三段式电流保护的设计(完整版)
(完整word版)三段式电流保护
三段式电流保护一、 电流速断保护(第I 段)图1 简单网络接线示意图对于仅反应于电流增大而瞬时动作的电流保护,称为电流速断保护.为优先保证继电保护动作的选择性,就要在保护装置起动参数的整定上保证下一条线路出口处短路时不起动,这在继电保护技术中,又称为按躲过下一条线路出口处短路的条件整定。
以上图1所示的网络接线为例,假定每条线路上均装有电流速断保护,对于安装在A 母线处的保护1来讲,其起动电流'.1dz I 必须整定得大于d2点处短路时,可能出现的最大短路电流,即在最大运行方式下B 母线上三相短路时的电流..max d B I ,即:'.1..maxdz d B I I >(1—1)引入可靠系数' 1.2~1.3k K =,则上式即可写为: ''.1..max dz k d B I K I =•(1—2)当被保护线路的一次侧电流达到起动电流这个数值时,安装在A 母线处的保护1就能起动,最后动作于跳断路器1对保护2来讲,按照同样的原则,其起动电流必须整定得大于d4点处短路时,可能出现的最大短路电流,即在最大运行方式下C 母线上三相短路时的电流..max d C I ,即:''.2..max dz k d C I K I =•(1—3)当被保护线路的一次侧电流达到起动电流这个数值时,安装在B 母线处的保护2就能起动,最后动作于跳断路器2。
后面几段线路的电流速断保护整定原则同上。
电流速断保护的主要优点是:简单可靠,动作迅速,因而获得了广泛的应用。
但由于引入的可靠系数' 1.2~1.31k K =>,所以不难看出,电流速断保护的缺点是:不能保护本线路的全长,且保护范围直接受系统运行方式变化的影响。
运行实践证明,电流速断保护的保护范围大概是本线路的85%~90%。
二、 限时电流速断保护(第II 段)1、工作原理及整定计算的基本原则由于有选择性的电流速断保护不能保护本线路的全长,因此我们考虑增加一段新的保护,用来切除速断范围以外的故障,保护本线路的全长,同时也能作为电流速断保护的后备保护。
电流三段保护课程设计
电流三段保护课程设计一、教学目标本课程旨在让学生掌握电流三段保护的基本原理、接线方式、动作逻辑及应用场合。
通过学习,学生能熟练运用电流三段保护知识解决实际问题,提高电气设备的安全运行能力。
1.理解电流三段保护的定义、分类及作用。
2.掌握电流三段保护的原理、接线方式及动作逻辑。
3.熟悉电流三段保护在不同场合的应用案例。
4.能够分析电气设备的保护需求,选择合适的电流三段保护方案。
5.能够正确安装、调试电流三段保护装置。
6.能够对电流三段保护装置进行故障排查和维护。
情感态度价值观目标:1.培养学生对电气设备安全运行的重视。
2.培养学生动手实践、团队协作的能力。
3.培养学生关注新技术、新动态的意识。
二、教学内容本课程的教学内容主要包括电流三段保护的基本原理、接线方式、动作逻辑及应用场合。
具体安排如下:1.电流三段保护的基本原理:介绍电流三段保护的定义、分类及作用。
2.电流三段保护的接线方式:讲解电流三段保护的接线方式及其优缺点。
3.电流三段保护的动作逻辑:分析电流三段保护的动作逻辑,让学生理解其工作原理。
4.电流三段保护的应用场合:通过案例介绍电流三段保护在不同场合的应用。
三、教学方法为了提高教学效果,本课程将采用多种教学方法相结合的方式,包括讲授法、讨论法、案例分析法和实验法等。
1.讲授法:用于讲解电流三段保护的基本原理、接线方式和动作逻辑。
2.讨论法:学生针对实际案例进行讨论,提高学生分析问题和解决问题的能力。
3.案例分析法:通过分析具体案例,使学生更好地理解电流三段保护的应用。
4.实验法:安排实验室实践活动,让学生亲自动手操作,提高实际操作能力。
四、教学资源为了支持本课程的教学,我们将准备以下教学资源:1.教材:选用权威、实用的电流三段保护教材作为主要教学资源。
2.参考书:提供相关领域的参考书籍,丰富学生的知识体系。
3.多媒体资料:制作精美的PPT、视频等多媒体资料,提高学生的学习兴趣。
4.实验设备:准备电流三段保护实验装置,让学生进行实际操作。
继保35kv线路三段式电流保护课程设计
继保35kv线路三段式电流保护课程设计继电保护是电力系统中的重要组成部分,它起到监测、检测和保护电力设备和输、变电线路的作用,在电力系统的安全稳定运行中起着至关重要的作用。
而35kV线路作为输电网中的重要组成部分,电流保护是其常见的一种保护方式。
本文将针对35kV线路的三段式电流保护进行课程设计,并给出相关参考内容。
一、课程名称:35kV线路三段式电流保护二、课程目标:1. 了解35kV线路的电流保护原理和工作机制;2. 学习35kV线路电流保护的主要技术参数;3. 掌握35kV线路三段式电流保护的组成和工作原理;4. 能够分析35kV线路电流保护的故障判据和动作特性;5. 掌握35kV线路三段式电流保护的调试与运维方法。
三、课程大纲:1. 35kV线路电流保护的基本原理1.1 电流保护的作用和要求1.2 电流保护的分类和选择原则1.3 35kV线路电流保护的基本工作原理2. 35kV线路电流保护的技术参数2.1 勾画特性及其参数2.2 判据电流和动作时间的选择2.3 调整装置的线路电流参数3. 三段式电流保护的组成和原理3.1 三段式电流保护的组成和结构3.2 第一段保护和第二段保护的原理及调整方法3.3 第三段保护的原理及其应用4. 故障判据和动作特性分析4.1 电流故障判据的分析4.2 动作特性的研究4.3 保护固有特性的影响因素5. 三段式电流保护的调试与运维方法5.1 保护调试的基本流程5.2 保护测试与评估方法5.3 运维中的常见问题及处理方法四、参考内容:1. 尹世文. 电力系统继电保护与自动装置[M]. 中国电力出版社,2019.2. 向伟,等. 电力系统继电保护与自动装置技术[M]. 中国电力出版社,2018.3. 顾大珩. 交流电气保护技术[M]. 中国电力出版社,2019.4. 《电力系统继电保护与自动化装置设计与分析》教材5. 《电力系统保护与自动化装置工程设计与应用》教材以上提供的参考内容是一些建议性的,可以根据需要进行合理调整,确保教材覆盖了所需的基本理论和实践知识,并满足学生的学习需求。
继保35kv线路三段式电流保护课程设计
继保35kv线路三段式电流保护课程设计继保35kV线路三段式电流保护课程设计引言:电力系统中,线路保护是保障电力系统安全稳定运行的重要组成部分。
35kV线路是电力系统中的中压线路,其保护设计直接关系到线路的运行安全性。
本文将针对35kV线路的三段式电流保护进行课程设计,以帮助读者深入了解该保护方案的原理和应用。
一、课程设计概述1.1 课程设计目的本课程设计旨在通过对35kV线路三段式电流保护的学习,使学生掌握电流保护的基本概念、原理和设计方法,培养学生分析和解决电力系统线路保护问题的能力。
