555组成施密特触发器
数电填空题
1.二进制数(1011.1001)2转换为八进制数为 13.41 ,转换为十六进为B9 。
2.数字电路按照是否具有记忆功能通常可分为两类:组合逻辑电路、时序逻辑电路。
3.已知逻辑函数F =A ⊕B ,它的与非-与非表达式为 A B A B ,或与非表达式为 ()()A B A B++ 。
4.5个变量可构成 32 个最小项,变量的每一种取值可使 1 个最小项的值为1。
5.555定时器构成的施密特触发器,若电源电压V CC =12V ,电压控制端经0.01µF 电容接地,则上触发电平U T+ = 8 V ,下触发电平U T –= 4 V 。
6.逻辑函数的两种标准形式分别为7.将2004个“1”异或起来得到的结果是 08.半导体存储器的结构主要包含三个部分,分别是地址译码器、存储矩阵、输出缓冲器9.8位D/A 转换器当输入数字量10000000为5v 。
若只有最低位为高电平,则输出电压为( 0.039 )v ;当输入为10001000,则输出电压为( 5.31 )v 。
10.就逐次逼近型和双积分型两种A/D 转换器而言,(双积分型)的抗干扰能力强,(逐次逼近型)的转换速度快。
11.由555定时器构成的三种电路中,(施密特触发器)和(单稳态触发器)是脉冲的整形电路。
12.与PAL 相比,GAL 器件有可编程的输出结构,它是通过对(结构控制字)进行编程设定其(输出逻辑宏单元)的工作模式来实现的,而且由于采用了(E 2CMOS )的工艺结构,可以重复编程,使它的通用性很好,使用更为方便灵活。
13.逻辑函数有四种表示方法,它们分别是真值表、逻辑图、逻辑表达式、卡诺图。
14.将2004个“1”异或起来得到的结果是 0 。
15.目前我们所学的双极型集成电路和单极型集成电路的典型电路分别是(TTL )电路和(CMOS )电路。
16.施密特触发器有(两)个稳定状态.,多谐振荡器有(0)个稳定状态。
17.已知Intel2114是1K* 4位的RAM 集成电路芯片,它有地址线(10)条,数据线(4)条。
吉大20春学期《数字电子技术》在线作业二答卷
答案:ACD
12.构成移位寄存器可以采用的触发器为( )。
A.R-S型
B.J-K型
C.主从型
D.同步型
答案:ABC
13.下列那种是描述时序电路逻辑功能的方法( )。
A.逻辑方程组
B.状态图
C.电路图
D.时序图
答案:ABD
14.下列触发器中,克服了空翻现象的有( )。
B.数据选择器
C.数值比较器
D.七段显示译码器
答案:B
5.常用的BCD码有( )。
A.奇偶校验码
B.格雷码
C.8421码
D.汉明码
答案:C
6.在下列触发器中,有约束条件的是( )。
A.主从JK F/F
B.主从D F/F
C.同步RS F/F
D.边沿D F/F
答案:C
答案:正确
17.74LS147为8-3线优先编码器。
答案:错误
18.逻辑函数的简化对于提高电路的可靠性并没有什么作用,因此实际意义不大。
答案:错误
19.一般TTL门电路的输出端可以直接相连,实现线与。
答案:错误
20.采样定理的规定,是为了能不失真地恢复原模拟信号,而又不使电路过于复杂。
D.8
答案:D
10.对于TTL与非门闲置输入端的处理,不可以( )。
A.接电源
B.通过电阻33kΩ接电源
C.接地
D.与有用输入端并联
答案:C
二、多选题 (共 5 道试题,共 20 分)
11.下列哪一个是按照电路结构对触发器进行分类的( )。
A.基本RS触发器
应用555定时器组成施密特触发器
课程设计任务书学生班级:学生姓名:学号设计名称:应用555定时器组成施密特触发器起止日期:指导教师:摘要施密特触发器是一种用途十分广泛的脉冲单元电路。
利用它所具有的电位触发特性,可以进行脉冲整形,把边沿不够规则的脉冲整形为边沿陡峭的矩形脉冲(图4);通过它可以进行波形变换,把正弦波变换成矩形波;另一个重要用途就是进行信号幅度鉴别,只要信号幅度达到某一设定值,触发器就翻转,所以常称它为鉴幅器。
用施密特触发器还能组成多谐振荡器和单稳态触发器。
施密特触发器也有两个稳定状态,但与一般触发器不同的是,施密特触发器采用电位触发方式,其状态由输入信号电位维持;对于负向递减和正向递增两种不同变化方向的输入信号,施密特触发器有不同的阀值电压。
为此,同学们通过书籍查阅了解到有多种方法可以组成施密特触发器,然后通过比较各种方案后,用555定时器组成施密特触发器,并通过去实验室实验和老师的指导了解到⑴施密特触发器有两个稳定状态,其维持和转换完全取决于输入电压的大小。
⑵电压传输特性特殊,有两个不同的阈值电压(正向阈值电压和负向阈值电压。
