2018年中考数学模拟试题各地真题37

合集下载

2018年中考数学全真模拟试卷及答案(共三套)

2018年中考数学全真模拟试卷及答案(共三套)

=mm-+21 · ·············································································· 4 分
当 m =1 时,原式=11-+21 =-12.·········································· 6 分
20.(本小题满分 8 分)
P
和点
B
在射线
OA
上的射影值均为OOPA=
1 3

B
B
B
D
O
P
A
O
A
C
O
A
C
图1
图2
图3
(第 27 题)
(1)在△ OAB 中,
①点 B 在射线 OA 上的射影值小于 1 时,则△ OAB 是锐角三角形;
②点 B 在射线 OA 上的射影值等于 1 时,则△ OAB 是直角三角形;
③点 B 在射线 OA 上的射影值大于 1 时,则△ OAB 是钝角三角形.
12
1
2
12.将点 A(2,-1)向左平移 3 个单位,再向上平移 4 个单位得到点 A′,则
点 A′的坐标是 ▲ .
13.如图,点 A、B、C、D 都在方格纸的格点上,若△ AOB 绕点 O 按逆时针方
向旋转到△ COD 的位置,则旋转角为 ▲ °.
A
D
C
A
B
D
O
(第 13 题)
E
B
C
P
(第 14 题)
1 2
4.某篮球兴趣小组 7 名学生参加投篮比赛,每人投 10 个,投中的个数分别为:
8,5,7,5,8,6,8,则这组数据的众数和中位数分别为

2018年中考数学模拟试卷及答案

2018年中考数学模拟试卷及答案

2018年中考数学模拟试卷及答案2018年中考数学模拟试卷一、选择题(本大题共有6小题,每小题3分,共18分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)-3的相反数是()A.-1 B.3 C.1 D.-32.(3分)下列运算中,正确的是()A.2x+2y=2xyB.(xy)2÷(xy)3=x-yC.D.2xy-3yx=xy(x2y3)2=x4y53.(3分)一个几何体的表面展开图如图所示,则这个几何体是()A.四棱锥 B.四棱柱 C.三棱锥 D.三棱柱4.(3分)口袋中装有形状、大小与质地都相同的红球2个,黄球1个,下列事件为随机事件的是()A.随机摸出1个球,是白球B.随机摸出1个球,是红球C.随机摸出1个球,是红球或黄球D.随机摸出2个球,都是黄球5.(3分)如图,在平面直角坐标系中,点B、C、E、在y轴上,Rt△ABC经过变换得到Rt△ODE.若点C的坐标为(0,1),AC=2,则这种变换可以是()A.△ABC绕点C顺时针旋转90°,再向下平移3B.△ABC绕点C顺时针旋转90°,再向下平移1C.△ABC绕点C逆时针旋转90°,再向下平移1D.△ABC绕点C逆时针旋转90°,再向下平移36.(3分)如果多项式p=a2+2b2+2a+4b+5,则p的最小值是()A.1二、填空题(本大题共有10小题,每小题3分,共30分.请把答案直接填写在答题卡相应位置上)7.(3分)9的平方根是38.(3分)若∠α=32°22′,则∠α的余角的度数为57°38′9.(3分)化简:-3的结果是310.(3分)一组数据2、-2、4、1、的方差是5.511.(3分)若关于x的一元二次方程ax2-bx+2=0(a≠0)的一个解是x=1,则3-a+b的值是412.(3分)如图,直线l1∥l2,∠α=∠β,∠1=40°,则∠2=140°13.(3分)圆锥的母线长为6cm,底面圆半径为4cm,则这个圆锥的侧面积为40√5 cm2.14.(3分)如图,⊙O的内接四边形ABCD中,∠A=105°,则∠BOD等于75°15.(3分)如图,Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为点D,若AD=BC,则sin∠A=3/516.(3分)抛物线y=mx2-2mx+m-3(m>0)在-1<x<3位于x轴下方,在3<x<4位于x轴上方,则m的值为2三、解答题17.1) $-2+|3\tan30^\circ-1|-(\pi-3)^\circ$2+|\frac{3}{\sqrt{3}}-1|-(\pi-3)^\circ$2+|\sqrt{3}-1|-(\pi-3)^\circ$2+\sqrt{3}-1-(\pi-3)^\circ$2-\sqrt{3}-\pi^\circ$2) $x^2-3x+2=0$x=1$或$x=2$所以方程的解为$x=1$或$x=2$。