1.2 课程设计内容本课程设计包括以下内容:(1)电流保护的基本原理和分类;(2)35kV线路三段式电流保护的原理和特点;(3)35kV线路三段式电流保护的设计方法;(4)35kV线路三段式电流保护的实施方案;(5)实例分析和综合实践。
二、电流保护的基本原理和分类2.1 电流保护的基本原理电流保护是通过检测电力系统中的电流异常情况,及时采取保护动作,切断故障电路,保护电力设备和线路的安全运行。
电流保护的基本原理是根据故障电流的特征,通过比较电流的大小和相位,判断是否发生故障,从而实现保护动作。
2.2 电流保护的分类根据保护动作的特性和实现方式,电流保护可分为不同类型。
常见的电流保护包括过流保护、零序保护、差动保护等。
35kV线路的保护方案中,采用了三段式电流保护,以满足对线路的不同故障类型的全面保护。
三、35kV线路三段式电流保护的原理和特点3.1 三段式电流保护的原理35kV线路的三段式电流保护采用了三段不同的电流保护元件,分别对应线路的不同故障类型。
第一段电流保护对应线路的短路故障,第二段电流保护对应线路的接地故障,第三段电流保护对应线路的过负荷故障。
通过对三段电流保护元件的动作和判断,实现对不同故障类型的精确保护。
3.2 三段式电流保护的特点(1)精确性高:三段式电流保护对不同故障类型有针对性的动作,能够准确判断故障发生位置和类型。
三段式电流保护的设计(完整版).
学号 2010《电力系统继电保护》课程设计(2010届本科)题目:三段式电流保护课程设计学院:物理与机电工程学院专业:电气程及其自动化作者姓名:指导教师:职称:教授完成日期:年12 月26 日目录1 设计原始资料........................................................................................................................................ - 3 -1.1 具体题目..................................................................................................................................... - 3 -1.2 要完成的内容............................................................................................................................. - 3 -2 设计要考虑的问题................................................................................................................................ -3 -2.1 设计规程..................................................................................................................................... - 3 -2.1.1 短路电流计算规程.......................................................................................................... - 3 -2.1.2 保护方式的选取及整定计算 .......................................................................................... - 4 -2.2 本设计的保护配置..................................................................................................................... - 5 -2.2.1 主保护配置...................................................................................................................... - 5 -2.2.2 后备保护配置.................................................................................................................. - 5 -3 短路电流计算........................................................................................................................................ - 5 -3.1 等效电路的建立......................................................................................................................... - 5 -3.2 保护短路点及短路点的选取..................................................................................................... - 6 -3.3 短路电流的计算......................................................................................................................... - 6 -3.3.1 最大方式短路电流计算 .................................................................................................. - 6 -3.3.2 最小方式短路电流计算 .................................................................................................. - 7 -4 保护的配合及整定计算........................................................................................................................ - 8 -4.1 