《根据方差做决策》教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2课时 根据方差做决策
1.应用方差做决策问题;(重点) 2.综合运用平均数、众数、中位数和方差解决实际问题.(难点) 一、情境导入
李大叔几年前承包了甲、乙两片荒山,各栽了150棵荔枝,成活率约90%.现已挂果准备采收.为了分析收成情况,他从两山上各选了4棵树采摘入库,每棵树荔枝的产量如下折线统计图所示.
通过折线统计图提供的信息,我们可
以分别计算甲、乙两山样本的平均数,并根据样本的平均数估计出甲、乙两山荔枝的产量总和,如果李大叔还想知道哪个荒山上荔枝的产量比较稳定,那么又该怎么办?同学们能否帮助李大叔解决这个问题?
二、合作探究
探究点一:根据方差做决策
【类型一】 利用方差解决更稳定、更整齐的问题
某中学开展“头脑风暴”知识竞
赛活动,八年级1班和2班各选出5名选手参加初赛,两个班的选手的初赛成绩(单位:分)分别是:
1班:85,80,75,85,100; 2班:80,100,85,80,80.
(1)根据所给信息将下面的表格补充
的初赛成绩较为稳定,并说明理由. 解析:(1)利用平均数的定义以及中位数、众数、方差的定义分别求出即可;(2)利用(1)中所求,得出2班初赛成绩的方差较小,因而成绩比较稳定的班级是2班.
解:(1)由题意得x 1
=1
5(85+80+75+85+100)=85;2班成绩按从小到大排列为80,80,80,85,100,最中间的数是80,故中位数是80;1班:85,80,75,85,100,其中85出现的次数最多,故众
数为85;s 22班=15[(80-85)2+(100-85)2
+(85-85)2+(80-85)2+(80-85)2]=60.填班与2班初赛的平均成绩相同,而2班初赛成绩的方差较小,所以2班的初赛成绩较为稳定.
方法总结:方差是衡量一组数据波动大小的量,方差小的数据更稳定、更整齐.
【类型二】 利用方差做出决策
某校八年级学生开展踢毽子比
赛活动,每班派5名学生参加,按团体总
数排列名次,在规定时间内每人踢100个以上(含100个)为优秀,下表是成绩最好的甲、乙两班各5名学生的比赛数据(单
议,可以通过考查数据中的其他信息来评判.试从两班比赛数据的中位数、方差、优秀率三个方面考虑,你认为应该选定哪一个班为冠军?
解析:平均数=总成绩÷学生人数;中位数是按从小到大(或从大到小)次序排列后的第3个数;根据方差的计算公式得到数据的方差.
解:甲班5名学生比赛成绩的中位数是97个,乙班5名学生比赛成绩的中位数是100
个;
x 甲=15×500=100(个)
,x 乙=1
5×500=100(个);
s 2甲=15[(89-100)2+(100-100)2
+(96-100)2+(118-100)2+(97-100)2]=94;
s 2乙=15[(100-100)2+(96-100)2
+(110-100)2+(90-100)2+(104-100)2]=46.4,甲班的优秀率为2÷5=40%,乙班的优秀率为3÷5=60%;
应选定乙班为冠军.因为乙班5名学生的比赛成绩的中位数比甲班大,方差比甲班小,优秀率比甲班高,综合评定乙班踢毽子水平较好.
方法总结:在解决决策问题时,既要看平均成绩,又要看方差的大小,还要分析变化趋势,进行综合分析,从而做出科学的决策.
【类型三】 根据方差解决图表信息问题
为了了解学生关注热点新闻的
情况,“两会”期间,小明对班级同学一周内收看“两会”新闻的次数情况作了调查,调查结果统计如图所示(其中男生收看3次的人数没有标出).
根据上述信息,解答下列各题: (1)该班级女生人数是________,女生收看“两会”新闻次数的中位数是________;
(2)对于某个群体,我们把一周内收看某热点新闻次数不低于3次的人数占其所在群体总人数的百分比叫做该群体对某热点新闻的“关注指数”.如果该班级男生对“两会”新闻的“关注指数”比女生低5%,试求该班级男生人数;
(3)为进一步分析该班级男、女生收看“两会”新闻次数的特点,小明给出了男
女生的有关统计量,进而比较该班级男、女生收看“两会”新闻次数的波动大小.
解析:(1)将柱状图中的女生人数相加即可求得总人数,中位数为第10与11名同学的次数的平均数;(2)先求出该班女生对“两会”新闻的“关注指数”,即可得出该班男生对“两会”新闻的“关注指数”,再列方程解答即可;(3)较该班级男、女生收看“两会”新闻次数的波动大小,需要求出女生的方差.
解:(1)20 3
(2)该班女生对“两会”新闻的“关
注指数”为13
20×100%=65%,所以男生对“两会”新闻的“关注指数”为60%.设
该班的男生有x 人,则x -(1+3+6)
x =
60%,解得x =25,
答:该班级男生有25人;
(3)该班级女生收看“两会”新闻次数的平均数为1×2+2×5+3×6+4×5+5×2
20=3,女生收看“两会”新闻次数的方差为
错误!=错误!.因为2>错误!.所以男生比女生的波动幅度大.
方法总结:解答此类问题,首先要读懂图表,弄清楚统计图表的意义和统计图表中每部分的具体数据,从图表中提取有效信息.问题的顺利解答在很大程度上取决于是否能够正确地识图表、用图表.
三、板书设计
1.利用方差解决更稳定、更整齐的问题
2.利用方差做决策 3.图表信息问题
通过这节课的教学,让我深刻的体会到只要我们充分相信学生,给学生以最大的自主探索空间,让学生经历数学知识的探究过程,这样既能让学生自主获取数学知识与技能,而且还能让学生达到对知识的深层次理解,更主要的是能让学生在探究过程中学习科学研究的方法,从而增强学生的自主意识,培养学生的探索精神和创新思维