声光控制电路实验报告

声光控制电路实验报告
声光控制电路实验报告

实验室:格致楼322

时间段:13:30-15:05

座位号:3号座位

同组人:

杭州电子科技大学

信息工程学院

设计性实验报告

实验名称:声光控制电路

班级:

姓名:

学号:

指导老师:

实验二声光控制电路

一、实验目的

1、掌握声光控延时开关电路的组成和工作原理

2、掌握声光控电路的制作的焊接和调试。

二、实验任务

设计并控制一个声光控延时开关电路。通过四个与非门实现只有在光照较弱并且有声音的时候指示灯才会亮,其他情况下指示灯不亮。并且通过电容的充放电实现指示灯的延迟效果,保持指示灯10s。直流电源电压为12V,由稳压电源或实验箱提供。

三、实验原理和电路参数设计

实验原理:

第一部分为独立的声控和光控,中间部分为与非门,最后部分是延时及LED 灯。

光控部分由光敏电阻采集光信号转变为电信号,声控部分由咪头将声音信号转换为电信号,并经过三极管放大。

白天或晚上光线较强时,光控为低电平,声控不起作用;晚上或光线较弱时,光控为高电平,声控起作用,负载电路的通断受控于声控部分,当声音强度足够大时,电路接通,二极管点亮,并开始延时,延时时间到开关自动关闭,等待下一次声音触发。

白天不亮的原因:当在白天时,光线很强光敏电阻的阻值很小,那么通过用黑线圈出的那条路的电流很小,相当于低电平,经过与非门之后,输出恒为高电平,最后通过led灯恒为低电平。所以在白天时不起作用。

同时很好理解晚上时为什么由声控控制:在晚上时,光敏电阻阻值很大,流过黑线圈出的那条路的电流就很大,相当于高电平,因此输出信号取决于是否由声音信号。

1、设计电路参数

C1:100nf C2:10uf/22uf V1:30mV 1KHz

R1:24KΩR2:1MΩR3:47KΩR4:24KΩR5:1MΩ

R6:1KΩ

2、利用multisim仿真如下图:

闭合开关:

说明:从图中可以看出我们用交流信号源代替了咪头,也就是声控部分,用继电器调节到一定的电阻来代替光敏电阻夜间时的电阻,这是led灯也已经亮了,着代表了,我们的电路替换是正确的。同时看下图:

这图中我们看到的是电压通过第一个与非门时的电压变化,当为高点平时,led 灯点亮,对应咪头收到声音信号时放出信号,出现高电平。

打开开关:

我们能从图中看出,打开开关的时候,灯泡仍是亮着的,通过计时器计时,我们知道了,电容为10uf灯泡过了9.7s后熄灭,电容为22uf时灯泡讲过了21.43s 熄灭。我们在这个熄灭环节的设置采取了两种不通规格电容的方案。所以,能看出我们的仿真成功了。(22uf的图除了这个电容参数不一样,其他相同)

延迟熄灭时间说明:

延时方面在上面提到过,我们预留了两种方案就是如下两图,另外还多出一个1000欧姆的电阻做备用。

从我们之前学的电路分析的知识中我们可以看出,在打开开关后,led灯之所以没有马上熄灭是因为这一部分充放电的结果造成的。我们就来推导一下,用图中所示参数电阻和电容的理论放电所达到的延迟时间是多少。

下面是cd4011的一些参数:

从图中知道接10v电压时,输入低电平最大值为3v,我们以这个计算。

U=U0*e^(-(t/r)) ,r = RC。U = 3,U0 = 10;

方案一:用1M欧姆的电阻和10uf的电容做实验,我们可得t = 12s。与我的仿真数据比较接近。

方案二:用1M欧姆的电阻和22uf的电容做实验,我们可得t = 26s。与我的仿真数据也同样接近。

但由于实验的要求是时间越接近10s越好,那么通过计算我们得出r = 8.33.相当于保持电阻不变,将电容换成8.3uf。

最后因为实验要求限制,我们在焊接时采用了10uf电容,达到接近10s的实验效果。

3、硬件电路制作

4、验收

延时时间t如图:

五.总结

通过这次课程设计的实习,让我学到了很多东西。

主要分为两部分,软件方面和硬件方面。在软件方面,我学会了使用multisim14的使用,会用它画电路图,以及用它来仿真调试。硬件方面:通过这次实习,我的焊工更上一层楼,比以前更好了。而且连接的线路也更复杂了,我的水平也提高了不少。

在实际焊接电路的时候,线有点多,有点绕,稍微一不小心就会连错线。但是,在接通电源的时候,发光二极管却不亮。于是,我就开始检查电路,看看连线有没有出错,经过检查还真就查出了不少的问题,然后我又把它们都解决掉再重新测试一下。但是还是不行。

电路图在软件上仿真的时候还是行的,但到了实际电路图中却不行。

我只好挨个进行,一个模块一个模块的进行调试。经过调试,让我对万用表和示波器的使用熟练程度进一步提高,并且我的动手能力也进一步提高了。

对于这次的课程设计,我有很大的体会,只了解书本上的知识是远远不够的,重要的是要把书本上的知识应用与实践中,用与解决实际问题。而且在设计过程中,会遇到很多问题,面对问题,我们不能害怕,要寻找正确的方法去解决问题,而且要注重合作,同心协力去解决问题,只靠一个人的力量是不行的。

水温自动控制系统实验报告汇总

水温控制系统(B题) 摘要 在能源日益紧张的今天,电热水器,饮水机和电饭煲之类的家用电器在保温时,由于其简单的温控系统,利用温敏电阻来实现温控,因而会造成很大的能源浪费。但是利用AT89C51 单片机为核心,配合温度传感器,信号处理电路,显示电路,输出控制电路,故障报警电路等组成的控制系统却能解决这个问题。单片机可将温度传感器检测到的水温模拟量转换成数字量,并显示于1602显示器上。该系统具有灵活性强,易于操作,可靠性高等优点,将会有更广阔的开发前景。 水温控制系统概述 能源问题已经是当前最为热门的话题,离开能源的日子,世界将失去一切颜色,人们将寸步难行,我们知道虽然电能是可再生能源,但是在今天还是有很多的电能是依靠火力,核电等一系列不可再生的自然资源所产生,一旦这些自然资源耗尽,我们将面临电能资源的巨大的缺口,因而本设计从开源节流的角度出发,节省电能,保护环境。 一、设计任务 设计并制作一个水温自动控制系统,控制对象为 1 升净水,容器为搪瓷器皿。水温可以在一定范围内由人工设定,并能在环境温度降低时实现自动控制,以保持设定的温度基本不变。 二、要求 1、基本要求 (1)温度设定范围为:40~90℃,最小区分度为1℃,标定温度≤1℃。 (2)环境温度降低时温度控制的静态误差≤1℃。 (3)能显示水的实际温度。 第2页,共11页