主保护的整定计算..................................................................................................................... - 8 -4.1.1 动作电流的计算............................................................................................................ - 8 -4.1.2 灵敏度校验...................................................................................................................... - 9 -4.2 后备保护的整定计算................................................................................................................. - 9 -4.2.1 动作电流的计算.............................................................................................................. - 9 -4.2.2 动作时间的计算............................................................................................................ - 10 -4.2.3 灵敏度校验.................................................................................................................... - 10 -5 原理图及展开图的的绘制.................................................................................................................. - 10 -5.1 原理接线图............................................................................................................................... - 10 -5.2 交流回路展开图........................................................................................................................- 11 -5.3 直流回路展开图....................................................................................................................... - 12 -6 继电保护设备的选择.......................................................................................................................... - 12 -6.1 电流互感器的选择................................................................................................................... - 12 -6.2 继电器的选择........................................................................................................................... - 13 -7 保护的评价.......................................................................................................................................... - 14 -摘要电力系统的飞速发展对继电保护不断提出新的要求,电子技术、计算机技术与通信技术的飞速发展又为继电保护技术的发展不断地注入了新的活力。
线路三段式电流保护
实验一三段式电流保护一、传统电磁型继电器三段式电流保护(1)实验目的1.掌握无时限电流速断保护、带时限电流速断保护及过电流保护的电路原理、工作特性及整定原则。
2.理解输电线路阶段式电流保护的原理图、展开图及保护装置中各继电器的功用。
(2)实验原理1.阶段式电流保护的构成无时限电流速断只能保护线路的一部分,带时限电流速断只能保护本线路全长,但却不能作为下一线路的后备保护,还必须采用过电流保护作为本线路和下一线路的后备保护。
由无时限电流速断、带时限电流速断与定时限过电流保护相配合可构成的一整套输电线路阶段式电流保护,叫做三段式电流保护。
输电线路并不一定都要装三段式电流保护,有时只装其中的两段就可以了。
例如用于“线路-变压器组”保护时,无时限电流速断保护按保护全线路考虑后,此时,可不装设带时限电流速断保护,只装设无时限电流速断和过电流保护装置。
又如在很短的线路上,装设无时限电流速断往往其保护区。
图1 三段式电流保护各段的保护范围及时限配合很短,甚至没有保护区,这时就只需装设带时限电流速断和过电流保护装置,叫做二段式电流保护。
在只有一个电源的辐射式单侧电源供电线路上,三段式电流保护装置各段的保护范围和时限特性见图2.11-1。
XL-1线路保护的第Ⅰ段为无时限电流速断保护,它的保护范围为线路XL-1的前一部分即线路首端,动作时限为t1I,它由继电器的固有动作时间决定。
第Ⅱ段为带时限电流速断保护,它的保护范围为线路XL-1的全部并延伸至线路X L-2的一部分,其动作时限为t1II= t2I+△t。
无时限电流速断和带时限电流速断是线路XL-1的主保护。
第Ⅲ段为定时限过电流保护,保护范围包括X L-1及XL-2全部,其动作时限为t1III,它是按照阶梯原则来选择的,即t1III=t2III+△t ,t2III为线路XL-2的过电流保护的动作时限。
三段式电流保护整定校验设计方案(Word最新版)