2018年中考数学模拟试卷及答案

2018年中考数学模拟试卷及答案

2018年中考数学模拟试卷一、选择题(本题共10个小题,每小题3分,共30分)1.下列四个数中,最小的是()A.﹣3 B.﹣2 C.3 D.52.下列计算正确的是()A.2x+1=2x2B.(﹣x2)3=x5C.x2•x3=x6D.(﹣2x)3=﹣8x33.某几何体的三视图如图所示,则此几何体是()A.圆锥B.圆柱C.长方体D.四棱柱4.不等式组的解集在数轴上表示正确的是()A.B.C.D.5.下列图形中,是中心对称图形的是()A. B. C. D.6.九年一班甲、乙、丙、丁四名同学几次数学测试成绩的平均数(分)及方差S2如下表:老师想从中选派一名成绩较好且状态稳定的同学参加全省中学生数学竞赛,那么应选()A.甲B.乙C.丙D.丁7.如图,将一块含有30°角的直角三角板的直角顶点放在矩形的一边上,如果∠2=47°,那么∠3的度数为()A.30°B.47°C.17°D.20°8.下列调查中,最合适采用抽样调查的是()A.乘坐高铁对旅客的行李的检查B.了解建昌县初中生的视力情况C.调查九年一班全体同学的身高情况D.对新研发的新型战斗机的零部件进行检查9.关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1 B.k<1 C.k>﹣1且k≠0 D.k<1且k≠010.小明和小刚同时从公园门口出发,沿同一路线散步到公园凉亭再原路返回.他们距公园门口的距离y(m)与小刚行走的时间x(min)之间的关系如图.则(1)公园门口到公园凉亭的距离是600m;(2)小明在凉亭休息了5min;(3)小刚和小明同时回到了公园;(4)小明返回时的速度比去时的速度快.上面四个结论中正确的有()A.1个 B.2个 C.3个 D.4个二、填空题(本大题共8小题,每小题3分,共24分)11.三张质地、大小相同的卡片上,分别画上如图所示的三个图形,在看不到图形的情况下从中任意抽出一张,则抽出的卡片是轴对称图形的概率是.12.分解因式:x3﹣4x=.13.韩国不顾各方面反对坚持部署“萨德”,近日不完全统计结果表明由此造成的经济损失约50000000000美元,则数50000000000用科学记数法表示为.14.数学老师用10道题作为一次课堂练习,课代表将全班同学的答题情况绘制成条形统计图,如图,观察此图可知,每位同学答对的题的个数组成的样本众数是,中位数是.15.如图,△ABC中,∠C=90°,分别以顶点A、B为圆心,大于AB长为半径作弧,两弧在直线AB两侧分别交于M、N两点,过M、N作直线交AB于点P,交AC于点D,连接BD.若DC=3,BC=4,则AB=.16.如图,点A在反比例函数y=的图象上,AB垂直于x轴,若S△AOB=4,那么这个反比例函数的解析式为.17.已知:如图,用长为18m的篱笆(3AB+BC),围成矩形花圃.一面利用墙(墙足够长),则围成的矩形花圃ABCD的占地面积最大为m2.18.如图,在平面直角坐标系xOy中,点A1,A2,A3,…和B1,B2,B3,…分别在直线y=kx+b和x轴上,△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形,如果A1(1,1),A2(,),那么点A3的纵坐标是,点A n的纵坐标是.三、解答题(本大题共2小题,共22分)19.先化简,再求值:÷(x﹣2﹣),其中x=2sin45°+()﹣1.20.将九年级两个班男生掷实心球的成绩进行整理,并绘制出频数分布表、扇形统计图和频数分布直方图(不完整).(x表示成绩,且规定x≥6.25合格,x≥9.25为优秀)(1)频数分布表中,a=,b=,其中成绩合格的有人,请补全频数分布直方图;(2)这两个班男生成绩的中位数落在组,扇形统计图中E组对应的圆心角是;(3)要从成绩优秀的学生中,随机选出2人介绍经验,已知甲、乙两位同学的成绩均为优秀,用列表法或画树状图法求甲、乙两位同学至少有1人被选中的概率(提示:成绩优秀的其他同学可用a、b、c、d、e…表示)四、解答题(本大题共2小题,共24分)21.校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验;先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于30米,在l上点D的同侧取点A、B,使∠CAD=30°,∠CBD=60°.(1)求AB的长(精确到0.1米,参考数据:≈1.732,≈1.414);(2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时3秒,这辆校车在AB段是否超速?请说明理由.22.如图,在△ABC中,∠BAC=90°,AD是中线,E是AD的中点,过点A作AF ∥BC交BE的延长线于F,连接CF.(1)求证:AD=AF;(2)四边形ADCF是形;(3)若AB=AC,则四边形ADCF是形.五、解答题(共12分)23.某活动中心准备带会员去龙潭大峡谷一日游.1张儿童票和2张成人票共需190元,2张儿童和3张成人票共需300元.解答下列问题:(1)求每张儿童票和每张成人票各多少元?(2)这个活动中心想带50人去游玩,费用不超过3000元,并且出于安全考虑,儿童人数不能超过25人①求带儿童人数的取值范围.②如何安排游玩人数,才能既保证安全又使费用最低?最低费用是多少?六、解答题(共12分)24.如图,已知,⊙O为△ABC的外接圆,BC为直径,点E在AB上,过点E作EF⊥BC,点G在FE的延长线上,且GA=GE.(1)求证:AG是⊙O的切线(2)若AC=6,AB=8,BE=3,求OF的长.七、解答题(共12分)25.图1是边长分别为4和2的两个等边三角形纸片ABC和DEC叠放在一起.(1)①图1中△DEC的面积是②操作:固定△ABC,将△DEC绕点C顺时针旋转30°,连接AD、BE,CE的延长线交AB于点F(图2),则在图2中△CBF的面积是.(2)在(1)的条件下将△DEC继续旋转(旋转角小于180°,图3).连接AD、BE相交于点O,AD交CE于点F,请判断∠EOD的度数,并说明理由.(3)在(1)的条件下将△DEC绕点C逆时针旋转(旋转角大于60°且小于90°,图4),直接写出直线AD与BE相交所得到的锐角的度数.八、解答题(共14分)26.如图所示,抛物线y=ax2+bx+c与x轴交于A,B两点,与y轴交于点C(0,4),且此抛物线顶点为D(1,).(1)求抛物线的解析式(化为一般形式)(2)连接BD,点P是线段BD上的一个动点(不与B、D重合),过点P作PE ⊥y轴,垂足是点E,连接BE.设P点的坐标为(x,y),△PBE的面积为S,求S与x之间的函数关系式,写出自变量x的取值范围,并求出S的最大值;(3)在(2)的条件下,当S取最大值时,过点P作PF⊥x轴,垂足是点F,连接EF,把△PEF沿直线EF折叠,点P的对应点为点P′,请直接写出P′点的坐标(不必画图),并直接判断点P′是否在该抛物线上.2017年辽宁省葫芦岛市建昌县中考数学二模试卷参考答案与试题解析一、选择题(本题共10个小题,每小题3分,共30分)1.下列四个数中,最小的是()A.﹣3 B.﹣2 C.3 D.5【考点】18:有理数大小比较.【分析】根据有理数的大小比较方法,找出最小的数即可.【解答】解:∵﹣3<﹣2<3<5,∴四个数中最小的是﹣3.故选A.2.下列计算正确的是()A.2x+1=2x2B.(﹣x2)3=x5C.x2•x3=x6D.(﹣2x)3=﹣8x3【考点】47:幂的乘方与积的乘方;46:同底数幂的乘法.【分析】利用积的乘方、幂的乘方以及同底数的幂的乘法法则即可作出判断.【解答】解:A、2x和1不是同类项,不能合并,故选项不符合题意;B、(﹣x2)3=﹣x6,故选项不符合题意;C、x2•x3=x5,故选项不符合题意;D、(﹣2x)3=﹣8x3正确,选项符合题意.故选D.3.某几何体的三视图如图所示,则此几何体是()A.圆锥B.圆柱C.长方体D.四棱柱【考点】U1:简单几何体的三视图.【分析】根据三视图的主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形进行分析可知几何体的名称.【解答】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱,故选:B.4.不等式组的解集在数轴上表示正确的是()A.B.C.D.【考点】C4:在数轴上表示不等式的解集.【分析】根据不等式组解集的四种情况进行解答即可.【解答】解:由大小小大中间找的原则,得出不等式组的解集为﹣2≤x <4,表示在数轴上为,故选B.5.下列图形中,是中心对称图形的是()A. B. C. D.【考点】R5:中心对称图形.【分析】根据中心对称图形的概念求解.【解答】解:A、不是中心对称图形,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误.故选:B.6.九年一班甲、乙、丙、丁四名同学几次数学测试成绩的平均数(分)及方差S2如下表:老师想从中选派一名成绩较好且状态稳定的同学参加全省中学生数学竞赛,那么应选()A.甲B.乙C.丙D.丁【考点】W7:方差.【分析】此题有两个要求:①成绩较好,②状态稳定.于是应选平均数大、方差小的运动员参赛.【解答】解:由于乙的平均数较大且方差较小,故选乙.故选:B.7.如图,将一块含有30°角的直角三角板的直角顶点放在矩形的一边上,如果∠2=47°,那么∠3的度数为()A.30°B.47°C.17°D.20°【考点】JA:平行线的性质.【分析】根据平行线的性质和三角形的外角的性质即可得到结论.【解答】解:∵a∥b,∴∠4=∠2=47°,∵∠1=30°,∴∠3=∠4﹣∠1=17°,故选C.8.下列调查中,最合适采用抽样调查的是()A.乘坐高铁对旅客的行李的检查B.了解建昌县初中生的视力情况C.调查九年一班全体同学的身高情况D.对新研发的新型战斗机的零部件进行检查【考点】V2:全面调查与抽样调查.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、乘坐高铁对旅客的行李的检查是事关重大的调查,故A不符合题意;B、了解建昌县初中生的视力情况调查范围广适合抽样调查,故B符合题意;C、调查九年级一班全体同学的身高情况适合普查,故C不符合题意;D、对新研发的新型战斗机的零部件进行检查是事关重大的调查,故D不符合题意;故选:B.9.关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1 B.k<1 C.k>﹣1且k≠0 D.k<1且k≠0【考点】AA:根的判别式;A1:一元二次方程的定义.【分析】根据一元二次方程的定义和△的意义得到k≠0且△>0,即(﹣2)2﹣4×k×(﹣1)>0,然后解不等式即可得到k的取值范围.【解答】解:∵关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,∴k≠0且△>0,即(﹣2)2﹣4×k×(﹣1)>0,解得k>﹣1且k≠0.故选C.10.小明和小刚同时从公园门口出发,沿同一路线散步到公园凉亭再原路返回.他们距公园门口的距离y(m)与小刚行走的时间x(min)之间的关系如图.则(1)公园门口到公园凉亭的距离是600m;(2)小明在凉亭休息了5min;(3)小刚和小明同时回到了公园;(4)小明返回时的速度比去时的速度快.上面四个结论中正确的有()A.1个 B.2个 C.3个 D.4个【考点】E6:函数的图象.【分析】观察图象,获得路程及相应的时间,可得答案.【解答】解:(1)由纵坐标看出公园门口到公园凉亭的距离是600m,故(1)正确;(2)由横坐标看出小明在凉亭休息了5min,故(2)正确;(3)由横坐标看出小刚和小明同时回到了公园,故(3)正确;(4)由纵坐标看出同样的路程,由横坐标看出小明的时间长,小刚的时间段,小明返回时的速度比去时的速度慢,故(4)错误;故选:C.二、填空题(本大题共8小题,每小题3分,共24分)11.三张质地、大小相同的卡片上,分别画上如图所示的三个图形,在看不到图形的情况下从中任意抽出一张,则抽出的卡片是轴对称图形的概率是.【考点】X4:概率公式;P3:轴对称图形.【分析】根据概率公式求解可得.【解答】解:从中任意抽取1张,共有3种等可能结果,其中是轴对称的只有圆这一种,∴抽出的卡片是轴对称图形的概率是,故答案为:.12.分解因式:x3﹣4x=x(x+2)(x﹣2).【考点】55:提公因式法与公式法的综合运用.【分析】应先提取公因式x,再对余下的多项式利用平方差公式继续分解.【解答】解:x3﹣4x,=x(x2﹣4),=x(x+2)(x﹣2).故答案为:x(x+2)(x﹣2).13.韩国不顾各方面反对坚持部署“萨德”,近日不完全统计结果表明由此造成的经济损失约50000000000美元,则数50000000000用科学记数法表示为5×1010.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:50000000000=5×1010,故答案为:5×1010.14.数学老师用10道题作为一次课堂练习,课代表将全班同学的答题情况绘制成条形统计图,如图,观察此图可知,每位同学答对的题的个数组成的样本众数是8,中位数是9.【考点】VC:条形统计图;W4:中位数;W5:众数.【分析】根据众数的定义找出答对最多的题目数即可;根据中位数的定义,找出50人中的第25、26两人答对题目的数量的平均数即可为中位数.【解答】解:由图可知,答对8题的人数最多,是20人,所以,每位同学答对的题的个数组成的样本众数是8,答题人数为:4+20+18+8=50,按照答对题目数量从少到多,第25、26两人都是9道题目,所以,中位数是9.故答案为:8;9.15.如图,△ABC中,∠C=90°,分别以顶点A、B为圆心,大于AB长为半径作弧,两弧在直线AB两侧分别交于M、N两点,过M、N作直线交AB于点P,交AC于点D,连接BD.若DC=3,BC=4,则AB=4.【考点】N2:作图—基本作图;KG:线段垂直平分线的性质;KQ:勾股定理.【分析】由题意MN垂直平分线段AB,可得BD=AD,在Rt△BCD中,可得BD===5,推出AD=BD=5,AC=AD+DC=8,在Rt△ACB中,根据AB=即可解决问题.【解答】解:由题意MN垂直平分线段AB,∴BD=AD,在Rt△BCD中,BD===5,∴AD=BD=5,AC=AD+DC=8,在Rt△ACB中,AB===4,故答案为4.16.如图,点A在反比例函数y=的图象上,AB垂直于x轴,若S△AOB=4,那么这个反比例函数的解析式为y=﹣.【考点】G5:反比例函数系数k的几何意义.【分析】因为过双曲线上任意一点引x轴、y轴垂线,所得矩形面积S是个定值|k|,△AOB的面积为矩形面积的一半,即|k|.【解答】解:由于点A在反比例函数y=的图象上,=|k|=4,k=±8;则S△AOB又由于函数的图象在第二象限,k<0,则k=﹣8,所以反比例函数的解析式为y=﹣.故答案为:y=﹣.17.已知:如图,用长为18m的篱笆(3AB+BC),围成矩形花圃.一面利用墙(墙足够长),则围成的矩形花圃ABCD的占地面积最大为27m2.【考点】HE:二次函数的应用.【分析】首先表示出矩形的长与宽,进而利用二次函数最值求法得出答案.【解答】解:设AB=x,则BC=18﹣3x,则围成的矩形花圃ABCD的面积为:S=x(18﹣3x)=﹣3x2+18x=﹣3(x2﹣6x)=﹣3(x﹣3)2+27,即围成的矩形花圃ABCD的占地面积最大为27m2.故答案为:27.18.如图,在平面直角坐标系xOy中,点A1,A2,A3,…和B1,B2,B3,…分别在直线y=kx+b和x轴上,△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形,如果A1(1,1),A2(,),那么点A3的纵坐标是,点A n的纵坐标是()n﹣1.【考点】D2:规律型:点的坐标.【分析】先求出直线y=kx+b的解析式,求出直线与x轴、y轴的交点坐标,求出直线与x轴的夹角的正切值,分别过等腰直角三角形的直角顶点向x轴作垂线,然后根据等腰直角三角形斜边上的高线与中线重合并且等于斜边的一半,利用正切值列式依次求出三角形的斜边上的高线,即可得到A3的坐标,进而得出各点的坐标的规律.【解答】解:∵A1(1,1),A2(,)在直线y=kx+b上,∴,解得,∴直线解析式为:y=x+;设直线与x轴、y轴的交点坐标分别为N、M,当x=0时,y=,当y=0时,x+=0,解得x=﹣4,∴点M、N的坐标分别为M(0,),N(﹣4,0),∴tan∠MNO===,作A1C1⊥x轴与点C1,A2C2⊥x轴与点C2,A3C3⊥x轴与点C3,∵A1(1,1),A2(,),∴OB2=OB1+B1B2=2×1+2×=2+3=5,tan∠MNO===,∵△B2A3B3是等腰直角三角形,∴A3C3=B2C3,∴A3C3==()2,同理可求,第四个等腰直角三角形A4C4==()3,依此类推,点A n的纵坐标是()n﹣1,故答案为:,()n﹣1.三、解答题(本大题共2小题,共22分)19.先化简,再求值:÷(x﹣2﹣),其中x=2sin45°+()﹣1.【考点】6D:分式的化简求值;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】根据分式的除法和减法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【解答】解:÷(x﹣2﹣)===,当x=2sin45°+()﹣1=2×=,原式=.20.将九年级两个班男生掷实心球的成绩进行整理,并绘制出频数分布表、扇形统计图和频数分布直方图(不完整).(x表示成绩,且规定x≥6.25合格,x≥9.25为优秀)(1)频数分布表中,a=5,b=15,其中成绩合格的有45人,请补全频数分布直方图;(2)这两个班男生成绩的中位数落在C组,扇形统计图中E组对应的圆心角是36°;(3)要从成绩优秀的学生中,随机选出2人介绍经验,已知甲、乙两位同学的成绩均为优秀,用列表法或画树状图法求甲、乙两位同学至少有1人被选中的概率(提示:成绩优秀的其他同学可用a、b、c、d、e…表示)【考点】X6:列表法与树状图法;V7:频数(率)分布表;V8:频数(率)分布直方图;VB:扇形统计图;W4:中位数.【分析】(1)根据题意可得:这部分男生共有:5÷10%=50(人);又由只有A 组男人成绩不合格,可得:合格人数为:50﹣5=45(人);(2)由这50人男生的成绩由低到高分组排序,A组有5人,B组有10人,C组有15人,D组有15人,E组有5人,可得:成绩的中位数落在C组;又由E组有5人,占5÷50=10%,即可求得:对应的圆心角为:360°×10%=36°;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与他俩至少有1人被选中的情况,再利用概率公式即可求得答案.【解答】解:(1)本次调查的总人数为5÷10%=50,∴a=50×30%=15,b=50﹣(5+10+15+15)=5,其中合格的人数为50﹣5=45人,补全条形图如下:故答案为:15、5、45,(2)50个数据的中位数为第25、26个数据的平均数,而第25、26个数均落在C组,∴中位数在C组,扇形统计图中E组对应的圆心角是360°×=36°,故答案为:C、36°;(3)成绩优秀的男生在E组,含甲、乙两名男生,记其他三名男生为a,b,c,画树状图得:∵共有20种等可能的结果,其中甲、乙至少有1人被选中的结果有14种,==.∴P(甲、乙至少有1人被选中)四、解答题(本大题共2小题,共24分)21.校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验;先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于30米,在l上点D的同侧取点A、B,使∠CAD=30°,∠CBD=60°.(1)求AB的长(精确到0.1米,参考数据:≈1.732,≈1.414);(2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时3秒,这辆校车在AB段是否超速?请说明理由.【考点】T8:解直角三角形的应用.【分析】(1)分别在Rt△ADC与Rt△BDC中,利用正切函数,即可求得AD与BD的长,继而求得AB的长;(2)由从A到B用时2秒,即可求得这辆校车的速度,比较与40千米/小时的大小,即可确定这辆校车是否超速.【解答】(1)解:∵∠CAD=30°,∠CBD=60°,CD⊥l,CD=30∴在Rt△ADC中,AD===30,在Rt△BDC中,BD===10,则AB=AD﹣BD=30﹣10=20≈34.6(米),答:AB的长约为34.6米,(2)解:超速,理由如下:∵汽车从A到B用时3秒,由(1)知,AB≈34.6米∴速度为×3.6≈41.5(千米/小时)>40千米/小时,∴此校车在AB路段超速.22.如图,在△ABC中,∠BAC=90°,AD是中线,E是AD的中点,过点A作AF ∥BC交BE的延长线于F,连接CF.(1)求证:AD=AF;(2)四边形ADCF是菱形;(3)若AB=AC,则四边形ADCF是正方形.【考点】LF:正方形的判定;KD:全等三角形的判定与性质;KW:等腰直角三角形;L9:菱形的判定.【分析】(1)由E是AD的中点,AF∥BC,易证得△AEF≌△DEB,即可得AF=BD,又由在△ABC中,∠BAC=90°,AD是中线,根据直角三角形斜边的中线等于斜边的一半,即可证得AD=BD=CD=BC,即可证得:AD=AF;(2)由(1)知,AF=BD.结合已知条件,利用“有一组对边平行且相等的四边形是平行四边形”得到ADCF是菱形;(3)由AF=BD=DC,AF∥BC,可证得:四边形ADCF是平行四边形,又由AB=AC,根据三线合一的性质,可得AD⊥BC,AD=DC,继而可得四边形ADCF是正方形【解答】(1)证明:∵AF∥BC,∴∠EAF=∠EDB,∵E是AD的中点,∴AE=DE,在△AEF和△DEB中,,∴△AEF≌△DEB(ASA),∴AF=BD,∵在△ABC中,∠BAC=90°,AD是中线,∴AD=BD=DC=BC,∴AD=AF;(2)由(1)知,AF=DB.DB=DC,则AF=CD.∵AF∥BC,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,E是AD的中点,∴AD=DC=BC,∴四边形ADCF是菱形.故答案是:菱;(3)解:四边形ADCF是正方形.∵AF=BD=DC,AF∥BC,∴四边形ADCF是平行四边形,∵AB=AC,AD是中线,∴AD⊥BC,∵AD=AF,∴四边形ADCF是正方形.故答案是:正方.五、解答题(共12分)23.某活动中心准备带会员去龙潭大峡谷一日游.1张儿童票和2张成人票共需190元,2张儿童和3张成人票共需300元.解答下列问题:(1)求每张儿童票和每张成人票各多少元?(2)这个活动中心想带50人去游玩,费用不超过3000元,并且出于安全考虑,儿童人数不能超过25人①求带儿童人数的取值范围.②如何安排游玩人数,才能既保证安全又使费用最低?最低费用是多少?【考点】FH:一次函数的应用;9A:二元一次方程组的应用;C9:一元一次不等式的应用.【分析】(1)设每张儿童票x元,每张成人票y元,根据两家人的购票费用列方程组求解即可;(2) ①设带儿童m人,根据题意得不等式即可得到结论;②‚设带儿童m人时费用为w元,则有W=30m+80(50﹣m),根据一次函数的性质即可得到结论.【解答】解:(1)设每张儿童票x元,每张成人票y元,根据题意,得,解得:,答:每张儿童票30元,每张成人票80元;(2) ①设带儿童m人,根据题意,得30m+80(50﹣m)≤≤3000,解得m≥20,又∵儿童人数不能超过25人,∴带儿童人数的取值范围是20≤m≤25;②‚设带儿童m人时费用为w元,则有W=30m+80(50﹣m),即W=﹣50m+4000,∵k=﹣50<0,∴w随m的增大而减小,而20≤m≤25,∴m=25时,w最小,这时,w=﹣50×25+4000=2750,因此,25个成人25个儿童去才能既保证安全又使费用最低,最低费用是2750元.六、解答题(共12分)24.如图,已知,⊙O为△ABC的外接圆,BC为直径,点E在AB上,过点E作EF⊥BC,点G在FE的延长线上,且GA=GE.(1)求证:AG是⊙O的切线(2)若AC=6,AB=8,BE=3,求OF的长.【考点】ME:切线的判定与性质;KQ:勾股定理;M2:垂径定理.【分析】(1)连接OA.依据等腰三角形的性质可得到∠B=∠BAO,∠GEA=∠GAE,从而可证名∠B+∠BEF=90°,通过等量代换可得到∠BAO+∠GAE=90°,即OA⊥AG;(2)由直径所对的圆周角等于90°可得到∠BAC=90°,依据勾股定理可求得BC=10,则⊙O的半径为5,锐角三角函数的定义可知cosB==,故此可求得BF的长,最后依据OF=OB ﹣BF求解即可.【解答】解:(1)连接OA.∵OA=OB,GA=GE,∴∠B=∠BAO,∠GEA=∠GAE.∵EF⊥BC,∴∠BFE=90°,∴∠B+∠BEF=90°,又∵∠BEF=∠GEA,∴∠GAE=∠BEF,∴∠BAO+∠GAE=90°,∴OA⊥AG.又∵OA是半径,∴AG是⊙O的切线.(2)解:∵BC为直径,∴∠BAC=90°.又∵AC=6,AB=8,∴在Rt△BAC中,根据勾股定理,得BC=10,∴OB=5.又∵BE=3,∴在Rt△BEF和Rt△BCA中,cosB==.∴=,解得:BF=2.4.∴OF=OB﹣BF=5﹣2.4=2.6.七、解答题(共12分)25.图1是边长分别为4和2的两个等边三角形纸片ABC和DEC叠放在一起.(1)①图1中△DEC的面积是②操作:固定△ABC,将△DEC绕点C顺时针旋转30°,连接AD、BE,CE的延长线交AB于点F(图2),则在图2中△CBF的面积是6.(2)在(1)的条件下将△DEC继续旋转(旋转角小于180°,图3).连接AD、BE相交于点O,AD交CE于点F,请判断∠EOD的度数,并说明理由.(3)在(1)的条件下将△DEC绕点C逆时针旋转(旋转角大于60°且小于90°,图4),直接写出直线AD与BE相交所得到的锐角的度数.【考点】RB:几何变换综合题.【分析】(1)①过D作DF⊥CE于F,根据等边三角形的性质得到∠C=60°,解直角三角形得到DF=,于是得到结论;②由△ABC是等边三角形,得到∠ABC=60°,解直角三角形得到BF=2,CF=6,根据三角形的面积公式即可得到结论;(2)根据等边三角形的性质得到AC=BC,DC=EC,∠ACB=∠DCE=60°,得到∠ACD=∠BCE,根据全等三角形的性质得到∠ADC=∠BEC,根据三角形的内角和即可得到结论;(3)延长AD交BE于F,设AD与BC交于E,根据等边三角形的性质得到AC=BC,DC=EC,∠ACB=∠DCE=60°,得到∠ACD=∠BCE,根据全等三角形的性质得到∠ADC=∠BEC,根据三角形的内角和即可得到结论.【解答】解:(1)①过D作DF⊥CE于F,∵△CDE是等边三角形,∴∠C=60°,∵CD=CE=2,∴DF=,∴△DEC的面积=×2×=;②∵△ABC是等边三角形,∴∠ABC=60°,∵∠BCF=30°,∴∠BFC=90°,∵BC=4,∴BF=2,CF=6,∴△CBF的面积=2×6=6;故答案为:,6;(2)∠EOD=60°,理由如下:∵△ABC和△DEC是等边三角形,∴AC=BC,DC=EC,∠ACB=∠DCE=60°,∴∠ACD=∠BCE,在△ACD与△BCE中,,∴△ACD≌△BCE(SAS),∴∠ADC=∠BEC,∵∠DFC=∠AFE,∴∠EOD=∠ECD=60°;(3)延长AD交BE于F,设AD与BC交于E,∵△ABC和△DEC是等边三角形,∴AC=BC,DC=EC,∠ACB=∠DCE=60°,∴∠ACD=∠BCE,在△ACD与△BCE中,,∴△ACD≌△BCE(SAS),∴∠ADC=∠BEC,∵∠AEC=∠BEF,∴∠AFB=∠ACB=60°,直线AD与BE相交所得到的锐角的度数是60°.八、解答题(共14分)26.如图所示,抛物线y=ax2+bx+c与x轴交于A,B两点,与y轴交于点C(0,4),且此抛物线顶点为D(1,).(1)求抛物线的解析式(化为一般形式)(2)连接BD,点P是线段BD上的一个动点(不与B、D重合),过点P作PE ⊥y轴,垂足是点E,连接BE.设P点的坐标为(x,y),△PBE的面积为S,求S与x之间的函数关系式,写出自变量x的取值范围,并求出S的最大值;(3)在(2)的条件下,当S取最大值时,过点P作PF⊥x轴,垂足是点F,连接EF,把△PEF沿直线EF折叠,点P的对应点为点P′,请直接写出P′点的坐标(不必画图),并直接判断点P′是否在该抛物线上.【考点】HF:二次函数综合题.【分析】(1)由抛物线顶点D的坐标是(1,),设抛物线解析式为y=a(x﹣1)2+,再把C(0,4)代入,得出关于a的方程,解方程求出a=﹣,即可得出抛物线的解析式;(2)根据抛物线的解析式求出B点坐标,利用待定系数法求出直线BD的解析式为y=﹣x+6,由点P是线段BD上的一个动点,可设P(x,﹣x+6).得出PE=x,OE=﹣x+6,再根据三角形的面积公式列式得出S=PE•OE=xy=x(﹣x+6)=﹣x2+3x(1<x<4),利用配方法化为顶点式求出S的最大值;(3)在(2)的条件下,当S取最大值时,P(2,3),则E(0,3),F(2,0).画出图形.利用待定系数法求出直线EF的解析式为y=﹣x+3.根据折叠的性质得出P′E=PE=2,PP′⊥EF,由互相垂直的两直线斜率之积为﹣1,得出直线PP′的斜率为,再求出直线PP′的解析式为y=x+,设P′(x,x+),根据P′E=2列出方程x2+(x+﹣3)2=4,解方程求出x的值,进而求解即可.【解答】解:(1)∵抛物线顶点D(1,),∴设抛物线解析式为y=a(x﹣1)2+,又∵抛物线经过点C(0,4),∴4=a+,解得a=﹣,∴抛物线解析式为y=﹣(x﹣1)2+,即y=﹣x2+x+4;(2)令﹣x2+x+4=0,解得x1=﹣2,x2=4,故A(﹣2,0)、B(4,0).设直线BD解析式为y=mx+n(m≠0),∵B(4,0),D(1,),∴,。