2、发挥部分 (1)采用适当的控制方法,当设定温度突变(由40℃提高到60℃)时,减小系统的调节时间和超调量。 (2)温度控制的静态误差≤0.2℃。 (3)在设定温度发生突变时,自动打印水温随时间变化的曲线。 (4)其他。 一系统方案选择 1.1 温度传感器的选取 目前市场上温度传感器较多,主要有以下几种方案: 方案一:选用铂电阻温度传感器。此类温度传感器线性度、稳定性等方面性能都很好,但其成本较高。 方案二:采用热敏电阻。选用此类元器件有价格便宜的优点,但由于热敏电阻的非线性特性会影响系统的精度。 方案三:采用DS18B20温度传感器。DS18B20是DALLAS公司生产的一线式数字温度传感器,具有3引脚TO-92小体积封装形式;温度测量范围为-55℃~+125℃,可编程为9位~12位A/D转换精度,测温分辨率可达0.0625℃,被测温度用符号扩展的16位数字量方式串行输出远端引入。此器件具有体积小、质量轻、线形度好、性能稳定等优点其各方面特性都满足此系统的设计要求。 比较以上三种方案,方案三具有明显的优点,因此选用方案三。 1.2温度显示模块 方案一:采用8个LED八段数码管分别显示温度的十位、个位和小数位。数码管具有低能耗,低损耗、寿命长、耐老化、对外界环境要求低。但LED八度数码管引脚排列不规则,动态显示时要加驱动电路,硬件电路复杂。 方案二:采用带有字库的12864液晶显示屏。12864液晶显示屏具有低功耗,轻薄短小无辐射危险,平面显示及影像稳定、不闪烁、可视面积大、画面

温度控制电路实验报告

温度控制电路实验报告 篇一:温度压力控制器实验报告 温度、压力控制器设计 实 验 报 告 设计题目:温度、压力控制器设计 一、设计目的 1 ?学习基本理论在实践中综合运用的初步经验,掌握微机控制系统设计的基本方法; 2.学会单片机模块的应用及程序设计的方法; 3?培养实践技能,提高分析和解决实际问题的能力。 二、设计任务及要求 1.利用赛思仿真系统,以MCS51单片机为CPU设计系统。 2?设计一数据采集系统,每5分钟采集一次温度信号、10分钟采集一次压力信号。并实时显示温度、压力值。 3.比较温度、压力的采集值和设定值,控制升温、降温及升压、降压时间,使温度、压力为一恒值。 4?设温度范围为:-10—+40°C、压力范围为0—100P&;升温、降温时间和温度上升、下降的比例为1°C/分钟,升压、降压时间和压力上升、下降的比例为10P"分钟。

5?画出原理图、编写相关程序及说明,并在G6E及赛思 仿真系统上仿真实现。 三、设计构思 本系统硬件结构以80C51单片机为CPU进行设计,外围扩展模数转换电路、声光报警电路、LED显示电路及向上位PC机的传输电路,软件使用汇编语言编写,采用分时操作的原理设计。 四、实验设备及元件 PC机1台、赛思仿真系统一套 五、硬件电路设计 单片微型计算机又称为微控制器,它是一种面向控制的大规模集成电路芯片。使用80C51来构成各种控制系统,可大大简化硬件结构,降低成本。 1.系统构架 2.单片机复位电路 简单复位电路中,干扰易串入复位端,在大多数情况下不会造成单片机的错误复位,但会引起内部某些寄存器的错误复位,故为了保证复位电路的可靠性,将RC电路接斯密特电路后再接入单片机和外围IC的RESET引脚。 3.单片机晶振电路 晶振采用12MHz,即单片机的机器周期为1卩so 4.报警电路

51系列单片机闭环温度控制 实验报告

成绩: 重庆邮电大学 自动化学院综合实验报告 题目:51系列单片机闭环温度控制 学生姓名:蒋运和 班级:0841004 学号:2010213316 同组人员:李海涛陈超 指导教师:郭鹏 完成时间:2013年12月

一、实验名称: 51系列单片机闭环温度控制实验 ——基于Protuse仿真实验平台实现 基本情况: 1. 学生姓名: 2. 学号: 3. 班级: 4. 同组其他成员: 二、实验内容(实验原理介绍) 1、系统基本原理 计算机控制技术实训,即温度闭环控制,根据实际要求,即加温速度、超调量、调节时间级误差参数,选择PID控制参数级算法,实现对温度的自动控制。 闭环温度控制系统原理如图: 2、PID算法的数字实现 本次试验通过8031通过OVEN 是模拟加热的装置,加一定的电压便开始不停的升温,直到电压要消失则开始降温。仿真时,U形加热器为红色时表示正在加热,发红时将直流电压放过来接,就会制冷,变绿。T端输出的是电压,温度越高,电压就越高。