⑶状态翻转时有正反馈过程,从而输出边沿陡峭的矩形脉冲关键词:施密特触发器,555定时器,阈值电压。
目录一:绪论 (4)二:555定时器组成施密特触发器2.1设计任务、要求及目的 (5)2.2 555定时器 (5)2.3 设计施密特触发器的方案 (7)2.4 主要参数 (8)2.5 制作原理图 (8)2.6制作PCB版 (9)2.6.1 制作步骤2.6.2 制作过程中遇到的问题、原因及解决办法三:结论 (10)四:参考文献 (11)五:附录 (11)绪论在数字电路或系统中,常常需要各种脉冲波形,例如时钟脉冲、控制过程的定时信号等。
这些脉冲波形的获得通常有两种方法:一种是利用脉冲信号产生器直接产生;另一种则是通过对已有信号进行变换,使之满足系统的要求。
本次课程设计是利用后一种方法产生脉冲波形,主要是以中规模集成电路555定时器为典型电路构成施密特触发器。
第6章-555定时器
第二节 集成555定时器
一、555定时器的电路结构
由以下几部分组成: (1)三个阻值为5kΩ的电阻组
成的分压器。 (2)两个电压比较器C1和C2。
电压比较器的功能:
v+> v-,vO=1 v+< v-,vO=0
(3)基本RS触发器、 (4)放电三极管T及缓冲器G。
VC C 电 源
(8 )
RD 复 位
便的调节tW。
(2)恢复时间tre
vI
tre=(3~5)τ2 (3)最高工作频率fmax
4.利用施密特触发器构成多谐振荡器
R
R
VCC
1
vI
vo
8 47
C
6
3
2 555 5
C
1
0.01 F
二.单稳态触发器
特点: 1.有一个稳态和一个暂稳态; 2.在触发脉冲作用下,由稳态翻转到暂稳态; 3.暂稳状态维持一段时间后,自动返回到稳态。
(一)由555定时器构成的单稳态触发器
1. 电路组成及工作原理
7
vO 2
vI1 6
vI
v I2 2 55 5 3
vO1
1
R、VCC2构成另一输出端 vo2,其高电平可以通过 改变VCC2进行调节。
V C C( 8 ) R D( 4 )
( 5) 5kΩ
vI
v IC v I1
+ -C 1
R
&
( 6) 5kΩ
v I2 ( 2)
- +C 2
S
&
vO 5kΩ
( 7)
T
f 1 1.43 T (R12R2)C
(5)输出波形占空比q
qT1 R1R2 T R12R2
数字逻辑技术试卷及解析
数字逻辑技术试卷-第6章一、填空题1.根据制作工艺的不同,集成555定时电路可分为 TTL 型 和 CMOS 型 两大类。
2.施密特触发器的固有性能指标是 V T+ 、 V T - 和 ΔV T 。
3.CMOS 精密单稳态触发器中,定时元件和可在 较大 范围内选择,定时时间t w 的范围为:取值 2kΩ~30kΩ ,取值 10pF ~10μF 。
4.555定时电路由 分压器 、 比较器 、 RS 触发器 、 放电开关管 以及 输出缓冲级 几部分组成。
5.由555构成的单稳态触发器对输入触发脉冲的要求是: t re <t w 。
6.TTL 型555定时电路中的C 1和C 2是 开环的电压比较器 ,C 1同相端的参考电压是 2V CC /3 ;C 2反相端的参考电压是 V CC /3 。
定时电路构成的多谐振荡器,其振荡周期为 T=0.7(R 1+2R 2)C ,输出脉冲宽8.555定时器可以构成施密特触发器,施密特触发器具有 回差 特性,主要用于脉冲波形的 变换 和 脉冲整形 。
555定时器还可以用作多谐振荡器和 单 稳态触发器。
9.555定时电路的最基本应用电路有: 单稳态触发器 、 施密特触发器 和多谐振荡器。
10.555定时电路构成的应用电路中,当电压控制端管脚5不用时,通常对地接 一个0.01μF 的电容 ,其作用是防止 干扰 。
二、判断题1.用555定时电路构成的多谐振荡器的占空比不能调节。
( 错 )2.对555定时器的管脚5外加控制电压后也不能改变其基准电压值。
( 错 )3.用555定时器构成的施密特触发器,其回差电压不可调节。
( 错 )4.单稳态触发器的暂稳态维持时间的长短只取决于电路本身的参数。
( 对 )5.单稳态触发器只有一个稳态,一个暂稳态。
( 对 ) 6. 555电路的输出只能出现两个状态稳定的逻辑电平之一。
( 对 ) 7.施密特触发器的作用就是利用其回差特性稳定电路。
555定时器及其应用
施密特触发器的输出波形如下:
ui
VCC2
VCC1
2VCC/3
R
uo2
48 7
555 3
uo1 0
1VCC/3 t
ui
6 2
1
5
uO
C5
0
t
图5-2-13 施密特触发器电路图
图5-2-14 施密特触发器的波形图
