纳米技术发展史

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

纳米技术发展史

【摘要】纳米技术是21世纪科技发展的制高点,是新工业革命的主导技术,它将引起一场各个领域生产方式的变革,也将改变未来人们的生活方式和工作方式,使得我们有必要认识一下纳米技术的发展史。纳米技术的发展史是一个很长的过程,同时也是一个广泛应用的过程。

【关键词】发展纳米技术纳米材料

纳米技术基本概念

纳米技术是以纳米科学为基础,研究结构尺度在0.1~100nm范围内材料的性质及其应用,制造新材料、新器件、研究新工艺的方法和手段。纳米技术以物理、化学的微观研究理论为基础,以当代精密仪器和先进的分析技术为手段,是现代科学(混沌物理、量子力学、介观物理、分子生物学)和现代技术(计算机技术、微电子和扫描隧道显微镜技术、核分析技术)相结合的产物。在纳米领域,各传统学科之间的界限变得模糊,各学科高度交叉和融合。纳米技术包含下列四个主要方面:

1、纳米材料:当物质到纳米尺度以后,大约是在0.1—100纳米这个范围空间,物质的性能就会发生突变,出现特殊性能。这种既具不同于原来组成的原子、分子,也不同于宏观的物质的特殊性能构成的材料,即为纳米材料。如果仅仅是尺度达到纳米,而没有特殊性能的材料,也不能叫纳米材料。

过去,人们只注意原子、分子或者宇宙空间,常常忽略这个中间领域,而这个领域实际上大量存在于自然界,只是以前没有认识到这个尺度范围的性能。第一个真正认识到它的性能并引用纳米概念的是日本科学家,他们在20世纪70年代用蒸发法制备超微离子,并通过研究它的性能发现:一个导电、导热的铜、银导体做成纳米尺度以后,它就失去原来的性质,表现出既不导电、也不导热。磁性材料也是如此,象铁钴合金,把它做成大约20—30纳米大小,磁畴就变成单磁畴,它的磁性要比原来高1000倍。80年代中期,人们就正式把这类材料命名为纳米材料。

2、纳米生物学和纳米药物学,如在云母表面用纳米微粒度的胶体金固定dna的粒子,在二氧化硅表面的叉指形电极做生物分子间互作用的试验,磷脂和脂肪酸双层平面生物膜,dna的精细结构等。有了纳米技术,还可用自组装方法在细胞内放入零件或组件使构成新的材料。新的药物,即使是微米粒子的细粉,也大约有半数不溶于水;但如粒子为纳米尺度(即超微粒子),则可溶于水。

3、纳米电子学,包括基于量子效应的纳米电子器件、纳米结构的光/电性质、纳米电子材料的表征,以及原子操纵和原子组装等。当前电子技术的趋势要求器件和系统更小、更快、更冷,更小,是指响应速度要快。更冷是指单个器件的功耗要小。但是更小并非没有限度。纳米技术是建设者的最后疆界,它的影响将是巨大的。

纳米技术的发展史

纳米技术的应用

1、纳米技术在陶瓷领域方面的应用

陶瓷材料作为材料的三大支柱之一,在日常生活及工业生产中起着举足轻重的作用。但是,由于传统陶瓷材料质地较脆,韧性、强度较差,因而使其应用受到了较大的限制。随着纳米技术的广泛应用,纳米陶瓷随之产生,希望以此来克服陶瓷材料的脆性,使陶瓷具有象金属一样的柔韧性和可加工性。英国材料学家Cahn指出纳米陶瓷是解决陶瓷脆性的战略途径。

所谓纳米陶瓷,是指显微结构中的物相具有纳米级尺度的陶瓷材料,也就是说晶粒尺寸、晶界宽度、第二相分布、缺陷尺寸等都是在纳米量级的水平上。要制备纳米陶瓷,这就需要解决:粉体尺寸形貌和粒径分布的控制,团聚体的控制和分散。块体形态、缺陷、粗糙度以及成分的控制。

Gleiter指出,如果多晶陶瓷是由大小为几个纳米的晶粒组成,则能够在低温下变为延性的,能够发生100%的范性形变。并且发现,纳米TiO2陶瓷材料在室温下具有优良的韧性,在180℃经受弯曲而不产生裂纹。许多专家认为,如能解决单相纳米陶瓷的烧结过程中抑制晶粒长大的技术问题,从而控制陶瓷晶粒尺寸在50nm以下的纳米陶瓷,则它将具有的高硬度、高韧性、低温超塑性、易加工等传统陶瓷无与伦比的优点。上海硅酸盐研究所在纳米陶瓷的制备方面起步较早,他们研究发现,纳米3Y-TZP陶瓷(100nm左右)在经室温循环拉伸试验后,在纳米3Y-TZP样品的断口区域发生了局部超塑性形变,形变量高达380%,并从断口侧面观察到了大量通常出现在金属断口的滑移线。 Tatsuki等人对制得的Al2O3-SiC 纳米复相陶瓷进行拉伸蠕变实验,结果发现伴随晶界的滑移,Al2O3晶界处的纳米SiC粒子发生旋转并嵌入Al2O3晶粒之中,从而增强了晶界滑动的阻力,也即提高了Al2O3-SiC纳米复

