巧解影子问题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
巧解影子问题
类型一:由灯求影
例1、如图:路灯P距离地面8米,P
身高1.6米的小丽从距离路灯的底部
(点0)20米的A处,沿AO所在的直线 C D
行走14米到达B时,人影长度怎样改变?
改变了多少? O B N A M
类型二:由影求灯
例2、如图:花丛中有一路灯杆PO,
灯光下,小丽在B点处的影长P
BN=3米,沿OB方向行走到达A点,
BA=5米,这时小丽的影长AM=5米, C D
如果小丽的身高为1.7米,求路灯杆
PO的高度。O B N A M 类型二:双灯双影问题
例3、如图:小丽晚上在路灯下散步,已知小丽的身高AB=h,灯柱的高OP=OPˊ=L,两灯柱之间的距离OOˊ=m ,
(1)、若小丽距灯柱OP的水平P Pˊ距离OA=a,求她影子AC的长。
(2)若小丽在两路灯之间行走, B
则她前后的影子的长度之和(DA+AC)
是否为定值?请说明理由。
O D A C Oˊ练习:.1.数学兴趣小组想测量一棵树的高度,在阳光下,一名同学测得一根长为1米
的竹竿的影长为0.8米.同时另一名同学测量一棵树的高度时,发现树的影子不
全落在地面上,有一部分影子落在教学楼的墙壁上(如图),其影长为1.2米,
落在地面上的影长为2.4米,则树高为米.
4.影子投影在多面上
例4.兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根长为1米的竹竿的影长为0.4米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为0.2米,一级台阶高为0.3米,如图所示,若此时落在地面上的影长为4.4米,则树高为()
A.11.5 B.11.75米 C 11.8米D.12.25米类型一:由灯求影
如图:路灯P距离地面8米,P
身高1.6米的小丽从距离路灯的底部
(点0)20米的A处,沿AO所在的直线 C D
行走14米到达B时,人影长度怎样改变?
改变了多少? O B N A M
传统解法(略解):依题意得:CB//OP, ∴△BCN∽△OPN, ∴CB:OP=NB:NO, ∴1.6:8=NB:(NB+6), 解之得NB=1.5米,同理可得1.6:8=AM:(AM+20), 解之得AM=5米,∴影长变短了5-1.5=3.5(米)、
评:这种解法只用了相似三角形最基本的性质,得用两次三角形相似,略显麻烦。
创新解法(略解):设直线CD交PO于E,则P
易得矩形OBCE和矩形ABCD,PE、PO成了△PCD
和△PNM的对应高,利用相似三角形对应高的比 E C D
等于相似比得CD:NM=PE:PO,
则14:NM=(8-1.6):8 O B N A M ∴NM=17.5米,NM-AB=17.5-14=3.5米,则影子变短了3.5米.
评:创新解法用的是相似三角形对应高的比等于相似比,只用了一次三角形相似显得很方便。
类型二:由影求灯
如图:花丛中有一路灯杆PO,
灯光下,小丽在B点处的影长P
BN=3米,沿OB方向行走到达A点,
BA=5米,这时小丽的影长AM=5米, C D
如果小丽的身高为1.7米,求路灯杆
PO的高度。O B N A M
传统解法(略解):依题意得:CB//OP, ∴△BCN∽△OPN, ∴CB:OP=BN:ON ①, 同理,得DA:PO=AM:OM ②, 显然CB=DA, 由①、②得BN:ON=AM:OM, 设OB=x米,
则有3:(3+x)=5:(10+x), 解之得x=7.5米,代入①式,得PO=5.95米评:这种解法仍然只用了相似三角形最基本的性质,又得用两次三角形相似,还要以中间比为桥梁,有些让人眼花缭乱。
创新解法(略解):同例1做法一样,设直线CD交PO于E,则易得矩形OBCE和矩形ABCD,PE、PO成了△PCD和△PNM的对应高,利用相似P
三角形对应高的比等于相似比得CD:NM=PE:PO,
∴5:(5+5-3)=(PO-1.7):PO E C D
∴PO =5.95米
评:这种创新解法不但只用了一次相似O B N A M 三角形对应高的比等于相似比,而且非常简便快捷,既节约时间,有提高了准确率。
类型二:双灯双影问题
如图:小丽晚上在路灯下散步,已知小丽的身高AB=h,灯柱的高OP=OP ˊ=L,两灯柱之间的距离OOˊ=m ,
(1)、若小丽距灯柱OP的水平P Pˊ
距离OA=a,求她影子AC的长。
(2)若小丽在两路灯之间行走, B
则她前后的影子的长度之和(DA+AC)
是否为定值?请说明理由。
O D A C Oˊ传统解法(略解):
(1)、依题意得:AB//OP, ∴△ABC∽△OPC, ∴AC:OC=AB:OP,
∵OP=L, AB=h, OA=a, ∴AC:(a+AC)=h:L 解之得AC=ah /L (2)、∵AB//OP, ∴△ABC∽△OPC, ∴AB:OP =AC:OC=h:L, ∴AC:(OC-AC)=h:(L-h), 即AC:OA=h:(L-h), ∴AC=h/(L-h)·OA
同理可得DA=h/(L-h)·OˊA ∴DA+AC=h/(L-h)·(OA+OˊA)=hm/(L-m)是定值。
评:这种做法还是只用了相似三角形最基本的性质,做第(1)问尚可,做第(2)问又得用两次三角形相似,显得很笨拙,若将题目中的两问合并形成一个题目,则更加捉襟见肘,但用创新做法就简单多了。如:
如图:小丽晚上在路灯下散步, P E Pˊ
已知小丽的身高AB=h,灯柱的高OP=OPˊ
=L,两灯柱之间的距离OOˊ=m,当
她在两路灯之间行走,则她前后的 B
影子的长度之和(DA+AC)是否为定值?
请说明理由。O D A C Oˊ创新解法(略解):连结P Pˊ,设AB的延长线交P Pˊ于E,易得矩形O OˊPˊP,则