2018中考数学模拟试题含答案(精选5套)

2018中考数学模拟试题含答案(精选5套)

2018年中考数学模拟试卷(一)姓名--------座号--------成绩-------一、选择题(本大题满分36分,每小题3分. ) 1. 2 sin 60°的值等于( ) A. 1B.23C. 2D. 32. 下列的几何图形中,一定是轴对称图形的有( )A. 5个B. 4个C. 3个D. 2个3. 据2017年1月24日《桂林日报》报道,临桂县2016年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为( ) A. ×10B. ×108C. ×109D. ×10104. 估计8-1的值在( ) A. 0到1之间B. 1到2之间C. 2到3之间D. 3至4之间5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是( ) A. 平行四边形B. 矩形C. 正方形D. 菱形6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是( )7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有( ) A. 1200名 B. 450名C. 400名D. 300名8. 用配方法解一元二次方程x 2+ 4x – 5 = 0,此方程可变形为( ) A. (x + 2)2= 9 B. (x - 2)2= 9C. (x + 2)2 = 1D. (x - 2)2=19. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC =( ) A. 1∶2B. 1∶4C. 1∶3D. 2∶310. 下列各因式分解正确的是( )A. x 2+ 2x-1=(x - 1)2B. - x 2 +(-2)2=(x - 2)(x + 2)C. x 3- 4x = x (x + 2)(x - 2)D. (x + 1)2= x 2+ 2x + 1圆弧 角 扇形 菱形 等腰梯形 A. B. C. D.(第9题图)(第7题图)11. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4,∠BED = 120°, 则图中阴影部分的面积之和为( )A. 3B. 23C.23D. 112. 如图,△ABC 中,∠ C = 90°,M 是AB 的中点,动点P 从点A 出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是 A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小二、填空题(本大题满分18分,每小题3分,) 13. 计算:│-31│= . 14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 . 15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 .17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单 位称为1次变换. 如图,已知等边三角形ABC 的顶点B ,C 的坐标分别是 (-1,-1),(-3,-1),把△ABC 经过连续9次这样的变换得到△A ′B ′C ′, 则点A 的对应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角 边,画第二个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三 个等腰Rt △ADE ……依此类推直到第五个等腰Rt △AFG ,则由这五个等 腰直角三角形所构成的图形的面积为 . 三、解答题(本大题8题,共66分,) 19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3)+(-1)3;(2)化简:(1 - n m n+)÷22n m m -.20. (本小题满分6分)(第12题图)(第17题图)(第18题图)°21. (本小题满分6分)如图,在△ABC 中,AB = AC ,∠ABC = 72°. (1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数.22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动.23. (本小题满分8分)如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角为30°. 小宁在山脚的平地F 处测量这棵树的高,点C 到测角仪EF的水平距离CF = 1米,从E处测得树顶部A 的仰角为45°,树底部B 的仰角为20°,求树AB 的高度.3121--+x x ≤1, ……① 解不等式组:3(x - 1)<2 x + 1. ……(第21题图)(第23题图)(参考数值:sin20°≈,cos20°≈,tan20°≈)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP , MN ⊥AP ,垂足为N. (1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM 的长.25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元. (1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案哪种方案的总费用最低26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x (第24题图)轴,垂足为D ,且B 点横坐标为-3. (1)求证:△BDC ≌ △COA ; (2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形若存在,求出所有点P 的坐标;若不存在,请说明理由.2018年初三适应性检测参考答案与评分意见一、选择题说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △MPQ =21S △ABC ;当点P 、Q 分别运动到AC ,BC 的中点时,此时,S △MPQ =21×21AC. 21BC =41S △ABC ;当点P 、Q 继续运动到点C ,B 时,S △MPQ =21S △ABC ,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C. 二、填空题 13.31; 14. k <0; 15. 54(若为108扣1分); 16. x 2400-x %)201(2400+ = 8;17. (16,1+3); 18. (或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分) = 0 …………………………………4分(2)解:原式 =(n m nm ++-nm n +)·m n m 22- …………2分=nm m +·m n m n m ))((-+ …………3分= m – n …………4分 20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD 平分∠ABC ,∠ABC = 72°, ∴∠ABD =21∠ABC = 36°, …………4分 ∵AB = AC ,∴∠C =∠ABC = 72°, …………5分 ∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分 22. 解:(1)观察条形统计图,可知这组样本数据的平均数是 _x =50551841737231⨯+⨯+⨯+⨯+⨯ =, …………1分∴这组样本数据的平均数是. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多, ∴这组数据的众数是4. …………4分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233+ = 3. ∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是,∴估计全校1200人参加活动次数的总体平均数是,有×1200 = 3900. ∴该校学生共参加活动约3960次. ………………8分23. 解:在Rt △BDC 中,∠BDC = 90°,BC = 63米,∠BCD = 30°,∴DC = BC ·cos30° ……………………1分 = 63×23= 9, ……………………2分 ∴DF = DC + CF = 9 + 1 = 10,…………………3分 ∴GE = DF = 10. …………………4分 在Rt △BGE 中,∠BEG = 20°,∴BG = CG ·tan20° …………………5分 =10×=, …………………6分 在Rt △AGE 中,∠AEG = 45°,∴AG = GE = 10, ……………………7分 ∴AB = AG – BG = 10 - = .答:树AB 的高度约为米. ……………8分24. 解(1)如图,连接OA ,则OA ⊥AP. ………………1分∵MN ⊥AP ,∴MN ∥OA. ………………2分 ∵OM ∥AP ,∴四边形ANMO 是矩形.∴OM = AN. ………………3分(2)连接OB ,则OB ⊥AP ,∵OA = MN ,OA = OB ,OM ∥BP , ∴OB = MN ,∠OMB =∠NPM.∴Rt △OBM ≌Rt △MNP. ………………5分 ∴OM = MP.设OM = x ,则NP = 9- x . ………………6分 在Rt △MNP 中,有x 2= 32+(9- x )2.∴x = 5. 即OM = 5 …………… 8分25. 解:(1)设A 型每套x 元,则B 型每套(x + 40)元. …………… 1分 ∴4x + 5(x + 40)=1820. ……………………………………… 2分∴x = 180,x + 40 = 220.即购买一套A 型课桌凳和一套B 型课桌凳各需180元、220元. ……………3分(2)设购买A 型课桌凳a 套,则购买B 型课桌凳(200 - a )套.a ≤32(200 - a ), ∴ …………… 4分 180 a + 220(200- a )≤40880.解得78≤a ≤80. …………… 5分∵a 为整数,∴a = 78,79,80∴共有3种方案. ………………6分 设购买课桌凳总费用为y 元,则y = 180a + 220(200 - a )=-40a + 44000. …………… 7分 ∵-40<0,y 随a 的增大而减小,∴当a = 80时,总费用最低,此时200- a =120. …………9分 即总费用最低的方案是:购买A 型80套,购买B 型120套. ………………10分2018年中考数学模拟试题(二)姓名---------座号---------成绩-----------一、选择题1、数2-中最大的数是( ) A 、1- B、0 D 、22、9的立方根是( )A 、3±B 、3 C、 D3、已知一元二次方程2430x x -+=的两根1x 、2x ,则12x x +=(A 、4B 、3C 、-4D 、-34、如图是某几何题的三视图,下列判断正确的是( )A、几何体是圆柱体,高为2 B 、几何体是圆锥体,高为2 C 、几何体是圆柱体,半径为2 D 、几何体是圆柱体,半径为2 5、若a b >,则下列式子一定成立的是( ) A 、0a b +> B 、0a b -> C 、0ab > D 、0a b> 6、如图AB ∥DE ,∠ABC=20°,∠BCD=80°,则∠CDE=( ) A 、20° B 、80° C 、60° D 、100°7、已知AB 、CD 是⊙O 的直径,则四边形ACBD 是( ) A 、正方形 B 、矩形 C 、菱形 D 、等腰梯形 8、不等式组302x x +>⎧⎨-≥-⎩的整数解有( )A 、0个B 、5个C 、6个D 、无数个 9、已知点1122(,),(,)A x y B x y 是反比例函数2y x=图像上的点,若120x x >>, 则一定成立的是( )A 、120y y >>B 、120y y >>C 、120y y >>D 、210y y >>10、如图,⊙O 和⊙O ′相交于A 、B 两点,且OO ’=5,OA=3, O ’B =4,则AB=( ) A 、5 B 、 C 、 D 、BDE左视图俯视图二、填空题11、正五边形的外角和为 12、计算:3m m -÷=13、分解因式:2233x y -=14、如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地面控制点B 的俯角20α=︒,则飞机A 到控制点B 的距离约为 。

2018中考数学模拟考试含答案

2018中考数学模拟考试含答案

2018年山东省初中学业水平中考模拟考试(时间:120分钟 满分:120分)注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分. 2.答卷前,考生务必将自己的姓名、准考证号填写在试题卷上.3.选择题每小题选出答案后,将正确答案填写在第Ⅱ卷填空题上方的表格里,答在原题上无效.4. 填空题和解答题答案用黑色或蓝黑色墨水钢笔、中性笔或圆珠笔书写.第Ⅰ卷一、选择题(本题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来填在第Ⅱ卷的表格里,每小题选对得3分,满分36分. 多选、不选、错选均记零分.) 1.下列运算中,正确的是( )A.623a a a =⨯B.5332n m 8-2mn -=)( C. 3x x -3x 2= D. 3m m 3m 23=÷2.一个圆柱形笔筒如图放置,它的左视图是( )A.B.C.D.3. 2018年第一季度潍坊市市级重大项目完成投资384亿元,占年度投资计划的24.4%,项目建设整体呈现“续建项目进度加快、新建项目开工率高、前期项目有新进展”等特点。

384亿元用科学记数法可表示为( )A. 9103.84⨯元 B. 10103.84⨯元 C. 101038.4⨯元 D. 11103.84⨯元4.下列图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.5. 已知21b 1-a 1=,则b-a ab 的值是( ) A.-2 B. 2 C. 21- D.216. 如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( )A.100B. 150C. 200D. 2507. “圆材埋壁”是我国古代著名的数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用数学语言可描述为:如图所示,CD 为⊙O 的直径,弦AB ⊥CD 于E ,CE=1寸,AB=1尺(注:1尺=10寸)则直径CD 的长为( ) A .12寸 B .24寸 C .26寸 D .28寸8. 将下列多项式分解因式,结果中不含因式x ﹣1的是( ) A. x 2-x-2 B. x 2-2x+(2-x) C.2(x 2+1)-4x D.xy+x 2-x-y9.关于x 的分式方程4x-1a 1-x 2=+的解为非负数且不大于3,则所有满足条件的整数a 的值之和是( )A.-2B.0C.2D.410.用计算器依次按键,则计算器显示结果为( )(注414.12=,732.13=)A.300B. 450C. 600D.75011. 分式1-x 2-x 有意义,则x 的取值范围是( )A. 2x ≥且1x ≠B. 2x ≥C. 2x ≥或x<1D. x<112.我们给出如下定义:在平面直角坐标系xOy 中,如果一条抛物线平移后得到的抛物线经过原抛物线的顶点,那么这条抛物线叫做原抛物线的过顶抛物线.如图,抛物线F 2是抛物线F 1的过顶抛物线,设F 1的顶点为A ,F 2的对称轴分别交F 1、F 2于点D 、B ,点C 是点A 关于直线BD 的对称点.若F 1 的表达式为y=x 2,点C 坐标是(2,0),则,F 2的表达式是( ) A. x 2x y 2+= B.x 2-x y 2= C. x 3-x y 2= D. x 3x y 2+=2018年潍坊市初中学业水平中考模拟考试第Ⅱ卷二、填空题(本题共6小题,要求将每小题的最后结果填写在横线上. 每小题3分,满分18分)13. 化简:2-x 1-x 1-x -232÷)(=___________ 14. 若关于x 的一元二次方程02)1(2)1(2=-++++k x k x k 有实数根,则k 的取值范围是___________15. 如图,在平面直角坐标系中,Rt △AOB 的斜边OA 在x 轴的正半轴上,∠OBA=90°,且tan ∠AOB=21,OB= 52,反比例函数y= xk的图象经过点B ,则反比例函数表达式是___________16.若9a 6-a 2+与4-b -a 2互为相反数,则a -b=___________17. 如图,点D 是线段BC 的中点,分别以点B ,C 为圆心,BC 长为半径画弧,两弧相交于点A ,连接AB ,AC ,AD ,点E 为AD 上一点,连接BE ,CE ;以点E 为圆心,ED 长为半径画弧,分别交BE ,CE 于点F ,G.若BC=4,∠EBD=30°,则图中阴影部分的面积是___________18. 我国古代数学家赵爽很早就创制了一幅“勾股圆方图”(也称“弦图”),并对勾股定理的证明进行了详细注释:“按弦图,又可以勾股相乘为朱实二,倍之为朱实四,以勾股之差自相乘为中黄实,加差实,亦成弦实。

2018年九年级数学模拟试卷及答案

2018年九年级数学模拟试卷及答案

2018年中考数学模拟试题(一)注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、考试证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效. 4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上) 1.计算│-4+1│的结果是( ▲ )A .-5B .-3C .3D .52.计算(-xy 2)3的结果是( ▲ )A .x 3y 6B .-x 3y 6C .-x 4y 5D . x 4y 5 3.与17 最接近的整数为( ▲ )A .2B .3C .4D .54.如图,直线l 1∥l 2∥l 3,直线AC 分别交l 1,l 2,l 3于点A ,B ,C ;直线DF 分别交l 1,l 2,l 3于点D ,E ,F .AC 与DF 相交于点H ,且AH =2,HB =1,BC =5,则 DEEF 的值为( ▲ )A .23B .25C .13D .355. 若一组数据2,4,6,8,x 的方差比另一组数据5,7,9,11,13的方差大,则 x 的值可以为( ▲ )A .12B .10C .2D .06.如图,在Rt △ABC 中,∠C =90°,AD 是△ABC 的角平分线,若CD=4,AC=12,则△ABC 的面积 为( ▲ )A .48B .50C .54D .60(第4题) A BCD (第6题)二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡...相应位置....上) 7.9的平方根是 ▲ ;9的立方根是 ▲ . 8.使x +1 有意义的x 的取值范围是 ▲ .9.2016年南京全市完成全社会固定资产投资约55000000万元,将55000000用科学记数法表示为 ▲ . 10.分解因式x 3+6x 2+9x 的结果是 ▲ . 11.计算 33-13的结果是 ▲ . 12.已知关于x 的方程x 2-3x +m =0的一个根是2,则它的另一个根是 ▲ ,m 的值是 ▲ . 13.如图,∠A =∠C ,只需补充一个条件 ▲ ,就可得△ABD ≌△CDB .14. 如图,在△ABC 中,AB 、AC 的垂直平分线l 1、l 2相交于点O ,若∠BAC 等于82°,则∠OBC = ▲ °.15.已知点A (-1,-2)在反比例函数y =kx 的图像上,则当x >1时,y 的取值范围是 ▲ .16.如图,在半径为2的⊙O 中,弦AB =2,⊙O 上存在点C ,使得弦AC =22,则∠BOC = ▲ °. 三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)解不等式组⎩⎪⎨⎪⎧ x +1≥ 0, x -12<x 3.,并写出它的整数解.18.(7分)化简:( 2m m 2-4- 1 m +2 )÷1 m 2-2m .(第14题)A BD(第13题)(第16题)19.(8分)在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m ),绘制出如下两幅统计图.请根据相关信息,解答下列问题:(1)扇形统计图中a = ▲ ,初赛成绩为1.70m 所在扇形图形的圆心角为 ▲ °; (2)补全条形统计图;(3)这组初赛成绩的众数是 ▲ m ,中位数是 ▲ m ; (4)根据这组初赛成绩确定8人进入复赛,那么初赛成绩为1.60m 的运动员杨强能否进入复赛?为什么?20.(8分)在一个不透明袋子中有1个红球、1 个绿球和n 个白球,这些球除颜色外都相同.(1)从袋中随机摸出1个球,记录下颜色后放回袋子中并搅匀,不断重复该试验.发现摸到白球的频率稳定在0.75,则n 的值为 ▲ ;(2)当n =2时,把袋中的球搅匀后任意摸出2个球,求摸出的2个球颜色不同的概率.21.(8分)如图,将矩形ABCD 绕点C 旋转得到矩形FECG ,点E 在AD 上,延长ED 交FG 于点H . (1)求证:△EDC ≌△HFE ; (2)连接BE 、CH .①四边形BEHC 是怎样的特殊四边形?证明你的结论. ②当AB 与BC 的比值为 ▲ 时,四边形BEHC 为菱形.(第21题)ACDGFEH22.(8分)据大数据统计显示,某省2014年公民出境旅游人数约100万人次,2015年与2016年两年公民出境旅游总人数约264万人次. 若这两年公民出境旅游总人数逐年递增,请解答下列问题: (1)求这两年该省公民出境旅游人数的年平均增长率;(2)如果2017年仍保持相同的年平均增长率,请你预测2017年该省公民出境旅游人数约多少万人次?23.(8分)如图,小明要测量河内小岛B 到河边公路AD 的距离,在点A 处测得∠BAD =37°,沿AD 方向前进150米到达点C ,测得∠BCD =45°. 求小岛B 到河边公路AD 的距离. (参考数据:sin37°≈ 0.60,cos37° ≈ 0.80,tan37° ≈0.75)24.(8分)已知二次函数y =x 2-2m x +m 2+m +1的图像与x 轴交于A 、B 两点,点C 为顶点. (1)求m 的取值范围;(2)若将二次函数的图像关于x 轴翻折,所得图像的顶点为D ,若CD =8.求四边形ACBD 的面积。