8031对温度的控制是通过可控硅调控实现的。可控硅通过时间可以通过可控硅控制板上控制脉冲控制。该触发脉冲想8031用软件在P1.3引脚上产生,受过零同步脉冲后经光偶管和驱动器输送到可控硅的控制级上。偏差控制原理是要求对所需温度求出偏差值,然后对偏差值处理而获得控制信号去调节加热装置的温度。 PID控制方程式: 式中e是指测量值与给定值之间的偏差 TD 微分时间 T 积分时间 KP 调节器的放大系数 将上式离散化得到数字PID位置式算法,式中在位置算法的基础之上得到数字PID 增量式算法: 3、硬件电路设计 在温度控制中,经常采用是硬件电路主要有两大部分组成:模拟部分和数字部分,对这两部分调节仪表进行调节,但都存在着许多缺点,用单片机进行温度控制使构成的系统灵活,可靠性高,并可用软件对传感器信号进行抗干拢滤波和非线性补偿处理,可大大提高控制质量和自动化水平;总的来说本系统由四大模块组成,它们是输入模块、单片机系统模块、计算机显示与控制模块和输出控制模块。输入模块主要完成对温度信号的采集和转换工作,由温度传感器及其与单片机的接口部分组成。利用模拟加热的

单片机流水灯实验报告

流水灯实习报告 一、实验原理 单片机通过P0口连接锁存器74ls273,P0同时作为低八位地址,实验板内P2口连接74ls138,任意一个输出连接74ls273片选,再将74ls273接八个LED 灯,通过软件控制对74ls273送入显示数据就可以按要求显示了。 二、硬件原理图 三、实验程序 ORG 00H AJMP START ORG 001BH AJMP INT ORG 0100H START: MOV SP,#60H MOV TMOD,#10H MOV TL1,#00H MOV TH1,#4CH MOV R0,#00H MOV R1,#20 SETB TR1 SETB ET1 SETB EA

INT: PUSH ACC PUSH PSW PUSH DPL PUSH DPH CLR TR1 MOV TL1,#B0H MOV TH1,#3CH SETB TR1 DJNZ R1,EXIT MOV R1,#20 MOV DPTR,#DATA MOV A,R0 MOVC A,@A+DPTR MOV DPTR,#8000H Movx @DPTR,A INC R0 ANL 00,#07H EXIT: POP DPH

POP PSW POP ACC RETI DATA: DB 05H,0AH,50H,0A0H,55H,0AAH,0FFH,0H END 四、实验功能 以实验机上74LS273做输出口,接八只发光二极管,编写程序,使开机后第一秒钟L1,L3亮,第二秒钟L2,L4亮,第三秒钟L5,L7亮,第四秒钟L6,L8亮,第五秒钟L1,L3,L5,L7亮,第六秒钟L2,L4,L6,L8亮,第七秒钟八个二极管全亮,第八秒钟全灭,以后又从头开始,L1,L3亮,然后L2,L4亮……一直循环下去. 五、实验总结 通过这次课程设计,我拓宽了知识面,锻炼了能力,综合素质得到较大提高。而安排课程设计的基本目的,是在于通过理论与实际的结合、人与人的沟通,进一步提高思想觉悟和领悟力。 尤其是观察、分析和解决问题的实际工作能力。它的一个重要功能,在于运用学习成果,检验学习成果。运用学习成果,把课堂上学到的系统化的理论知识,尝试性地应用于实际设计工作,并从理论的高度对设计工作的现代化提出一些有针对性的建议和设想。检验学习成果,看一看课堂学习与实际工作到底有多大距离,并通过综合分析,找出学习中存在的不足,以便为完善学习计划,改变学习内容与方法提供实践依据。实际能力的培养至关重要,而这种实际能力的培养单靠课堂教学是远远不够的,必须从课堂走向实践。这也是一次预演和准备毕业设计工作。通过课程设计,让我们找出自身状况与实际需要的差距,并在以后的学习期间及时补充相关知识,为求职与正式工作做好充分的知识、能力准备,从而缩短从校园走向社会的心理转型期。课程设计促进了我

温度控制电路设计---实验报告

温度控制电路设计一、设计任务 设计一温度控制电路并进行仿真。 二、设计要求 基本功能:利用AD590作为测温传感器,T L 为低温报警门限温度值,T H 为高 温报警门限温度值。当T小于T L 时,低温警报LED亮并启动加热器;当T大于 T H 时,高温警报LED亮并启动风扇;当T介于T L 、T H 之间时,LED全灭,加热器 与风扇都不工作(假设T L =20℃,T H =30℃)。 扩展功能:用LED数码管显示测量温度值(十进制或十六进制均可)。 三、设计方案 AD590是美国ANALOG DEVICES公司的单片集成两端感温电流源,其输出电流与绝对温度成比例。在4V至30V电源电压范围内,该器件可充当一个高阻抗、恒流调节器,调节系数为1μA/K。AD590适用于150℃以下、目前采用传统电气温度传感器的任何温度检测应用。低成本的单芯片集成电路及无需支持电路的特点,使它成为许多温度测量应用的一种很有吸引力的备选方案。应用AD590时,无需线性化电路、精密电压放大器、电阻测量电路和冷结补偿。 主要特性:流过器件的电流(μA) 等于器件所处环境的热力学温度(K) 度数;AD590的测温范围为- 55℃~+150℃;AD590的电源电压范围为4~30 V,可以承受44V正向电压和20V反向电压,因而器件即使反接也不会被损坏;输出电阻为710mΩ;精度高,AD590在-55℃~+-150℃范围内,非线性误差仅为±0.3℃。 基本使用方法如右图。 AD590的输出电流是以绝对温度零度(-273℃)为基准, 每增加1℃,它会增加1μA输出电流,因此在室温25℃时,其 输出电流I out =(273+25)=298μA。 V o 的值为I o 乘上10K,以室温25℃而言,输出值为 10K×298μA=2.98V 。 测量V o 时,不可分出任何电流,否则测量值会不准。 温度控制电路设计框图如下: 温度控制电路框图 由于Multisim中没有AD590温度传感器,根据它的工作特性,可以采用恒流源来替代该传感器,通过改变电流值模拟环境温度变化。通过温度校正电路得

温度测量控制系统的设计与制作实验报告(汇编)

北京电子科技学院 课程设计报告 ( 2010 – 2011年度第一学期) 名称:模拟电子技术课程设计 题目:温度测量控制系统的设计与制作 学号: 学生姓名: 指导教师: 成绩: 日期:2010年11月17日