相陶瓷的蠕变能力。

虽然纳米陶瓷还有许多关键技术需要解决,但其优良的室温和高温力学性能、抗弯强度、断裂韧性,使其在切削刀具、轴承、汽车发动机部件等诸多方面都有广泛的应用,并在许多超高温、强腐蚀等苛刻的环境下起着其他材料不可替代的作用,具有广阔的应用前景。

2、纳米技术在微电子学上的应用

纳米电子学是纳米技术的重要组成部分,其主要思想是基于纳米粒子的量子效应来设计并制备纳米量子器件,它包括纳米有序(无序)阵列体系、纳米微粒与微孔固体组装体系、纳米超结构组装体系。纳米电子学的最终目标是将集成电路进一步减小,研制出由单原子或单分子构成的在室温能使用的各种器件。

目前,利用纳米电子学已经研制成功各种纳米器件。单电子晶体管,红、绿、蓝三基色可调谐的纳米发光二极管以及利用纳米丝、巨磁阻效应制成的超微磁场探测器已经问世。并且,具有奇特性能的碳纳米管的研制成功,为纳米电子学的发展起到了关键的作用。

早在1989年,IBM公司的科学家就已经利用隧道扫描显微镜上的探针,成功地移动了氙原子,并利用它拼成了IBM三个字母。日本的Hitachi公司成功研制出单个电子晶体管,它通过控制单个电子运动状态完成特定功能,即一个电子就是一个具有多功能的器件。另外,日本的NEC研究所已经拥有制作100nm以下的精细量子线结构技术,并在GaAs衬底上,成功制作了具有开关功能的量子点阵列。目前,美国已研制成功尺寸只有4nm具有开关特性的纳米器件,由激光驱动,并且开、关速度很快。

美国威斯康星大学已制造出可容纳单个电子的量子点。在一个针尖上可容纳这样的量子点几十亿个。利用量子点可制成体积小、耗能少的单电子器件,在微电子和光电子领域将获得广泛应用。此外,若能将几十亿个量子点连结起来,每个量子点的功能相当于大脑中的神经细胞,再结合MEMS(微电子机械系统)方法,它将为研制智能型微型电脑带来希望。

纳米电子学立足于最新的物理理论和最先进的工艺手段,按照全新的理念来构造电子系统,并开发物质潜在的储存和处理信息的能力,实现信息采集和处理能力的革命性突破,纳米电子学将成为对世纪信息时代的核心。

3、纳米技术在生物工程上的应用

众所周知,分子是保持物质化学性质不变的最小单位。生物分子是很好的信息处理材料,每一个生物大分子本身就是一个微型处理器,分子在运动过程中以可预测方式进行状态变化,其原理类似于计算机的逻辑开关,利用该特性并结合纳米技术,可以此来设计量子计算机。美国南加州大学的Adelman博士等应用基于DNA分子计算技术的生物实验方法,有效地解决了目前计算机无法解决的问题-"哈密顿路径问题",使人们对生物材料的信息处理功能和生物分子的计算技术有了进一步的认识。

虽然分子计算机目前只是处于理想阶段,但科学家已经考虑应用几种生物分子制造计算机的组件,其中细菌视紫红质最具前景。该生物材料具有特异的热、光、化学物理特性和很好的稳定性,并且,其奇特的光学循环特性可用于储存信息,从而起到代替当今计算机信息处理和信息存储的作用。在整个光循环过程中,细菌视紫红质经历几种不同的中间体过程,伴随相应的物质结构变化。Birge等研究了细菌视紫红质分子潜在的并行处理机制和用作三维存储器的潜能。通过调谐激光束,将信息并行地写入细菌视紫红质立方体,并从立方体中读取信息,并且细菌视紫红质的三维存储器可提供比二维光学存储器大得多的存储空间。

到目前为止,还没有出现商品化的分子计算机组件。科学家们认为:要想提高集成度,制造微型计算机,关键在于寻找具有开关功能的微型器件。美国锡拉丘兹大学已经利用细菌视紫红质蛋白质制作出了光导"与"门,利用发光门制成蛋白质存储器。此外,他们还利用细菌视紫红质蛋白质研制模拟人脑联想能力的中心网络和联想式存储装置。

纳米计算机的问世,将会使当今的信息时代发生质的飞跃。它将突破传统极限,使单

相关文档
最新文档