三段式电流保护整定校验设计方案通过整理的三段式电流保护整定校验设计方案相关文档,希望对大家有所帮助,谢谢观看!课题名称:三段式电流保护整定校验设计方案前言继电保护装置属于二次系统,是电力系统中的一个重要组成部分。
继电保护装置对电力系统的安全稳定地运行起着极为重要的作用。
继电保护整定计算是继电保护工作中的一项重要工作。
在电力工程设计和生产运行工作中,继电保护整定计算是一项必不可少的内容,电力工程的设计部门,其整定计算的目的是对电力系统进行计算分析,选择和论证继电保护的配置及选型的正确性。
在社会网络化发展背景下,继电保护装置在网络环境里还近似一个功能齐全的计算机装置,而相对于整个电力网络系算机网统来说,可以算是一个智能化终端服务器。
继电保护装置借电保护助于网络技术的便利性,先利用互联网提供的平台获取电力网络系统运行数据、故障信息,或先连接到被保护原件读取护网络相关数据与信息,再将数据与信息传送给电力网络控制中心。
由此可见,在社会网络化发展背景下,继电保护装置可以借助电力系统提供的广阔平台自动获取电力网络系统运行数据及故障信息,并对通信数据进行测量与控制,从而使得继电保护装置具备集保护、测量和控制于一体的综合自动化功能。
继电保护能够有效的保证电路系统进行正常的运行,从而保证电力系统能够正常的进行工作。
电力系统的各级调度部门,其整定计算的目的是对电力系统中已配置安装好的各种继电保护,按照具体电力系统的参数和运行要求,通过计算分析给出所需的各项整定值,使全系统各种继电保护有机协调地布置,正确地发挥其作用。
本设计主要针对长沙市岳麓区一段35kV单侧电源辐射形输电线路发生短路故障中,通过对长沙市岳麓区一段35kV单侧电源辐射形输电线路发生故障时三段式电流保护的动作整定值计算和实验产生的整定值校验数据进行分析并得到正确结论。
摘要本设计是针对三段式电流保护进行整定校验方案设计,收集了相关资料并分析概念,资料收集与概念分析主要是收集计算所需资料,介绍三段式电流保护、三段式电流保护的构成和作用。
完整版三段式电流保护.ppt
一、常用的继电器
线路相间短路故障的特点:电流增大, 电压降低
1、电磁型电流继电器 a: 电流继电器线圈的特点 b:动作电流 的定义 Me>Ms
c:返回电流的定义 Me〈Ms
Iact表示动作电流 Ir表示返回电流
d:返回系数的定义 Kr= Ir/Iact Kr=0.85---0.95
LI
I
t2
L2
X
C
IK
Ⅰ
Iact.1
Ⅱ
Iact.1
0 Ⅰ l1
Ⅰ
Iact.2
Ⅱ l2
l
12
动作电流的整定
Ⅱ
Ⅰ
Iact.1 > Iact.2
原理接线图
QF
QF1
kA I
TA
kT t
Ⅱ
Ⅰ
Iact.1 = Krel Iact.2
信号
ks
13
时限配合
~
AI
I t
1
BI
LI
I
t2
L2
C
X
tt
Ⅰ t1 0
tⅡ1 Ⅰ t2
Ⅱ t2
l
14
五、定时限过电流保护
1、定时限过电流保护的工作原理和动作电流 (1)过电流保护的工作原理 (2)过电流保护动作电流 1)在被保护线路通过最大负荷电流的情况下,保护装置不应该动作。 2)对于已经起动的保护装置,故障切除后,在被保护线路通过最大负荷电
流的情况下应能可靠地返回。
Iact = k rel k astI R/k r
1
e:电磁型电流继电器的符号图
I
KA
f:电流继电器的继电特性
(完整版)三段式电流保护的整定及计算
第1章输电线路保护配置与整定计算重点:掌握110KV及以下电压等级输电线路保护配置方法与整定计算原则。
难点:保护的整定计算能力培养要求:基本能对110KV及以下电压等级线路的保护进行整定计算。
学时:4学时主保护:反映整个保护元件上的故障并能以最短的延时有选择地切除故障的保护称为主保护。
后备保护:主保护拒动时,用来切除故障的保护,称为后备保护。
辅助保护:为补充主保护或后备保护的不足而增设的简单保护。
一、线路上的故障类型及特征:相间短路(三相相间短路、二相相间短路)接地短路(单相接地短路、二相接地短路、三相接地短路)其中,三相相间短路故障产生的危害最严重;单相接地短路最常见。
相间短路的最基本特征是:故障相流动短路电流,故障相之间的电压为零,保护安装处母线电压降低;接地短路的特征:1、中性点不直接接地系统特点是:①全系统都出现零序电压,且零序电压全系统均相等。
②非故障线路的零序电流由本线路对地电容形成,零序电流超前零序电压90°。
③故障线路的零序电流由全系统非故障元件、线路对地电容形成,零序电流滞后零序电压90°。
显然,当母线上出线愈多时,故障线路流过的零序电流愈大。
④故障相电压(金属性故障)为零,非故障相电压升高为正常运行时的相间电压。
⑤故障线路与非故障线路的电容电流方向和大小不相同。
因此中性点不直接接地系统中,线路单相故障可以反应零序电压的出现构成零序电压保护;可以反应零序电流的大小构成零序电流保护;可以反应零序功率的方向构成零序功率方向保护。
2、中性点直接接地系统接地时零序分量的特点:①故障点的零序电压最高,离故障点越远处的零序电压越低,中性点接地变压器处零序电压为零。
②零序电流的分布,主要决定于输电线路的零序阻抗和中性点接地变压器的零序阻抗,而与电源的数目和位置无关。
③在电力系统运行方式变化时,如果输电线路和中性点接地的变压器数目不变,则零序阻抗和零序等效网络就是不变的。
但电力系统正序阻抗和负序阻抗要随着系统运行方式而变化,将间接影响零序分量的大小。
保护三段式电流保护的设计(完整版)
继电保护原理课程设计报告专业:电气工程及其自动化班级:电气1103姓名: 马春辉学号:3指导教师:苏宏升__________ 兰州交通大学自动化与电气工程学院2014年7月12日1设计原始资料具体题目 如图所示网络,系统参数为 E =115/ 3kV , X GI =18Q 、X G 2=18Q 、X G 3=10Q,L 1 = L 2 =50km L 3=30km L B c =60km L cD =40km L D E =30km 线路阻抗 Q /km ,对线路进行三段式电流保护的设计图系统网络图要完成的内容本题完成对线路保护3进行三段式电流保护的设计K ;1 二、H 二 K r! ,1 B Cm ax=300A=200A1 D Emax=150AK ss=,心=。
试A '19 8A345CE2 分析课题的设计内容设计规程主保护配置选用三段式电流保护,经灵敏度校验可得电流速断保护不能作为主保护。
因此,主保护应选用三段式距离保护。
后备保护配置过电流保护作为后备保护和远后备保护。
3 短路电流计算等效电路的建立由已知可得, 线路的总阻抗的计算公式为X ZL其中:Z —线路单位长度阻抗;L —线路长度。