2018年中考九年级数学模拟试卷及答案

2018年中考九年级数学模拟试卷及答案

中考九年级数学模拟试卷(满分150分,考试时间100分钟)考生注意:考生务必按答题要求在答题纸规定的位置上作答,.本试卷含三个大题,共25题.答题时,1在草稿纸、本试卷上答题一律无效..除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或2计算的主要步骤.24分)题,每题4分,满分一、选择题(本大题共6a.下列二次根式中,与1是同类二次根式的是(▲)2a?4a42a a(;(CD)(A.));;(B)名学生报名参加班级选拔赛,他们72.某班要推选学生参加学校的“诗词达人”比赛,有名参加学校比赛.小红要判断自己能否参加学校3的选拔赛成绩各不相同,现取其中前名学生成绩的(▲)比赛,在知道自己成绩的情况下,还需要知道这7)方差.(D)平均数;(B)中位数;(C(A)众数;所示,这个13.下列四个不等式组中,其中一个不等式组的解集在数轴上的正确表示如图不等式组是(▲),?2?2,xx?2,x?2,x????)(DC(B)()(A)????.3;x???3;x??3xx??3;?????1图那么下列平移过程正确的是(▲)l:,4.如果将直线l:平移后得到直线x2?2y?y?2x21个单位;l向右平移2向左平移2个单位;(B)将l(A)将11个单位.l向下平移2个单位;(D)将C()将l向上平移211所按如图230°和60°角的三角板ABC5.将一把直尺和一块含BAF的大小为(▲)=40°,那么∠示的位置放置,如果∠CDE(B)15°;(A)10°;.)25°(DC()20°; 2图O不重在射线OM上(点P与点AOD、直线ABCD相交于点O,射线OM平分∠,点P6.的位置关系是(▲)相离,那么圆ABP与直线CD合),如果以点P为圆心的圆与直线)不确定(D.C()相交;)相切;()相离;(A B分)分,满分二、填空题(本大题共12题,每题448共页第九年级数学1 4页11.计算:▲.7??aa222的值是▲.,且,那么8.如果8?a?bb?b?4?aa.方程的根是▲.9 22x?4?k y x10.已知反比例函数,在其图像所在的每个象限内,的值增大而减的值随)?y?0(k x小,那么它的图像所在的象限是第▲象限.2x2y?),那么所得新抛物线.如果将抛物线平移,使平移后的抛物线顶点坐标为(1,211▲.的表达式是如果将这样相同厚度的书叠起来的将12.6本相同厚度的书叠起来,它们的高度是9厘米.厘米,那么这些书有▲本.高度是42这八个数中,任意抽取一个数,这个数恰好是合数的概率84,5,6,7,,13.从12,3,是▲.名学生进行调查,14.某校为了了解学生双休日参加社会实践活动的情况,随机抽取了100并绘成如图3所示的频数分布直方图.已知该校共有1000名学生,据此估计,该校双休日参加社会实践活动时间在2~2.5小时之间的学生数大约是全体学生数的▲(填百分数).a?AD,的中点,设,AD//BCBC=2AD,E、F分别是边AD、BC415.如图,在梯形ABCD中,b?ABEFba 的线性组合表示)等于.▲(结果用,那么、4 ,那么它的一条对角线长是▲.16.如果一个矩形的面积是40,两条对角线夹角的正切值是3AA外,且圆在圆A、C为圆心画圆,如果点B17.已知正方形ABCD,AB=1,分别以点r的取值范围是▲.与圆C外切,那么圆C的半径长??)90????(0'AB绕,边AC,将△18.如图5ABC的边AB绕着点A顺时针旋转得到????)90?(0???'AC??90?′C′得到时,,联结B′着点A逆时针旋转C′.当我们称△A B a,那么它的“双旋三角形”的面.ABC的“双旋三角形”如果等边△ABC的边长为是△a.积是▲(用含的代数式表示)A人数30E DA B′24108′C C CB B F3 2 2.5 1 0.5 1.5 时间(小时)5图 4图图3三、解答题(本大题共7题,满分78分)九年级数学第2页共4页(本题满分10分)19.1312?1.计算:)(8??1)??(2232?3.(本题满分10分)20,?2x?y2?解方程组:?22.1?2xy?y?x?5分)21.(本题满分10分,每小题满分各5BD⊥AC,垂足为点,已知:如图6,在△ABC中,AB=13AC=8,D,,?cos?BAC13AAEBD的中点,联结并延长,交边BC于点F.E是EAD?求(1) 的余切值;BFD (2) 求的值.E CFCB F22.(本题满分10分,第(1)小题满分4分,第(2)小题满分6分) 6图某学校要印刷一批艺术节的宣传资料,在需要支付制版费100元和每份资料0.3元印刷费的前提下,甲、乙两个印刷厂分别提出了不同的优惠条件.甲印刷厂提出:所有资料的印刷费可按9折收费;乙印刷厂提出:凡印刷数量超过200份的,超过部分的印刷费可按8折收费.yy xx关于份,支付甲印刷厂的费用为写出(1)设该学校需要印刷艺术节的宣传资料元,的函数关系式,并写出它的定义域;(2)如果该学校需要印刷艺术节的宣传资料600份,那么应该选择哪家印刷厂比较优惠?23.(本题满分12分,每小题满分各6分)已知:如图7,梯形ABCD,DC∥AB,对角线AC平分∠BCD,CDA.EA⊥AC,垂足为点在边点ECB的延长线上,的中点;)求证:B是EC(12,若,相交于点(2)分别延长CD、EAFECAC??DCBA求证:.FC:ACAD:AF?7图 E分,每小题满分各4分)12.24(本题满分九年级数学第共3页4页x22xOy)?mx?3m0(my??x?2轴交于点(如图8)已知平面直角坐标系,抛物线与y,顶点为DB 左侧),与,对称轴轴交于点CA、B(点A在点yl,联结DC为直BC,过点C作直.的垂线,垂足为点E )时,C(0,3(1)当点求这条抛物线的表达式和顶点坐标;①1x;求证:∠②DCE=∠BC1m(2的值.)当CB平分∠DCO时,求8 图分)小题满分4小题满分5分,第(3)分,第25.(本题满分14分,第(1)小题满分5(2)的ACC 在半径OB上,中,∠已知:如图9,在半径为2的扇形AOBAOB=90°,点、CD.于点垂直平分线交OA于点D,交弧ABE,联结BE 的正弦值;(1)若C是半径OB中点,求∠OCD2BC?BO?BE AB是弧的中点,求证:;2()若E 的长.是以DCECD为腰的等腰三角形时,求CD)联结(3CE,当△ AA AEDBBBO OOC备用图备用图9图初三调研考数学卷参考答案九年级数学第4页共4页题,满分24分)一、选择题:(本大题共8 A.4.C;5.A;6.1.C ;2.B;3.D ;分)题,满分二、填空题:(本大题共124814x?.10 8.2;9..一、三;7;;a2322?1)y?2(x?14.28%;;28.;13..11 ;1281122-1?r?2ba?...10;17 .;15 .1816 ;a24 三.(本大题共7题,满分78分)分)(本题满分1019.13121?计算:.)??8?(2(?1)232?3 2解原式分=.……………………………………………各32?3?2?22?3?2 2分.……………………………………………………………………………=2?3 10分)20.(本题满分①2,x?y?2?解方程组:?22②1.?x2xy?y??21??x?y1y?x?1(x?)?y,得分…………………………或3解:将方程②变形为,2?y?y?2,2x2x???由此,原方程组可以化为两个二元一次方程组:分………3??.1;??x?yx?y?1??,?3?1,xx??21分别解这两个二元一次方程组,得到原方程组的解是:4分………??.?4;y?y?0??21分,每小题满分各5分)21. (本题满分10 AC1()∵BD⊥,∴∠ADB=.90°5在Rt△ADB中,,AB=13,cos?BAC?135 分∴.………………………………………………2513???cosAD?AB??BAC1322?ADAB12?BD?. (1)∵E是BD的中点,∴DE=6.AD5.…………………………………………2中,Rt在△ADE分??EAD?cot DE6九年级数学第5页共4页5.即的余切值是EAD?6 1分,………………………………………DQ//AF,交边BC于点Q (2)过点D作=3.∴CD=8,AD=5,∵AC3CQCD 分.………………………………………………………∵DQ//AF ,∴2??5ADFQ 分……………………………………1DQ,∴BF=FQ.∵E是BD的中点,EF//5BF 分.……………………………………………………………………………∴1?8CF分)(2)小题满分6分,第(1)小题满分4分,第22.(本题满分10%903x??100?0.y 分,……………………………………2解:(1)由题意可知,y x x270.y?100?之间的函数关系式是:分,………………………………∴1与x0x?分为整数.…………………………………………………且1它的定义域是:262??600?0.27y?100时,支付甲印刷厂的费用:分.…2(元)(2)当600?x256400??80%?30.?200?0.3100?3支付乙印刷厂的费用为:分(元).………256<262,∵1分∴当该学校需要印刷艺术节的宣传资料600份时,应该选择乙印刷厂比较优惠.…6分).(本题满分12分,每小题满分各23证明:(1)∵DC∥AB,∴∠DCB=∠CAB.……………………………………………1分∵AC平分∠BCD,∴∠DCB=∠BCA.∴∠CAB=∠BCA.………………………………………………………………………1分∴BC=BA.………………………………………………………………………………1分∵EA⊥AC,∴∠CAB+∠BAE=90°,∠BCA+∠E=90°. ∴∠BAE=∠E.…………1分∴BA=BE.…………………………………………………………………………………1分∴BC=BE,即B是EC的中点.………………………………………………………1分2,∴)∵.(2EC??DCACACEC::DC?AC∵∠DCA=∠ACE,∴△DCA∽△ACE.………………………………………………2分∴.……………………………………………………………………1分EC:AE?ACAD:∵∠FCA=∠ECA,AC=AC,∠FAC=∠EAC,∴△FCA≌△ECA.…………………2分∴AE=AF,EC=FC.∴.…………………………………………………………………1分FCAD:AF?AC:24.(本题满分12分,每小题4分)九年级数学第6页共4页22233m?)?m0(my??x?2mx?3)可得:,(0(1)①由抛物线,3经过点C1?m?∴分(负数不符合题意,舍去).......................................................123??2y??xx ∴抛物线的表达式:分. (1)分).…………………………………………………………………2∴顶点坐标D(1,42x3x??x??2y B左侧),A、B(点A与在点轴交于点②由抛物线1x?l是直线,………………………………………………,对称轴1分可得B(3,0)l DE=CE=1.1,3)∵CE⊥直线,即,∴E(DE中,△DEC∴在.Rt???1DCEtan CECO 中,,Rt∵在△BOC1tan?OBC?? BOOBC???DCE2分∴=45°.………………………………………………………………OBC???BCE.∵CE//OB,∴1分BCE.………………………………………………………………………∴∠DCE=∠x22y)0m?2mx?3m?(y??x与在点B左侧)与,轴交于点A、B(点A(2) 由抛物线222l)3mm)(Em,D(m,4)m0C(,3),0B(3m对称轴为直线可得:,,,,.,轴交点C,顶点为D22m?DE?m3COmBO?3?CEm .…………………………………,,1∴分,2mDEm??tan?DCE?在Rt△DEC中,.mCE2m3COm??OBC??tan中,BOC.在Rt△m3BO分OBC.…………………………………1OBC∵∠DCE、∠都是锐角,∴∠DCE=∠OBCBCE???.//OB,∴∵CE∠OBC.∴∠DCB=2∠BCE=2OBC.∠DCB=2∠OCB=∵CB 平分∠DCO,∴∠分OBC=30°.……………………………………………1∵∠OCB+∠OBC=90°,∴∠33?tan?OBC,∴.…………………………………………………1分∴?m333525114.25(本题满分分,第()小题分,第()小题分,第()小题4分)页7 九年级数学第4 共页OC=1.C是半径OB中点,BO=2,∴(1)∵.………………………………………………………1分∵DE垂直平分AC,∴AD=CD a aaDC?DO?2?设AD=,,则,5222222 2解得:在Rt△DOC 中,分.,即….DCOCDO??a12(?a)???a435?2?DO?∴.443DO中,△DOC2分在Rt.……………………………………………??OCDsin?5DC3.即∠OCD的正弦值是5. EO、EC、(2)联结AE 分AE=BE.……………………………………………………1∵E是弧AB的中点,∴分AE=EC.……………………………………………………1∵DE垂直平分AC,∴.EBC=∠ECB∴BE=EC.∴∠分.……………………………………………………1∵OE=OB,∴∠EBC=∠OEB ∠∴∠ECB=OEB.……………………………………………1分=∠EBO,∴△BCE∽△BEO.又∵∠CBEBEBC2BC?BO?BE ……………………………………………………1分∴..∴?BOBE、是以CD3)联结AE为腰的等腰三角形可得:OE,由△DCE(DEA.,∴ED=AD.∴∠DAE=∠①当CD=ED时,∵CD=AD B重合.D与点O重合,点C与点∵OA=OE,∴∠DAE=∠OEA.∴点2分CD=BO=2.…………………………………………………………………………∴.CD=AD=CE=AE时,∵②当CD=CECD=AD,CE=AE,∴∴四边形ADCE是菱形,∴AD//EC..90°,∴∠COE=90°∵∠AOB=2222,在设CD=Rt△COE中,.a?ECEO??4CO?a DOC 中,.在Rt△22222)a?CO??CDDO?(?a22222(负数舍去).∴.整理得,解得08?4?a?a22a??3?)a2aa??(??4 2分CD∴=.………………………………………………………………………2?32或时,△DCE是以CD2综上所述,当CD的长是为腰的等腰三角形.232?九年级数学第8页共4页九年级数学第9页共4页。