目录 一、电子技术课程设计的目的与要求 (3) 二、课程设计名称及设计要求 (3) 三、总体设计思想 (3) 四、系统框图及简要说明 (4) 五、单元电路设计(原理、芯片、参数计算等) (4) 六、总体电路 (5) 七、仿真结果 (8) 八、实测结果分析 (9) 九、心得体会 (9) 附录I:元器件清单 (11) 附录II:multisim仿真图 (11) 附录III:参考文献 (11)

一、电子技术课程设计的目的与要求 (一)电子技术课程设计的目的 课程设计作为模拟电子技术课程的重要组成部分,目的是使学生进一步理解课程内容,基本掌握电子系统设计和调试的方法,增加集成电路应用知识,培养学生实际动手能力以及分析、解决问题的能力。 按照本专业培养方案要求,在学完专业基础课模拟电子技术课程后,应进行课程设计,其目的是使学生更好地巩固和加深对基础知识的理解,学会设计小型电子系统的方法,独立完成系统设计及调试,增强学生理论联系实际的能力,提高学生电路分析和设计能力。通过实践教学引导学生在理论指导下有所创新,为专业课的学习和日后工程实践奠定基础。 (二)电子技术课程设计的要求 1.教学基本要求 要求学生独立完成选题设计,掌握数字系统设计方法;完成系统的组装及调试工作;在课程设计中要注重培养工程质量意识,按要求写出课程设计报告。 教师应事先准备好课程设计任务书、指导学生查阅有关资料,安排适当的时间进行答疑,帮助学生解决课程设计过程中的问题。 2.能力培养要求 (1)通过查阅手册和有关文献资料培养学生独立分析和解决实际问题的能力。 (2)通过实际电路方案的分析比较、设计计算、元件选取、安装调试等环节,掌握简单实用电路的分析方法和工程设计方法。 (3)掌握常用仪器设备的使用方法,学会简单的实验调试,提高动手能力。 (4)综合应用课程中学到的理论知识去独立完成一个设计任务。 (5)培养严肃认真的工作作风和严谨的科学态度。 二、课程设计名称及设计要求 (一)课程设计名称 设计题目:温度测量控制系统的设计与制作 (二)课程设计要求 1、设计任务 要求设计制作一个可以测量温度的测量控制系统,测量温度范围:室温0~50℃,测量精度±1℃。 2、技术指标及要求: (1)当温度在室温0℃~50℃之间变化时,系统输出端1相应在0~5V之间变化。 (2)当输出端1电压大于3V时,输出端2为低电平;当输出端1小于2V时,输出端2为高电平。 输出端1电压小于3V并大于2V时,输出端2保持不变。 三、总体设计思想 使用温度传感器完成系统设计中将实现温度信号转化为电压信号这一要求,该器件具有良好的线性和互换性,测量精度高,并具有消除电源波动的特性。因此,我们可以利用它的这些特性,实现从温度到电流的转化;但是,又考虑到温度传感器应用在电路中后,相当于电流源的作用,产生的是电流信号,所以,应用一个接地电阻使电流信号在传输过程中转化为电压信号。接下来应该是对产生电压信号的传输与调整,这里要用到电压跟随器、加减运算电路,这些电路的实现都离不开集成运放对信号进行运算以及电位器对电压调节,所以选用了集成运放LM324和电位器;最后为实现技术指标(当输出端1电压大于3V时,输出端2为低电平;当输出端1小于2V时,输出端2为高电平。输出端1电压小于3V并大于2V时,输出端2保持不变。)中的要求,选用了555定时器LM555CM。 通过以上分析,电路的总体设计思想就明确了,即我们使用温度传感器AD590将温度转化成电压信号,然后通过一系列的集成运放电路,使表示温度的电压放大,从而线性地落在0~5V这个区间里。最后通过一个555设计的电路实现当输出电压在2与3V这两点上实现输出高低电平的变化。

嵌入式系统流水灯,按键,定时器实验报告

嵌入式系统应用 实验报告 姓名: 学号: 学院: 专业: 班级: 指导教师:

实验1、流水灯实验 1.1实验要求 编程控制实验板上LED灯轮流点亮、熄灭,中间间隔一定时间。 1.2原理分析 实验主要考察对STM32F10X系列单片机GPIO的输出操作。 参阅数据手册可知,通过软件编程,GPIO可以配置成以下几种模式: ◇输入浮空 ◇输入上拉 ◇输入下拉 ◇模拟输入 ◇开漏输出 ◇推挽式输出 ◇推挽式复用功能 ◇开漏式复用功能 根据实验要求,应该首先将GPIO配置为推挽输出模式。 由原理图可知,单片机GPIO输出信号经过74HC244缓冲器,连接LED灯。由于74HC244的OE1和OE2都接地,为相同电平,故A端电平与Y端电平相同且LED灯共阳,所以,如果要点亮LED,GPIO应输出低电平。反之,LED灯熄灭。 1.3程序分析 软件方面,在程序启动时,调用SystemInit()函数(见附录1),对系统时钟等关键部分进行初始化,然后再对GPIO进行配置。 GPIO配置函数为SZ_STM32_LEDInit()(见附录2),函数中首先使能GPIO 时钟: RCC_APB2PeriphClockCmd(GPIO_CLK[Led], ENABLE); 然后配置GPIO输入输出模式: GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; 再配置GPIO端口翻转速度:

GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; 最后将配置好的参数写入寄存器,初始化完成: GPIO_Init(GPIO_PORT[Led], &GPIO_InitStructure)。 初始化完成后,程序循环点亮一个LED并熄灭其他LED,中间通过Delay()函数进行延时,达到流水灯的效果(程序完整代码见附录3)。 实验程序流程图如下: 硬件方面,根据实验指南,将实验板做如下连接: 1.3实验结果