所以,将数据代入公式可得各段线路的线路阻抗分别为X L1 X L2 ZL1 0.4 50 20X L3 ZL3 0.4 30 12X BC ZL B C 0.4 60 24X DE ZL D E 0.4 30 12经分析可知, 路 L i 、 L 3最大运行方式即阻抗最小时,则有三台发电机运行,线运行,由题意知G 、G3连接在同一母线上,则X smin X G 1〃X G2 XL1〃 X L 2 〃 X G 3 X L 3式中 X smin —最大运行方式下的阻抗值;最大运行方式等效电路如图所示同理,最小运行方式即阻抗值最大,分析可知在只有 应地有最小运行方式等效电路图如图所示16 U AAA图最大运行方式等效电路图9 10 // 10 12 10.2G i 和L i 运行,相smaxX GI X LI18 20 38式中 E —系统等效电源的相电动势;乙一短路点至保护安装处之间的阻抗;Z s —保护安装处到系统等效电源之间的阻抗;K —短路类型系数、三相短路取1,两相短路取于(1)对于保护2等值电路图如图所示,母线 D 最大运行方式下发生三 相短路流过保护2的最大短路电流为kDmaxX smin XBCX CD图最小运行方式等效电路图保护短路点及短路点的选取选取B 、C D E 点为短路点进行计算。
继电保护课程设计(三段电流保护)
继电保护课程设计(三段电流保护)
三段电流保护是用于保护高压设备的继电保护,其功能是当电网中电流大于设定值时,快速切断电源,以限制设备受到电流损害的事故发生。
在设备类型复杂,功率范围较大的
系统中,设置三段电流保护具有良好的保护模式和灵敏度,具有选择性的和安全的动作效果,可以更快更有效地保护设备不受损害。
三段电流保护主要包括三个段落:由一个定值控制开关和两个分断开关组成。
当电网
电流越过上限值设定时,定值控制开关会发出开关控制命令,第一段断路器会被触发,将
电流切断,随后第二段断路器也会被触发,最终实现彻底的断开。
这样,无论是误动作还
是正常操作,都能够及时保护设备不受到电流损害的危险。
三段电流保护的控制器采用“零、声发仪”的原理,它可以检测电网的三相电流,并
与设定值比较,当电流超出设定值时,就会发出报警信号,从而触发定值控制开关。
它还
能够对电流、流向等指标进行记录,提供便于统计的数据。
在安装三段电流保护的过程中,要把握其灵敏度和安全技术标准,确保正确的安装和
接线结构,同时保证器件的稳健性和可靠性,避免因灵敏度过高、错误操作等原因而出现
误动作,影响电流保护的正确动作。
总之,三段电流保护具有良好的保护模式和灵敏度,能够有效地保护高压设备,确保
高压设备误动作最小化,切断电流并实现设备安全保护。
继保35kv线路三段式电流保护课程设计
继保35kv线路三段式电流保护课程设计课程设计目标:掌握35kV线路三段式电流保护的原理和应用,能够正确配置和调试三段式电流保护装置,并能够分析和解决实际线路故障。
课程设计内容:1. 首先介绍35kV线路的重要性和电流保护的作用,以及为什么需要三段式电流保护。
2. 探讨三段式电流保护的原理。
包括相间故障和接地故障的特点,以及三段式电流保护的基本原理和分段联动。
3. 介绍三段式电流保护的基本组成部分,包括主串、分段串和联动装置。
4. 讲解三段式电流保护的配置原则和参数设定方法。
包括计算分段串的电流互感器的变比和相位关系,以及联动装置的延时时间的设置。
5. 演示如何正确调试三段式电流保护装置。
包括参数设置,检查接线质量,配合故障模拟装置进行测试等。
6. 分析和解决实际线路故障。
根据实际故障案例,学习如何通过三段式电流保护装置的动作信息来定位故障位置和性质,并掌握故障排除的方法。
7. 结合实地考察,对35kV线路的三段式电流保护进行实际操作和维护。
课程设计方法:1. 理论讲授:通过教师授课的方式,详细介绍35kV线路三段式电流保护的原理和应用。
2. 实验演示:通过模拟实验装置演示三段式电流保护的参数设置和装置调试过程。
3. 实地考察:安排学生到现场实操,实际操作和维护35kV线路的三段式电流保护装置。
4. 讨论和案例分析:通过小组讨论和实际案例分析,培养学生解决实际问题的能力。
课程设计评估:1. 设计测验:通过设计测验考察学生对35kV线路三段式电流保护原理和应用的掌握程度。
2. 实验报告:要求学生完成模拟实验的报告,包括参数设置和装置调试的过程记录和分析总结。
3. 实地考察成绩评定:根据学生在实地考察中的表现和操作技能评定成绩。
4. 学生反馈:学生对课程的理解和学习成果进行反馈,从而改进课程设计和教学方法。
以上是一份关于继保35kV线路三段式电流保护课程设计的简要概述,具体的课程内容和教学安排可以根据实际情况进行调整和完善。
继保35kv线路三段式电流保护课程设计
继保35kv线路三段式电流保护课程设计35kV线路三段式保护是指将一条35kV输电线路分为三个保护段,每个保护段具备相应的电流保护功能。
这种保护方式可以提高线路的安全性和可靠性,及时发现和隔离线路故障,保护线路设备不受损坏,确保供电可靠性。
本文将为大家介绍35kV线路三段式电流保护的基本原理、主要组成部分、工作方式以及相关设计参考内容。
一、基本原理35kV线路三段式电流保护是基于不同电流下的线路工作特点设计的。
将线路划分为三个保护段,根据线路故障的发生位置和类型,每个保护段可以独立而又协同地对故障进行保护,实现快速定位和隔离故障。
二、主要组成部分1. 电流互感器:用于测量线路中的电流值,并将其转化为与线路电流成正比的低电流值。
通常采用非电气化、无饱和材质的电流互感器。
2. 故障指示器:当线路故障时,故障指示器会发出信号,用于通知操作人员故障的发生位置,以便进行维修。
故障指示器可以采用声光报警装置。
3. 报警信号传输装置:用于将故障指示器发出的信号传输给操作中心或维修人员,以便及时采取措施解决问题。
4. 对故障段进行隔离的断路器:当出现故障时,断路器可以及时切断故障段,以保护线路设备和其他部分不受到故障的影响。
5. 保护终端:用于监测线路电流和相电压,并对故障进行判断和保护动作。
三、工作方式35kV线路三段式电流保护的工作方式如下:1. 检测:通过电流互感器对线路中的电流进行连续监测,并将监测数据传输到保护终端。
2. 比较:保护终端将测量到的电流值与预设的故障电流阈值进行比较,如果电流超过阈值,则判断为故障。
3. 定位:根据故障电流的大小和方向,确定故障位置所在的保护段。
4. 隔离:对故障段进行断路器的操作,切断故障径路,以保护线路设备和其他部分不受到故障的影响。
四、相关设计参考内容1. 选择适合的电流互感器:根据线路电流的大小和特点,选择合适的电流互感器,保证测量的准确性和可靠性。
2. 设计电流故障阈值和动作时间曲线:根据线路的特点和运行要求,合理设置电流保护的动作值和时间曲线,以达到快速定位和隔离故障的目的。
三段式电流保护的设计
三段式电流保护的设计
三段式电流保护是指将电路保护划分为三个阶段,分别为“预警”、“报警”和“切断”。
在实际应用中,三段式电流保护可以起到很好的保护作用,有效地减小电路事故的风险。
三段式电流保护的设计需要考虑以下几个方面:
1. 预警阶段设计:预警阶段是指当电路中出现一些异常情况时,系统会产生出警告信息,提醒用户注意电路的运行状况。
预警阶段所设计的保护措施通常包括监测电流、电压、频率等参数,一旦出现异常将及时警示,并做出相应的调整。