2018年浙江省中考数学模拟试卷和答案

2018年浙江省中考数学模拟试卷和答案

浙江省2018年中考数学模拟试卷与答案一、选择题(共16小题.1~6小题.每小题2分;7~16小题.每小题2分.共42分.在每小题给出的四个选项中.只有一项是符合题目要求的)1.(2分)﹣2是2的()A .倒数B.相反数C.绝对值D.平方根考点:相反数.分析:根据只有符号不同的两个数互为相反数.可得一个数的相反数.解答:解:﹣2是2的相反数.故选:B.点评:本题考查了相反数.在一个数的前面加上负号就是这个数的相反数.2.(2分)如图.△ABC中.分别是边的中点.若DE=2.则BC=()A .2B.3C.4D.5考点:三角形中位线定理.分析:根据三角形的中位线平行于第三边并且等于第三边的一半可得BC=2DE.解答:解:∵分别是边的中点.∴DE是△ABC的中位线.∴BC=2DE=2×2=4.故选C.点评:本题考查了三角形的中位线平行于第三边并且等于第三边的一半.熟记定理是解题的关键.3.(2分)计算:852﹣152=()A .70B.700C.4900D.7000考点:因式分解-运用公式法.分析:直接利用平方差进行分解.再计算即可.解答:解:原式=(85+15)(85﹣15)=100×70=7000.故选:D.点评:此题主要考查了公式法分解因式.关键是掌握平方差公式:a2﹣b2=(a+b)(a﹣b).4.(2分)如图.平面上直线分别过线段OK两端点(数据如图).则相交所成的锐角是()A .20°B.30°C.70°D.80°考点:三角形的外角性质分析:根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.解答:解:相交所成的锐角=100°﹣70°=30°.故选B.点评:本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质.熟记性质是解题的关键.5.(2分)是两个连续整数.若a<<b.则分别是()A .B.C.D.考点:估算无理数的大小.分析:根据.可得答案.解答:解:.故选:A.点评:本题考查了估算无理数的大小.是解题关键.6.(2分)如图.直线l经过第二、三、四象限.l的解析式是y=(m﹣2)x+n.则m的取值范围在数轴上表示为()A .B.C.D.考点:一次函数图象与系数的关系;在数轴上表示不等式的解集专题:数形结合.分析:根据一次函数图象与系数的关系得到m﹣2<0且n<0.解得m<2.然后根据数轴表示不等式的方法进行判断.解答:解:∵直线y=(m﹣2)x+n经过第二、三、四象限.∴m﹣2<0且n<0.∴m<2且n<0故选C.点评:本题考查了一次函数图象与系数的关系:一次函数y=kx+b(k、b为常数.k≠0)是一条直线.当k>0.图象经过第一、三象限.y随x的增大而增大;当k<0.图象经过第二、四象限.y随x 的增大而减小;图象与y轴的交点坐标为().也考查了在数轴上表示不等式的解集.7.(3分)化简:﹣=()A .0B.1C.x D.考点:分式的加减法.专题:计算题.分析:原式利用同分母分式的减法法则计算.约分即可得到结果.解答:解:原式==x.故选C点评:此题考查了分式的加减法.熟练掌握运算法则是解本题的关键.8.(3分)如图.将长为2、宽为1的矩形纸片分割成n个三角形后.拼成面积为2的正方形.则n≠()A .2B.3C.4D.5考点:图形的剪拼分析:利用矩形的性质以及正方形的性质.结合勾股定理得出分割方法即可.解答:解:如图所示:将长为2、宽为1的矩形纸片分割成n个三角形后.拼成面积为2的正方形.则n可以为:故n≠2.故选:A.点评:此题主要考查了图形的剪拼.得出正方形的边长是解题关键.9.(3分)某种正方形合金板材的成本y(元)与它的面积成正比.设边长为x厘米.当x=3时.y=18.那么当成本为72元时.边长为()A .6厘米B.12厘米C.24厘米D.36厘米考点:一次函数的应用.分析:设y与x之间的函数关系式为y=kx2.由待定系数法就可以求出解析式.当y=72时代入函数解析式就可以求出结论.解答:解:设y与x之间的函数关系式为y=kx2.由题意.得18=9k.解得:k=2.∴y=2x2.当y=72时.72=2x2.∴x=6.故选A.点评:本题考查了待定系数法求函数的解析式的运用.根据解析式由函数值求自变量的值的运用.解答时求出函数的解析式是关键.10.(3分)如图1是边长为1的六个小正方形组成的图形.它可以围成图2的正方体.则图1中小正方形顶点围成的正方体上的距离是()A .0B.1C.D.考点:展开图折叠成几何体分析:根据展开图折叠成几何体.可得正方体.根据勾股定理.可得答案.解答:解;AB是正方体的边长.AB=1.故选:B.点评:本题考查了展开图折叠成几何体.勾股定理是解题关键.11.(3分)某小组做“用频率估计概率”的实验时.统计了某一结果出现的频率.绘制了如图的折线统计图.则符合这一结果的实验最有可能的是()A.在“石头、剪刀、布”的游戏中.小明随机出的是“剪刀”B.一副去掉大小王的普通扑克牌洗匀后.从中任抽一张牌的花色是红桃C.暗箱中有1个红球和2个黄球.它们只有颜色上的区别.从中任取一球是黄球D.掷一个质地均匀的正六面体骰子.向上的面点数是4考点:利用频率估计概率;折线统计图.分析:根据统计图可知.试验结果在附近波动.即其概率P≈.计算四个选项的概率.约为者即为正确答案.解答:解:A、在“石头、剪刀、布”的游戏中.小明随机出的是“剪刀“的概率为.故此选项错误;B、一副去掉大小王的普通扑克牌洗匀后.从中任抽一张牌的花色是红桃的概率是:=;故此选项错误;C、暗箱中有1个红球和2个黄球.它们只有颜色上的区别.从中任取一球是黄球的概率为.故此选项错误;D、掷一个质地均匀的正六面体骰子.向上的面点数是4的概率为≈.故此选项正确.故选:D.点评:此题考查了利用频率估计概率.大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.12.(3分)如图.已知△ABC(AC<BC).用尺规在BC上确定一点P.使PA+PC=BC.则符合要求的作图痕迹是()A .B.C.D.考点:作图—复杂作图分析:要使PA+PC=BC.必有PA=PB.所以选项中只有作AB的中垂线才能满足这个条件.故D正确.解答:解:D选项中作的是AB的中垂线.∴PA=PB.∵PB+PC=BC.∴PA+PC=BC故选:D.点评:本题主要考查了作图知识.解题的关键是根据作图得出PA=PB.13.(3分)在研究相似问题时.甲、乙同学的观点如下:甲:将边长为3、4、5的三角形按图1的方式向外扩张.得到新三角形.它们的对应边间距为1.则新三角形与原三角形相似.乙:将邻边为3和5的矩形按图2的方式向外扩张.得到新的矩形.它们的对应边间距均为1.则新矩形与原矩形不相似.对于两人的观点.下列说法正确的是()A两人都对B两人都不对C甲对.乙不对D甲不对.乙对....考点:相似三角形的判定;相似多边形的性质分析:甲:根据题意得:AB∥A′B′.AC∥A′C′.BC∥B′C′.即可证得∠A=∠A′.∠B=∠B′.可得△ABC∽△A′B′C′;乙:根据题意得:AB=CD==BC=5.则A′B′=C′D′=3+2=′D′=B′C′=5+2=7.则可得.即新矩形与原矩形不相似.解答:解:甲:根据题意得:AB∥A′B′.AC∥A′C′.BC∥B′C′.∴∠A=∠A′.∠B=∠B′.∴△ABC∽△A′B′C′.∴甲说法正确;乙:∵根据题意得:AB=CD==BC=5.则A′B′=C′D′=3+2=′D′=B′C′=5+2=7.∴..∴.∴新矩形与原矩形不相似.∴乙说法正确.故选A.点评:此题考查了相似三角形以及相似多边形的判定.此题难度不大.注意掌握数形结合思想的应用.14.(3分)定义新运算:a⊕b=例如:4⊕5=.4⊕(﹣5)=.则函数y=2⊕x(x≠0)的图象大致是()A .B.C.D.考点:反比例函数的图象专题:新定义.分析:根据题意可得y=2⊕x=.再根据反比例函数的性质可得函数图象所在象限和形状.进而得到答案.解答:解:由题意得:y=2⊕x=.当x>0时.反比例函数y=在第一象限.当x<0时.反比例函数y=﹣在第二象限.又因为反比例函数图象是双曲线.因此D选项符合.故选:D.点评:此题主要考查了反比例函数的性质.关键是掌握反比例函数的图象是双曲线.15.(3分)如图.边长为a的正六边形内有两个三角形(数据如图).则=()A .3B.4C.5D.6考点:正多边形和圆分析:先求得两个三角形的面积.再求出正六边形的面积.求比值即可.解答:解:如图.∵三角形的斜边长为a.∴两条直角边长为.∴S空白=a•a=a2.∵AB=a.∴OC= a.∴S正六边形=6×a•a=a2.∴S阴影=S正六边形﹣S空白=a2﹣a2=a2.∴==5.故选C.点评:本题考查了正多边形和圆.正六边形的边长等于半径.面积可以分成六个等边三角形的面积来计算.16.(3分)五名学生投篮球.规定每人投20次.统计他们每人投中的次数.得到五个数据.若这五个数据的中位数是6.唯一众数是7.则他们投中次数的总和可能是()A .20B.28C.30D.31考点:众数;中位数.分析:找中位数要把数据按从小到大的顺序排列.位于最中间的一个数或两个数的平均数为中位数.众数是一组数据中出现次数最多的数据.注意众数可以不止一个.则最大的三个数的和是:6+7+7=20.两个较小的数一定是小于5的非负整数.且不相等.则可求得五个数的和的范围.进而判断.解答:解:中位数是6.唯一众数是7.则最大的三个数的和是:6+7+7=20.两个较小的数一定是小于5的非负整数.且不相等.则五个数的和一定大于20且小于29.故选B.点评:本题属于基础题.考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚.计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序.然后再根据奇数和偶数个来确定中位数.如果数据有奇数个.则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.二、填空题(共4小题.每小题3分.满分12分)17.(3分)计算:= 2 .考点:二次根式的乘除法.分析:本题需先对二次根式进行化简.再根据二次根式的乘法法则进行计算即可求出结果.解答:解:.=2×.=2.故答案为:2.点评:本题主要考查了二次根式的乘除法.在解题时要能根据二次根式的乘法法则.求出正确答案是本题的关键.18.(3分)若实数满足|m﹣2|+(n﹣2014)2=0.则m﹣1+n0= .考点:负整数指数幂;非负数的性质:绝对值;非负数的性质:偶次方;零指数幂.分析:根据绝对值与平方的和为0.可得绝对值与平方同时为0.根据负整指数幂、非0的0次幂.可得答案.解解:|m﹣2|+(n﹣2014)2=0.答:m﹣2=﹣2014=0.m==2014.m﹣1+n0=2﹣1+20140=+1=.故答案为:.点评:本题考查了负整指数幂.先求出m、n的值.再求出负整指数幂、0次幂.19.(3分)如图.将长为8cm的铁丝尾相接围成半径为2cm的扇形.则S扇形= 4 cm2.考点:扇形面积的计算.分析:根据扇形的面积公式S扇形=×弧长×半径求出即可.解答:解:由题意知.弧长=8cm﹣2cm×2=4 cm.扇形的面积是×4cm×2cm=4cm2.故答案为:4.点评:本题考查了扇形的面积公式的应用.主要考查学生能否正确运用扇形的面积公式进行计算.题目比较好.难度不大.20.(3分)如图.点在数轴上表示的数分别是将线段OA分成100等份.其分点由左向右依次为 (99)再将线段OM1.分成100等份.其分点由左向右依次为 (99)继续将线段ON1分成100等份.其分点由左向右依次为. (99)则点P37所表示的数用科学记数法表示为×10﹣6 .考点:规律型:图形的变化类;科学记数法—表示较小的数.分析:由题意可得M1表示的数为×=10﹣表示的数为0×10﹣3=10﹣表示的数为10﹣5×=10﹣7.进一步表示出点P37即可.解答:解:M1表示的数为×=10﹣3.N1表示的数为0×10﹣3=10﹣5.P1表示的数为10﹣5×=10﹣7.P37=37×10﹣7=×10﹣6.故答案为:×10﹣6.点评:此题考查图形的变化规律.结合图形.找出数字之间的运算方法.找出规律.解决问题.三、解答题(共6小题.满分66分.解答应写出文字说明、证明过程或演算步骤)21.(10分)嘉淇同学用配方法推导一元二次方程ax2+bx+c=0(a≠0)的求根公式时.对于b2﹣4ac >0的情况.她是这样做的:由于a≠0.方程ax2++bx+c=0变形为:x2+x=﹣.…第一步x2+x+()2=﹣+()2.…第二步(x+)2=.…第三步x+=(b2﹣4ac>0).…第四步x=.…第五步嘉淇的解法从第四步开始出现错误;事实上.当b2﹣4ac>0时.方程ax2+bx+c=0(a≠O)的求根公式是x=.用配方法解方程:x2﹣2x﹣24=0.考点:解一元二次方程-配方法专题:阅读型.分析:第四步.开方时出错;把常数项24移项后.应该在左右两边同时加上一次项系数﹣2的一半的平方.解答:解:在第四步中.开方应该是x+=±.所以求根公式为:x=.故答案是:四;x=;用配方法解方程:x2﹣2x﹣24=0解:移项.得x2﹣2x=24.配方.得x2﹣2x+1=24+1.即(x﹣1)2=25.开方得x﹣1=±5.∴x1==﹣4.点评:本题考查了解一元二次方程﹣﹣配方法.用配方法解一元二次方程的步骤:(1)形如x2+px+q=0型:第一步移项.把常数项移到右边;第二步配方.左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步.直接开方即可.(2)形如ax2+bx+c=0型.方程两边同时除以二次项系数.即化成x2+px+q=0.然后配方.22.(10分)如图是三个垃圾存放点.点分别位于点A的正北和正东方向.AC=100米.四人分别测得∠C的度数如下表:甲乙丙丁∠C(单位:度)34363840他们又调查了各点的垃圾量.并绘制了下列尚不完整的统计图2.图3:(1)求表中∠C度数的平均数:(2)求A处的垃圾量.并将图2补充完整;(3)用(1)中的作为∠C的度数.要将A处的垃圾沿道路AB都运到B处.已知运送1千克垃圾每米的费用为元.求运垃圾所需的费用.(注:sin37°=)考点:解直角三角形的应用;扇形统计图;条形统计图;算术平均数分析:(1)利用平均数求法进而得出答案;(2)利用扇形统计图以及条形统计图可得出C处垃圾量以及所占百分比.进而求出垃圾总量.进而得出A处垃圾量;(3)利用锐角三角函数得出AB的长.进而得出运垃圾所需的费用.解答:解:(1)==37;(2)∵C处垃圾存放量为:320kg.在扇形统计图中所占比例为:50%.∴垃圾总量为:320÷50%=640(kg).∴A处垃圾存放量为:(1﹣50%﹣%)×640=80(kg).占%.补全条形图如下:(3)∵AC=100米.∠C=37°.∴tan37°=.∴AB=ACtan37°=100×=75(m).∵运送1千克垃圾每米的费用为元.∴运垃圾所需的费用为:75×80×=30(元).答:运垃圾所需的费用为30元.点评:此题主要考查了平均数求法以及锐角三角三角函数关系以及条形统计图与扇形统计图的综合应用.利用扇形统计图与条形统计图获取正确信息是解题关键.23.(11分)如图.△ABC中.AB=AC.∠BAC=40°.将△ABC绕点A按逆时针方向旋转100°.得到△ADE.连接交于点F.(1)求证:△ABD≌△ACE;(2)求∠ACE的度数;(3)求证:四边形ABEF是菱形.考点:全等三角形的判定与性质;菱形的判定;旋转的性质专题:计算题.分析:(1)根据旋转角求出∠BAD=∠CAE.然后利用“边角边”证明△ABD和△ACE全等.(2)根据全等三角形对应角相等.得出∠ACE=∠ABD.即可求得.(3)根据对角相等的四边形是平行四边形.可证得四边形ABEF是平行四边形.然后依据邻边相等的平行四边形是菱形.即可证得.解答:(1)证明:∵ABC绕点A按逆时针方向旋转100°.∴∠BAC=∠DAE=40°.∴∠BAD=∠CAE=100°.又∵AB=AC.∴AB=AC=AD=AE.在△ABD与△ACE中∴△ABD≌△ACE(SAS).(2)解:∵∠CAE=100°.AC=AE.∴∠ACE=(180°﹣∠CAE)=(180°﹣100°)=40°;(3)证明:∵∠BAD=∠CAE=140°AB=AC=AD=AE.∴∠ABD=∠ADB=∠ACE=∠AEC=20°.∵∠BAE=∠BAD+∠DAE=160°.∴∠BFE=360°﹣∠DAE﹣∠ABD﹣∠AEC=160°.∴∠BAE=∠BFE.∴四边形ABEF是平行四边形.∵AB=AE.∴平行四边形ABEF是菱形.点评:此题考查了全等三角形的判定与性质.等腰三角形的性质以及菱形的判定.熟练掌握全等三角形的判定与性质是解本题的关键.24.(11分)如图.2×2网格(每个小正方形的边长为1)中有、九个格点.抛物线l的解析式为y=(﹣1)nx2+bx+c(n为整数).(1)n为奇数.且l经过点H()和C().求的值.并直接写出哪个格点是该抛物线的顶点;(2)n为偶数.且l经过点A()和B().通过计算说明点F()和H()是否在该抛物线上;(3)若l经过这九个格点中的三个.直接写出所有满足这样条件的抛物线条数.考点:二次函数综合题专题:压轴题.分析:(1)根据﹣1的奇数次方等于﹣1.再把点H、C的坐标代入抛物线解析式计算即可求出b、c 的值.然后把函数解析式整理成顶点式形式.写出顶点坐标即可;(2)根据﹣1的偶数次方等于1.再把点A、B的坐标代入抛物线解析式计算即可求出b、c 的值.从而得到函数解析式.再根据抛物线上点的坐标特征进行判断;(3)分别利用(1)(2)中的结论.将抛物线平移.可以确定抛物线的条数.解答:解:(1)n为奇数时.y=﹣x2+bx+c.∵l经过点H()和C().∴.解得.∴抛物线解析式为y=﹣x2+2x+1.y=﹣(x﹣1)2+2.∴顶点为格点E();(2)n为偶数时.y=x2+bx+c.∵l经过点A()和B().∴.解得.∴抛物线解析式为y=x2﹣3x+2.当x=0时.y=2.∴点F()在抛物线上.点H()不在抛物线上;(3)所有满足条件的抛物线共有8条.当n为奇数时.由(1)中的抛物线平移又得到3条抛物线.如答图3﹣1所示;当n为偶数时.由(2)中的抛物线平移又得到3条抛物线.如答图3﹣2所示.点评:本题是二次函数综合题型.主要利用了待定系数法求二次函数解析式.二次函数图象上点的坐标特征.二次函数的对称性.要注意(3)抛物线有开口向上和开口向下两种情况.25.(11分)图1和图2中.优弧所在⊙O的半径为=2.点P为优弧上一点(点P不与重合).将图形沿BP折叠.得到点A的对称点A′.(1)点O到弦AB的距离是 1 .当BP经过点O时.∠ABA′=60 °;(2)当BA′与⊙O相切时.如图2.求折痕的长:(3)若线段BA′与优弧只有一个公共点B.设∠ABP=α.确定α的取值范围.考点:圆的综合题;含30度角的直角三角形;勾股定理;垂径定理;切线的性质;翻折变换(折叠问题);锐角三角函数的定义专题:综合题.分析:(1)利用垂径定理和勾股定理即可求出点O到AB的距离;利用锐角三角函数的定义及轴对称性就可求出∠ABA′.(2)根据切线的性质得到∠OBA′=90°.从而得到∠ABA′=120°.就可求出∠ABP.进而求出∠OBP=30°.过点O作OG⊥BP.垂足为G.容易求出OG、BG的长.根据垂径定理就可求出折痕的长.(3)根据点A′的位置不同.分点A′在⊙O内和⊙O外两种情况进行讨论.点A′在⊙O内时.线段BA′与优弧都只有一个公共点B.α的范围是0°<α<30°;当点A′在⊙O的外部时.从BA′与⊙O相切开始.以后线段BA′与优弧都只有一个公共点B.α的范围是60°≤α<120°.从而得到:线段BA′与优弧只有一个公共点B时.α的取值范围是0°<α<30°或60°≤α<120°.解答:解:(1)①过点O作OH⊥AB.垂足为H.连接OB.如图1①所示.∵OH⊥=2.∴AH=BH=.∵OB=2.∴OH=1.∴点O到AB的距离为1.②当BP经过点O时.如图1②所示.∵OH==⊥AB.∴sin∠OBH==.∴∠OBH=30°.由折叠可得:∠A′BP=∠ABP=30°.∴∠ABA′=60°.故答案为:1、60.(2)过点O作OG⊥BP.垂足为G.如图2所示.∵BA′与⊙O相切.∴OB⊥A′B.∴∠OBA′=90°.∵∠OBH=30°.∴∠ABA′=120°.∴∠A′BP=∠ABP=60°.∴∠OBP=30°.∴OG=OB=1.∴BG=.∵OG⊥BP.∴BG=PG=.∴BP=2.∴折痕的长为2.(3)若线段BA′与优弧只有一个公共点B.Ⅰ.当点A′在⊙O的内部时.此时α的范围是0°<α<30°.Ⅱ.当点A′在⊙O的外部时.此时α的范围是60°≤α<120°.综上所述:线段BA′与优弧只有一个公共点B时.α的取值范围是0°<α<30°或60°≤α<120°.点评:本题考查了切线的性质、垂径定理、勾股定理、三角函数的定义、30°角所对的直角边等于斜边的一半、翻折问题等知识.考查了用临界值法求α的取值范围.有一定的综合性.第(3)题中α的范围可能考虑不够全面.需要注意.26.(13分)某景区内的环形路是边长为800米的正方形ABCD.如图1和图2.现有1号、2号两游览车分别从出口A和景点C同时出发.1号车顺时针、2号车逆时针沿环形路连续循环行驶.供游客随时免费乘车(上、下车的时间忽略不计).两车速度均为200米/分.探究:设行驶吋间为t分.(1)当0≤t≤8时.分别写出1号车、2号车在左半环线离出口A的路程(米)与t(分)的函数关系式.并求出当两车相距的路程是400米时t的值;(2)t为何值时.1号车第三次恰好经过景点C并直接写出这一段时间内它与2号车相遇过的次数.发现:如图2.游客甲在BC上的一点K(不与点重合)处候车.准备乘车到出口A.设CK=x米.情况一:若他刚好错过2号车.便搭乘即将到来的1号车;情况二:若他刚好错过1号车.便搭乘即将到来的2号车.比较哪种情况用时较多(含候车时间)决策:己知游客乙在DA上从D向出口A走去.步行的速度是50米/分.当行进到DA上一点P (不与点重合)时.刚好与2号车迎面相遇.(1)他发现.乘1号车会比乘2号车到出口A用时少.请你简要说明理由:(2)设PA=s(0<s<800)米.若他想尽快到达出口A.根据s的大小.在等候乘1号车还是步行这两种方式中.他该如何选择考点:一次函数的应用;一元一次方程的应用;一元一次不等式组的应用.分析:探究:(1)由路程=速度×时间就可以得出(米)与t(分)的函数关系式.再由关系式就可以求出两车相距的路程是400米时t的值;(2)求出1号车3次经过A的路程.进一步求出行驶的时间.由两车第一次相遇后每相遇一次需要的时间就可以求出相遇次数;发现:分别计算出情况一的用时和情况二的用时.在进行大小比较就可以求出结论决策:(1)根据题意可以得出游客乙在AD上等待乘1号车的距离小于边长.而成2号车到A 出口的距离大于3个边长.进而得出结论;(2)分类讨论.若步行比乘1号车的用时少.就有.得出s<320.就可以分情况得出结论.解答:解:探究:(1)由题意.得y1==﹣200t+1600当相遇前相距400米时.﹣200t+1600﹣200t=400. t=3.当相遇后相距400米时.200t﹣(﹣200t+1600)=400.t=5.答:当两车相距的路程是400米时t的值为3分钟或5分钟;(2)由题意.得1号车第三次恰好经过景点C行驶的路程为:800×2+800×4×2=8000.∴1号车第三次经过景点C需要的时间为:8000÷200=40分钟.两车第一次相遇的时间为:1600÷400=4.第一次相遇后两车每相遇一次需要的时间为:800×4÷400=8.∴两车相遇的次数为:(40﹣4)÷8+1=5次.∴这一段时间内它与2号车相遇的次数为:5次;发现:由题意.得情况一需要时间为:=16﹣.情况二需要的时间为:=16+∵16﹣<16+∴情况二用时较多.决策:(1)∵游客乙在AD边上与2号车相遇.∴此时1号车在CD边上.∴乘1号车到达A的路程小于2个边长.乘2号车的路程大于3个边长.∴乘1号车的用时比2号车少.(2)若步行比乘1号车的用时少..∴s<320.∴当0<s<320时.选择步行.同理可得当320<s<800时.选择乘1号车.当s=320时.选择步行或乘1号车一样.点评:本题考查了一次函数的解析式的运用.一元一次方程的运用.一元一次不等式的运用.分类讨论思想的运用.方案设计的运用.解答时求出函数的解析式是解答本题的关键.。