温度控制器实验报告

单片机课程设计实验报告 ——温度控制器 班级:学号: 电气0806 姓名: 08291174 老师: 李长城 合作者: 姜久春 李志鹏

一、实验要求和目的 本课程设计的课题是温度控制器。 ●用电压输入的变化来模拟温度的变化,对输入的模拟电压通过 ADC0832转换成数字量输出。输入的电压为0.00V——5.00V, 在三位数码显示管中显示范围为00.0——99.9。其中0V对应00.0,5V对应99.9 ●单片机的控制目标是风机和加热器。分别由两个继电器工作来 模拟。系统加了一个滞环。适合温度为60度。 ◆当显示为00.0-50.0时,继电器A闭合,灯A亮,模拟加热 器工作。 ◆当显示为为50.0-55.0时,保持继电器AB的动作。 ◆当显示为55.0-65.0时,继电器A断开,灯A熄灭,模拟加 热器停止工作。 ◆当显示为65.0-70.0时,保持继电器AB的动作 ◆当显示为70.0-99.9时,继电器B闭合,灯B亮,模拟风机的 工作。 二、实验电路涉及原件及电路图 由于硬件系统电路已经给定,只需要了解它的功能,使用proteus 画出原理图就可以了。 实验设计的电路硬件有: 1、AT89S52 本温度控制器采用AT89C52单片机作为CPU,12MHZ晶振

AT89C52的引脚结构图: AT89C52是一个低电压,高性能CMOS 8位单片机,片内含8k bytes 的可反复擦写的Flash只读程序存储器和256 bytes的随机存取数据存储器(RAM),器件采用ATMEL公司的高密度、非易失性存储技术生产,兼容标准MCS-51指令系统,片内置通用8位中央处理器和Flash 存储单元,功能强大的AT89C52单片机可为您提供许多较复杂系统控制应用场合。 AT89C52有40个引脚,32个外部双向输入/输出(I/O)端口,同时内含2个外中断口,3个16位可编程定时计数器,2个全双工串行通信口,2个读写口线,AT89C52可以按照常规方法进行编程,也可以在线编程。其将通用的微处理器和Flash存储器结合在一起,特别是可反复擦写的Flash存储器可有效地降低开发成本。 此外,AT89S52设计和配置了振荡频率可为0Hz并可通过软件设置

左右来回循环的流水灯实验报告

青 岛 科 技 大 学 微机原理与接口技术综合课程设计(报告) 题 目 __________________________________ 指导教师__________________________ 学生姓名__________________________ 学生学号__________________________ _______________________________院(部)____________________________专业________________ 班 ______年 ___月 ___日 直流电机控制综合实验 周艳平 宋雪英 01 信息科学技术学院 计算机科学与技术0961 2012 12 27

摘要 (2) 1、单片机概述 (2) 2、仿真软件介绍 (2) 3、需求分析 (2) 一、课程设计目的 (3) 二、课程设计要求 (3) 三、实验内容 (3) 1、设计任务与要求 (3) 2、系统分析 (3) 1).硬件电路设计(画出原理图、接线图) (4) 2)软件框图 (5) 3、用keil建项目流程 (7) 4、程序清单 (7) 4、系统调试 (9) 四、设计总结(结论) (10)

摘要 近年来,随着电子技术和微型计算机的发展,单片机的档次不断提高,起应用领域也在不断的扩大,已在工业控制、尖端科学、智能仪器仪表、日用家电、汽车电子系统、办公自动化设备、个人信息终端及通信产品中得到广泛的应用、成为现代电子系统中最重要的智能化的核心部件。而AT89C51就是其中一种,它是一种带4K字节闪烁可编程可擦除只读存储器的低电压,高性能CMO8位微处理器,为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。本课程设计介绍一种LED小灯控制系统的设计方法,以单片机作为主控核心,与按键、排阻、电阻、电容等较少的辅助硬件电路相结合,利用软件实现对LED灯进行控制。能够通过按键控制8个LED小灯从左到右依次点亮。 关键字:单片机、LED流水灯 1、单片机概述 单片机微型计算机是微型计算机的一个重要分支,也是颇具生命力的机种。单片机微 型计算机简称单片机,特别适用于控制领域,故又称为微控制器。 通常,单片机由单块集成电路芯片构成,内部包含有计算机的基本功能部件:中央处 理器、存储器和I/O 接口电路等。因此,单片机只需要和适当的软件及外部设备相结合, 便可成为一个单片机控制系统。 单片机经过1、2、3、3 代的发展,目前单片机正朝着高性能和多品种方向发展,它 们的CPU 功能在增强,内部资源在增多,引角的多功能化,以及低电压底功耗。 2、仿真软件介绍 (1).Keil uv3 运行Keil uv3 新建工程:菜单“Preject->New Preject”,保存为*.uv2,选择芯片型号,copy否 新建文件:菜单“File->New”,保存为*.c,编写程序 将源文件添加到工程:在左侧project workspace的source group1点右键选择addfile加入*.c 设置工程:点菜单栏上的,选Target,设晶振值;选Output,点create Hex file以生成少些文件;选Debug,选择软件仿真(simulator)或硬件仿真(Keil Monitor)方式。 编译链接:点菜单栏上的进行编译,或点菜单栏上的进行编译链接,或点菜单栏上的进行重新编译链接,或点菜单栏上的停止编译。 编译链接后生成*.hex文件,可烧写到单片机。 (2).Proteus 使用Proteus仿真 点击单片机,在Program Files处选择*.hex文件,OK,进行仿真 RESPACK--8 排阻,就是好多电阻连载一起,有一个公共端,1端为公共端接VCC(上拉)或地(下拉) 一般接在51单片机P0口,因P0口内没有上拉电阻,不能输出高电平,所以要接上拉电阻。 3、需求分析

计算机温度控制实验报告1

目录 一、实验目的---------------------------------2 二、预习与参考------------------------------- 2 三、实验(设计)的要求与数据------------------- 2 四、实验(设计)仪器设备和材料清单-------------- 2 五、实验过程---------------------------------2 (一)硬件的连接- --------- ----------------------- 2 (二)软件的设计与测试结果--------------------------3 六、实验过程遇到问题与解决--------------------11 七、实验心得--------------------------------12 八、参考资料-------------------------------12