施密特触发器的主要用于对输入波形的整形。图5-2-14 表示的是将三角波整形为方波,其它形状的输入波形也可以 整形为方波。
态的翻转,而施密特触发器是靠外加电
压信号去控制电路状态的翻转。所以,
在施密特触发器中,外加信号的高电平
必须大于
2 3
VCC
,低电平必须小于1 3
VCC
,否
则电路不能翻转。
图5-2-13 施密特触发器电路图
由于施密特触发器无须放电端,所以利用放电端与输出端状态相
一致的特点,从放电端加一上拉电阻后,可以获得与3脚相同的输出。 但上拉电阻可以单独接另外一组电源,以获得与3脚输出不同的逻辑电 平。
+UCC R1
1
ui uc
>2/3 UCC
UCC 8
5KΩ 5 6 VA
5KΩ 2
VB
7 5KΩ
T
截止 (地)1
+C1+
01
01
+C2+
4 (复位端)
暂稳稳定状态
01 RD Q
SD Q 10
3u0
Q=1
Q=0
接通电源 +UCC ui (>1/3UCC)
R
. 0.01μ F . ui
uc
58 4
用555定时器构成的施密特触发器
一、选择题1、用555定时器构成的施密特触发器,若电源电压为6V,控制端不外接固定电压,则其上限阈值电压、下限阈值电压和回差电压分别为()。
A.2V,4V,2V B.4V,2V,2V C.4V,2V,4V D.6V,4V,2V 2、如图所示由555定时器组成的电路是()A.多谐振荡器B.施密特触发器C.单称态电路D.双稳态电路3、要把不规则的矩形波变换为幅度与宽度都相同的矩形波,应选择()电路。
A.多谐振荡器B.基本RS触发器C.单称态触发器D.施密特触发器4、单稳态触发器可用来()。
A.产生矩形波B.产生延迟作用C.存储器信号D.把缓慢信号变成矩形波5、一个用555定时器构成的单稳态触发器输出的脉冲宽度为()。
A.0.7RC B.1.4RC C.1.1RC D.1.0RC6、要得到频率稳定度较高的矩形波,应选择()电路。
A.RC振荡器B.石英振荡器C.单稳态触发器D.施密特触发器7、石英晶体多谐振荡器的主要优点是()。
A.电路简单B.频率稳定度高C.振荡频率高D.振荡频率低8、把正弦波变换为同频率的矩形波,应选择()电路。
A.多谐振荡器B.基本RS触发器C.单稳态触发器D.施密特触发器9、回差是()电路的特性参数。
A.时序逻辑B.施密特触发器C.单稳态触发器D.多谐振荡器10、能把缓慢变化的输入信号转换成矩形波的电路是()。
A.单稳态触发器B.多谐振荡器C.施密特触发器D.边沿触发器二、填空题1、将NE555集成定时器的ui1 ( TH ) 端和ui2 ( TR ) 端连接起来即可构成()。
2、施密特触发器有()个稳定状态,多谐振荡器有()个稳定状态。
3、单稳态触发器的状态具有一个()和一个()。
4、石英晶体多谐振荡器可以产生()的时钟脉冲。
5、要将缓慢变化的三角波信号转换成矩形波,则采用()触发器。
6、施密特触发器的回差电压的主要作用是()。
7、多谐振荡器用于( ) ;施密特触发器用于();单稳态触发器主要是用于()。
西工大数电实验报告——555定时器及其应用
555定时器及其应用班级:03051001班学号:姓名:同组成员:一、实验目的1.熟悉555集成定时器的组成及工作原理;2.掌握555集成定时器的逻辑功能和典型应用。
二、试验设备数字电路试验箱、数字双踪示波器、函数信号发生器、NE555、电阻和电容三、试验原理555定时器是一种数字与模拟混合型的中规模集成电路,外加电阻、电容等元件可以构成多谐振荡器,单稳电路,施密特触发器等,应用十分广泛。
由于内部电压标准使用了三个5K电阻,故取名555电路。
器电路类型有双极型和CMOS型两大类,二者的结构与工作原理类似。
几乎所有的双极型产品型号最后的三位数码都是555或556;所有的CMOS产品型号最后四位数码都是7555或7556,二者的逻辑功能和引脚排列完全相同,易于互换。
555和7555是单定时器。
556和7556是双定时器。
双极型的电源电压为VCC=+5V~+15V,输出的最大电流可达200mA,CMOS型的电源电压为+3V~+18V。
555定时器的原理图如图(1)所示,引线排列如图(2)所示,其功能表如表(1)所示。
555定时器的内部含有两个电压比较器,一个基本RS触发器,一个放电开关管T,比较器的参考电压由三只5K 的电阻器构成的分压器提供。
它们分别使高电平比较器A1的同相输入端和低电平比较器A2的反相输入端的参考电平为2/3VCC和1/3VCC。
A1与A2的输出端控制RS触发器状态和放电管开关状态。