2018届人教版中考数学模拟试卷(含答案)

2018届人教版中考数学模拟试卷(含答案)

21. (8 分 )某报社为了解市民对“社会主义核心价值观”的知晓程度,采取随机抽样的 方式进行问卷调查, 调查结果分为 “ A.非常了解”、 “ B.了解”、 “ C.基本了解”三个等级, 并根据调查结果绘制了如下两幅不完整的统计图.
(1)这次调查的市民人数为 ________人, m= ________, n= ________; (2)补全条形统计图; (3)若该市约有市民 100000 人,请你根据抽样调查的结果, 估计该市大约有多少人对“社 会主义核心价值观”达到“ A.非常了解”的程度.
CF = BE, = BE.(3 分)在△ DFC 和△ AEB 中, ∠ CFD =∠ BEA,∴△ DFC ≌△ AEB(SAS) ,(6 分 )∴CD
DF = AE,
= AB,∠ C=∠ B,∴ CD ∥ AB.(8 分 ) 21.解: (1)500 12 32(3 分 ) (2)对“社会主义核心价值观”达到“
A. 1 个 B. 2 个 C.3 个 D.4 个 二、填空题 (每小题 3 分,共 24 分 ) 11.如图所示,在 Rt△ ABC 中,∠ B=________.
第 11 题图
第 16 题图
12.《“一带一路”贸易合作大数据报告 (2017) 》以“一带一路”贸易合作现状分析和 趋势预测为核心,采集调用了 8000 多个种类,总计 1.2 亿条全球进出口贸易基础数据 , ,
A. 92° B. 108 ° C. 112 ° D. 124 °
第 9 题图
第 10 题图
10.如图,抛物线
y1

1 2(
x+
1)
2

1

y2= a(x- 4)2- 3
交于点

2018中考数学模拟试题与答案

2018中考数学模拟试题与答案

. . .2018 年 初 中 升 学 模 拟 考 试(一)九 年 数 学 试 卷题 号 一 二 三 四 五 六 七 八 总 分 得 分(考试时间:120分钟;试卷满分:150分)温馨提示:请考生把所有的答案都写在答题卡上,写在试卷上不给分,答题要求见答题卡。

一、选择题(每小题3分,共30分)1.-12的倒数是( ) A .2 B .12C .-12D .-22.科学家可以使用冷冻显微术以高分辨率测定溶液中的生物分子结构,使用此技术测定细菌蛋白结构的分辨率达到0.22纳米,也就是0.000 000 000 22米,将0.000 000 000 22用科学记数法表示为( ) A .0.22×l0-9 B .2.2×l0-10 C .22×l0-11 D .0.22×l0-8 3.如图是某几何体的三视图,该几何体是( )A .正方体B .三棱锥C .圆柱D .圆锥第3题图 笫4题图 4.如图是根据某地某段时间的每天最低温度绘成的折线图,那么这段时间最低温度的中位数,众数分别是( )A .4℃,4℃B .4℃,5℃C .4.5℃,5℃D .4.5C ,4℃ 5.不等式组x 1x+12⎧⎨-⎩≤,>的解集在数轴上可表示为( )6.下列计算,正确的是 ( )A .2a 2+a =3a 2B .2a -1=12a(a ≠0) C .(-a 2)3÷a 4=-a D .2a 2·3a 3=6a 5 7.已知四边形ABCD 是平行四边形,下列结论中不正确...的是( )A .当AB =BC 时,它是菱形 B .当AC ⊥BD 时,它是菱形C .当∠ABC =90º时,它是矩形D .当AC =BD 时,它是正方形8.小张承包了一片荒山,他想把这片荒山改造成一个苹果园,现在有一种苹果树苗,它的成活率如下表所示: 移植棵数(n) 成活数(m)成活率(m/n)移植棵数(n) 成活数(m) 成活率(m/n) 50 47 0.940 1500 1335 0.890 270 235 0.870 3500 3203 0.915 400 369 0.923 7000 6335 0.905 7506620.88314000126280.902①随着移植棵数的增加,树苗成活的频率总在0.900附近摆动,显示出一定的稳定性,可以估计树苗成活的概率是0.900;②当移植的棵数是1500时,表格记录成活数是1335,所以这种树苗成活的概率是0.890;③若小张移植10000棵这种树苗,则可能成活9000棵;④若小张移植20000棵这种树苗,则一定成活18000棵.其中合理的是 ( )A .①③B .①④C .②③D .②④9.如图,将矩形ABCD 沿着直线BD 折叠,使点C 落在C ′处,P 为对角线BD 上一点(不与点B ,D 重合),PM ⊥BC ′于点M ,PN ⊥AD 于点N 。