一、实验目的 设计制作和调试一个由工业控制机控制的温度测控系统。通过这个过程学习温度的采样方法,A/D变换方法以及数字滤波的方法。通过时间过程掌握温度的几种控制方式,了解利用计算机进行自动控制的系统结构。 二、预习与参考 C语言、计算机控制技术、自动控制原理 三、实验(设计)的要求与数据 温度控制指标:60~80℃之间任选;偏差:1℃。 1.每组4~5同学,每个小组根据实验室提供的设备及设计要求,设计并制作出实际电路组成一个完整的计算机温度控制测控系统。 2.根据设备情况以及被控对象,选择1~2种合适的控制算法,编制程序框图和源程序,并进行实际操作和调试通过。 四、实验(设计)仪器设备和材料清单 工业控制机、烘箱、温度变送器、直流电源、万用表、温度计等 五、实验过程 (一).硬件的连接 图1 硬件接线图

温度检测与控制实验报告材料

实验三十二温度传感器温度控制实验 一、实验目的 1.了解温度传感器电路的工作原理 2.了解温度控制的基本原理 3.掌握一线总线接口的使用 二、实验说明 这是一个综合硬件实验,分两大功能:温度的测量和温度的控制。 1.DALLAS最新单线数字温度传感器DS18B20简介 Dallas 半导体公司的数字化温度传感器DS1820是世界上第一片支持“一线总线”接口的温度传感器。现场温度直接以“一线总线”的数字方式传输,大大提高了系统的抗干扰性。适合于恶劣环境的现场温度测量,如:环境控制、设备或过程控制、测温类消费电子产品等。与前一代产品不同,新的产品支持3V~5.5V的电压围,使系统设计更灵活、方便。 DS18B20测量温度围为 -55°C~+125°C,在-10~+85°C围,精度为±0.5°C。DS18B20可以程序设定9~12位的分辨率,及用户设定的报警温度存储在EEPROM中,掉电后依然保存。 DS18B20部结构 DS18B20部结构主要由四部分组成:64位光刻ROM、温度传感器、非挥发的温度报警触发器TH和TL、配置寄存器。DS18B20的管脚排列如下: DQ为数字信号输入/输出端;GND为电源地;VDD为外接供电电源输入端(在寄生电源接线方式时接地)。 光刻ROM中的64位序列号是出厂前被光刻好的,它可以看作是该DS18B20的地址序列码。64位光刻ROM的排列是:开始8位(28H)是产品类型标号,接 着的48位是该DS18B20自身的序列号,最后8位是前面56位的循环冗余校验 码(CRC=X8+X5+X4+1)。光刻ROM的作用是使每一个DS18B20都各不相同,这样 就可以实现一根总线上挂接多个DS18B20的目的。 DS18B20中的温度传感器可完成对温度的测量,以12位转化为例:用16位符号扩展的二进制补码读数形式提供,以0.0625℃/LSB形式表达,其中S为符号位。 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 232221202-12-22-32-4 Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 S S S S S 262524这是12位转化后得到的12位数据,存储在18B20的两个8比特的RAM中,二进制中的

单片机跑马灯(流水灯)控制实验报告

单片机实验报告 姓名: 学号: 一、 实验实现功能: 1:计数器功能 2:流水灯 二、 具体操作: 1、计数器功能 数码管的动态显示。每按一次K2键计数器加1通过数码管显示出来,计数器可以实现从0计数到9999。 2、流水灯 当在计数器模式下的时候按下K3键时程序进入跑马灯模式,8个小灯轮流点亮每次只点亮一个,间隔时间为50ms 。 三、 程序流程图 开始 定时器T0 设置初值,启动定时器, 打开中断 复位 Key2按下 中断关闭 计数器模式 计数器加1 Key3按下 流水灯模式 数码管显示数字加1 跑马灯点亮间隔50ms Key1按下中断打开

四、程序 #include typedef unsigned char uint8; typedef unsigned int uint16; //类型定义 sbit P2_1 = P2^1; sbit P2_2 = P2^2; sbit P2_3 = P2^3; sbit P2_4 = P2^4; //位声明四个数码管开关 sbit Key2 = P3^2; sbit Key3 = P3^3; //位声明2个按键K2和K3 sbit Ledk = P2^0 ; //LED 开关 void delay(uint16 i); //延时函数声明 void refresh (); // 数码管刷新函数声明 void liushuideng(); //流水灯函数声明 uint8 number[] = {0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8, 0x80,0x90,0x88,0x83,0xc6,0xa1,0x86,0x8e}; //数码管的真值表 uint8 out[4] = {0}; // 数组变量 uint16 counter=0; //用作计数器的变量 uint16 Time_counter=0; //用作定时器的变量 void main() //主函数 { TMOD = 0x01; //定时器0,工作方式一 TH0 = 0xFC; TL0 = 0x18; //定时器初值使每次循环为1ms TR0 = 0; //定时器0开始作 ET0 = 0; // 定时器中断关 EA = 0; // 关中断 while(1) //计数器模式 { Ledk =1 ; //led开关关 out[0]=number[counter%10]; //取个位 out[1]=number[counter%100/10]; //十位 out[2]=number[counter%1000/100]; //百位 out[3]=number[counter/1000]; //千位 if (!Key2) //计数器加1 { ++counter; //自加 out[0]=number[counter%10]; //取个位 out[1]=number[counter%100/10]; //十位 out[2]=number[counter%1000/100]; //百位 out[3]=number[counter/1000]; //千位