当输入信号自6脚,即高电平触发输入并超过参考电平2/3VCC时,触发器复位,555的输出端3脚输出低电平,同时放电开关管导通;当输入信号自2脚输入并低于1/3VCC时,触发器复位,555的3脚输出高电平,同时放电开关管截止。
图(1)图(2)表(1)D R 是复位端(4脚),当D R =0,555输出低电平。
正常工作时D R 接为高电平。
VCO 是控制电压端(5脚),平时输出2/3VCC 作为比较器A1的参考电平,当5脚外接一个输入电压,即改变了比较器的参考电压,从而实现对输出的另一种控制,在不接外加电压时,通常接一个0.01uf 的电容器到地,起滤波作用,以消除外来的干扰,以确保参考电平稳定。
第6章 脉冲波形的产生与整形思考题与习题题解
思考题与习题6-1选择题(1) TTL单定时器型号的最后几位数字为( A )。
A.555B.556C.7555D.7556(2)用555定时器组成施密特触发器,当输入控制端CO外接10V电压时,回差电压为(B )。
A.3.33VB.5VC.6.66VD.10V(3)555定时器可以组成(ABC )。
A.多谐振荡器B.单稳态触发器C.施密特触发器D.JK触发器(4)若图6-43中为TTL门电路微分型单稳态触发器,对R1和R的选择应使稳态时:( B)图6-43A.与非门G1、G2都导通(低电平输出);B.G1导通,G2截止;C.G1截止,G2导通;D.G1、G2都截止。
(5)如图6-44所示单稳态电路的输出脉冲宽度为t WO=4μs,恢复时间tre=1μs,则输出信号的最高频率为(C)。
图6-44A.fmax=250kHz;B.fmax≥1MHz;C.fmax≤200kHz。
(6)多谐振荡器可产生( B )。
A.正弦波B.矩形脉冲C.三角波D.锯齿波(7)石英晶体多谐振荡器的突出优点是(C)。
A.速度高B.电路简单C.振荡频率稳定D.输出波形边沿陡峭(8)能将正弦波变成同频率方波的电路为(B)。
A.稳态触发器B.施密特触发器C.双稳态触发器D.无稳态触发器(9)能把2 kHz 正弦波转换成 2 kHz 矩形波的电路是(B)。
A.多谐振荡器B.施密特触发器C.单稳态触发器D.二进制计数器(10)能把三角波转换为矩形脉冲信号的电路为(D)。
A.多谐振荡器B.DACC. ADCD.施密特触发器(11)为方便地构成单稳态触发器,应采用(C)。
A.DACB.ADCC.施密特触发器D.JK 触发器(12)用来鉴别脉冲信号幅度时,应采用(D)。
A.稳态触发器B.双稳态触发器C.多谐振荡器D.施密特触发器(13)输入为2 kHz 矩形脉冲信号时,欲得到500 Hz矩形脉冲信号输出,应采用(D)。
A.多谐振荡器B.施密特触发器C.单稳态触发器D.二进制计数器(14)脉冲整形电路有(BC )。
-脉冲产生和整形电路典型例题及其讲解
一、典型例题及其讲解例6.1 用集成芯片555构成的施密特触发器电路及输入波形Vi 如图6.3(a 、b )所示,试画出对应的输出波形Vo解:由图6.4所示集成电路定时器555内部电路结构可知,该施密特触发器的正向阈值电压(上触发电平))(33.33532V V U U CC P T ≈⨯===+,反向阈值电压(下触发电平))(7.131531V V U U CC N T ≈⨯===-,见图6.3(b )从t=0时刻开始,Ui 上升,但Ui <1.7V ,电压比较器A 2的输出0=S ,电压比较器A 2的输出1=R (见图6.4所示)Q =1(V 0=5V );当1.7V <Ui <3.3V 时,1=S ,1=R ,使Q =1保持不变;当Ui ≥3.3 V 时,1=S ,0=R ,使Q =0(即U 0=0V )。
Ui 由4V 开始下降,但当1.7V <Ui <3.3V 时,1=S ,1=R ,使Q =0保持不变;当Ui 下降到Ui<1.7V 时,又恢复到0=S ,1=R ,Q =1。
综上的述,该电路的输出波形如6.3(C )所示。
例6.2用集成芯片555所构成的单稳态触发器电路及输入波形Vi 如图6.5(a )、(b )所示,试画出对应的输出波形Vo 和电容上的电压波形Vc ,并求暂稳态宽度t w 。
解:由图6.4所示的集成电路定时器555内部电路结构知,电容C 接芯片内晶体管T 的集电极。
当T 管的基极电压为高电平时,T 管导通。
在电路接通电)施密特触发器电路工作波形图源开始时。
电源V CC 通过R 向C 充电。
当U C 上升到CC V 32时,比较器A 1输出低电平,0=R ;此时,输入电压Ui =5V (见图 6.5a 、b ),比较器A2输出高电平,1=S ,触发器输出1,0==Q Q 。
同时,T 管导通,电容C 通过T 放电,U C 下降。