2. 报警阶段设计:当预警阶段不能消除电路问题时,就会进入到报警阶段。
在报警阶段,电路保护系统会通过报警灯、声音或其他方式向用户发出警告信号,提示其必须尽快切断电路。
在设计报警阶段保护措施时,需要考虑到报警条件的设置,以及如何使系统及时响应,降低事故风险。
3. 切断阶段设计:当电路出现危险时,切断阶段的保护措施将会自动切断电路。
切断阶段需要设计高效的过载保护、短路保护等,以降低电路事故的风险。
切断阶段所采用的保护措施需要考虑电路负载、电源能力等因素,以确保在切断电
路时,不会对设备造成影响。
综上所述,三段式电流保护的设计需要从预警、报警和切断三个方面综合考虑,以便在电路中出现问题或异常时,及时警示用户并采取相应的保护措施,使电路运行更加稳定和安全。
三段式电流保护整定校验方案设计
三段式电流保护整定校验方案设计电流保护是电气系统中非常重要的一环,它能够帮助我们及时发现电气系统中的故障并采取措施进行保护。
而电流保护整定校验方案的设计是为了确保电流保护装置的准确性和可靠性。
本文将提出一种三段式电流保护整定校验方案设计,并对其进行详细说明。
1.系统架构三段式电流保护整定校验方案设计主要包括三个部分:整定参数、设备校验和系统测试。
首先,我们需要确定电流保护装置的整定参数,包括整定电流、整定时间等参数。
其次,需要对电流保护装置进行设备校验,确保设备本身的功能正常。
最后,对整个系统进行测试,验证电流保护装置的性能是否符合设计要求。
2.整定参数整定参数是电流保护整定校验方案设计中的重要一环,它直接影响到电流保护装置的动作性能。
整定参数的确定需要考虑电流保护装置所处的环境和工作条件。
通常情况下,电流保护装置的整定参数可以根据电气系统的额定电流和额定电压来确定。
在确定整定参数时,需要考虑以下因素:-额定电流:根据电气系统的额定电流确定电流保护装置的整定电流。
-整定时间:根据电气系统的特点确定电流保护装置的整定时间。
-动作特性:根据不同的保护对象选择不同的动作特性。
整定参数的确定需要根据具体的情况进行调整,以确保电流保护装置的动作性能符合要求。
3.设备校验设备校验是电流保护整定校验方案设计中的重要环节,它主要是对电流保护装置的功能进行检测,确保设备本身的正常运行。
设备校验主要包括以下内容:-固有电流误差测试:测试电流保护装置的固有电流误差,确保其准确性。
-动作时间测试:测试电流保护装置的动作时间,确保其可靠性。
-响应波形测试:测试电流保护装置对故障的响应波形,确保其对故障的识别能力。
设备校验需要依据相关标准和规范进行,确保电流保护装置的功能符合设计要求。
4.系统测试系统测试是电流保护整定校验方案设计中的最后一步,它主要是对整个系统进行测试,验证电流保护装置的性能是否符合设计要求。
系统测试主要包括以下内容:-整定校验测试:测试电流保护装置的整定参数,确保其满足设计要求。
(完整word版)三段式电流保护
三段式电流保护电流速断、限时电流速断和过电流保护都是反应电流增大而动作的保护,它们相互配合构成一整套保护,称做三段式电流保护。
电流速断保护当输电线路发生严重故障时,将会产生很大的故障电流,故障点距离电源愈近,短路电流就愈大.电流速断保护就是反应电流升高而不带时限动作的一种电流保护,但电流速断保护不能保护线路的全长.根据继电保护速动性的要求,电流速断保护的动作时限为瞬时动作,任一相电流大于整定值,保护就会跳闸并发信号。
电流速断保护原理逻辑图如下电流限时速断保护由于电流速断保护(无时限)不能保护线路全长,因此需要增加带时限的电流速断保护,用以保护线路的其余部分的故障,并作为电流速断保护的后备保护。
其保护范围不仅包括线路全长,而且深入到相邻线路的无时限保护区一部分。
电流限时速断保护的动作时限应与电流速断保护相配合。
当任一相电流大于整定值并超过整定延时,保护跳闸并发信号.电流限时速断保护原理逻辑图如下:图1—2 电流限时速断保护原理逻辑图过电流保护原理电网中发生相间短路故障时,电流会突然增大,电压突然下降,过流保护就是按线路选择性的要求,整定电流继电器的动作电流的。
当线路中故障电流达到电流继电器的动作值时,电流继电器动作按保护装置选择性的要求,有选择性的切断故障线路三段式电流保护整体图三段式电流保护各段保护范围及时限的配合L1首端故障, L1的三段保护均启动,速断保护动作。
L1末端故障, L1的时限速断、定时过流保护均启动,时限速断保护动作。
L2首端故障, L1定时过流保护启动, L2的三段保护均启动, L2速断保护动作。
三段式电流保护的区别三段的区别主要在于起动电流的选择原则不同。
其中速断和限时速断保护是按照躲开某一点的最大短路电流来整定的,而过电流保护是按照躲开最大负荷电流来整定的。
当线路发生短路时,重要特征之一是线路中的电流急剧增大, 当电流流过某一预定值时,反应于电流升高而动作的保护装置叫过电流保护.电源的保护功能主要是过压、过流保护两种功能。
三段式电流保护的设计
三段式电流保护的设计1. 引言在电力系统和电力装置中,电流过载是一种常见的问题。
电流过载可能会损坏设备和线路,甚至导致火灾等危险情况的发生。
因此,电流保护对于保障电力系统和设备的安全运行至关重要。
三段式电流保护是一种常用的保护方式,它可以在电流超过设定阈值时自动切断电路。
本文将介绍三段式电流保护的设计原理和实现方法,以及在实际应用中的一些注意事项。
2. 设计原理三段式电流保护采用了分段设定电流阈值的方式,以适应不同负载条件下的电流变化。
它通常由三个保护段组成,分别是低、中、高级保护段。
•低级保护段:该段用于检测较小的电流波动和短暂过载。
设定的电流阈值较低,可以快速响应并切断电路,以避免设备损坏。
•中级保护段:该段用于检测中等程度的电流过载。
设定的电流阈值较高,可以容忍一定程度的过载,以防止误切断。
•高级保护段:该段用于检测严重的电流过载和故障。
设定的电流阈值较高,可以快速切断电路,以保护设备和线路的安全。
3. 实现方法实现三段式电流保护需要借助电流保护装置和控制器。
以下是一种常见的实现方法:1.选择合适的电流保护装置:根据设备和线路的负载情况,选择合适的电流保护装置。
常见的电流保护装置包括熔断器、电流保护开关等。
保护装置应具备可调节电流阈值的功能,以实现三段式保护。
2.设计控制逻辑:根据三段式电流保护的要求,设计合适的控制逻辑。
控制器可以使用微处理器、PLC等设备实现。
控制逻辑应包括对不同保护段的电流阈值的设定和保护动作的触发条件。
3.连接和调试:将电流保护装置和控制器连接起来,并进行调试。
确保电流保护装置能够准确地检测和切断电路,并根据设定的电流阈值实现三段式保护。
注意事项在进行三段式电流保护设计和实施时,需要注意以下事项:•合理设定电流阈值:根据实际情况,合理设定低、中、高级保护段的电流阈值。
阈值设置过低可能导致误切断,阈值设置过高可能无法及时切断电路。
•系统可靠性和灵敏度:保护装置和控制器的选择要考虑系统可靠性和灵敏度的要求。
继保35kv线路三段式电流保护课程设计