温控实验报告

篇一:温控电路实验报告 温控电路实验报告 一实习目的 1,了解自锁,互锁的概念; 2,掌握电动机自锁的工作原理及操作方法; 3,掌握交流接触器互锁控制电路的工作原理及操作方法;4,掌握用时间继电器使y-△联结互换; 5,掌握交流接触器的常用触电和常关触点在电路中的作用。 二材料工具 继电器,红色发光二极管,绿色发光二极管,4148二极管,5.1伏二极管,热敏电阻,s9013三极管,1.2k欧电阻,20k欧电阻,1m欧电阻各一个;5k欧电阻,3k欧电阻,3.6k欧电阻各两个。 四实习过程 1,看懂温控电路原理图,合理规划电路板上的各元件布局,掌握色环电阻的数值读法,将所需的色环电阻找出; 2,在电路板上安装各元器件,安装二极管时,注意它的正负极;3,将电烙铁连接电源,烙铁头加热到温度高于焊锡熔点后,左手拿焊锡丝,右手拿电烙铁,进行焊接; 4,焊接完成后,认真,细致地检查焊接电路是否有误,检查无误后,将电路板接通12伏稳压直流电源,观察发光二极管是否正常工作,(红灯亮时,当调动可调电阻时,绿灯会亮也会熄灭),若发光二极管不正常工作,则用万用表检查各元件,找出故障原因,解决故障。5 清理实验台,打扫卫生。 五总结 我做这个实验还是蛮顺利的,上了认真听老师讲,记录下细节,焊接之前我还特意把我画的电路原理图给老师看,确保无误后再开始耐心焊接,所以,这次实验我总结出上课认真听讲的重要性,虽然事后自己可以专研出误区,但那要耗费大量时间精力,认真听老师说还是很有必要的。电动机自锁控制电路跟正反转的控制 一实验目的 (1)了解三相电动机接触器联锁正反转控制的接线和操作方法; (2)理解互锁与自锁的概念; (3)掌握电动机接触器的正反转控制的基本原理与实物连接的要求; 二实验器材 三相异步电动机,万用表,空气开关,单相空气开关,交流接触器,组合按钮,导线若干,螺丝刀 三实验原理三相异步电动机的旋转取决于磁场的旋转方向,而磁场的旋转方向取决于电源相序,所以电源的相序决定了电动机的旋转方向。任意改变电源相序,电动机的旋转方向也随之改变。 四实验内容 (1)先熟悉各按钮开关,结构方式,动作原理及接线方法。 (3)将电器摆放整齐,紧凑,并用螺丝刀安装好,紧固各元件时用力均匀; (4)按电路原理正确连接好线路; 五总结 在这周实验里,深刻认识到团队合作的重要性,对仪器自己有很多不认识,都在组内讨论后才慢慢了解到,而且自己意识里认为正确的线路,其实是有很大误区的,特别是最后一个实验,我们组是最后一个完成的,在实验室人慢慢变少的过程中,我们组员沉着,冷静,终于

单片机流水灯实验报告

单片机流水灯实验报告 电子信息工程学系实验报告 课程名称:单片机原理及接口 实验项目名称:实验2 流水灯实验时间: xx-10-21 班级:电信092 姓名:蔡松亮学号: 910706247 一、实验目的: 进一步熟悉keil仿真软件、proteus仿真软件的使用。了解并熟悉单片机I/O口和LED灯的电路结构,学会构建简单的流水灯电路。掌握C51中单片机I/O口的编程方法和使用I/O口进行输入输出的注意事项。 二、实验原理: MCS-51系列单片机有四组8位并行I/O口,记作P0、P1、P2和P3。每组I/O口内部都有8位数据输入缓冲器、8位数据输出锁存器及数据输出驱动等电路。四组并行I/O端口即可以按字节操作,又可以按位操作。当系统没有扩展外部器件时,I/O端口用作双向输入输

出口;当系统作外部扩展时,使用P0、P2口作系统地址和数据总线、P3口有第二功能,与MCS-51的内部功能器件配合使用。 以P1口为例,内部结构如下图所示: 图 P1口的位结构 作输出时:输出0时,将0输出到内部总线上,在写锁存器信号控制下写入锁存器,锁存器的反向输出端输出1,下面的场效应管导通,输出引脚成低电平。输出1时,下面的场效应管截止,上面的上拉电阻使输出为1。作输入时:P1端口引脚信号通过一个输入三态缓冲器接入内部总线,再读引脚信号控制下,引脚电平出现在内部总线上。 I/O口的注意事项,如果单片机内部有程序存贮器,不需要扩展外部存贮器和I/O接口,单片机的四个口均可作I/O口使用;四个口在作输入口使用时,均应先对其写“1”,以避免误读;P0口作I/O 口使 用时应外接10K的上拉电阻,其它口则可不必;P2可某几根线作地址使用时,剩下的线不能作I/O口线使用;P3口的某些口线作第二功能时,剩下的口线可以单独作I/O口线使用。

恒温恒湿房间的仿真模拟控制实验报告

建筑自动化实验报告 题目:恒温恒湿房间的仿真模拟控制实验 班级:建环1302班 姓名:陈文博 学号:U201315938 指导教师:徐新华 完成时间:2016年5月 页脚内容- 1 -

页脚内容2 一、 实验目的 本次模拟仿真的目的是要满足在 秋(过渡季)、夏、冬三季的温湿度控制。控制对象为温度和湿度,其中湿度为相对湿度,因为温度与相对湿度的耦合关系,而且在实际工况中,对温、湿度又有不同的精度要求,因此我们只需要在温湿度中选取其中一个进行精调,另外一个满足一定条件即可。我们要做的工作便是在上述外界环境下,分别对温湿度进行控制。 其中温度控制:230.1t C =±,%1060±=φ 湿度控制:%160±=φ,231t C =± 本次实验主要是利用Mat lab 中Simulink 仿真模型模拟恒温恒湿机组在各种工作环境下的运行情况。在模拟过程中,对于各季环境差异,我们主要考虑的是环境温度的不同,即显热负荷的差异。同时,我们假设各种条件下房间内的产湿都是相同的,这主要是基于室内设备、人员没有变化。我们需利用Simulink 仿真模型模拟恒温恒湿机组在各种工作环境下的运行情况,通过仿真实验找到合适的控制策略,实现房间里的恒温恒湿控制。 二、 实验控制方法 由于所用控制器件的惯性及精度影响,很难在第一刻就能使调节后的空气温湿度达到要求。而且处于保护设备和节能的角度考虑,我们没有必要总使设备运行在满负载工况下,同时避免在很小的区域内由于控制目标的波动而是其频繁启

停,同时还得兼顾进行微调所能达到的幅度,因而根据设备自身参数要求,设定一个合适的粗调区是很重要的。因此,我们的实验控制方法是先确定一个合适的房间温湿度粗调区,根据我们所需控制的恒温恒湿房间的温湿度控制要求:t=23℃,φ=60%,我们可以确定温度的粗调区为:T=23±1℃,φ=60%±10%,如下图所示: 粗调使室内温湿度环境满足条件之后,便可以集中对温湿度中的一个因素进行调节。对于温度和湿度的控制必须有一个是精确控制,而另外一个则有一个比较宽的变化,我们分别通过ctrl_T.m和ctrl_D.m分别完成对温度和湿度的精确控制中精调过程。但在实际的Simulink模拟模型中,我们不可能直接将温湿度调节 页脚内容3