当U C 下降到CC i CC V U V 3132>>时,1==R S ,触发器1,0==Q Q 保持不变,输出电压U 0=0,就是电路的稳定状态。
555定时器应用举例
10.12 555定时器应用举例10.12.1 单稳态触发器1.不可重复触发单稳态触发器由555构成的单稳态触发器及工作波形如图10.12.1所示。
平时vI≥1/3V CC,电源接通瞬间,电路有一个稳定的过程,即电源通过电阻R向电容C充电,当v C上升到2/3V CC时,基本RS触发器复位,vO 为低电平,放电管T导通,电容放电,电路进入稳定状态,如图t1前所示。
若触发器输入端施加触发信号(v1<1/3V CC),触发器发生翻转,电路进入暂稳态,v O输出高电平,且管T截止,此后电容C充电至vC=2/3V CC时,电路又发生翻转,v O为低电平,T导通,电容C放电,电路恢复至稳态。
图10.12.1 由555定时器构成的单稳态触发器555定时器构成的单稳态触发器如果忽略T的饱和压降,则vC从零电平上升到2/3V CC的时间,即为输出电压v O的脉宽t W。
这种电路产生的脉冲宽度可从几个微秒到数分钟,精度可达0.1%。
通常R的取值在几百欧姆至几兆欧姆之间,电容取值为几百皮法到几百微法。
由图10.12.1可知,如果在电路的暂稳态持续时间内,加入新的触发脉冲,如图10.12.1(b)中的虚线所示,则该脉冲不起作用,电路为不可重复触发单稳。
2.可重复触发单稳态触发器由555定时器构成的可重复触发单稳电路如图10.12.2所示。
图10.12.2 由555定时器构成的可重复触发单稳态电路当v1输入负向脉冲后,电路进入暂稳态,555定时器内的管T断开,同时外接的管T导通,电容C放电。
输入脉冲撤除后,外接的管T也断开,电容C 充电,在v C未充到2/3V CC 之前,电路处于暂稳态。
如果在此期间,又加入新的触发脉冲,外接的管T又导通,电容C 再次放电,输出仍然维持在暂稳态。
只有在触发器脉冲撤除后且在输出脉宽t W时间间隔内没有新的触发脉冲,电路才返回稳定状态。
这种电路可作为失落脉冲检出电路,对机器的转速或人体的心律进行监视,当机器转速降到一定限度或人体的心律不齐时就发出警报信号。
555定时器的基本特性和用法
555定时器的基本特性和用法【摘要】简要说明555 定时器的内部电路结构及功能,对555 定时器接成的施密特触发器、单稳态触发器、多谐振荡器三种典型电路进行了详细的分析。
【关键词】555 定时器;施密特触发器;单稳态触发器;多谐振荡器;1 前言555 定时器是美国Signetics 公司1972 年研制的用于取代机械式定时器的中规模集成电路,因设计时输入端有三个5KΩ的电阻而得名。
555 定时器是一种模拟和数字功能相结合的集成器件。
目前品种繁多,主要有TTL 和CMOS两大类型,它们的电路结构和工作原理基本相同。
TTL 型(以5G555 为代表)驱动能力较强,电源电压范围为5~16V,最大负载电流可达200mA;而CMOS 型(以CC7555 为代表)则具有功耗低、输入电阻高等优点,电源电压范围为3~18V,最大负载电流在20mA 以下。
产品型号尾数为555 的是TTL 型单定时器,双定时器为556;型号尾数为7555 的是CMOS 型单定时器,双定时器为7556。
555 定时器成本低,性能可靠,只需要外接几个电阻、电容,就可以方便实现多谐振荡器、单稳态触发器和施密特触发器等脉冲产生与变换电路。
由于使用灵活,方便,所以555定时器在波形的产生与变化,测量与控制,家用电器,电子玩具等许多领域中得到了应用。
2 555定时器的电路结构与基本特性2.1电路组成图1是国产双极型定时器CB555的电路结构图。
它由比较器C1和C2,SR锁存器和集电极开路的放电三极管VT三部分组成。
为了提高电路的带负载能力,还在输出端设置了缓冲器G4。
①电阻分压器由3个阻值均为5kΩ的电阻串联构成分压器,为电压比较器C1和C2提供参考电压U R1、U R2。
②电压比较器C1和C2电压比较器C1和C2是两个结构完全相同的理想运算放大器。
当运算放大器的同相输入U+大于反相输入U-时,其输出为高电平1信号;而当U+小于U-时,其输出为低电平0信号。
用555定时器构成的施密特触发器
施密特触发器也有两个稳定状态,但与一般触发器不同的是,施密特触发器采用电位触发方式,其状态由输入信号电位维持;对于负向递减和正向递增两种不同变化方向的输入信号,施密特触发器有不同的阀值电压。
见图6-2:解释:当输入信号Vi减小至低于负向阀值时,输出电压Vo翻转为高电平VoH;而输入信号Vi 增大至高于正向阀值时,输出电压Vo才翻转为低电平VoL。