2018年初中中考数学模拟试卷试题及答案解析

2018年初中中考数学模拟试卷试题及答案解析

中考数学模拟试题及答案分析(2) 第I卷(选择题)评卷人得分一、单项选择题1.﹣2的绝对值是()1 1B.﹣2C.D.2 22.以下运算正确的选项是()A .a3a3a6 B.ab2b2C.a32 D.a12a26a2a63.如图是某几何体的三视图,这个几何体是()A.圆锥B.长方体C.圆柱D.三棱柱4.一组数据2,3,5,4,4的中位数和均匀数分别是()A.4和3.5和 3.6 C.5和 3.5和 3.65.某同学用剪刀沿直线将一片平坦的银杏叶减掉一部分(如图),发现剩下的银杏叶的周长比原银杏叶的周长要小,能正确解说这一现象的数学知识是()A.两点之间线段最短B.两点确立一条直线C.垂线段最短D.经过直线外一点,有且只有一条直线与这条直线平行6.如图,用尺规作图作∠ AOC=∠AOB 的第一步是以点 O 为圆心,以随意长为半径画弧①, 分别交OA 、OB 于点E 、F ,那么第二步的作图印迹②的作法是( )以点F 为圆心,OE 长为半径画弧以点F 为圆心,EF 长为半径画弧以点E 为圆心,OE 长为半径画弧以点E 为圆心,EF 长为半径画弧7.小明到商铺购置“五四青年节”活动奖品,购置 20只铅笔和 10本笔录本共需 110元, 但购置30支铅笔和 5本笔录本只要 85元,设每支铅笔 x 元,每本笔录本 y 元,则可列方程 组( )20x 30y 110 20x 10y 110A.{5y 85 B.{5y 85 10x 30x20x 5y 110 5x 20y110C.{10y85D.{30y 8530x 10x8.在公园内,牡丹按正方形栽种,在它的四周栽种芍药,如图反应了牡丹的列数( n )和芍药的数目规律,那么当 n=11时,芍药的数目为( )株 株 株 株9.对于二次函数y x22mx 3,以下结论错误的选项是()A.它的图象与x轴有两个交点B.方程x22mx 3的两根之积为﹣3C.它的图象的对称轴在y轴的右边D.x<m时,y随x的增大而减小10.如图,在矩形ABCD中,AB<BC,E为CD边的中点,将△ADE绕点E顺时针旋转180°,点D的对应点为C,点A的对应点为F,过点E作ME⊥AF交BC于点M,连结AM、BD交于点N,现有以下结论:AM=AD+MC;②AM=DE+BM;③DE2=AD?CM;④点N为△ABM的外心.此中正确的个数为()个个个个第II卷(非选择题)评卷人得分二、填空题11.依据中央“精确扶贫”规划,每年要减贫约人,将数据用科学记数法表示为______.12.“投掷一枚质地均匀的硬币,正面向上”是______事件(从“必定”、“随机”、“不可能”中选一个).13.如图,已知AB是⊙O的弦,半径OC垂直AB,点D是⊙O上一点,且点D与点C位于弦AB双侧,连结AD、CD、OB,若∠BOC=70°,则∠ADC=______度.14.(2017湖北省随州市)在△ABC在,AB=6(AC=5,点D在边AB上,且AD=2,点E在边AC上,当AE=______时,以A(D(E为极点的三角形与△ABC相像.15.如图,∠AOB的边OB与x轴正半轴重合,点P是OA上的一动点,点N(3,0)是OB上的必定点,点M是ON的中点,∠AOB=30°,要使PM+PN最小,则点P的坐标为______.16.在一条笔挺的公路上有A、B、C三地,C地位于A、B两地之间,甲车从A地沿这条公路匀速驶向C地,乙车从B地沿这条公路匀速驶向A地,在甲车出发至甲车抵达C地的过程中,甲、乙两车各自与C地的距离y(km)与甲车行驶时间t(h)之间的函数关系如图所示.以下结论:①甲车出发2h时,两车相遇;②乙车出发 1.5h时,两车相距170km;③5C地时,两车相距40km.此中正确的选项是______乙车出发2h时,两车相遇;④甲车抵达7(填写全部正确结论的序号).评卷人得分三、解答题2120170 3217.计算:2.318.解分式方程:3 x .1x1x 2x19.如图,在平面直角坐标系中,将坐标原点 O 沿x 轴向左平移 2个单位长度获得点A ,过点A 作y 轴的平行线交反比率函数yk的图象于点B ,AB= 3.x2(1)求反比率函数的分析式;(2)若P (x 1,y 1)、Q (x 2,y 2)是该反比率函数图象上的两点, 且x 1 x 2时,y 1 y 2, 指出点P 、Q 各位于哪个象限?并简要说明原由.20.风电已成为我国继煤电、水电以后的第三大电源,风电机组主要由塔杆和叶片构成(如图1),图2是从图1引出的平面图.假定你站在A 处测得塔杆顶端C 的仰角是55°,沿HA 方向水平行进43米抵达山底G 处,在山顶B 处发现正好一叶片抵达最高地点,此时测得叶片的顶端D (D 、C 、H 在同向来线上)的仰角是45°.已知叶片的长度为35米(塔杆与叶片连结处的长度忽视不计),山高BG 为10米,BG ⊥HG ,CH ⊥AH ,求塔杆CH 的高.(参照数据:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)21.某校为组织代表队参加市 “拜炎帝、诵经典 ”吟诵大赛,初赛后对选手成绩进行了整理,分红5个小组(x表示成绩,单位:分),A组:75≤x(80(B组:80≤x(85(C组:85≤x(90(D组:90≤x(95(E组:95≤x(100.并绘制出如图两幅不完好的统计图.请依据图中信息,解答以下问题:(1)参加初赛的选手共有名,请补全频数散布直方图;(2)扇形统计图中,C组对应的圆心角是多少度?E组人数占参赛选手的百分比是多少?(3)学校准备构成8人的代表队参加市级决赛,E组6名选手直接进入代表队,现要从D组中的两名男生和两名女生中,随机选用两名选手进入代表队,请用列表或画树状图的方法,求恰巧选中一名男生和一名女生的概率.22.如图,在Rt△ABC中,∠C=90°,AC=BC,点O在AB上,经过点A的⊙O与BC相切于点D,交AB于点E.1)求证:AD均分∠BAC;2)若CD=1,求图中暗影部分的面积(结果保存π).23.某水果店在两周内,将标价为10元/斤的某种水果,经过两次降价后的价钱为元/斤,而且两次降价的百分率同样.1)求该种水果每次降价的百分率;2)从第一次降价的第1天算起,第x天(x为整数)的售价、销量及储藏和消耗资用的有关信息如表所示.已知该种水果的进价为4.1元/斤,设销售该水果第x(天)的收益为y(元),求y与x(1≤x<15)之间的函数关系式,并求出第几日时销售收益最大?(3)在(2)的条件下,若要使第15天的收益比(2)中最大收益最多少127.5元,则第15天在第14天的价钱基础上最多可降多少元?24.如图,分别是可活动的菱形和平行四边形学具,已知平行四边形较短的边与菱形的边长相等.(1)在一次数学活动中,某小组学生将菱形的一边与平行四边形较短边重合,摆拼成如图1所示的图形,AF经过点C,连结DE交AF于点M,察看发现:点M是DE的中点.下边是两位学生有代表性的证明思路:思路1:不需作协助线,直接证三角形全等;思路2:不证三角形全等,连结BD交AF于点H.请参照上边的思路,证明点M是DE的中点(只要用一种方法证明);(2)如图2,在(1)的前提下,当∠ABE=135°时,延伸AD、EF交于点N,求AM的值;NE(3)在(2)的条件下,若AF=k(k为大于2的常数),直接用含k的代数式表示AMAB MF 的值.25.在平面直角坐标系中,我们定义直线y=ax﹣a为抛物线yax2数,a≠0)的“梦想直线”;有一个极点在抛物线上,还有一个极点在bx c(a、b、c为常y轴上的三角形为其“梦想三角形”.已知抛物线y 23x243x23与其“梦想直线”交于A、B两点(点A在点B的33左边),与x轴负半轴交于点C.(1)填空:该抛物线的“梦想直线”的分析式为,点A的坐标为,点B的坐标为;(2)如图,点M为线段CB上一动点,将△ACM以AM称点为N,若△AMN为该抛物线的“梦想三角形”,求点所在直线为对称轴翻折,点N的坐标;C的对(3)当点 E在抛物线的对称轴上运动时,在该抛物线的“梦想直线”上,能否存在点F,使得以点A、C、E、F为极点的四边形为平行四边形?若存在,请直接写出点E、F的坐标;若不存在,请说明原由.参照答案1.A【分析】解:﹣ 2的绝对值是2,即|(2|=2(应选A(2.C【分析】解(A(原式=2a3,不切合题意;B(原式=a2(2ab+b2,不切合题意;C(原式=a6,切合题意;D(原式=a10,不切合题意.应选C(3.C【分析】解:这个几何体是圆柱体.应选C(点睛:本题考察由三视图想象立体图形.做这种题时要借助三种视图表示物体的特色,从主视图上弄清物体的上下和左右形状;从俯视图上弄清物体的左右和前后形状;从左视图上弄清楚物体的上下和前后形状,综合剖析,合理猜想,联合生活经验描述出草图后,再查验能否切合题意.4.B【分析】解:把这组数据按从大到小的次序摆列是:2(3(4(4,(故5这组数据的中位数是:4(均匀数=(2+3+4+4+5(÷5=3.故6(选B(5.A【分析】∵用剪刀沿直线将一片平坦的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,∴线段AB的长小于点A绕点C、点D到B的长度,∴能正确解说这一现象的数学知识是两点之间,线段最短,应选A.6.D【分析】解:用尺规作图作(AOC=(AOB的第一步是以点O为圆心,以随意长为半径画弧①,分别交OA (OB于点E(F,第二步的作图印迹②的作法是以点E为圆心,EF长为半径画弧.故选D(7.B【分析】解:设每支铅笔x元,每本笔录本y元,依据题意得:{20x10y110.应选30x5y85B.点睛:本题考察了由实质问题抽象出二元一次方程组,依据实质问题中的条件列方程组时,要注意抓住题目中的一些重点性词语,找出等量关系,列出方程组.8.B【分析】解:由图可得,芍药的数目为:4+(2n(1(×4当((n=11时,芍药的数目为:4+(2×11(1(×4=4+(22(1(×4=4+21×选故4=4+84=88B((点睛:本题考察规律型:图形的变化类,解答本题的重点是明确题意,发现题目中图形的变化规律.9.C【分析】A、∵b2﹣4ac=(2m)2+12=4m2+12>0,∴二次函数的图象与x轴有两个交点,故A选项正确,不合题意;B、方程x2﹣2mx=3的两根之积为:c=﹣3,故B选项正确,不a合题意;C、m的值不可以确立,故它的图象的对称轴地点没法确立,故C选项错误,切合题意;D、∵a=1>0,对称轴x=m,∴x<m时,y随x的增大而减小,故D选项正确,不合题意;应选C.10.B【解析】解:(E为CD边的中点,(DE=CE,又((D=(ECF=90°(AED=((FEC((ADE(((FCE((AD=CF(AE=FE,又(ME(AF((ME垂直均分AF ((AM=MF=MC+CF((AM=MC+AD,故①正确;当AB=BC时,即四边形ABCD为正方形时,设DE=EC=1(BM=a,则AB=2(BF=4(AM=FM=4(a,222在Rt(ABM中,2+a=(4a((,解得,即((由勾股定理可得AM(DE+BM=2(.5=AM,又(AB(BC((AM=DE+BM不建立,故②错误;22(ME(FF(EC(MF((EC=CM×CF,又(EC=DE(AD=CF((DE=AD?CM,故③正确;∵∠ABM=90°,∴AM是△ABM的外接圆的直径,∵BM<AD,∴当BM∥AD时,MNBMAN AD<1,∴N不是AM的中点,∴点N不是△ABM的外心,故④错误.综上所述,正确的结论有2个,应选B(点睛:本题主要考察了相像三角形的判断与性质,全等三角形的判断与性质,矩形的性质以及旋转的性质的综合应用,解决问题的重点是运用全等三角形的对应边相等以及相像三角形的对应边成比率,解题时注意:三角形外接圆的圆心是三角形三条边垂直均分线的交点,叫做三角形的外心,故外心到三角形三个极点的距离相等.11.1.17×107.【分析】解:7.故答案为:7×10×10(12.随机.【分析】解:“投掷一枚质地均匀的硬币,正面向上”是随机事件,故答案为:随机.13.35.1【分析】解:如图,连结OA.∵OC⊥AB,∴2∠AOC=35°,故答案为:35.2uuur uuurAC BC,∴∠AOC=∠COB=70°,∴∠ADC=点睛:本题考察圆周角定理、垂径定理等知识,解题的重点是学会增添常用协助线,用转变的思想思虑问题.14.12或5.53【分析】当AEAB时,AD AC∵∠A=∠A,∴△AED∽△ABC,此时AE=AB·AD6212;AC55当AD AB时,AE AC∵∠A=∠A,∴△ADE∽△ABC,此时AE=AC·AD525;AB63故答案是:12或5.5315.(3,3).22【分析】解:作N对于OA的对称点N′,连结N′M交OA于P,则此时,PM+PN最小,∵OA垂直均分NN′,∴ON=ON′,∠N′ON=2∠AON=60°,∴△NON′是等边三角形,∵点M是ON的中点,∴N′M⊥ON,∵点N(3,0),∴ON=3,∵点M是ON的中点,∴,∴PM=3,∴P(3,3).故答案为:(3,3).22222点睛:本题考察了轴对称﹣最短路线问题,等边三角形的判断和性质,解直角三角形,重点是确立P的地点.16.②③④.【分析】解:①察看函数图象可知,当t=2时,两函数图象订交,(C地位于A(B两地之间,(交点代表了两车离C地的距离相等,其实不是两车相遇,结论①错误;②甲车的速度为240÷4=60(km/h),乙车的速度为200÷((1(=80(km/h((((240+200(60(170h((÷((乙(车60+80出发(时(,两车相距170km,结论②正确;③∵(240+200﹣60)÷(60+80)=25(h),∴乙车出发25h时,两车相遇,结论③正确;77④(80×(4((km=40(((甲(车抵达C地时,两车相距40km,结论④正确.综上所述,正确的结论有:②③④(故答案为:②③④(点睛:本题考察了一次函数的应用,依据函数图象逐个剖析四条结论的正误是解题的重点.17.9.【分析】试题剖析:原式利用零指数幂、负整数指数幂法例,二次根式性质,以及绝对值的代数意义化简,即可获得结果.试题分析:解:原式=9(1+3(2=9(点睛:本题考察了实数的运算,零指数幂、负整数指数幂,娴熟掌握运算法例是解本题的重点.18.x=3【分析】试题剖析:分式方程去分母转变为整式方程,求出整式方程的解获得x的值,经检验即可获得分式方程的解.试题分析:解:去分母得:3+x2(x=x2,解得:x=3,经查验x=3是分式方程的解.点睛:本题考察认识分式方程,利用了转变的思想,解分式方程注意要查验.319.(1)y;(2)P在第二象限,Q在第三象限.x【分析】试题剖析:(1)求出点B坐标即可解决问题;(2)结论:P在第二象限,Q在第三象限.利用反比率函数的性质即可解决问题;试题分析:解:(1)由题意B(﹣2,3),把B(﹣2,3)代入yk中,获得k=﹣3,22x∴反比率函数的分析式为y3.x(2)结论:P在第二象限,Q在第三象限.原由:(k=(3(0反(比(例函数y在每个象限y随x 的增大而增大,(P(x1(y1((Q(x2(y2)是该反比率函数图象上的两点,且x1(x2时,y1(y2((P(Q 在不一样的象限,(P在第二象限,Q在第三象限.点睛:本题考察待定系数法、反比率函数的性质、坐标与图形的变化等知识,解题的重点是灵巧运用所学知识解决问题,属于中考常考题型.20.63米.【分析】试题剖析:作BE(DH,知GH=BE(BG=EH=10,设AH=x,则BE=GH=43+x,由CH=AHtan(CAH=tan55°?x知CE=CH(EH=tan55°?x(10,依据BE=DE可得对于x的方程,解之可得.试题分析:解:如图,作BE(DH于点E,则GH=BE(BG=EH=10,设AH=x,则BE=GH=GA+AH=43+x,在Rt(ACH中,CH=AHtan(CAH=tan55°?x((CE=CH(EH=tan55°?x(10((DBE=45(°(BE=DE=CE+DC(,即43+x=tan55°?x(10+35,解得:x≈45(CH=tan55(°?×45=63(答:塔杆CH的高为63米.点睛:本题考察认识直角三角形的应用,解答本题要修业生能借助仰角结构直角三角形并解直角三角形.21.(1)40;(2)108°,15%;(3)2.3【分析】试题剖析:(1)用A组人数除以A组所占百分比获得参加初赛的选手总人数,用总人数乘以B组所占百分比获得B组人数,从而补全频数散布直方图;(2)用360度乘以C组所占百分比获得C组对应的圆心角度数,用E组人数除以总人数获得E组人数占参赛选手的百分比;(3)第一依据题意画出树状图,而后由树状图求得全部等可能的结果与恰巧抽到一男生和一女生的状况,再利用概率公式即可求得答案.试题分析:解:(1)参加初赛的选手共有:8÷20%=40(人),B组有:40×25%=10(人).频数散布直方图增补以下:故答案为:40((2)C 组对应的圆心角度数是:12 =108°,E 组人数占参赛选手的百分比是:6360°×4040×100%=15%;(3)画树状图得:∵共有12种等可能的结果,抽取的两人恰巧是一男生和一女生的有 8种结果,∴抽取的两人恰巧是一男生和一女生的概率为8 = 2.12 322.(1)证明看法析;(2)1.4【分析】试题剖析:(1)连结DE (OD .利用弦切角定理,直径所对的圆周角是直角,等角的余角相等证明(DAO=(CAD ,从而得出结论;(2)依据等腰三角形的性质获得∠ B=∠BAC=45°,由BC 相切⊙O 于点D ,获得∠ODB=90°,求得OD=BD ,∠BOD=45°,设BD=x ,则OD=OA=x ,OB=2x ,依据勾股定理获得 BD=OD=2,于是获得结论.试题分析:解:(1)证明:连结 DE (OD ((BC相 切 (O 于点D ((CDA=((AED ((AE为直径,((ADE=90°(AC ((BC ((ACD=90( °((DAO=( (CAD ((AD 均分(BAC (2)∵在Rt △ABC 中,∠C=90°,AC=BC ,∴∠B=∠BAC=45°,∵BC 相切⊙O 于点D ,∴∠ODB=90°,∴OD=BD ,∴∠BOD=45°,设BD=x ,则OD=OA=x ,OB= 2x ,∴BC=AC=x+1,∵AC 2+BC 2=AB 2,∴2(x+1)2=(2x+x )2,∴x= 2,∴BD=OD=2,∴图中暗影部分的面积=S △扇形BOD ﹣S452DOE =1 2221.360=24点睛:本题主要考察了切线的性质,角均分线的定义,扇形面积的计算和勾股定理.娴熟掌握切线的性质是解题的重点.x352(1x9) 23.(1)10%;(2)y{260x80(9x ,第10时节销售收益最大;(3)0.5.3x15)【分析】试题剖析:(1)设这个百分率是x,依据某商品原价为10元,因为各样原由连续两次降价,降价后的价钱为元,可列方程求解;(2)依据两个取值先计算:当1≤x(9时和9≤x(15时销售单价,由收益=(售价﹣进价)×销量﹣花费列函数关系式,并依据增减性求最大值,作对照;(3)设第15天在第14天的价钱基础上最多可降a元,依据第15天的收益比(2)中最大收益最多少元,列不等式可得结论.试题分析:解:(1)设该种水果每次降价的百分率是2x(10(1x((x=10%或x=190%(舍去)(答:该种水果每次降价的百分率是10%((2)当1≤x(9时,第1次降价后的价格:10×(1(10%(y=9(9((((x(80((340+3x(=((((y(随0(x(增大而减小,的(当x=1时,y有最大值,y大=(×1+352=334(.3元)(当9≤x(15时,第2次降价后的价钱:元,(y=((222(((3(当09(≤(x≤10时,y((x(120((x3(64x+400(=(x3+60x+80=(3x(10(+380随x的增大而增大,当10(x(15时,y随x的增大而减小,(当x=10时,y有最大值,y大=380(元)(x 352(1 x9)综上所述,y与x(1≤x<15)之间的函数关系式为:y{,3x260x80(9x15)第10时节销售收益最大;(3)设第15天在第14天的价钱基础上最多可降a元,由题意得:380(2(5≤a(105((1154a(≤((≤(a(4(120(15(((643××1515+400((252答:第15天在第14天的价钱基础上最多可降元.点睛:本题考察了一元二次方程的应用及二次函数的有关知识,解题的重点是正确的找到题目中的等量关系且利用其列出方程,注意第2问中x 的取值,两个取值中的最大值才是最大收益.24.(1)证明看法析;(2)2;(3)k2.2k2【分析】试题剖析: (1)证法一,利用菱形性质得 AB=CD (AB (CD ,利用平行四边形的性质得AB=EF (AB (EF ,则CD=EF (CD (EF ,再依据平行线的性质得(CDM=(FEM ,则可依据“AAS 判”断(CDM ((FEM ,因此DM=EM (证法二,利用菱形性质得 DH=BH ,利用平行四边形的性质得 AF ∥BE ,再依据平行线分线段成比率定理获得DH DM BH=1,因此DM=EM ;EM2)由△CDM ≌△FEM 获得CM=FM ,设AD=a ,CM=b ,则FM=b ,EF=AB=a ,再证明四边形ABCD 为正方形获得AC=2 a ,接着证明△ANF 为等腰直角三角形获得NF=a+2b ,则NE=NF+EF=2a+2 b ,而后计算AM的值;NE(3)因为AF=2a 2b = 22b =k ,则a=2AM = 2ab,而后表示出ABaabk2MFa=2a1,再把a=2 代入计算即可.bb k2试题分析:解:(1)如图1,证法一((四边形ABCD 为菱形,(AB=CD (AB (CD ((四边形ABEF 为平行四边形,(AB=EF (AB(EF ((CD=EF (CD (EF ((CDM=((FEM ,在(CDM 和(FEM 中((CMD=((FME ((CDM=(FEM (CD=EF ((CDM (((FEM ((DM=EM ,即点M 是DE 的中点;证法二:∵四边形ABCD 为菱形,∴DH=BH ,∵四边形 ABEF 为平行四边形,∴ AF ∥BE ,∵DH DMHM ∥BE ,∴=1,∴DM=EM ,即点M 是DE 的中点;BH EM2)∵△CDM ≌△FEM ,∴CM=FM ,设AD=a ,CM=b ,∵∠ABE=135°,∴∠BAF=45°,∵四边形ABCD 为菱形,∴∠NAF=45°,∴四边形ABCD 为正方形,∴AC=2AD=2a ,∵AB ∥EF ,∴∠AFN=∠BAF=45°,∴△ANF 为等腰直角三角形, ∴NF=2AF=2(2a+b+b )=a+2 22b ,∴NE=NF+EF=a+2b+a=2a+2b ,∴AM=2a b 2a b=2;NE2a 2b22a b2(3)∵AF= 2a2b= 22b =k ,∴b=1k 2,∴a=2 ,∴AM=ABaaa2bk2 MF2ab = 2a1= 2221=k2. abkk2点睛:本题考察了相像形的综合题: 娴熟掌握平行线分线段成比率定理、 平行四边形和菱形的性质;灵巧利用全等三角形的知识解决线段相等的问题; 会利用代数法表示线段之间的关系.25.(1)y2 3x2 3 ;(﹣2,23);(1,0);(2)N 点坐标为(0,23﹣3)3 3或(3,33);(3)E (﹣1,﹣43)、F (0,23)或E (﹣1,﹣43)、F (﹣4,22333103).3【分析】试题剖析:(1)由梦想直线的定义可求得其分析式,联立梦想直线与抛物线分析式可求得A (B 的坐标;(2)当N 点在y 轴上时,过A 作AD (y 轴于点D ,则可知AN=AC ,联合A 点坐标,则可求得ON 的长,可求得N 点坐标;当M 点在y 轴上即M 点在原点时,过N 作NP (x 轴于点P ,由条件可求得(NMP=60°,在Rt (NMP 中,可求得MP 和NP 的长,则可求得N 点坐标;(3)当AC 为平行四边形的一边时,过F 作对称轴的垂线FH ,过A 作AK (x 轴于点K ,可证(EFH ((ACK ,可求得DF 的长,则可求得F 点的横坐标,从而可求得F 点坐标,由HE 的长可求得E 点坐标;当AC 为平行四边形的对角线时,设E ((1t )(,由A (C 的坐标可表示出AC 中 点,从而可表示出 F 点的坐标,代入直线 AB 的分析式可求得 t 的值,可求得 E (F 的坐标.(1)∵抛物线y23x 2 43x23,∴其梦想直线的分析式为y23x 23 ,3333y2 3 2 33 x 3x 2 联立梦想直线与抛物线分析式可得:{,解得:{23y23 x 243 xy2333x13),B(1,0),故答案为:y23x23;(﹣2,23);或{,∴A(﹣2,2y0331,0);2)当点N在y轴上时,△AMN为梦想三角形,如图1,过A作AD⊥y轴于点D,则AD=2,在y23x243x23中,令y=0可求得x=﹣3或x=1,∴C(﹣3,0),且A(﹣33222,23),∴AC=2323=13,由翻折的性质可知AN=AC=13,在Rt△AND 中,由勾股定理可得DN=AN2AD2=134=3,∵OD=23,∴ON=23﹣3或ON=23+3,当ON=23+3时,则MN>OD>CM,与MN=CM矛盾,不合题意,∴N点坐标为(0,23﹣3);当M点在y轴上时,则M与O重合,过N作NP⊥x轴于点P,如图2,在Rt△AMD中,AD=2,OD=2MD3,∴∠DAM=60°,∵AD∥x轴,∴∠AMC=∠DAO=60°,3,∴tan∠DAM==AD又由折叠可知∠NMA=∠AMC=60°,∴∠NMP=60°,且MN=CM=3,∴MP=1MN=3,NP=3 222MN=33,∴此时N点坐标为(3,33);222综上可知N点坐标为(0,23﹣3)或(3,33);22(3)①当AC为平行四边形的边时,如图3,过F作对称轴的垂线FH,过A作AK⊥x轴于2018年初中中考数学模拟试卷试题及答案解析 21 / 2121点K ,则有AC ∥EF 且AC=EF ,∴∠ACK=∠EFH ,在△ACK 和△EFH 中,∵∠ACK=∠EFH ,∠AKC=∠EHF ,AC=EF ,∴△ACK ≌△EFH (AAS ),∴FH=CK=1,HE=AK=23 ,∵抛物线对称轴为x= ﹣1,∴F 点的横坐标为 0或﹣2,∵点F 在直线AB 上,∴当F 点横坐标为 0时,则F (0, 23),此时点E 在直线AB 下方,∴E 到y 轴的距离为EH ﹣OF=2 3﹣2 3 = 4 3,即E 3 3 3 点纵坐标为﹣43,∴E (﹣1,﹣43); 3 3 当F 点的横坐标为﹣ 2时,则F 与A 重合,不合题意,舍去; ②当AC 为平行四边形的对角线时,∵ C (﹣3,0),且A (﹣2, 23),∴线段AC 的中点 坐标为(﹣, 3),设E (﹣1,t ),F (x ,y ),则x ﹣1=2×(﹣),y+t=23,∴x= ﹣4,y=2 3﹣t ,代入直线AB 分析式可得23﹣t=﹣23×(﹣4)+23,解得t=﹣43, 3 3 3 ∴E (﹣1,﹣4 3),F (﹣4,103);3 3综上可知存在知足条件的点 F ,此时E (﹣1,﹣ 43)、F (0, 23)或E (﹣1,﹣4 3)、 3 3 3F (﹣4, 103).3点睛:本题为二次函数的综合应用,波及函数图象的交点、勾股定理、轴对称的性质、平行四边形的性质、方程思想及分类议论思想等知识.在( 1)中理解题目中梦想直线的定义是 解题的重点,在( 2)中确立出 N 点的地点,求得 ON 的长是解题的重点,在( 3)中确立出E (F 的地点是解题的重点, 注意分两种状况.本题考察知识点许多, 综合性较强,难度较大.。