继保35kv线路三段式电流保护课程设计
继电保护是电力系统中保护设备的重要组成部分,是保障电力系统安全稳定运行的关键技术之一。
35kV线路是电力系统中电能传输的重要组成部分,对其进行合理设计和配置电流保护装置,能够保护系统设备,防止事故发生并最大程度地减小故障范围,提高系统的可靠性和稳定性。
继保35kV线路三段式电流保护的设计过程中需要考虑以下几个方面:
1. 线路参数和系统要求:设计师需要了解线路的电阻、电感、电容等参数,以及系统的额定电流、短路电流等要求。
2. 选择合适的保护装置:根据线路的特点和系统的要求,选择适合的保护装置。
三段式电流保护是一种常用的保护方式,可根据线路的长度和电流变化情况进行配置。
3. 确定保护阀值:根据故障检测的要求,确定不同段保护的阀值。
一般情况下,距离最近的一段电流保护的阀值设置较低,而后续段的阀值逐渐增大。
4. 调整保护动作时间:根据三段电流保护的配置和阀值,调整保护的动作时间,使其能够在故障发生时能够准确、快速地进行保护动作,保护系统设备。
5. 配置旁路断路器:为了提高系统的可靠性和可用性,在电流保护的同时,还可以考虑配置旁路断路器,当故障发生时能够
迅速地切除故障部分,保护系统其他设备不受损害。
6. 进行阻抗匹配:在三段电流保护的配置过程中,需要进行阻抗的匹配,以保证保护的准确性。
阻抗匹配的设计是根据线路的特性和保护装置的参数来确定的。
综上所述,继保35kV线路三段式电流保护的设计需要考虑线路参数和系统要求,选择合适的保护装置,确定阀值和动作时间,配置旁路断路器,并进行阻抗匹配。
通过合理的设计和配置,能够提高系统的可靠性和稳定性,保护设备的安全运行。
双侧电源网络三段式相见电流保护设计
在NP线路K点发生短路故障时,流过保护2的短路电流将大于流过保护1的短路电流。其值为=+。
分支系数的定义为:=
保护2为:
无时限速断保护=
保护1的限时电流速断保护的动作电流应整定为:
=
最小值用于整定计算:=1+
最大值用于校验:=1+
2外汲电流:
分支系数:=<1
3既有助增,又有外汲。
接线图:
6.总结:
电网相间短路的电流保护是根据短路时电流增大的特点构成的,在单侧电源辐射形网络中采用阶段式电流保护。在电流保护的基础上加装方向元件就构成了方向电流保护,它用于双电源辐射形网络和单电源环形网络,可以满足动作选择性的要求。使用一段、二段、三段而组成的阶段是电流保护,主要优点是简单可靠,并且在一般情况下能够满足快速式、相间短路、整定计算
1.双侧电源输电线路电网图
2:元件
电流继电器KA、功率方向继电器KP、时间继电器KT、信号继电器KS。
3整定计算
3.1问题提出:
当K1点短路时,<
>
当K2点短路时,>
<
1.1.短路电流>整定值
2.2.短路功率为正,母线——线路
原理:在原有保护基础上加装功率方向判别元件,反方向故障时把保护闭锁,不致误动。
双侧电源网络三段式相间电流保护设计
(三峡电力职业学院新能源工程学院2010309班2010309号)
摘要:在单电源网络中,阶段式电流保护是安装在被保护线路靠近电源的一侧。当网络中任一线路发生短路故障时,短路功率方向都是从母线指向被保护线路,各保护按照选择性的条件协调配合工作,总能保证离故障点最近的保护优先动作跳闸,使停电范围尽量缩小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学号 2010《电力系统继电保护》课程设计(2010届本科)题目:三段式电流保护课程设计学院:物理与机电工程学院专业:电气程及其自动化作者姓名:指导教师:职称:教授完成日期:年12 月26 日目录1 设计原始资料........................................................................................................................................ - 4 -1.1 具体题目..................................................................................................................................... - 4 -1.2 要完成的内容............................................................................................................................. - 4 -2 设计要考虑的问题................................................................................................................................ - 4 -2.1 设计规程..................................................................................................................................... - 4 -2.1.1 短路电流计算规程.......................................................................................................... - 4 -2.1.2 保护方式的选取及整定计算 .......................................................................................... - 5 -2.2 本设计的保护配置..................................................................................................................... - 6 -2.2.1 主保护配置...................................................................................................................... - 6 -2.2.2 后备保护配置.................................................................................................................. - 6 -3 