这种滞后的电压传输特性称回差特性,其值-称为回差电压。
一、用555定时器构成的施密特触发器1.电路组成:将555定时器的阀值输入端Vi1(6脚)、触发输入端Vi2(2脚)相连作为输入端Vi,由Vo(3脚)或Vo’(7脚)挂接上拉电阻Rl及电源VDD作为输出端,便构成了如图6-3所示的施密特触发器电路。
2.工作原理:如图所示,输入信号Vi,对应的输出信号为Vo,假设未接控制输入Vm 。
①当Vi=0V时,即Vi1<2/3Vcc、Vi2<1/3Vcc,此时Vo=1。
以后Vi逐渐上升,只要不高于阀值电压(2/3Vcc),输出Vo维持1不变。
②当Vi上升至高于阀值电压(2/3Vcc)时,则Vi1>2/3Vcc、Vi2>1/3Vcc,此时定时器状态翻转为0,输出Vo=0,此后Vi继续上升,然后下降,只要不低于触发电位(1/3Vcc),输出维持0不变。
③当Vi继续下降,一旦低于触发电位(1/3Vcc)后,Vi1<2/3Vcc、Vi2<1/3Vcc,定时器状态翻转为1,输出Vo=1。
总结:未考虑外接控制输入Vm时,正负向阀值电压=2/3Vcc、 =1/3Vcc,回差电压△V=1/3Vcc。
若考虑Vm,则正负向阀值电压=Vm、=1/2Vm,回差电压△V=1/2Vm。
由此,通过调节外加电压Vm可改变施密特触发器的回差电压特性,从而改变输出脉冲的宽度。
二、施密特触发器的应用举例1.波形变换:施密特触发器可用以将模拟信号波形转换成矩形波,如图6-4所示将正弦波信号同相转换成矩形波的例子,输出脉冲宽度tpo可通过回差电压加以调节。
555时基电路的四种常用电路
555时基电路的四种常用电路555时基电路的四种常用电路555时基电路是一种双极型的时基集成电路,工作电源为4.5v~18v,输出电平可与TTL、CMOS 和HLT逻辑电路兼容,输出电流为200mA,工作可靠,使用简便而且成本低,可直接推动扬声器、电感等低阻抗负载,还可以在仪器仪表、自动化装置及各种电器中作定时及时间延迟等控制,可构成单稳态触发器、无稳态多谐振荡器、脉冲发生器、防盗报警器、电压监视器等电路,应用及其广泛1 555时基电路的内部结构国产双极型定时器CB555的电路结构如图l所示。
它由分压器、电压比较器C1和C2、SR锁存器、缓冲输出器和集电极开路的放电三极管TD组成。
1.1 电压比较器电压比较器C1和C2是两个相同的线性电路,每个电压比较器有两个信号输入端和一个信号输出端。
C1的同向输入端接基准比较电压VR1,反向输入端(也称阈值端TH)外接输入触发信号电压,C2的反向输入端接基准比较电压VR2,同向输入端(也称触发端TR')外接输入触发信号电压。
1.2 分压器分压器由三个等值电阻串联构成,将电源电压Vcc分压后分别为两个电压比较器提供基准比较电压。
在控制电压输入端Vco悬空时,C1、C2的基准比较电压分别为通常应将Vco端接一个高频干扰旁路电容。
如果Vco外接固定电压,则1.3 SR锁存器SR锁存器是由两个TTL与非门构成,它的逻辑状态由两个电压比较器的输出电位控制,并有一个外引出的直接复位控制端R'D。
只要在R'D端加上低电平,输出端vo便立即被置成低电平,不受其它输入端状态的影响。
正常工作时必须使R'D处于高电平。
SR锁存器有置0(复位)、置1(置位)和保持三种逻辑功能。
电压比较器C1的输出信号作为SR锁存器的复位控制信号,电压比较器C2的输出信号作为SR锁存器的置位控制信号。
1.4 集电极开路的放电三极管放电三极管实际上是一个共发射极接法的双极型晶体管开关电路,其工作状态由SR锁存器的Q'端控制,集电极引出片外,外接RC充放电电路。
555时基电路的四种常用电路
555时基电路的四种常用电路555时基电路是一种双极型的时基集成电路,工作电源为4.5v~18v,输出电平可与TTL、CMOS 和HLT逻辑电路兼容,输出电流为200mA,工作可靠,使用简便而且成本低,可直接推动扬声器、电感等低阻抗负载,还可以在仪器仪表、自动化装置及各种电器中作定时及时间延迟等控制,可构成单稳态触发器、无稳态多谐振荡器、脉冲发生器、防盗报警器、电压监视器等电路,应用及其广泛1 555时基电路的部结构国产双极型定时器CB555的电路结构如图l所示。
它由分压器、电压比较器C1和C2、SR锁存器、缓冲输出器和集电极开路的放电三极管TD组成。
1.1 电压比较器电压比较器C1和C2是两个相同的线性电路,每个电压比较器有两个信号输入端和一个信号输出端。
C1的同向输入端接基准比较电压VR1,反向输入端(也称阈值端TH)外接输入触发信号电压,C2的反向输入端接基准比较电压VR2,同向输入端(也称触发端TR')外接输入触发信号电压。
