BC CD cosC ,所以AB 2AD 22AB AD cos A BC 2CD 22BC CD cos A ,范文范例学习参考完美 WORD 格式则 cosA AB2AD2BC 2CD 262523242 3 ,2(AB AD BC CD)2(6534)7于是 sin A1cos2A 1 (3)2210.77连结 AC,同理可得cosB AB2BC2AD2CD 262325242 1 ,2( AB BC AD CD)2(6354)19于是 sin B1cos2 B1(1)2610.1919所以 tan AtanBtanCtanD2222 22sin A sin B14 2 19210 21010. 【答案】(Ⅰ) f ( x)5sin(2 x ππ) ;(Ⅱ). 66【解析】(Ⅰ)根据表中已知数据,解得 A 5,2,π数据补全如下表:.6x0ππ3π22xππ7π5π123126Asin(x)0505且函数表达式为 f ( x) 5sin(2 x π) . 6(Ⅱ)由(Ⅰ)知 f ( x)5sin(2 x π,得 g ( x) 5sin(2 x 2π)) . 66因为 y sin x 的对称中心为 (kπ,0), k Z .令 2 x2πkπxππk, k Z . 6,解得212由于函数 y g (x) 的图象关于点5π成中心对称,令kππ5π,解得kππ, k23 11. 【答案】( I )322π13π12范文范例学习参考完美 WORD 格式【解析】(I )因为m//n,所以a sin B -3b cos A = 0 ,由正弦定理,得sinAsinB - 3 sinBcos A = 0又 sin0,从而 tan A =3 ,从而 sin B =21 ,7又由 a > b ,知 A > B ,所以cos B =27.7故 sinC sin A B sin sin B cos 3213cos B sin14 33所以C 的面积为1bcsinA=33.2212. 【答案】( 1)2,( 2)12 2【解析】:f ( x )2sinxcos x 2 sin 2x11cosx2sin x222222范文范例学习参考完美 WORD 格式2sin x 2cos x2sin( x)222242(1)f ( x )的最小正周期为 T 22;1(2)x3x,当 x, x30,44时,4424f ( x ) 取得最小值为:122513. 【答案】( 1)1;(2)x.12【解析】( 1)∵m2 ,2, n sin x,cos x 且 m n ,22∴m n 2 ,2sin x,cos x2sin x2cosx sin x0 ,又22224x0, ,2∴ x,,∴ x40 即 x,∴ tan x tan1;44444m nsin x (2)由(1)依题知cos 4,2 sin x3m n2422sin2 x cos2 x22∴ sin x41又 x,,2444∴ x即 x 56.41214.【答案】( 1)详见解析;(2)(2,9] .2 8范文范例学习参考完美 WORD 格式(2 A2) 2A 0,∴ A(0, ) ,于是 sin A sin C sin A sin( 2A)24 1)2 92 sin A cos2 A2sin 2 A sinA12(sin A, ∵ 0 A, ∴4840 sin A2 ,因此2 2(sin A 1)299 ,由此可知 sin Asin C 的取值范围224 8 8是 ( 2,9]. 28范文范例学习参考感谢下载!欢迎您的下载,资料仅供参考。