精编2018届数学中考模试卷(含答案解析)四套试卷

精编2018届数学中考模试卷(含答案解析)四套试卷

a≠0)的图像两个交点关于直线 ∴点 B 的坐标为 (n,m). 故答案为: (n, m).
y=x 对称,点 A 的坐标为 (m, n),
【分析】反比例函数 y1= ( k 为常数, k≠0)的图像与一次函数 y2=- x+ a(a 为常数, a≠0)的图像两
个交点关于直线 y=x 对称,再根据点 A 的坐标,就可得出点 B 的坐标。
2018 届数学中考一模试卷
一、单选题
1. 下列各数中,相反数、绝对值、平方根、立方根都等于其本身的是(
A. 0
B. 1
C和. 01
【答案】 A
) D. 和1 - 1
【考点】 相反数及有理数的相反数,绝对值及有理数的绝对值,平方根,立方根及开立方
【解析】 【解答】解:∵相反数等于它本身的数是
0,平方根等于它本身的数是 0,立方根等于它本身的

∴△ AOE≌△ COF( ASA)
∴ AE= CF
∴四边形 AFCE是平行四边形
( 2)②
【考点】 全等三角形的判定与性质,平行四边形的判定与性质
16.如图, 以 AB 为直径的半圆沿弦 BC折叠后, AB 与 相交于点 D.若
,则∠ B= ________ °
【答案】 18
【考点】 圆心角、弧、弦的关系,圆周角定理,翻折变换(折叠问题)
【解析】 【解答】解:由折叠的性质可得∠ ABC=∠ CBD,

=




的度数 +
的度数 +
即 的度数 ×5=180°,
; 数据 6、 7、8、 9、 10 的平均数为 8,方差 S22=
; ∴ S12=S22. 故答案为: =. 【分析】先分别求出这两组数据的平均数,再利用方差的公式求出这两组数据的方差,然后比较大小,即 可求解。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年山东省中考数学试卷参考答案与试题解析一、选择题(共14小题,每小题3分,共42分)1.(2017•临沂)﹣的倒数是()A.6B.﹣6C.D.﹣考点:倒数。

专题:常规题型。

分析:根据互为倒数的两个数的积等于1解答.解答:解:∵(﹣)×(﹣6)=1,∴﹣的倒数是﹣6.故选B.点评:本题考查了倒数的定义,熟记概念是解题的关键.2.(2017•北海)太阳的半径大约是696000千米,用科学记数法可表示为()A.696×103千米B.69.6×104千米C.6.96×105千米D.6.96×106千米考点:科学记数法—表示较大的数。

专题:计算题。

分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:696000=6.96×105;故选C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(2017•临沂)下列计算正确的是()A.2a2+4a2=6a4B.(a+1)2=a2+1C.(a2)3=a5D.x7÷x5=x2考点:完全平方公式;合并同类项;幂的乘方与积的乘方;同底数幂的除法。

分析:根据合并同类项对A进行判断;根据完全平方公式对B进行判断;根据幂的乘方法则对C进行判断;根据同底数幂的除法法则对D进行判断.解答:解:A、2a2+4a2=6a2,所以A选项不正确;B、(a+1)2=a2+2a+1,所以B选项不正确;C、(a2)5=a10,所以C选项不正确;D、x7÷x5=x2,所以D选项正确.故选D.点评:本题考查了完全平方公式:(a±b)2=a2±2a+b2.也考查了合并同类项、幂的乘方以及同底数幂的除法法则.4.(2017•临沂)如图,AB∥CD,DB⊥BC,∠1=40°,则∠2的度数是()A.40°B.50°C.60°D.140°考点:平行线的性质;直角三角形的性质。

专题:探究型。

分析:先根据平行线的性质求出∠3的度数,再根据直角三角形的性质即可得出∠2的度数.解答:解:∵AB∥CD,DB⊥BC,∠1=40°,∴∠3=∠1=40°,∵DB⊥BC,∴∠2=90°﹣∠3=90°﹣40°=50°.故选B.点评:本题考查的是平行线的性质及直角三角形的性质,用到的知识点为:两直线平行,同位角相等.5.(2017•临沂)化简的结果是()A.B.C.D.考点:分式的混合运算。

分析:首先利用分式的加法法则计算括号内的式子,然后把除法转化成乘法,即可求解.解答:解:原式=•=.故选A.点评:本题考查了分式的混合运算,正确理解运算顺序,理解运算法则是关键.6.(2017•临沂)在四张完全相同的卡片上,分别画有圆、菱形、等腰三角形、等腰梯形,现从中随机抽取一张,卡片上的图形恰好是中心对称图形的概率是()A.B.C.D.1考点:概率公式;中心对称图形。

分析:确定既是中心对称的有几个图形,除以4即可求解.解答:解:∵是中心对称图形的有圆、菱形,所以从中随机抽取一张,卡片上的图形恰好是中心对称图形的概率是=;故选B.点评:此题考查了概率公式,概率等于所求情况数与总情况数之比,关键是能够找出中心对称图形.7.(2017•台州)用配方法解一元二次方程x2﹣4x=5时,此方程可变形为()A.(x+2)2=1B.(x﹣2)2=1C.(x+2)2=9D.(x﹣2)2=9考点:解一元二次方程-配方法。

专题:配方法。

分析:配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.解答:解:∵x2﹣4x=5,∴x2﹣4x+4=5+4,∴(x﹣2)2=9.故选D.点评:此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.8.(2017•临沂)不等式组的解集在数轴上表示正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式组。

分析:首先求不等式组中每个不等式的解集,再利用解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到,找到不等式组的公共解集,再用数轴表示公共部分.解答:解:,由①得:x<3,由②得:x≥﹣1,∴不等式组的解集为:﹣1≤x<3,在数轴上表示为:.故选:A.点评:此题主要考查了解一元一次不等式组,以及在数轴上表示不等式的解集,用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.9.(2017•临沂)如图是一个几何体的三视图,则这个几何体的侧面积是()A.18cm2B.20cm2C.(18+2)cm2D.(18+4)cm2考点:由三视图判断几何体。

专题:数形结合。

分析:根据三视图判断出该几何体是底面边长为2cm,侧棱长为3cm的正三棱柱,然后根据矩形的面积公式列式计算即可得解.解答:解:根据三视图判断,该几何体是正三棱柱,底边边长为2cm,侧棱长是3cm,所以侧面积是:(3×2)×3=6×3=18cm2.故选A.点评:本题考查了由三视图判断几何体,熟练掌握三棱柱的三视图,然后判断出该几何体是三棱柱是解本题的关键.10.(2017•临沂)关于x、y的方程组的解是,则|m﹣n|的值是()A.5B.3C.2D.1考点:二元一次方程组的解。

专题:常规题型。

分析:根据二元一次方程组的解的定义,把方程组的解代入方程组,求解得到m、n的值,然后代入代数式进行计算即可得解.解答:解:∵方程组的解是,∴,解得,所以,|m﹣n|=|2﹣3|=1.故选D.点评:本题考查了二元一次方程组的解的定义,把方程组的解代入方程组求出m、n的值是解题的关键.11.(2017•临沂)如图,在等腰梯形ABCD中,AD∥BC,对角线AC、BD相交于点O,下列结论不一定正确的是()A.AC=BD B.OB=OC C.∠BCD=∠BDC D.∠ABD=∠ACD考点:等腰梯形的性质。

分析:由四边形ABCD是等腰梯形,根据等腰梯形的两条对角线相等,即可得AC=BD;易证得△ABC≌△DCB,即可得OB=OC;由∠ABC=∠DCB,∠ACB=∠DBC,即可得∠ABD=∠ACD.注意排除法在解选择题中的应用.解答:解:A、∵四边形ABCD是等腰梯形,∴AC=BD,故本选项正确;B、∵四边形ABCD是等腰梯形,∴AB=DC,∠ABC=∠DCB,在△ABC和△DCB中,∵,∴△ABC≌△DCB(SAS),∴∠ACB=∠DBC,∴OB=OC,故本选项正确;C、∵无法判定BC=BD,∴∠BCD与∠BDC不一定相等,故本选项错误;D、∵∠ABC=∠DCB,∠ACB=∠DBC,∴∠ABD=∠ACD.故本选项正确.故选C.点评:此题考查了等腰梯形的性质、等腰三角形的判定与性质以及全等三角形的判定与性质.此题难度不大,注意数形结合思想的应用.12.(2017•临沂)如图,若点M是x轴正半轴上任意一点,过点M作PQ∥y轴,分别交函数y=(x>0)和y=(x>0)的图象于点P和Q,连接OP和OQ.则下列结论正确的是()A.∠POQ不可能等于90°B.=C.这两个函数的图象一定关于x轴对称D.△POQ的面积是(|k1|+|k2|)考点:反比例函数综合题。

分析:根据反比例函数的性质,xy=k,以及△POQ的面积=MO•PQ分别进行判断即可得出答案.解答:解:A.∵P点坐标不知道,当PM=MO=MQ时,∠POQ=90°,故此选项错误;B.根据图形可得:k1>0,k2<0,而PM,QM为线段一定为正值,故=||,故此选项错误;C.根据k1,k2的值不确定,得出这两个函数的图象不一定关于x轴对称,故此选项错误;D.∵|k1|=PM•MO,|k2|=MQ•MO,△POQ的面积=MO•PQ=MO(PM+MQ)=MO•PM+MO•MQ,∴△POQ的面积是(|k1|+|k2|),故此选项正确.故选:D.点评:此题主要考查了反比例函数的综合应用,根据反比例函数的性质得出|k1|=PM•MO,|k2|=MQ•MO是解题关键.13.(2017•临沂)如图,AB是⊙O的直径,点E为BC的中点,AB=4,∠BED=120°,则图中阴影部分的面积之和为()A.1B.C.D.2考点:扇形面积的计算;等边三角形的判定与性质;三角形中位线定理。

专题:探究型。

分析:首先证明△ABC是等边三角形.则△EDC是等边三角形,边长是4.而和弦BE围成的部分的面积=和弦DE围成的部分的面积.据此即可求解.解答:解:连接AE,∵AB是直径,∴∠AEB=90°,又∵∠BED=120°,∴∠AED=30°,∴∠AOD=2∠AED=60°.∵OA=OD∴△AOD是等边三角形,∴∠A=60°,∵点E为BC的中点,∠AED=90°,∴AB=AC,∴△ABC是等边三角形.△EDC是等边三角形,边长是4.∴∠BOE=∠EOD=60°,∴和弦BE围成的部分的面积=和弦DE围成的部分的面积.∴阴影部分的面积=S△EDC=×22=.故选C.点评:本题考查了等边三角形的面积的计算,证明△EDC是等边三角形,边长是4.理解和弦BE围成的部分的面积=和弦DE围成的部分的面积是关键.14.(2017•临沂)如图,正方形ABCD的边长为4cm,动点P、Q同时从点A出发,以1cm/s的速度分别沿A→B→C 和A→D→C的路径向点C运动,设运动时间为x(单位:s),四边形PBDQ的面积为y(单位:cm2),则y与x (0≤x≤8)之间函数关系可以用图象表示为()A.B.C.D.考点:动点问题的函数图象。

专题:数形结合。

分析:根据题意结合图形,分①0≤x≤4时,根据四边形PBDQ的面积=△ABD的面积﹣△APQ的面积,列出函数关系式,从而得到函数图象,②4≤x≤8时,根据四边形PBDQ的面积=△BCD的面积﹣△CPQ的面积,列出函数关系式,从而得到函数图象,再结合四个选项即可得解.解答:解:①0≤x≤4时,∵正方形的边长为4cm,∴y=S△ABD﹣S△APQ=×4×4﹣•t•t=﹣t2+8,②4≤x≤8时,y=S△BCD﹣S△CPQ=×4×4﹣•(8﹣t)•(8﹣t)=﹣(8﹣t)2+8,所以,y与x之间的函数关系可以用两段二次函数图象表示,纵观各选项,只有B选项图象符合.故选B.点评:本题考查了动点问题的函数图象,根据题意,分别求出两个时间段的函数关系式是解题的关键.二、填空题(共5小题,每小题3分,满分15分)15.(2017•临沂)分解因式:a﹣6ab+9ab2=a(1﹣3b)2.考点:提公因式法与公式法的综合运用。

相关文档
最新文档