1.2 分压器分压器由三个等值电阻串联构成,将电源电压Vcc分压后分别为两个电压比较器提供基准比较电压。
在控制电压输入端Vco悬空时,C1、C2的基准比较电压分别为通常应将Vco端接一个高频干扰旁路电容。
如果Vco外接固定电压,则1.3 SR锁存器SR锁存器是由两个TTL与非门构成,它的逻辑状态由两个电压比较器的输出电位控制,并有一个外引出的直接复位控制端R'D。
只要在R'D端加上低电平,输出端vo便立即被置成低电平,不受其它输入端状态的影响。
正常工作时必须使R'D处于高电平。
SR锁存器有置0(复位)、置1(置位)和保持三种逻辑功能。
电压比较器C1的输出信号作为SR锁存器的复位控制信号,电压比较器C2的输出信号作为SR锁存器的置位控制信号。
1.4 集电极开路的放电三极管放电三极管实际上是一个共发射极接法的双极型晶体管开关电路,其工作状态由SR锁存器的Q'端控制,集电极引出片外,外接RC充放电电路。
555定时器的应用与原理介绍
555定时器的应用与原理介绍555定时器介绍:555 定时器是一种模拟和数字功能相结合的中规模集成器件。
一般用双极性工艺制作的称为555,用CMOS 工艺制作的称为7555,除单定时器外,还有对应的双定时器556/7556。
555 定时器的电源电压范围宽,可在 4.5V~16V 工作,7555 可在3~18V 工作,输出驱动电流约为200mA,因而其输出可与TTL、CMOS 或者模拟电路电平兼容。
555 定时器成本低,性能可靠,只需要外接几个电阻、电容,就可以实现多谐振荡器、单稳态触发器及施密特触发器等脉冲产生与变换电路。
它也常作为定时器广泛应用于仪器仪表、家用电器、电子测量及自动控制等方面。
555 定时器的内部电路框图和外引脚排列图分别如图 2.9.1 和图 2.9.2 所示。
它内部包括两个电压比较器,三个等值串联电阻,一个RS 触发器,一个放电管T 及功率输出级。
它提供两个基准电压VCC /3 和2VCC /3图8-1 555定时器内部方框图<555定时器内部结构图>555电路的工作原理555电路的内部电路方框图如图8-1所示。
它含有两个电压比较器,一个基本RS触发器,一个放电开关T,比较器的参考电压由三只5KΩ的电阻器构成分压,它们分别使高电平比较器A1同相比较端和低电平比较器A2的反相输入端的参考电平为和。
A1和A2的输出端控制RS触发器状态和放电管开关状态。
当输入信号输入并超过时,触发器复位,555的输出端3脚输出低电平,同时放电,开关管导通;当输入信号自2脚输入并低于时,触发器置位,555的3脚输出高电平,同时放电,开关管截止。
是复位端,当其为0时,555输出低电平。
平时该端开路或接VCC。
Vc是控制电压端(5脚),平时输出作为比较器A1的参考电平,当5脚外接一个输入电压,即改变了比较器的参考电平,从而实现对输出的另一种控制,在不接外加电压时,通常接一个0.01uf的电容器到地,起滤波作用,以消除外来的干扰,以确保参考电平的稳定。
定时器555延时电路设计习题解答
任务8.1定时器555延时电路设计习题解答一、测试(一)判断题1. 单稳态触发器有两个稳态。
答案:F解题:1个稳定状态.2. 多谐振荡器有两个稳态。
答案:F解题:无稳定状态3. 施密特触发器有两个稳态。
答案:T解题:施密特触发器有两个稳态。
4. 555定时器要构成施密特触发器,只要将低电平触发端和高电平触发端连在一起。
答案:T解题:555定时器要构成施密特触发器,只要将低电平触发端和高电平触发端连在一起。
5. 在555定时器内部电路中,当内部两比较器输出都为高电平时,电路输出状态翻转。
答案:F解题:在555定时器内部电路中,当两比较器输出都为高电平时,电路输出状态不变。
相当于内部RS触发器输入两无效信号。
6. 单稳态触发器又称为单稳态电路,它是只有一种稳定状态的电路。
如果没有外界信号触发,它就始终保持在稳定状态不变。
答案:T解题:单稳态触发器又称为单稳态电路,它是只有一种稳定状态的电路。
如果没有外界信号触发,它就始终保持在稳定状态不变。
7. 单稳态触发器它有稳态和暂稳态两个不同的工作状态;在外界触发信号作用下,电路能由稳态翻转到暂稳态,在暂稳态维持一段时间以后,电路会自动返回到稳态;暂稳态的持续时间的长短取决于外界触发信号的长短。
答案:F解题:单稳态触发器它有稳态和暂稳态两个不同的工作状态;在外界触发信号作用下,电路能由稳态翻转到暂稳态,在暂稳态维持一段时间以后,电路会自动返回到稳态;暂稳态的持续时间的长短取决于电路电路本身的参数,与触发脉冲无关。
8. 多谐振荡器是产生矩形脉冲信号的自激振荡器。