DS18B20温控实验报告 - 副本

桂林航院电子工程系 单片机课程设计与制作说明书设计题目:DS18B20数字温度计的设计 专业:通信技术 班级: 学号: 姓名: 指导教师: 2012年 6 月28 日

桂林航天工业学院 单片机课程设计与制作成绩评定表

单片机课程设计与制作任务书 专业:通信技术学号:2 姓名: 一、设计题目:DS18B20数字温度计的设计 二、设计要求: 1.要求采集温度精确到0.1度。 2.显示测量温度 三、设计内容: 硬件设计、软件设计及样品制作 四、设计成果形式: 1、设计说明书一份(不少于4000字); 2、样品一套。 五.完成期限:2010 年月日 指导教师:贾磊磊年月日 教研室:年月日

目录 一摘要 (1) 1.1设计要求 (1) 二理论设计 (2) 2.1 硬件电路计 (2) 2.1.1芯片介绍 (2) 2.1.2 DS18B20简介 (7) 2.2设计方案 (9) 2.2.1.显示方案 (9) 2.2.2.系统硬件电路设计 (11) 2.2.3软件设计流程及描述 (11) 三.系统的调试 (13) 3.1.硬件的调试 (13) 3.2实验结果 (19) 四、设计注意事项 (19) 4.1 点阵设计注意事项 (20) 4.2单片机注意事项 (16) 4.3仿真器使用注意事项 (16) 五.设计心得体会 (17) 5.1总结与体会 (17)

摘要 在工业生产中,电流、电压、温度、压力、流量、流速和开关量都是常用的主要被控参数。其中,温度控制也越来越重要。在工业生产的很多领域中,人们都需要对各类加热炉、热处理炉、反应炉和锅炉中的温度进行检测和控制。采用单片机对温度进行控制不仅具有控制方便、简单和灵活性大等优点,而且可以大幅度提高被控温度的技术指标,从而能够大大的提高产品的质量和数量。因此,单片机对温度的控制问题是一个工业生产中经常会遇到的控制问题。 单片机是一种集CPU、RAM、ROM、I/O接口和中断系统等部分于一体的器件,只需要外加电源和晶振就可实现对数字信息的处理和控制。因此,单片机广泛用于现代工业控制中。 本论文侧重介绍“单片机温度控制系统”的软件设计及相关内容。论文的主要内容包括:采样、滤波、键盘、LED显示和报警系统,加热控制系统等。作为控制系统中的一个典型实验设计,单片机温度控制系统综合运用了微机原理、自动控制原理、模拟电子技术、数字控制技术、键盘显示技术等诸多方面的知识,是对所学知识的一次综合测试。 温度控制系统在国内各行各业的应用虽然己经十分广泛,但从国内生产的温度控制器来讲,总体发展水平仍然不高,同日本、美国、德国等先进国家相比,仍然有着较大的差距。成熟的温控产品主要以“点位”控制及常规的PID控制器为主,它们只能适应一般温度系统控制,而用于较高控制场合的智能化、自适应控制仪表,国内技术还不十分成熟,形成商品化并广泛应用的控制仪表较少.随着我国经济的发展及加入WTO,我国政府及企业对此都非常重视,对相关企业资源进行了重组,相继建立了一些国家,企业的研发中心,开展创新性研究,使我国仪表工业得到了迅速的发展。 目前,温度控制器产品从模拟、集成温度控制器发展到智能数码温度控制器。智能温控器(数字温控器)是微电子技术、计算机技术和自动测试技术的结合,特点是能输出温度数据及相关的温度控制量,适配各种控制器,并且它是在硬件的基础上通过软件来实现控制功能的,其智能化程度也取决于软件的开发水平,现阶段正朝着高精度高质量的方向发展,相信以我国的实力,温控技术在不久的将来一定会为于世界前列! 一、设计要求:

电子系统设计温度控制系统实验报告

电子系统设计实验报告温度控制系统的设计 姓名:杨婷 班级:信息21 学校:西安交通大学

一、问题重述 本次试验采用电桥电路、仪表放大器、AD转化器、单片机、控制通断继电器和烧水杯,实现了温度控制系统的控制,达到的设计要求。 设计制作要求如下: 1、要求能够测量的温度范围是环境温度到100o C。 2、以数字温度表为准,要求测量的温度偏差最大为±1o C。 3、能够对水杯中水温进行控制,控制的温度偏差最大为±2o C,即温度波 动不得超过2o C,测量的精度要高于控制的精度。 4、控制对象为400W的电热杯。 5、执行器件为继电器,通过继电器的通断来进行温度的控制。 6、测温元件为铂热电阻Pt100传感器。 7、设计电路以及使用单片机学习板编程实现这些要求,并能通过键盘置入预期温度,通过LCD显示出当前温度。 二、方案论证 1、关于R/V转化的方案选择 方案一是采用单恒流源或镜像恒流源方式,但是由于恒流源的电路较复杂,且受电路电阻影响较大,使输出电压不稳定。 方案二是采用电桥方式,由电阻变化引起电桥电压差的变化,电路结构简单,且易实现。 2、关于放大器的方案选择 方案一是采用减法器电路,但是会导致放大器的输入电阻对电桥有影响,不利于电路的调节。 方案二是采用仪表放大器电路,由于仪表放大器内部的对称,使电路影响较小,调整放大倍数使温度从0到100度,对应的电压为0-5V。 三、电路的设计 1、电桥电路 通过调节电位器R3使其放大器输出端在0度的时候输出为0实现调零,然后合理选择R1、R2的阻值配合后面放大器的放大倍数实现热电阻阻值向电压值的转化。 通过调节电位器R3使其放大器输出端在0度的时候输出为0实现调零,然后合理选择R1、R2的阻值配合后面放大器的放大倍数实现热电阻阻值向电压值的转化。本次实验中:R1=R2=10KΩ,R3为500Ω的变阻器。

相关文档
最新文档