短路电流计算........................................................................................................................................ - 6 -3.1 等效电路的建立......................................................................................................................... - 6 -3.2 保护短路点及短路点的选取..................................................................................................... - 7 -3.3 短路电流的计算......................................................................................................................... - 7 -3.3.1 最大方式短路电流计算 .................................................................................................. - 7 -3.3.2 最小方式短路电流计算 .................................................................................................. - 8 -4 保护的配合及整定计算........................................................................................................................ - 9 -4.1 主保护的整定计算..................................................................................................................... - 9 -4.1.1 动作电流的计算............................................................................................................ - 9 -4.1.2 灵敏度校验.................................................................................................................... - 10 -4.2 后备保护的整定计算............................................................................................................... - 10 -4.2.1 动作电流的计算............................................................................................................ - 10 -4.2.2 动作时间的计算.............................................................................................................- 11 -4.2.3 灵敏度校验.....................................................................................................................- 11 -5 原理图及展开图的的绘制...................................................................................................................- 11 -5.1 原理接线图................................................................................................................................- 11 -5.2 交流回路展开图....................................................................................................................... - 12 -5.3 直流回路展开图....................................................................................................................... - 13 -6 继电保护设备的选择.......................................................................................................................... - 13 -6.1 电流互感器的选择................................................................................................................... - 13 -6.2 继电器的选择........................................................................................................................... - 14 -7 保护的评价.......................................................................................................................................... - 15 -摘要电力系统的飞速发展对继电保护不断提出新的要求,电子技术、计算机技术与通信技术的飞速发展又为继电保护技术的发展不断地注入了新的活力。