它不需要输入信号,接通电源就可以自动输出矩形脉冲信号。
答案:T解题:多谐振荡器是产生矩形脉冲信号的自激振荡器。
它不需要输入信号,接通电源就可以自动输出矩形脉冲信号。
9. 在555定时器组成的多谐振荡器电路中,输出波形的周期主要由电容的充放电时间常数决定。
解题:在555定时器组成的多谐振荡器电路中,输出波形的周期主要由电容的充放电时间常数决定。
555简介 关于555的电路
它的内部有 两个电压比较器 C1和C2 、一个 触发器、 基本RS 触发器、 一个晶体管和三 个电阻组成的分 压器。 压器。各引脚的 功能如下: 功能如下:
5KΩ Ω
5 6
UREF1 _ C1 u c1 5KΩ Ω
∞ R &
UREF2 _ C2 uc2 5KΩ Ω
S
3
7
T
1
整形电路
(1)当ui=0时,由于比较器C1=1、C2=0,触发器置 1,即Q=1、 ,uo1=uo=1。ui升高时,在未到达 2VCC/3以前,uo1=uo=1的状态不会改变。 (2)ui升高到2VCC/3时,比较器C1输出为0、C2输出 为1,触发器置0,即Q=0、 ,uo1=uo=0。此后,ui 上升到VCC,然后再降低,但在未到达VCC/3以前, uo1=uo=0的状态不会改变。 (3)ui下降到2VCC/3时,比较器C1输出为1、C2输出 为0,触发器置1,即Q=1、 ,uo1=uo=1。此后,ui 继续下降到0,但uo1=uo=1的状态不会改变。
555 定时器的功能主要由两个比较器决 定。两个比较器的输出电压控制 RS 触发器 和放电管的状态。在电源与地之间加上电压, 当 5 脚悬空时,则电压比较器 A1 的反相输 入端的电压为 2VCC /3,A2 的同相输入端 的电压为VCC /3。若触发输入端 TR 的电压 小于VCC /3,则比较器 A2 的输出为 1,可 使 RS 触发器置 1,使输出端 OUT=1。如果 阈值输入端 TH 的电压大于 2VCC/3,同时 TR 端的电压大于VCC /3,则 A1 的输出为 1, A2 的输出为 0,可将 RS 触发器置 0,使输 出为 0 电平。
1、 555多谐振荡器电路 多谐振荡器电路 用555时基电路可组成各种形式的自激式多 谐振荡器,其基本电路如图a所示。当电路 刚接通电源时,由于C来不及充电,555电路 的②脚处于零电平,导致其输出③脚为高电 平。当电源通过RA、RB向C充电到Vc≥Vcc 时,输出端③脚由高电路平变为低电平,电 容C经RB和内部电路的放电开关管放电。当 放电到Vc≤Vcc时,输出端又由低电平转变为 高电平。此时电容再次充电,这种过程可周 而复始地进行下去,形成自激振荡。图(b)给 出了输出端及电容器C上电压的波形。
555芯片温度区间控制电路:施密特触发器
555芯片温度区间控制电路:施密特触发器电路解析:(1)4脚接Vcc,8脚接Vcc,1脚接地,5脚连小电容接地;(2)2脚、6脚并接**(构成施密特触发器)**;(3)Rt和Rp串联分压决定输入端2脚的电位;(4)输出端3脚接继电器模块:3脚出高电平1,加热器加热;3脚出低电平0,加热器不加热。
(5)低于下限温度——上下限温度之间——高于上限温度① 温****度低于下限设定值Rt较大(负温度系数电阻),2脚电位小于1/3Vcc,3脚输出高电平,加热器加热;**② **温度高于下限设定值,但同时又小于上限设定值时,2脚电位大于1/3Vcc时,6脚电位小于2/3Vcc时,3脚保持之前的输出状态;③ 温****度高于上限设定值2脚电位大于1/3Vcc时,6脚电位大于2/3Vcc时,3脚输出低电平,加热器不加热。
即此电路有区间控制功能。
(6)Rt****和Rp串联分压决定输入端2、6脚的电位,即此电路即影响下限温度设置,也影响上限温度设置① 调节下限温度原理若Rp调大,Rt也需变大(即下限温度需变得更低,因为是负温度系数电阻),才能保证2脚临界电位不变(1/3Vcc)——欲调低下限设定温度,调大Rp;若Rp调小,Rt也需变小(即下限温度需变得更高,因为是负温度系数电阻),才能保证2脚临界电位不变(1/3Vcc)——欲调高下限设定温度,调小Rp。
② ** 调节上限温度原理**若Rp调大,Rt也需变大(即上限温度需变得更低,因为是负温度系数电阻),才能保证6脚临界电位不变(2/3Vcc)——欲调低上限设定温度,调大Rp;若Rp调小,Rt也需变小(即上限温度需变得更高,因为是负温度系数电阻),才能保证6脚临界电位不变(2/3Vcc)——欲调高上限设定温度,调小Rp。
综上所述,调Rp可以调高或调低设定温度值,但此电路有局限性:只能同时调高上限、下限或同时调低上限、下限,即不能单独调节上下限温度。